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Abstract

We derive a very short expression for the group inverse of a1 + · · ·+an when a1, . . . , an

are elements in an algebra having group inverse and satisfying aiaj = 0 for i < j. We
apply this formula in order to find the group inverse of 2× 2 block operators under some
conditions.

AMS classification: 15A09; 47A05

Key words: algebra, group inverse, block operators.

1 Introduction

Throughout this paper, A will denote an algebra with unity 1 and we will denote by A−1 the
subset of invertible elements of A. An idempotent p ∈ A satisfies p = p2. An element a ∈ A

is said to have a group inverse if there exists x ∈ A such that

axa = a, xax = x, ax = xa. (1.1)

It can easily be proved that if a ∈ A has a group inverse, then the element x satisfying (1.1)
is unique, and under this situation, we shall write x = a#. The subset of A consisting of
elements of A that have a group inverse inverse will be denoted by A#. For an arbitrary
algebra A, it is not true that A = A#. Even when A is the set of complex matrices of order
n × n (denoted by Cn×n), the equality A = A# does not hold (an equivalent condition for
A ∈ Cn×n having a group inverse is that rank(A) = rank(A2), see for example [1]).

The group inverse in a Banach algebra is a particular case of the Drazin inverse (see
[12]). Since the group inverse of a ∈ A# must commute with a, the study of such kind
on invertibility resembles to the study of the elements of a C∗-algebra that commute with
their Moore–Penrose inverse (see [2, 12]). Following the proof of Theorem 2.1 in [2], we can
establish the following result:
∗The second and the third authors are supported by Guangxi Science Foundation (0640016, 0832084).
†Email: jbenitez@mat.upv.es
‡Email: xiaojiliu72@yahoo.com.cn
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Theorem 1.1. Let A be an algebra with unity 1 and a ∈ A. Then the following conditions
are equivalent:

(i) There exists a unique idempotent p such that a + p ∈ A−1 and ap = pa = 0.

(ii) a ∈ A#.

Following [13], we denote by aπ the unique idempotent satisfying condition (i) of The-
orem 1.1 for a given a ∈ A#. Let us remark that aaπ = aπa = 0 and from the proof of
Theorem 1.1 we have

aπ = 1− aa# = 1− a#a and a# = (a + aπ)−1 − aπ. (1.2)

The idempotent aπ will be named the spectral idempotent of a corresponding to 0.

2 Some additive results for the group inverse in a algebra

Recently, there has been interest in giving formulae for the Drazin inverse of a sum of two
matrices (or two operators in a Hilbert space) under some conditions, see [11, 10, 7, 8] and
references therein. In [3] it was proved the following result (among others). If T1, T2 ∈ Cn×n

are two k-potent matrices for some natural k > 1 (a matrix X is said to be k-potent when
Xk = K) such that T1T2 = 0 and c1, c2 are two nonzero complex numbers, then c1T1 + c2T2

is group invertible and

(c1T1 + c2T2)# = c−1
1 (In − T k−1

2 )T k−2
1 + c−1

2 T k−2
2 (In − T k−1

1 ). (2.3)

In order to prove (2.3) the authors used block matrices and spectral theory for diagonalizable
matrices (which means that the setting of the proof was finite-dimensional).

Next result generalizes the expression (2.3) in a algebra setting without considering the
dimension of the space under consideration. First of all, let us see how (2.3) can be generalized.
Let us remark that if T is a k-potent matrix for some natural k > 1, then T is group invertible
and T# = T k−2 as is easily seen from the definition of the group inverse (see equations (1.1)).
Observe that under this situation one has from (1.2) that T k−1 = TT k−2 = TT# = In − T π,
where In denotes the identity matrix of order n. Moreover, it is very simple to check that if
A is any group invertible matrix and c is a nonzero complex number, then (cA)# = c−1A#.
Hence, the formula (2.3) can be written

(c1T1 + c2T2)# = T π
2 (c1T1)# + (c2T2)#T π

1 .

A related result in the setting of operators in a Banach space and Drazin inverses was
given in [6].

