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A simple formula to �nd the closest

consistent matrix to a reciprocal matrix

J. Benítez∗, J. Izquierdo†, R. Pérez-García†, E. Ramos-Martínez†

Abstract: Achieving consistency in pair-wise comparisons between decision el-
ements given by experts or stakeholders is of paramount importance in decision-
making based on the AHP methodology. Several alternatives to improve consis-
tency have been proposed in the literature. The linearization method (Benítez et
al., Achieving matrix consistency in AHP through linearization, Applied Mathemati-
cal Modelling 35 (2011) 4449-4457), derives a consistent matrix based on an original
matrix of comparisons through a suitable orthogonal projection expressed in terms of
a Fourier-like expansion. We propose a formula that provides in a very simple manner
the consistent matrix closest to a reciprocal (inconsistent) matrix. In addition, this
formula is computationally efficient since it only uses sums to perform the calcula-
tions. A corollary of the main result shows that the normalized vector of the vector,
whose components are the geometric means of the rows of a comparison matrix,
gives the priority vector only for consistent matrices.

1 Introduction

The AHP (Analytic Hierarchy Process) [1, 2] is designed for multi-objective, multi-criteria, and
multi-actor decisions, with and without certainty, for any number of alternatives. The AHP ap-
proach mainly consists of three stages, construction of the hierarchy of problem ingredients,
namely, objective, criteria and alternatives, calculation of the priorities of the elements, and ag-
gregation of results to produce the final decision. Interactions between the elements are con-
sidered when building the structure of the problem. The elements are evaluated using pairwise
comparisons, by asking experts or stakeholders involved in the decision-making problem about
how much importance a criterion has when compared with another criterion with respect to the
interests or preferences of respondents. The candidate alternatives are also evaluated by pairwise
comparisons with respect to what is the higher degree of satisfaction for each criterion.

Both kinds of related values can be determined by using various scales, in particular the scale
of 1 – 9 to represent equal importance to extreme importance [1]. Performing such a comparison
yields an n×n matrix A= (ai j), whose (positive) entries must adhere to two important properties,
namely, aii = 1 (homogeneity) and a ji = 1/ai j (reciprocity), i, j = 1, . . . , n. The problem for
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matrix A becomes one of producing for the n elements, E1, . . . , En (criteria or alternatives) under
comparison, a set of numerical values w1, . . . , wn that reflect the priorities among the compared
elements according to the emitted judgments. If all the judgments are completely consistent,
the relations between weights wi and judgments ai j are simply given by wi/w j = ai j (for i, j =
1,2, . . . , n) and the matrix A is said to be consistent. The following theorem provides equivalent
conditions for a matrix A to be consistent.

Firstly, we provide some notation. Mn,m will hereinafter denote the set of n×m real matrices,
and M+n,m will denote the subset of Mn,m composed of positive matrices. It will be assumed that
the elements of IRn are column vectors, i.e., IRn is identified with Mn,1. For a given A ∈ Mn,m, let
us write [A]i j the (i, j) entry of the matrix A. The superscript T denotes the matrix transposition.
The mapping J : M+n,m → M+n,m defined by [J(A)]i j = 1/[A]i j will play an important role in the
sequel.

Theorem 1 [3, Th. 1] Let A= (ai j) ∈ M+n,n. The following statements are equivalent.

(i) There exists x ∈ M+n,1 such that A= J(x)xT .

(ii) There exists w= [w1 · · ·wn]T ∈ M+n,1 such that ai j = wi/w j for all i, j ∈ {1, . . . , n}.

(iii) ai ja ji = 1 and ai ja jk = aik hold for all i, j, k ∈ {1, . . . , n}.

