Document downloaded from:

http://hdl.handle.net/10251/52794

This paper must be cited as:

Catala Icardo, M.; Martinez Calatayud, JM. (2008). Photo-induced luminescence. Taylor &
Francis. doi:10.1080/10408340802039609.

The final publication is available at

http://dx.doi.org/10.1080/10408340802039609

Copyright
Pyng Taylor & Francis



Photo-Induced Luminescence

Mbénica Catala-Icardo®, José Martinez Calatayud”
* Department of Chemistry, Polytechnic University of Valencia, Valencia, Spain
® Department of Analytical Chemistry, University of Valencia, Valencia, Spain

Address correspondence to J. Martimmez Calatayud, Department of Analytical
Chemistry, University of Valencia, Valencia, Spain. E-mail: jose.martinez@uv.es

Abstract

The present paper is a critical review dealing with the characteristics, reaction
mechanisms and photoproducts, instrumentation and analytical applications of the
photo-induced either chemiluminescence or fluorescence. Special attention is paid to the
determination of pesticides by continuous-flow methodologies. The paper is divided
into several sections covering the most relevant published papers.
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GENERAL INTRODUCTION

The intensive use of pesticides to protect crops, cattle and households has
increased and is an increasingly serious environmental problem. In fact, the toxicity,
persistence and bioaccumulability of pesticides can lead to poisoning in living beings;
short-, mid- and long-term pollution of water and edaphic resources; and the presence of
undesirable residues of toxic substances in foods.

Both legal restrictions in many countries and society at large are becoming
increasingly demanding regarding the production of pesticides and control of the end-
products, and also in relation to the impact of various human activities on the
environment. The need to extend control activities on pesticides to their environmental
metabolites has led to a growing demand for analyses of increasing sensitivity and
selectivity. This need has been addressed by developing a vast number of new analytical
procedures based on various methodologies that combine automatability,
expeditiousness and cost-effectiveness with a high reproducibility, sensitivity and
selectivity.

Chromatographies are highly sensitive and selective. However, the high
simplicity, robustness, precision and economy of continuous-flow techniques—not all
of which are nonseparation techniques as widely assumed by the analytical
community—in addition to their high throughput and ready automation make them
highly attractive alternatives. Such techniques include flow injection analysis (FIA),
sequential injection analysis (SIA), multisyringe (MS) and multicommutation (MC).
The selectivity and sensitivity required can in principle be achieved by using an
appropriate detection technique. Photochemically induced fluorescence (PIF) or
chemiluminescence (PICL) detection constitute two very promising choices in this
respect; both involve irradiating an analyte with UV light in order to convert it into a
photoproduct differing in luminescent properties from the partner substance. Usually,
the target is a luminescent (fluorescent or chemiluminescent) product or one with
enhanced luminescence if the starting substance already possesses any. In some cases,



however, the target is a photofragment exhibiting little or no fluorescence or
chemiluminescence relative to the parent compound and the purpose to examine some
inhibitory effect on its fluorescence or luminescence. In fact, a number of analytical
procedures are based on total or partial inhibition of luminescence. However, the most
interesting reported methods are those where the photoproduct exhibits substantially
increased emission with respect to the starting substance.

This paper reviews recent advances and available knowledge of batch and
continuous PIF-and PICL-based methodologies as applied to pesticide analysis. Also, it
discusses PIF and PICL methods used in combination with continuous-flow techniques.

MOLECULAR PHOTOCHEMISTRY AND PIF/PICL APPLICATIONS

The discussion that follows can be better understood by previously evoking
some essential concepts. Thus, irradiating a molecule can break it into fragments of a
smaller molecular weight (photolysis) or induce a photocyclization, photoisomerization
and photooxidation or photoreduction reaction.

Pesticides usually undergo photolysis upon irradiation. This is a general natural
mechanism for destroying a number of contaminants, among other substances.
Photodegradation can occur in a direct or indirect manner. Direct photolysis involves
the absorption of photons by the molecule to be transformed. On the other hand, indirect
photolysis involves the absorption of energy from another molecule which has
previously absorbed photons; the two steps are connected and constitute a first-order
kinetic process. The rate of the photolysis reaction depends on the amount of energy
required to break bonds, that of luminous energy supplied and the presence of
appropriate intermediates. In nature, the amount of luminous energy available depends
on depth and time (viz. time of day and day of year), as well as on the amount of
particles present in the water column. The variables influencing the photolytic
degradation of pesticides generally include light intensity, exposure time, location and,
obviously, the chemical properties of the pesticide (1).

Turro (2) has defined molecular photochemistry as “a science concerned with
the description of physical and chemical processes induced by the absorption of
photons, in terms of a concrete mechanistic model based on molecular structures and
their implied properties.” Every photoprocess involves some excited electronic state
which is usually reached by absorbing a photon. The electron distribution in a
photochemically activated molecule is different from that in a thermally excited
molecule as the photon provides excess energy. Also, light is a more selective activator
than heat.

The outcome of the excitation varies as a function of the particular molecule and
conditions. As a rule, a photoreaction involves the following three steps: (1) absorption
of light to generate an electronically excited molecule; (2) photochemical processes
involving the excited molecule; and (3) side processes involving the reaction
intermediates produced in the previous step.

This review focuses on photoreactions involving a pesticide and yielding a
molecule with luminescent properties that depart from those of the parent molecule (the
analyte). Such luminescent properties can be PIF or PICL. The analytical techniques
based on these two properties are highly sensitive and selective. However, the number
of substances that can be determined in a direct manner from their fluorescence or
chemiluminescence is relatively small. This has fostered the use of derivatization
reactions in order to expand the body of substances that can be determined with



adequate sensitivity in this way. The methods that use light as described above are
known as PIF and PICL methods.
In this context, light is an ideal reagent (3) for reasons such as the following:

(a) It has a minimal environmental impact as it minimizes or avoids the use of
potentially toxic reagents and hence the release of hazardous waste.