Theorem 2.1. Let A be an algebra with unity. If a, b ∈ A# satisfy ab = 0, then a + b ∈ A#

and
(a + b)# = bπa# + b#aπ.

Proof. Let us denote x = bπa# + b#aπ. In order to prove the formula of the theorem, we
will check (a + b)x = x(a + b), (a + b)x(a + b) = a + b, and x(a + b)x = x. Before doing
this, let us observe that a#b = 0 (since a#b = a#aa#b = (a#)2ab = 0), aπb = b (since
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aπb = (1 − aa#)b = b), ab# = 0 (since ab# = ab#bb# = ab(b#)2 = 0), and abπ = a (since
abπ = a(1− bb#) = a). Next we simplify (a + b)x and x(a + b):

(a + b)x = (a + b)(bπa# + b#aπ) = abπa# + ab#aπ + bbπa# + bb#aπ = aa# + bb#aπ,

and

x(a + b) = (bπa# + b#aπ)(a + b) = bπa#a + bπa#b + b#aπa + b#aπb

= bπa#a + b#b = (1− bb#)a#a + b#b = a#a + bb#(1− a#a) = a#a + bb#aπ.

This proves (a + b)x = x(a + b). Now,

(a + b)x(a + b) = (a#a + bb#aπ)(a + b) = a#a2 + a#ab + bb#aπa + bb#aπb = a + b

and

x(a + b)x = (bπa# + b#aπ)(a#a + bb#aπ)
= bπ(a#)2a + bπa#bb#aπ + b#aπa#a + b#aπbb#aπ = bπa# + b#aπ.

The theorem is proved.

Corollary 2.1. Let A be an algebra with unity. If a, b ∈ A# satisfy ab = 0 = ba, then
a + b ∈ A# and

(a + b)# = a# + b#.

Proof. By Theorem 2.1 we have a+b ∈ A# and (a+b)# = bπa# +b#aπ. Let us simplify each
summand under the condition ba = 0. Let us remark that ba# = ba#aa# = ba(a#)2 = 0 and
similarly, one has b#a = 0. Now, bπa# = (1 − b#b)a# = a# and b#aπ = b#(1 − aa#) = b#.
Hence, the corollary is proved.

Theorem 2.2. Let a1, . . . , an be elements in an algebra having group inverse. If aiaj = 0,
for i < j and i, j ∈ {1, 2, . . . , n}, then a1 + · · ·+ an ∈ A# and

(a1 + · · ·+ an)# = aπn · · · aπ2a#
1 + aπn · · · aπ3a#

2 aπ1 + · · ·+ aπna
#
n−1a

π
n−2 · · · aπ1 + a#

n aπn−1 · · · aπ1 .

Proof. This formula will be proved by induction on n. For n = 2, the formula is simply
Theorem 2.1. Assume that the theorem is true when the number of summands is less than
n. By the induction hypothesis, we have that a2 + · · ·+ an ∈ A# and

(a2 + · · ·+an)# = aπn · · · aπ3a#
2 +aπn · · · aπ4a#

3 aπ2 + · · ·+aπna
#
n−1a

π
n−2 · · · aπ2 +a#

n aπn−1 · · · aπ2 . (2.4)

Since a1 and a2 + · · ·+ an have group inverse and a1(a2 + · · ·+ an) = 0, by Theorem 2.1,
we get a1 + a2 + · · ·+ an ∈ A# and

(a1 + a2 + · · ·+ an)# = (a2 + · · ·+ an)πa#
1 + (a2 + · · ·+ an)#aπ1 .

Using (2.4) we get

(a1 + a2 + · · ·+ an)# = (a2 + · · ·+ an)πa#
1 + aπn · · · aπ3a#

2 aπ1 + · · ·+ a#
n aπn−1 · · · aπ1 .