For a consistent matrix, the leading eigenvalue and the principal (Perron) eigenvector of a
comparison matrix provide information to deal with complex decisions, the normalized Perron
eigenvector giving the sought priority vector [2]. It is also well known that any consistent ma-
trix has rank one [3], and as a consequence, any of its normalized rows and, in particular, the
normalized vector of the geometric means of the rows, also provides the priority vector. Taking
into account the (natural lack of) consistency of human thinking, some degree of inconsistency
is expected and, as a result, in general A is not consistent. As shown in [4] the eigenvector is
necessary for obtaining priorities. The hypothesis that the estimates of these values are small
perturbations of the “right” values guarantees a small perturbation of the eigenvalues (see, e.g.,
[5]). For non-consistent matrices, the problem to solve is the eigenvalue problem Aw = λmaxw,
where λmax is the unique largest eigenvalue of A that gives the Perron eigenvector as an estimate
of the priority vector. As a measurement of inconsistency, Saaty proposed using the consistency
index CI= (λmax− n)/(n−1) and the consistency ratio CR= CI/RI, where RI is the so-called av-
erage consistency index [2]. If CR < 0.1, the estimate is accepted; otherwise, a new comparison
matrix is solicited until CR< 0.1.

Achieving consistency in AHP has become an important issue and different methods have been
proposed in the literature [1, 2, 3, 6, 7, 8, 9, 10, 11, 12, 13, 14]. In this paper, we focus on the
linearization process [10] not as method to directly obtain the priority vector, but as a method
that provides a closed form for achieving complete consistency. Here we use the word closed
in contrast with methods relying on optimisation, which is non-linear for this problem, and are
iterative by nature. Achieving complete consistency is a feature that may be suitably used for
specific purposes.

In section 2 we provide a short review of the linearization method. In section 3 we develop a
simple formula to obtain the consistent matrix that is closest to a given comparison matrix and
its associated priority vector. This formula involves just sums, a very important computational
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feature. As a consequence, we show that the row geometric mean method (RGMM) gives the
priority vector only for completely consistent matrices. Finally, a section devoted to discussion
and conclusions closes the paper.

2 Short review of the linearization method

Let us recall that a reciprocal matrix A ∈ M+n,n verifies the condition Ai j = 1/A ji for 1 ≤ i, j ≤ n,
whereas a consistent matrix A∈ M+n,n also satisfies Ai jA jk = Aik for 1≤ i, j, k ≤ n.

As we have mentioned, an important problem in AHP theory is the following: find the closest
consistent matrix to a given reciprocal matrix A ∈ M+n,n. To this end, in [10] the mappings were
introduced

L : M+n,n→ Mn,n, [L(A)]i j = log[Ai j]

and

E : Mn,n→ M+n,n, [E(A)]i j = exp[Ai j].

Each of these mappings is, evidently, one the inverse of the other. Obviously, for a given A∈ M+n,n
we have

A is reciprocal ⇐⇒ L(A) is skew-Hermitian.

Furthermore, in [10, Theorem 2.2] it was proven that

Ln = {L(A) : A∈ M+n,n and A is consistent } is a linear subspace. (1)

The aforementioned approximation problem was solved by means of a linearization technique
[10].

We need some notation to state this solution: We consider all vectors of IRn as column vectors,
by 1n we denote the vector of IRn given by 1T

n = (1, . . . , 1), the trace operator is denoted by tr(·),
i.e., for a square matrix A ∈ Mn,n, tr(A) = [A]1,1 + · · ·+ [A]n,n, and finally, φn denotes the linear
mapping defined by

φn(x) = x1T
n − 1nxT , φn : IRn→ Mn,n. (2)

The mathematical tool to solve the approximation problem is given by the following result.

Theorem 2 [10, Theorem 2.5] The orthogonal projection pn : Mn,n→Ln is given by

pn(X ) =
1

2n

n−1
∑

k=1

tr(X Tφn(yk))
‖yk‖2

φn(yk), (3)

where {y1, . . . ,yn−1} is an orthogonal basis of (span{1n})⊥.
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An important property of this projection is that it minimizes certain distance. To be more
precise, we first define such distance (see [15]) in M+n,n

d(A, B) = ‖L(A)− L(B)‖F, (4)

here ‖ · ‖F denotes the Frobenius norm (if X ∈ Mn,n, then ‖X‖F = tr(X T X )). Now, for a given
matrix A∈ M+n,n, the matrix Y = E(pn(L(A))) is consistent and it satisfies

d(A, Y )≤ d(A, Y ′) for any Y ′ ∈ M+n,n consistent.