(b) It avoids the need to dilute samples, which is unavoidable in using dissolved
chemical reagents.

(c) The use of lamps with different spectral characteristics is equivalent to using
reagents of variable nature and results in increased selectivity. In fact, light can
induce

a variety of reactions including oxidation, reduction and hydrolysis.

(d) Very often, it expedites analysis times as photochemical reactions usually involve
intermediate radicals and are thus fast.

(e) It allows reaction times to be shortened by altering the irradiation conditions (e.g.
lamp power, reactor configuration). Lamp power (viz. irradiation intensity) can
be compared to the concentration of a chemical reagent.

(f) A wide range of inexpensive lamps is commercially available.

(g) The typically high stability of the light source allows a high reproducibility to be
achieved by carefully controlling the operating conditions.

(h) It usually affords operation at room temperature.

(1) It also affords on-line coupling to continuous-flow manifolds, thereby facilitating
automation of the process and simplifying the analytical procedure by
dispensing with the need for reagent propulsion and mixing systems (e.g.
merging points, mixing chambers).

As a rule, a photochemical reaction can be analytically useful if the following

requirements are met:

(a) The light used to induce the formation of the photoproduct is strongly absorbed
by the analyte, but not by the products.

(b) The photochemical yield is high.

(c) The photoproducts obtained are stable for as along as needed to complete the
analysis. This is rarely a problem with continuous-flow techniques as the
manifolds are closed systems—and hence protected from the atmosphere—and
the photoreaction can take place in the vicinity of the fluorimeter flow-cell or the
point of merging with the reagent of the chemiluminescent reaction, so usually a
few seconds of stability is long enough.

(d) The products are more structurally rigid or aromatic than the reactants, so an
adequate fluorescence quantum yield—and the obtainment of a
chemiluminescent product in some cases—is ensured.

(e) The photoreactor is appropriately designed in regards to building material and
spatial configuration.

Advantages of PIF and PICL, and of Their Joint Use With Continuous-Flow
Techniques

The theoretical aspects of PIF have been studied by several authors (4-6) who
have shown that, if irradiating a non fluorescence or weekly fluorescence compound
produces a single, strongly fluorescent photoproduct, then its fluorescence intensity is
proportional to the initial analyte concentration.



However, if irradiation produces more than one photoproduct, the previous two
quantities may not be linearly related. Although PICL has been studied to a lesser
extent, it also exhibits a linear relationship over wide concentration ranges.

In addition to the advantages gained in using light as a reagent, PIF- and PICL-
based methods provide the following (7):

(a) They expand the body of samples that can be detected with fluorescence- or
chemiluminescence-based methods.

(b) They provide improved sensitivity and selectivity.

(c) They afford greater simplicity and shorter analysis times by effect of using light
as a reagent.

(d) They dispense with the need to identify the photoproduct provided the
luminescence signal is reproducible and proportional to the analyte
concentration.

(e) They also dispense with the need to separate reaction products.

(f) They can be readily implemented in continuous-flow systems.

A number of batch and continuous-flow PIF- and PICL-based methods for
determining pesticides are now available. In PIF-, based methods, the sample is usually
held in a quartz cell that is placed at a given distance from the light source and supplied
with the required reagents—if needed—after a preset irradiation time prior to transfer to
the detector for measurement of the analytical signal. In PICL-based methods, the
sample is readily irradiated on-line and subsequently merged with appropriate reagents
prior to reaching the flow-cell, which is placed in front of the detector. Although some
PIF-based methods for pesticides such as aromatics, chlorophenoxy acids, and
sulphonylurea and phenylurea herbicides, are implemented in a stationary medium (8),
the equivalent PICL methods are confronted with problems arising from the usually
very fast kinetics of chemiluminescent reactions. Flow methods are especially attractive
for this type of determination as they allow the irradiation time to be easily controlled
and the resulting photoproducts measured. Because such products are often unstable, the
use of flowmethods provides improved reproducibility; also, it substantially increases
throughput and automatability, while minimizing reagent consumption (especially if an
SIA or multicommutated system is used) (9).

Instrumentation

The only difference between classical fluorimeters or luminometers and those
used in PIF or PICL determinations lies in the photoreactor. A number of customized
reactors have been developed in the absence of appropriate commercially available
choices. Such reactors comprise two essential elements, namely: the light source and the
container holding the solution to be irradiated.

The irradiation source (a lamp) should be chosen in terms of power and
spectrum. Lamps can emit light spanning a continuous or discrete spectrum. The former
span a wide zone in the UVvis region. Especially prominent among them is the Xe-Hg
arc lamp, which features a high power; however, it releases a large amount of heat,
which requires the use of some refrigerating device. This lamp is usually employed
when the photoreaction concerned requires a large amount of energy.

Discrete-spectrum lamps provide a series of individual spectral lines that span a
narrow wavelength range. One typical example is the low-pressure Hg lamp, which
emits over the range 200-320 nm and maximally (roughly 85% of all light) at 254 nm.
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Also, it exhibits minor lines between 300 and 600 nm. The second strongest line is at
184.9 nm. This lamp is very useful in many cases as most compounds absorb in this
spectral zone. Monochromatic lamps are usually avoided as they require frequent
replacement, 95 are monochromators, which can reduce the light intensity by absorption
and reflection. Rather, the most common choice is broad-spectrum lamps encompassing
the most useful zone for excitation and bond breaking purposes.

Lamp power is also crucial as the kinetics and mechanism of a photoreaction
depend on the intensity of the light impinging on the reactants. Xe-Hg arc and high-
pressure Hg lamps are the most widely used among high-power light sources. As noted
earlier, however, these lamps release much heat, so they are usually employed in batch
methods; by contrast, continuous-flow methods usually employ low-pressure Hg lamps
with a power of 2-80 W. This type of source exhibits an appropriate spectrum, releases
little heat, is inexpensive and can be purchased in a variety of shapes, sizes and power
levels. The material of the photoreactor should be transparent to the
UV light emitted by most lamps in use.