Therefore, in order to finish the proof, it is enough to demonstrate

(a2 + · · ·+ an)π = aπn · · · aπ2 . (2.5)
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We are going to prove (2.5) by induction on n. If n = 2, there is nothing to prove. Assume
that

(a2 + · · ·+ an−1)π = aπn−1 · · · aπ2 (2.6)

holds. By the hypothesis of the Theorem, we easily get when i < j and i, j ∈ {1, · · ·n} that
aia

#
j = 0 and aia

π
j = ai. Let us denote

x2 = aπn · · · aπ3a#
2 , · · · , xn−1 = aπna

#
n−1a

π
n−2 · · · aπ2 , xn = a#

n aπn−1 · · · aπ2

and
y2 = aπn−1 · · · aπ3a#

2 , · · · , yn−1 = a#
n−1a

π
n−2 · · · aπ2 .

Observe that aπnyi = xi holds for i = 2, . . . , n− 1. Now, from (2.4)

(
n∑
i=2

ai

)π
= 1−

(
n∑
i=2

ai

)(
n∑
i=2

ai

)#

= 1−

(
n∑
i=2

ai

)(
n∑
i=2

xi

)

= 1−

(
an +

n−1∑
i=2

ai

)(
xn +

n−1∑
i=2

xi

)

= 1− anxn − an

n−1∑
i=2

xi −
n−1∑
i=2

aixn −

(
n−1∑
i=2

ai

)(
n−1∑
i=2

xi

)

= 1− anxn − an

n−1∑
i=2

aπnyi −
n−1∑
i=2

aixn −

(
n−1∑
i=2

ai

)(
n−1∑
i=2

aπnyi

)

= 1−
n∑
i=2

aixn −

(
n−1∑
i=2

ai

)(
n−1∑
i=2

yi

)
. (2.7)

On the other hand, since (2.6) was assumed, we have

1−

(
n−1∑
i=2

ai

)(
n−1∑
i=2

ai

)#

= aπn−1 · · · aπ2 .

Since we assume that the formula stated in the theorem holds when the number of summands
is less than n, we have (

n−1∑
i=2

ai

)#

=
n−1∑
i=2

yi,

hence

1−

(
n−1∑
i=2

ai

)(
n−1∑
i=2

yi

)
= aπn−1 · · · aπ2 . (2.8)
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Therefore, from (2.7) and (2.8) and recalling a2a
#
n = · · · = an−1a

#
n = 0, we obtain(

n∑
i=2

ai

)π
= aπn−1 · · · aπ2 −

(
n∑
i=2

ai

)
xn

= aπn−1 · · · aπ2 −

(
n∑
i=2

ai

)
a#
n aπn−1 · · · aπ2

= aπn−1 · · · aπ2 − ana
#
n aπn−1 · · · aπ2

= (1− ana
#
n )aπn−1 · · · aπ2

= aπna
π
n−1 · · · aπ2 .

And the theorem is proved.

3 Applications

We will use Theorem 2.1 to find the group inverse of a block matrix

M =
[

A B
C D

]
(3.9)

under some conditions on blocks A, B, C, and D. The main idea is to decompose M =
M1 + M2, where matrices M1 and M2 contain some blocks of the matrix M , and these
matrices M1 and M2 satisfy conditions of Theorem 2.1, i.e., M1, M2 are group invertible and
M1M2 = 0. A prior work (for the Drazin inverse) can be founded in [9].

But, instead of establishing the main results in the setting of matrix theory (recall that
the algebra composed of complex n × n matrices has finite dimension), we will work in an
arbitrary algebra. We believe that avoiding the use of the spatial arguments in the standard n
dimensional Euclidean space in favor of simpler algebraic techniques gives a greater insight into
this problem. As simple consequences we obtain results on matrices and bounded operators
on Banach spaces.

We generalize the use of block matrices to the setting of unital algebras in the following
lines. For any idempotent p ∈ A, we shall denote p = 1− p. Evidently we have that p is also
an idempotent and pp = pp = 0. Now, any a ∈ A has the following matrix representation
(see [5, Lemma 2.1]):

a ≡
[

pap pap
pap pap

]
. (3.10)

Also, recall that since p is an idempotent, pAp and pAp are algebras with units p and p,
respectively. Such representation is useful to deal with block matrices or operators in direct
sums of Banach spaces.