3 A simple formula for equation (3)

As remarked earlier, in AHP, it is of interest to find the closest consistent matrix to a given re-
ciprocal matrix A ∈ M+n,n. In other words, it is required to apply (3) to L(A), when A ∈ M+n,n
is reciprocal. The following theorem provides a much simpler approach. As we know, if A is
reciprocal, then L(A) is skew-Hermitian.

Theorem 3 If M is skew-Hermitian and if pn : Mn,n→Ln denotes the orthogonal projection, then

pn(M) =
1

n

�

(MUn)− (MUn)
T
�

, (5)

where Un = 1n1T
n .

PROOF: Let {e1, . . . ,en} be the standard basis of IRn and let us define the following skew-
Hermitian matrices:

Bi j = eie
T
j − e je

T
i , 1≤ i, j ≤ n. (6)

Any skew-Hermitian matrix M can easily be written as

M =
∑

i< j

ri jBi j (7)

for some real numbers {ri j}i< j . Since the orthogonal projection pn : Mn,n → Ln is a linear
mapping, then

pn(M) =
∑

i< j

ri j pn(Bi j). (8)

Thus, in order to obtain an expression of pn(M), it is sufficient to simplify pn(Bi j). To this end,
we will use (3) for Bi j . Previously, we shall simplify tr(BT

i jφn(yk)). Notice that eT
i 1n = eT

j 1n = 1
and eT

i yk, eT
j yk are scalars, which commute with any matrix.

BT
i jφn(yk) =

�

eie
T
j − e je

T
i

�T �
yk1T

n − 1nyT
k

�

=
�

e je
T
i − eie

T
j

�

�

yk1T
n − 1nyT

k

�

= e je
T
i yk1T

n − e je
T
i 1nyT

k − eie
T
j yk1T

n + eie
T
j 1nyT

k

= (eT
i yk)e j1

T
n − e jy

T
k − (e

T
j yk)ei1

T
n + eiy

T
k
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Bearing in mind that the trace is linear and tr(MN) = tr(N M) holds for any pair of matrices M ,
N such that the products MN and N M are meaningful, we obtain

tr
�

BT
i jφn(yk)

�

= tr
�

(eT
i yk)e j1

T
n − e jy

T
k − (e

T
j yk)ei1

T
n + eiy

T
k

�

= (eT
i yk) tr(e j1

T
n )− tr(e jy

T
k )− (e

T
j yk) tr(ei1

T
n ) + tr(eiy

T
k )

= (eT
i yk) tr(1

T
n e j)− tr(yT

k e j)− (eT
j yk) tr(1

T
n ei) + tr(yT

k ei)

= 2eT
i yk − 2eT

j yk

= 2(ei − e j)
T yk.

Thus, from (3),

pn(Bi j) =
1

n

n−1
∑

k=1

(ei − e j)T yk

‖yk‖2
φn(yk)

=
1

n

n−1
∑

k=1

(ei − e j)T yk

‖yk‖2
(yk1T

n − 1nyT
k )

=
1

n

 

n−1
∑

k=1

(ei − e j)T yk

‖yk‖2
yk

!

1T
n −

1

n

n−1
∑

k=1

(ei − e j)T yk

‖yk‖2
1nyT

k .

Let us bear in mind that (ei − e j)T yk/‖yk‖2 is a scalar that commutes with any matrix, and
therefore in the second summand we can change the order of the matrices and obtain

pn(Bi j) =
1

n

 

n−1
∑

k=1

(ei − e j)T yk

‖yk‖2
yk

!

1T
n −

1

n
1n

 

n−1
∑

k=1

(ei − e j)T yk

‖yk‖2
yT

k

!