The preferred material for batch methods is quartz. Thus, a quartz cell placed at
a fixed distance from the light source can be an appropriate sample container, as shown
in the determination of various sulphonylurea herbicides (10) by using a high-pressure
Hg lamp of 200 W to photolyse the analytes, which are held in a magnetically stirred
quartz cuvette accommodated in an opaque box furnished with a fan and located 30 cm
from the lamp.

The earliest photoreactors used in continuous-flow systems consisted of water-
cooled medium- or high-pressure Hg lamps, or air-cooled Xe or Xe-Hg lamps, which
were wrapped in a quartz capillary through which the analyte solution was circulated.
This design ensures efficient irradiation of the sample thanks to the high transparency of
quartz to UV light; however, it is difficult to handle owing to its fragility and difficult
adaptation to the variable geometry of photoreactors and hence to continuous-flow
systems. Also, it is expensive. Therefore, its use is restricted to high-pressure lamps
with powers above 200 W. The earliest joint use of PIF and liquid chromatography in
the determination of pesticides was for the photolysis and detection of chlorophenols
(11) in water and biological fluids.

In 1980, Scholten et al. (12) proposed using Teflon (polytetrafluoroethylene,
PTFE) as a substitute for quartz. Teflon is currently the most widely used material in
this context. Although the amount of light passing through the polymer micropores is
small, the light undergoes many reflections inside the capillary before escaping to the
outside. This phenomenon is known as “tunneling”. Teflon is particularly effective in
the zone from 200 to 300 nm, especially when combined with a low-pressure Hg lamp.
This material avoids the fragility problems of quartz, is more flexible and adaptable to
variable geometries and can be purchased at a low cost in different sizes. In addition, it
provides narrower, more symmetric peaks in HPLC and FIA. However, Teflon also has
some disadvantages associated to its high oxygen permeability, which can have an
adverse effect on sensitivity, and limited heat resistance—it releases substantial
amounts of F— and H+ ions above 50°C, which can alter the fluorescence of the target
compound and its photoreaction pathway (13).

The earliest designs consisted of a cooled high-pressure lamp accommodated in
a quartz tube around which a Teflon tube was wrapped. Subsequent designs used no
quartz tube, the PTFE tube being directly wrapped around the low-pressure lamp and
placed in front of the light source; alternatively, a knotted open tubular mesh was used
to reduce dispersion. Engelhardt and Neue (14) reported a more complex configuration
where the Teflon tube was used to form a figure of four or six sides in order to increase



the exposed area. In any case, a Teflon tube wrapped around the lamp continues to be
the preferred choice for most work of this kind.

In summary, low-pressure Hg lamps are useful in most PIF and PICL-based
pesticide determinations and afford the use of simple, convenient reactors as they cause
virtually no temperature changes and avoid adverse effects on Teflon as a result. Their
most common use in continuous-flow methods is with the Teflon tube helically coiled
around them and a piece of aluminium foil intended to maximize lighting.

Variables Affecting the Photoreaction and PIF/PICL

The photochemical reaction is primarily affected by the following factors:

(a) Lamp spectrum;

(b) Irradiation time;

(c) Irradiation intensity (viz. lamp power and distance to the irradiated solution);

(d) The constituent material of the photoreactor and its configuration; and

(e) Properties of the medium containing the analyte (viz. acidity, polarity,
temperature).

The lamp emission spectrum can affect the detection selectivity as, ultimately,
the emission spectrum of the lamp will overlap with the absorption spectrum of the
analyte, as confirmed by replacing the usual Hg lamp with a Cd or Zn lamp (15).

As a rule, the emission intensity, whether PIF or PICL, increases with increasing
irradiation time up to a maximum corresponding to the optimum value, beyond which
the trend is reversed. The first step produces the fluorescent or chemiluminescent
photoproduct, which is degraded to non-fluorescent or non-chemiluminescent products
in the second (16, 17). Some substances, however, depart from this behavior. Thus, the
fluorescence of the insecticides fenvalerate and diflubenzuron (16) increases in a
sustained manner with increasing irradiation time and exhibits no well defined
maximum. This can be ascribed to the photolysis reaction taking place in a single step
where the fluorescent products form slowly. Chlorpyriphos in the presence of f-
cyclodextrine exhibits yet another behavior (18); thus, its PIF signal initially rises and
then levels off. This suggests that an equilibrium between the pesticide photoproduct —
which has been identified as dechlorinated chlorphyriphos by GC-MS— and its
degradation product(s) is reached.

Unless the flow is stopped during irradiation, strict control of the irradiation time
in continuous-flow systems can be accomplished by adjusting the reactor length and
flow-rate. These variables additionally affect dispersion and result in broadened bands
or peaks, thereby decreasing resolution in chromatographic systems and throughput in
FIA—and also potentially degrading detection limits with both types of techniques.
Gandelman and Birks (19) studied the relationship between irradiation time and
dispersion in HPLC systems with post-column detection and concluded that long tubes
of a small diameter were the best choice; however, the tubing most commonly used in
this context is 0.2-2.0 mm in inner diameter as it is the most inexpensive and
convenient to use.

Whenever a long irradiation time (more than 1 minute) is required, dispersion
can be reduced by using a segmented-flow system. To this end, air bubbles or portions
of an immiscible liquid are inserted into the system in order to fragment the eluent
stream and then removed after irradiation but before they reach the detector. One other



approach involves stopping the flowing during irradiation in order to ensure near-zero
dispersion

(20). This is especially convenient when using solenoid valves in multicommutated
systems (9).