=
1

n

 

n−1
∑

k=1

(ei − e j)T yk

‖yk‖2
yk

!

1T
n −

1

n
1n

 

n−1
∑

k=1

(ei − e j)T yk

‖yk‖2
yk

!T

. (9)

Let us remind the classical Fourier expansion in an Euclidean space: If {w1, . . . ,wn} is an orthog-

onal basis of IRn, then any v ∈ IRn can be written as v = vT w1

‖w1‖
w1 + · · ·+

vT wn
‖wn‖

wn. Therefore, since
{y1, . . . ,yn−1,1n} is an orthogonal basis of IRn we have

v=
n−1
∑

k=1

vT yk

‖yk‖2
yk +

vT 1n

‖1n‖2
1n for all v ∈ IRn.

Since ‖1n‖2 = n, we obtain

n−1
∑

k=1

vT yk

‖yk‖2
yk = v−

vT 1n

n
1n for all v ∈ IRn. (10)
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By employing (9), (10), and eT
i 1n = eT

i 1n = 1 we obtain

pn(Bi j) =
1

n

�

ei − e j −
(ei − e j)T 1n

n
1n

�

1T
n −

1

n
1n

�

ei − e j −
(ei − e j)T 1n

n
1n

�T

=
1

n

�

ei − e j

�

1T
n −

1

n
1n

�

ei − e j

�T

=
1

n
φn(ei − e j). (11)

By (8) and (11) it follows that

pn(M) =
1

n

∑

i< j

ri jφn(ei − e j).

Moreover, by using (6) and (7) we obtain

M1n =
∑

i< j

ri jBi j1n

=
∑

i< j

ri j(eie
T
j − e je

T
i )1n =

∑

i< j

ri j

�

ei(e
T
j 1n)− e j(e

T
i 1n)

�

=
∑

i< j

ri j(ei − e j).

Since φn is a linear mapping, by using the last two identities we obtain

pn(M) =
1

n
φn







∑

i< j

ri j(ei − e j)






=

1

n
φn(M1n). (12)

Finally, we will use the definition of φn given in (2):

φn(M1n) = (M1n)1
T
n − 1n(M1n)

T = M(1n1T
n )− (1n1T

n )M
T .

By recalling that Un is defined as Un = 11T
n and Un is symmetric,

φn(M1n) = MUn− UnM T = MUn− U T
n M T = MUn− (MUn)

T . (13)

The expressions (12) and (13) conclude the proof of this theorem. �

Let us remark that the use of (5) when M is skew-Hermitian does not require any multiplica-
tion, since only sums are required to compute MUn.

It was proven in [10] that the linear spaceLn defined in (1) and the linear mapping φn defined
in (2) satisfy Imφn = Ln. Now, if M ∈ Mn,n, then there exists v ∈ IRn such that φn(v) = pn(M).
We shall use Theorem 3 for finding such vectors v when M is skew-Hermitian.

Theorem 4 Let M ∈ Mn,n be skew-Hermitian and v ∈ IRn. Then

φn(v) = pn(M) ⇔ v=
1

n
M1n+α1n, α ∈ IR.
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PROOF: As in Theorem 3, we define Un = 1n1T
n . In [10, Theorem 2.2] it was proven that the null

space of φn : IRn→ Mn,n is span{1n}. By Theorem 3 we obtain

φn

�

1

n
M1n

�

=
1

n
φn(M1n) =

1

n

�

(M1n)1
T
n − 1n(M1n)

T
�

=
1

n

�

M(1n1T
n )− 1n1T

n M T
�

=
1

n

�

MUn− UnM T
�

=
1

n

�

MUn− U T
n M T

�

=
1

n

�

MUn− (MUn)
T
�

= pn(M). (14)

⇐: It follows from (14), the linearity of φn, and 1n ∈ kerφn.