About the constituent material of the photoreactor and its configuration it has
been noted in the above paragraphs the fragility of quartz and the operator’s inability to
alter the tube size and arrangement at will led Scholten to propose Teflon as a
replacement material for the capillaries based on its efficiency as a photoreactor
material. Teflon tubes are commercially available in variable diameters, wall
thicknesses and pore sizes, and are quite inexpensive. These advantages have led to
Teflon gradually replacing quartz since 1983, when Lang developed the first Teflon-
based photoreactor. As reported, disadvantages of Teflon is that it releases substantial
amounts of F~ and H' ions being the released amount of F~ released a function of the
analyte residence time in the capillary and can be large enough to raise the background
signal and alter the luminescence signal of the analyte. The effect of temperature can be
lessened and construction of the experimental assembly simplified by using low-
pressure Hg lamps, which have generated a large amount of analytical literature (21—
26).

The properties of the photoreaction medium can be highly influential as they
affect the stability of excited electronic states. The medium of choice in each case will
be that resulting in the strongest possible signal with the shortest possible irradiation
time.

The polarity of the reaction medium and its protic or nonprotic nature are two
potentially influential variables. Thus, the PIF signals for deltamethrin and
diflubenzuron are higher in protic solvents than in acetonitrile; on the other hand, the
emission signals for fenitrothion and fenvalerate are higher in acetonitrile or dimethyl
sulphoxide than they are in protic solvents (16). Also, pyrethroid herbicides (27) exhibit
stronger PIF signals in protic solvents such as binary mixtures of water and organic
solvents (e.g. methanol, ethanol, acetonitrile).

Aaron and Coly (8, 18) have shown that the use of micellar media or
cyclodextrine solutions often increases the sensitivity and selectivity while reducing the
need for organic solvents. Thus, cetyltrimethylammonium chloride (CTAC) increases
the PIF signal for the herbicide 2,4-dichlorophenoxyacetic acid in water by a factor of
30.9(26). The signal rises with increasing CTAC concentration up to a roughly constant
level above the critical micelle concentration (cmc) of the surfactant. This suggests that
the photoreaction can take place within the micelles and that these prevent deactivation
of the singlet excited state(s) of the photoproduct(s). Usually, the PIF signal increases as
the cmc is approached. The outcome is “micellar-enhanced photochemically induced
fluorescence” (MEPIF). Pyrethroid insecticides (28) also exhibit enhanced PIF signals
in the presence of a cationic surfactant such as CTAC or an anionic one such as sodium
dodecylsulphate (SDS), and so do sulphonylurea herbicides (10). The effect of
cyclodextrines (CDs) (18, 29) varies among individual members of this chemical
family. The absorption spectrum is usually altered by the presence of a CD; usually,
the outcome is increased UV-Vis absorption and a bathochromic shift. Similar changes
can be induced in the emission spectrum (18). The effect of cyclodextrines has been
ascribed to various factors (30) including increased radiative rate constants, decreased
numbers of degrees of freedom and molecular motion, reduced collisional deactivation,
increased availability of a micro-environment of favorable polarity and viscosity, and
effective protection of the excited singlets of water, oxygen or other species present in
solution. Thus, molecules containing OH or NH groups are quenched by water



molecules and CD chelation efficiently reduces exposure to water. Usually, CDs not
only enhance PIF signals, but also alter the kinetics of the photolysis reaction, which
requires a longer irradiation time as a result.

The content in dissolved oxygen can be a major influential variable as the
paramagnetic nature of oxygen increases the quenching effect on the emission intensity.
Also, the presence or absence of oxygen has been found to affect both the type of
photolysis reaction undergone by some pesticides and the nature of the products it
yields (31).

And last but not least, temperature rises due to the lamp pose an arduous
problem in practice as they cause the formation of gas bubbles which can alter the flow-
rate and lead to spurious signals, thereby seriously detracting from reproducibility (32).

Reaction Mechanisms and Photoproducts

Although the PIF or PICL analytical determination of pesticides does not require
a knowledge of the mechanism behind the photoreaction or the nature of the resulting
products, such a knowledge can be very useful—and not only for academic purposes. A
number of studies have focused on the use of light as a tool for removing or degrading
pesticides in water and soil, whether in the natural environment or at processing plants.
However, one should always bear in mind that both the reaction mechanism and the
products can differ depending on the light wavelength and intensity used, as well as on
the presence of certain species in solution.

Basically, the reactions triggered by light can be of the following five types:
photolysis, photocyclization, photoisomerization, photooxidation and photoreduction.
Photolysis reactions are no doubt the most common among pesticides.

For a direct photoreaction to occur, the emission spectrum of the lamp used
should overlap with the absorption spectrum of the analyte, which absorbs light to form
an unstable substance that subsequently undergoes some transformation.

These reactions are important in the environment when the UV spectrum for the
target compound does not overlap with that of the light source. The unselective
hydroxyl radical, OH, has proved the agent restricting the persistence of many
compounds that are slowly degraded by direct photolysis. This photo-oxidant is
produced at concentrations from 10—18 to 10—14 mol/l by photolysis of nitrate ion and
some organic substances commonly present in surface waters. In indirect photolysis
processes, another substance present in solution absorbs light that is then transferred to
the pesticide, or some reactive species such as hydroxyl radicals are formed that
subsequently react with the pesticide (33). Such species, which can be either organic or
inorganic in nature, accelerate the process. Thus, nitrites and some calcium and
magnesium chelates produce hydroxyl radicals upon irradiation (34); also, some Fe’™
and Cu®" complexes catalyze the photoreaction.