⇒: Let v ∈ IRn such thatφn(v) = pn(M). By (14), one hasφn(v−
1
n

M1n) = 0, hence v− 1
n

M1n ∈
kerφn = span{1n}. �

As we have mentioned, for a given reciprocal matrix A ∈ Mn,n, the matrix Y = E(pn(L(A))) is
the unique consistent matrix that satisfies d(A, Y ) ≤ d(A, Y ′) for any consistent Y ′ ∈ Mn,n, where
the distance d(·, ·) is the distance defined in (4). But observe that L(A) is skew-Hermitian (since
A is reciprocal), hence pn(L(A)) can be briefly described by means of Theorem 3. Furthermore,
since pn(L(A)) ∈ Ln, then Y = E(pn(L(A))) is a consistent matrix. By Theorem 1, there exists
x ∈ IRn such that xJ(x)T = Y . We shall find such priority vector x in terms of the matrix A.

Theorem 5 Let A= (ai j) ∈ Mn,n be a reciprocal matrix and x ∈ M+n,1. Then xJ(x)T = E(pn(L(A)))
if and only if there exists C > 0 such that x= C(x1, . . . , xn)T , where x i = n

p
ai1 · · · ain.

PROOF: Let v= (v1, . . . , vn)T = L(x), or in other words, evi = x i for i = 1, . . . , n. Since

φn(v) = v1T
n − 1nvT =













v1− v1 v1− v2 · · · v1− vn
v2− v1 v2− v2 · · · v2− vn

...
...

. . .
...

vn− v1 vn− v2 · · · vn− vn













,

then

E(v1T
n − 1nvT ) =













x1/x1 x1/x2 · · · x1/xn
x2/x1 x2/x2 · · · x2/xn

...
...

. . .
...

xn/x1 xn/x2 · · · xn/xn













= xT J(x).

Thus, xJ(x)T = E(pn(L(A))) ⇐⇒ φn(v) = pn(L(A)). Since A is reciprocal, then L(A) is skew-
Hermitian and Theorem 4 enables us to ensure φn(v) = pn(L(A)) ⇐⇒ ∃α ∈ IR such that
v = 1

n
L(A)1n + α1n. To prove the theorem it is enough to simplify x. Recall that x = E(v) =
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E
�

1
n

L(A)1n+α1n

�

. Observe that ai j > 0 because A is reciprocal. Since

1

n
L(A)1n+α1n =

1

n









log(a11) · · · log(a1n)
...

. . .
...

log(an1) · · · log(ann)

















1
...
1









+α









1
...
1









=









α+ 1
n

�

log(a11) + · · ·+ log(a1n)
�

...
α+ 1

n

�

log(an1) + · · ·+ log(ann)
�









,

we obtain

x= E(v) = eα









n
p

a11 · · · a1n
...

n
p

an1 · · · ann









.

The proof is finished. �

This theorem clearly shows that the RGMM gives the priority vector for the matrix E(pn(L(A)))
when A is reciprocal, which, according to Theorem 2, is the closest consistent matrix to the orig-
inal comparison matrix A. Nevertheless, the decision maker may not recognize E(pn(L(A))) as
representative of his or her judgment. This matrix (with synthetic, forced, and artificial consis-
tency) has been obtained in an attempt to improve consistency, but may not be to the decision
maker. Consequently, producing the priority vector directly through the RGMM is generally in-
correct, since it may be far from representing the real thoughts of the decision maker. The final
priority must be obtained after a trade-off process following some feedback with the decision
maker until reaching a consensus. As a consequence, Theorem 2 must be considered an auxiliary
process within the decision process, a tool that pushes toward consistency. In contrast, Theo-
rem 5, as well as the RGMM, should be never applied, since the final priority vector will be the
Perron eigenvector of the consensus matrix –as long as it has an acceptable consistency ratio.

4 Discussion and Conclusions

In order to compare the numeric efficiency of the proposed expression appearing in Theorem 3
with the formula (3), we shall count the number of required operations to find pn(M) when M is
a n× n matrix.

If we apply (3), we must perform 2(n− 1) multiplications of n× n matrices, compute n− 1
traces of matrices n× n, and finally make n divisions.