The PIF-based determination of organophosphorus compounds (16) with a low-
pressure Hg lamp involves the photolysis of the pesticide to orthophosphate in the
presence of peroxydisulphate, possibly as a result of the presence of hydroxyl radicals
resulting from the photolysis of the peroxydisulphate (35), in accordance with the
following reaction scheme:

hv
5,03 —250;
SOy + H,0 = 0H + S0;~ + H*



Subsequently, the orthophosphate produced reacts with molybdate to form
molybdophosphoric acid, which in turn reacts with thiamine to give the fluorescent
thiochrome. This methodology has been used to determine methamodophos (36) and
malathion (37), and also arsanilic acid (38) and dimethylarsinic acid (39). In the
presence of peroxydisulphate, the latter two are oxidized to As (V); this reacts with
molybdate to form arsenomolybdic acid, which can oxidize thiamine to thiochrome.

Other species that are also effective photocatalysts for the degradation of
pesticides (40) on account of their ability to form hydroxyl radicals subsequently
reacting with pesticide molecules include NaOH and Fe(I1)/H,O,, which are used in the
photo-Fenton reaction (41, 42), and Fe(II) aqua complexes, which have been employed
in the PICL-based determination of aldicarb with a low-pressure Hg lamp of 20W(21),
among others. Iron (III) aquo-complexes act as highly effective catalysts in the
photodegradation and mineralization of asulam (22) in water under natural or artificial
light (43). The process is directed by hydroxyl radicals produced by excitation of
Fe(OH)*". Once all Fe (IIT) has been reduced to Fe (II), asulam continues to be degraded
in the presence of oxygen; however, the herbicide requires the continuous presence of
Fe (I1I), Fe (IT) and molecular oxygen to be completely mineralized.

Titanium dioxide has been proposed for decomposing a number of
organochlorine and organophosphorus compounds in addition to triazine, thiocarbamate
and various carbamates including asulam (43) in water purification processes. In fact,
Ti0; is used in many continuous-flow analytical procedures.

The organic compounds affording the indirect photolysis of pesticides include
fulvic acids and humic acid, which absorb light from a triplet state and transfer it to the
analyte (44), and also acetone (45).

In fact, acetone is a strong sensitizer for the photoreaction of carbaryl to
methylamine (45). Of all hypotheses put forward to explain the phenomenon, the most
plausible is that ascribing the sensitizing effect of acetone to a triplet state. The
photochemical reaction starts with the absorption of light by acetone, which produces a
triplet state, and is followed by a triplet-triplet energy transfer. Based on this principle,
carbaryl was determined via its PICL. Interestingly, the reagent used to generate the
chemiluminescence was obtained by photoreaction. Thus, tris (2, 2N-
bipyridine)ruthenium (II) [Ru(bpy);*"] was photooxidized to tris(2,2N-bipyridine)
ruthenium (III) [Ru(bpy)s*'] and this was reduced to [Ru(bpy);*']* (i.e., an excited
state), which emitted light upon falling to the ground electronic state, by reaction with
the analyte. A similar approach was used to determine carbofuran and promecarb (46)
and could in theory be applied to any N-methylcarbamate. Carbamoyl oxime,
dithiocarbamate, phenylurea and carbamothioic acid pesticides can also be determined
in this way as the alkylamines they produce upon irradiation can generate fluorescence
with o-Phthaldehyde (OPA) (47).

Once methylamine has been obtained by irradiation as described above, its
derivatization with OPA produces a fluorescent compound that takes part as an energy
acceptor fluorophore in the peroxyoxalate chemiluminescent system (48). An irradiation
time of 25 seconds ensures near 100% photolytic efficiency. Anthraquinone (49) has
been used as a sensitizer in the production of PIF from four dinitraniline herbicides. The
mechanism behind the photosensitizing effect of this aromatic ketone is similar to that
described above for acetone.

Other substances have also been used as sensitizers in this context. Thus,
riboflavin, Rodamine Band Methylene Blue have been proposed for the
photodecomposition of ethylenethiourea (32). Acetone/acetonitrile mixtures and Triton



X-100 solutions have been used in the photodegradation of dinoseb and trifluralin (32).
Also, ethanol has been used to sensitize the PICL signal of bromoxynil (23).
As noted earlier, the use of light sources can be combined with that of other
chemical species which can act as:
(a) Reagents proper;
(b) Sensitizers capable of yielding a photochemically active compound by reaction
with a non-photoactive analyte; and
(c) Catalysts for the photochemical process.

The use of photolysis reactions to obtain amine groups has expanded the range
of substances that can be detected by reaction with o-phthaldialdehyde-2-
mercaptoethanol (OPA/2-ME). Moye et al. (11, 47, 50, 51) have used this approach to
determine a number of nitrogen-containing pesticides including triazines,
dinitrophenols, amides, acetamides, carbamates, carbamoyloximes, carbamothioic acids,
dithiocarbamates, sulphonylureas, thioureas, organophosphorus compounds and
bipyridiniums. The use of a surfactant as a photosensitizer for this reaction increases the
PIF signal in many cases (9).

The principal reactions induced by irradiation include dehalogenation,
hydroxylation, dealkylation, deamination and molecular fragmentation. The resulting
photoproducts are usually mixtures of various compounds, which prevail depending on
operating conditions such as irradiation time, lamp type and photoreaction medium.

According to Garcia-Campana et al. (26), the absence of native fluorescence in
pesticides containing chloride or some other halogen (e.g. chlorophenoxyacid
herbicides) may be partly due to an intramolecular effect of the heavy atom (the
halogen), which raises the intersystem crossing probability from an excited singlet state
to a triplet state. The fact that irradiation with UV light increases the fluorescence
suggests the potential loss of the halogen in the resulting photoproduct. Photolysis of
the side chain in phenoxyacids can also produce phenol derivatives, the photoproducts
probably consisting of a mixture of chlorinated phenols, dihydroxylated compounds and
phenol.

As a rule, halogen-containing aromatic pesticides can lose their halogen atom
(52). Thus, phenylurea pesticides undergo dechlorination by effect of sunlight or light
of wavelength above 290 nm; this is the primary degradation mechanism for pesticides
such as diuron (53), linuron (54), buturon and monolinuron (55). The other
photodegradation products include OH, CHO and H derivatives. Some authors (29)
have found one of the photoproducts formed by fragmentation of the parent molecule in
the photolysis of phenylureas by irradiation with a high-pressure Hg lamp of 200 W to
be methylamine or dimethylamine. Aniline and substituted anilines are also probably
formed as their fluorescence spectra are similar to those of phenylurea photoproducts.
Other studies (56) have revealed the formation of halogenated biphenyls upon
irradiation of monuron, diuron, linuron, metobromuron or propanil with sunlight or a
UV lamp.

Irradiating the phenoxyacids 2,4,5-T and 2,4-DT (57) with a xenon lamp
produces chlorophenols, hydroxylated derivatives such as 2-hydroxy-4,5-
dichlorophenoxyacetic acid, anisoles, phenols and chlorophenols. On the other hand,
phenylureas can lose chloride atoms and form biphenyls and dehydroxylated products
(57).

Chlorotriazine atrazine (58) gives hydroxyazine as the main product of its
photodegradation by sunlight; however, additional products including 2H,2H-
deisopropylhydroxyatrazine and 2-methoxydeisopropyl analogues have been detected in
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solution when using TiO; as a photocatalyst for the reaction. On the other hand, atrazine
(53) gives hydroxyatrazine when irradiated with light of wavelength greater than 290
nm.

Organophosphorus compounds (59) produce oxo derivatives and various
phenols under both natural and UV light. Also, irradiation of a solution in fenitrothion
in distilled water with a high-pressure Hg lamp causes the formation of fenitrooxon
(60).

The carbamate group in N-methylcarbamates is rarely affected by irradiation
with UV light; by exception, carbaryl gives 1-naphthol under these conditions. (61, 62)
The fluorescence produced by sulphonylurea herbicides (10) under the influence of UV
light from a high-pressure Hg lamp of 200 W is very likely due to an arylsulphonamide
fragment.

Light induces the photoreduction of dinitraniline herbicides (49), which exhibit
PIF.

Irradiating a solution of the herbicide propanil containing O, and TiO, as
photocatalysts with 290 nm light from a Xe lamp gives various organic intermediates
and inorganic end-products (63).

According to several authors (64—66), the photolysis of the nitrile herbicide
bromoxynil in a phosphate buffer at pH 7 after 10 minutes of irradiation with a low-
pressure Hg lamp produces hydroxylated compounds such as 3,4-dihydroxy-5-
bromobenzonitrile and 3,4,5-trihydroxybenzonitrile in addition to hydrogenated
compounds such as 3,4-dihydroxybenzonitrile and 4-hydroxybenzonitrile, which result
from substitution of a bromine atom by an OH group and a proton, respectively, and
have been identified by GC-MS (64).

Resolution of Mixtures

PIF has also been used in combination with various methodologies in order to
resolve binary mixtures of pesticides. Thus, mixtures of chlorophenoxyacids such as
that of mecoprop and 2,4-dichlorophenoxyacetic acid (67) in a micellar medium was
resolved by using multivariate calibration (viz. the partial least-squares algorithm PLS-
1). Also, a time-resolved photoactivation method was developed in order to resolve the
same herbicide mixture and two other binary mixtures of pesticides from the same
family (68) from differences in photodegradation kinetics between the mixture
components; this entailed using a different irradiation time to obtain the optimum
MEPIF for each compound. Properly resolving the mixtures therefore required
constructing calibration curves at different irradiation times.

Binary mixtures of four sulphonylurea herbicides were resolved by using the
first derivative of their PIF spectra, using the zero-crossing technique (69).

The method of standard additions has proved useful in the resolution of binary
mixtures of fenitrothion and fenvalerate in synthetic samples (16).

ANALYTICAL USES OF CONTINUOUS-FLOW METHODOLOGY FOR THE
DETERMINATION OF PESTICIDES

The earliest FIA-PIF determination of pesticides was reported by Aaron et al.
(70, 71) in 1996 and involved fenitrothion, fenvalerate and diflubenzuron.
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The applications discussed in this section are summarized in two tables for
chemiluminescence and fluorescence based methods, respectively. As can be seen from
both tables, the number of such methods is quite small, especially in relation to other
analytical fields. Thus, the number of chemiluminescence based determinations of drugs
with continuous-flow methods reported over the past five years amounts to nearly 300.
Therefore, the potential of such methodologies for determining pesticides remains
largely unexplored. Thus, as can be seen from Table 1, there are only 15 references to
PICL-based methods for this purpose; only 13 if those concerned with the same
pesticide are excluded. Also, unsegmented continuous-flow methods have only recently
gained widespread acceptance. PIF-based methods are somewhat more common, albeit
only in absolute terms; in fact, if one considers the massive use of fluorimetry for the
analysis of organic products ever since its inception in the early 1950s, the spread of
PIF methods has been no more extensive than that of PICL methods.

The advantages of flow methods (e.g. increased reproducibility, simplicity,
economy, expeditiousness and automatability) are enhanced by those of
photodegradation methodologies, which are described at length above. This leads to the
obvious conclusion that an enormous effort remains to be done on the part of analysts to
fully exploit a strategy of already proven advantages.

As can also be seen from Tables 1 and 2, FIA applications prevail over all
others. In fact, only in recent years have uses of an emerging methodology such as
multicommutation been reported. Also worth noting is the absence of applications of
SIA despite its substantial degree of development. Other continuous flow
methodologies such as multisyringe FIA have not been used in this context either.

The number of fluorescence- and chemiluminescence-based determinations
conducted by FIA and other flow methods is enormous. Few methods, however, use on-
line photodegradation as an advantageous auxiliary tool in such determinations. Based
on molecular topology computations which have been confirmed by experimental
means (viz. screening tests), a vast number of potential applications in this context
remain unexplored.