If we apply Theorem 3, then only only one matrix multiplication of two n × n matrices is
required (even, if we adequately program the expression MUn, no matrix multiplication is needed
because Un is a particularly simple matrix), subtract two n× n matrices and finally only perform
one division. Also let us remark that in the computation of (MUn)− (MUn)T only the elements
above the main diagonal must be computed because (MUn)− (MUn)T is skew-Hermitian.
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C1 C2 C3 C4 C5 C6 C7

C1 1 1/3 1/5 1 1/4 2 3
C2 3 1 1/2 2 1/3 2 3
C3 5 2 1 4 5 6 5
C4 1 1/2 1/4 1 1/4 1 2
C5 4 3 1/5 4 1 3 1
C6 1/2 1/3 1/6 1 1/3 1 1/3
C7 1/3 1/3 1/5 1/2 1 3 1

Table 1: Matrix of criteria A

In [10], in the context of a comparison between active leakage control (ALC) and passive
leakage control (PLC) in water supply, the matrix of comparison of criteria in Table 1 is used.

As noted in [10], this matrix is inconsistent. The Perron eigenvalue is λmax ' 7.9. According
to [2], the consistency index is CI = (λmax − 7)/6 ' 0.148, and the consistency ratio, obtained
by comparing CI with Saaty’s random consistency index value is CR' 10.95%, which shows that
even when almost acceptable, the matrix consistency is unacceptable. Thus, A lacks a minimum
of consistency.

By using the proposed formula, applied to M = L(A), which is skew-hermitian, pn(M) is ob-
tained, and calculating E(pn(M)) the matrix given in Table 2 is obtained as the consistent matrix
closest to A.

C1 C2 C3 C4 C5 C6 C7

C1 1 0.526 0.208 1.069 0.445 1.644 1.17
C2 1.902 1 0.395 2.034 0.847 3.126 2.225
C3 4.815 2.532 1 5.149 2.144 7.914 5.633
C4 0.935 0.492 0.194 1 0.416 1.537 1.094
C5 2.246 1.181 0.466 2.402 1 3.691 2.627
C6 0.608 0.32 0.126 0.651 0.271 1 0.712
C7 0.855 0.449 0.178 0.914 0.381 1.405 1

Table 2: Consistent matrix closest to A

For this consistent matrix the normalized Perron eigenvector, the priority vector, is

Z = (0.081, 0.154,0.390, 0.076,0.182, 0.049,0.069)T .

This calculation corrects the errata in [10], where wrong values were mistakenly copied in the
consistent matrix closest to A, now corrected in Table 2, and its associated (herein correct) pri-
ority vector Z . Even though the changes are of no real significance and have no material effect
on the paper’s message, which we do not repeat here, the authors wish to apologise for any
inconvenience that may have been caused by the wrong figures in [10]. Also observe that the
aggregation in [10] must be corrected from W = (0.70,0.30)T to W = (0.69,0.31)T .

To close the paper we now present some conclusions. Applications of the analytic hierarchy
process (AHP) involve pairwise comparisons. The judgments are used to develop pairwise com-
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parison matrices, which are then used to estimate weights of decision elements (i.e., criteria or
alternatives). There are several methods in the AHP literature for deriving weights. In this pa-
per, we have focussed on the Linearization Method [10], and have proposed a simple formula
for obtaining the closest consistent matrix to a non-consistent comparison matrix. We note that
these methods provide synthetic and artificial consistency. In particular, we have shown that the
RGMM is one of those methods that does not necessarily provide an acceptable priority vector. As
a result, these methods can somehow distort the original expert opinions by moving figures away
from the expert judgments. In this sense, these methods must be integrated within a process
of feedback with the expert until consensus is obtained [17]. Given the great simplicity of the
proposed formula, involving only sums, computational efficiency is guaranteed and integration
in any AHP-based DSS is straightforward and of great interest. Finally, various applications of the
Linearization Method (see, for example, [15, 16]) can also benefit in a straightforward way from
the obtained simplicity.
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