Topology is a branch of mathematical analysis which correlates the positions
and connections between different elements in a set. When applied to chemical
structures, it can identify the positions and connections between atoms (elements) in a
molecule (set). This is known as molecular topology and can used to characterize a
molecule in a unique way via preset indices based on its structure, number of atoms and
their connections, among other factors. Each molecule is thus depicted as a graph where
its atoms are plotted as points (vertices) and their connecting bonds as lines (edges
between vertices). Such graphs can be expressed in numerical form via matrices
containing one or several topological descriptors. An appropriate selection of such
descriptors can provide a unique description of the structure of the molecule and hence
of many of its physical, chemical or biological properties.

The application of molecular topology to a group of compounds with a specific
property (positives group) provides a topological profile where molecules lacking such
a property do fit (negatives group). This allows one to anticipate whether a given
compound will possess the property in question.

The earliest attempt in this context was the prediction of chemiluminescence
production upon direct oxidation of organic compounds (pesticides and drugs) by
inorganic species, which was accurate in 92.7% of cases (72) and later on successfully
extended to polyphenols (73), ergot alkaloids (74) and other substances. Current
research in this field is focusing on the prediction of PICL (75) and both native and
photo-induced fluorescence.
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The selectivity of these processes must be increased in order to simplify
procedures and avoid the need for complicated separations by HPLC, GC or capillary
electrophoresis. This can be accomplished in various ways including the development
of less general photodegradation methods or more selective chemiluminescent reactions
involving chelating agents. While such methods become available, the only effective
alternative is to use flow manifolds affording the use of post-column devices or the
integration of mini-solid-liquid columns for on-line separation.

Regarding chemical analytical methods, the needs echo those in other fields such
as chemiluminescence induction without photodegradation or direct oxidation of the
analyte with a strong oxidant—where potassium permanganate in a strongly acidic
medium is the most common choice. The advantages are obvious as the oxidant itself
produces the chemiluminescence emission. Systems based on the oxidation of Ru (II) to
Ru (IIT) have become fairly common in this context in recent years. The ensuing
determinations are also of the direct chemiluminescence product type as Ru (III) is the
oxidant for the analyte; such a species, which is probably the most selective oxidant,
can be obtained by oxidizing Ru (II) to Ru (III) with an auxiliary oxidant such as Ce
(IV), ferricyanide or permanganate ion.

Derivatization of the analyte in fluorescence-based methods is usually affected
by the light source itself. Rarely is the help of another chemical (oxidant) other than a
surfactant needed, which testifies to the cleanliness of light as an “analytical reagent”.
In fact, the reaction medium only requires pH adjustment, the addition of a surfactant in
order to protect excited species from interactions with their environment or the use of an
organic solvent to adjust the polarity at most.

As noted earlier, one way of obtaining a high selectivity is by using post-column
devices, which are commonplace in flow assemblies. Thus, in recent work, phosphates
and two organophosphorus pesticides (viz. methamidophos and acephate) were
determined following HPLC separation, which was connected to a flow manifold
delivering the reagent (peroxydisulphate) needed to photodegrade the analytes by
irradiation with a low-pressure Hg lamp. Orthophosphate ion thus formed reacted with
molybdate ion to form phosphomolybdic acid, which then reacted with thiamine to form
the fluorescent product (thiochrome). This analytical procedure can be improved by
using a multicommutated system.

Reproducibility in these determinations is usually good, as expected from flow
methods, and so is throughput. Regarding sensitivity, the comments made above in
relation to chemiluminescence-based determinations also apply here. In fact, the most
salient feature is the analytical and environmental gains in integrating on-line
photodegradation with the new continuous-flow analytical methodologies.

Finally, it should be noted that reported methods have largely been applied to
water samples and also, to a much lesser extent, to biological fluids and soil.

TRENDS AND CONCLUSIONS

Both fluorescence- and chemiluminescence-based methods are deemed
unselective (especially when the analyte is contained in a complex matrix such as an
environmental or physiological sample). In fact, some methods of both types, but
particularly those based on PICL, are highly selective and require no preliminary
separation. In any case, incorporating a separation device such as a mini-column packed
with an ion-exchange resin (to remove interferents) or a sorbent (to retain the analyte for
subsequent elution) on-line into a flow manifold without appreciably altering its
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throughput is a relatively easy task. Also, a procedure optimized for a specific pesticide
can be readily adapted for implementation on a post-column system (particularly one of
the multicommutated type) without the need to physically alter the original assembly.

This review reveals a strong preference of researchers for flow methods over
classical batch alternatives. This is logical if one considers the increased throughput,
automatability and cost effectiveness, and decreased sample consumption of samples
and reagents of the former.

Applications have focused on the parent pesticides rather than their
environmental degradation products (photodegradation products in many cases) which
are comparably hazardous. Also, most analyses have been performed on water samples.

Finally, we should emphasize the analytical significance of being able to predict
in theoretical terms the behavior of a given analyte in a specific analytical process. This
can help reduce the need for screening tests and increase the reliability of these trial-
and-error procedures. The ability to obtain solid predictions is real; in fact, the earliest
attempts at introducing predictive mathematical functions in analytical chemistry
involved chemiluminescence-based methods.

The selectivity of both PIF and PICL processes should be improved in order to
simplify existing methods and avoid cumbersome separations by HPLC, GC or
capillary electrophoresis. This can be accomplished by developing less general
photodegradation methods or boosting the selectivity of chemiluminescent reactions by
using chelating agents, among others. The only choice at hand while such alternatives
are realized is using manifolds affording post-column separation or the on-line
integration of specific mini-solid-liquid separation columns for specific purposes.
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Table 1. Photo-induced chemiluminescence flow analysis.

Medium and reagents N Photodegradati Sample
Oxidation on LOD 1 Refere
Analyte Flow method for the . throughput (h™) Sample type
. system interval (ng/h nces
photodegradation (R.S.D.)
Carbofuran, FIA Phosphate buffer tris(2,2"-bipyridine) 85s 53 200 (1.6%) Water, soil, corn 46
promecarb pH 6.5 ruthenium(IT)/ 85
peroxydisulphate
Carbaryl FIA Phosphate buffer tris(2,2"-bipyridine) 85s 12 200 (1.2%) Water, soil, 45
pH 6.5 ruthenium(II)/ corn, serum
peroxydisulphate
Carbaryl FIA Imidazol/SDS bis(2,4,6 25s 31 114 (2.8%) Water, plants 48
trichlorophenyloxalate)/
ophtaldehide/H,0,
Asulam Multicommutation Glycine buffer KMnO,/H,SO, 90 s 40 30 (4.1%) Water 22
pH 8.3
Aldicarb Multicommutation Fe (IIT)/quinine KMnO,/H,S0, 150 s 0.069 17 (3.7%) Water, 21
formulations
Chlorsulfuron | Multicommutation Glycine buffer KMnO,/H,SO, 100 s 60 25 (3.8%) Water 24
pH 9.5
Propanil Multicommutation Acetic/acetate KMnO,/H,SO, 120 s 8.5 20 (2.9%) Water, 17
buffer pH 5 formulations
Alachlor Multicommutation Acetic/acetate KMnO,/H,SO, 120 s 41 20 (2.8%) Water 17
buffer pH 5
Flumetsulam Multicommutation Acetic/acetate KMnO,/H,SO, 120 s 25 20 (1.9%) Water 17
buffer pH 5
Furalaxyl Multicommutation Acetic/acetate KMnO4/H,SO, 120 s 34 20 (3.4%) Water 17
buffer pH 5
Ofurace Multicommutation Acetic/acetate KMnO4/H,SO, 120 s 58 20 (2.3%) Water 17
buffer pH 5
Bromoxynil FIA KOH/ethanol KMnO4/plyphosphoric 12s 5 134 (2.3%) Water, 23
acid formulations
Ferbam FIA Fe'' Oxalate 1.5 min 200 45 (1.23%) Water, corn 76
Paraoxon FIA Luminol/Peroxidase Coline oxidase/ H,0, 60 min 0.75 1 (3.7%) Soil, plants 77
Aldicarb FIA Luminol/Peroxidase Coline oxidase/ H,0, 60 min 4 1 (3.7%) Soil, plants 77
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Table 2. Photo-induced fluorescence flow analysis.

Medium and Photo- Sample
Flow Rexe Aem . LOD 1
Analyte reagents for the degradation throughput (h™) Sample type References
method . (nm) | (nm) ; (ng/)
photo-degradation interval (R.S.D.)

Fenitrothion FIA Water 366 422 50s 3 61 (2.5%) Water, 71
formulations

Fenvalerate FIA Acetonitrile 293 333 95s 10 61 (1.4%) Water, 71
formulations

Deltamethrin FIA Ethanol 291 317 95s 18 61 (3.2%) Water, 71
formulations

Diflubenzuron FIA 2-Propanol 343 407 90 s 19 61 (4.7%) Water, 71
formulations

Sumicombi FIA Methanol 295 338 95s 4 61 (3.6 %) Water, 71
formulations

MCPA FIA Methanol/pH 5 90 s 26 Water 70

Mecoprop FIA Methanol/pH 5 90 s 23 Water 70

MCPB FIA Methanol/pH 5 90 s 30 Water 70

2,4-D FIA Methanol/pH 5 720 s 98 Water 70

2,4-DP FIA Methanol/pH 5 600 s 82 Water 70

Fenvalerate FIA SDS 277 329 60 s 210 30 Water 78

Chlorsulfuron FIA CTAC/NaOH 314 380 150 s 0.2 56 (1.5%) Water 25

Metsulfuron- FIA SDS/NaOH 322 378 60 s 0.1 80 (3.7%) Water 25

methyl

3-Rimsulfuron FIA CTACpH7 317 365 150 s 0.1 56 (1.8%) Water 25

Sulfometuron- FIA CTACpHO9 290 341 150s 0.1 56 (2.4%) Water 25

methyl

Mecoprop FIA CTAC 270 298 10 min 33.5 - (3.7%) Water 26

2,4-D FIA CTAC 270 298 15 min 73.2 - (3.1%) Water 26

Imidacloprid FIA pH11.8 334 377 30s 0.3 60 (2.1%) Water 79

Linuron FIA SDS pH 7 - - 4 min 330 (11%) Water 29

Diuron FIA SDS pH 7 - - 8 min 920 (1.3%) Water 29

Isoproturon FIA CTACpH 7 - - 6 min 450 (1.4%) Water 29
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Isoproturon FIA CTACpH 7 - - 12 min 740 (3.4%) Water 29
Methamidophos FIA Peroxydisulphate/ 375 440 I1s 1.7 70 (3.0%) Water, plants 36
molibdato/
HNOs/tiamina
Dimethylarsinic FIA Peroxydisulphate/ 375 440 20s 14 60 (0.5%) Water, plants 39
acid molibdato/
HNOs/tiamina
Mecoprop FIA CTACpH3 270 298 - 73.2 10 3.1%) - 80
2,4-D FIA CTACpH3 270 298 - 33.5 10 (3.7%) - 80
Malathion FIA Peroxydisulphate/ 375 440 - - 70 Water, corn, 37
molibdate/ plants
HNOs/tiamina
Arsanilic acid FIA Peroxydisulphate/ 375 440 20s 10 55 (1.3%) Water, animal 38
molibdate/ food
HNOs/tiamina
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