1. Let Cn×m denote the set composed of n × m complex matrices and In the identity
matrix of order n. If P ∈ Cn×n is the idempotent given by P = S(Ir ⊕ 0)S−1, where
S ∈ Cn×n is nonsingular, then any M ∈ Cn×n can be represented using (3.10). Let us
write M as

M = S

[
A B
C D

]
S−1, A ∈ Cr×r, D ∈ C(n−r)×(n−r). (3.11)
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If we compute, for example, PMP we have

PMP = S

[
Ir 0
0 0

] [
A B
C D

] [
Ir 0
0 0

]
S−1 = S

[
A 0
0 0

]
S−1.

Hence the block A in (3.11) can be identified with PMP . Similarly, we can identify the
remaining blocks in (3.11) with the different products PMP , PMP , and PMP .

2. If X and Y are two Banach spaces, let us denote B(X, Y) the algebra composed of
bounded operators from X to Y, and B(X) = B(X, X). If P : X × Y → X × Y denotes
the projection given by P (x, y) = (x, 0), then any M ∈ B(X× Y), written as M(x, y) =
(M1(x, y), M2(x, y)), can be represented using (3.10). For example, if we compute PMP
we have

PMP (x, y) = PM(x, 0) = P (M1(x, 0), M2(x, 0)) = (M1(x, 0), 0).

Thus, PMP can be identified with the operator in B(X) given by x 7→M1(x, 0). Simi-
larly, PMP can be identified with the operator in B(Y, X) given by y 7→M1(0, y), and
so on.

In next result, we describe the elements having an inverse or a group inverse in the
subalgebra pAp, where p is a nontrivial idempotent of A. It is interesting to observe that pap
is not invertible in A for any a ∈ A, in fact, if there exists x ∈ A such that papx = 1, then
premultiplying by p we get 0 = p, which contradicts the non-triviality of p. Contrarily, as we
will see, the group inverse behaves differently. We denote inv(a, B) and #(a, B) the inverse
and the group inverse, respectively in the subalgebra B ⊂ A of b ∈ B, if exists such inverse.

Theorem 3.1. Let A be an algebra with unity, p ∈ A an idempotent, and a ∈ A. Then

(i) pap ∈ (pAp)−1 if and only if pap+p ∈ A−1. Under this situation one has inv(pap, pAp)+
p = (pap + p)−1.

(ii) If pap ∈ A#, then (pap)# ∈ pAp.

(iii) pap ∈ (pAp)# if and only if pap ∈ A#. Under this situation one has #(pap, pAp) =
(pap)#.

Proof. (i) Assume that pap ∈ (pAp)−1. Having in mind that p is the unity in the subalgebra
pAp, there exists b ∈ A such that (pap)(pbp) = p and (pbp)(pap) = p, i.e., papbp = p and
pbpap = p. Now we have

(pap + p)(pbp + p) = papbp + papp + ppbp + p2 = p + p = 1,

and similarly (pbp + p)(pap + p) = 1 holds. This proves pap + p ∈ A−1 and (pap + p)−1 =
pbp + p = inv(pap, pAp) + p.

Assume now that pap + p ∈ A−1, or in other words, there exists x ∈ A such that (pap +
p)x = 1 and x(pap + p) = 1, i.e., papx + px = 1 and xpap + xp = 1. We have

(pap)(pxp) = (papx)p = (1− px)p = p− pxp.

Premultiplying by p we get (pap)(pxp) = p. Similarly we have (pxp)(pap) = p.
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(ii) Since pap ∈ A#, there exists x ∈ A such that x = (pap)#, i.e.,

papx = xpap, papxpap = pap, xpapx = x.

We have to prove x ∈ pAp. Since px = pxpapx = ppapx2 = 0, we obtain x = px. In a similar
way, since xp = xpapxp = x2papp = 0, we get x = xp. Therefore, x = pxp holds, and this
item is proved.

(iii) It is evident from the definition of the group inverse that pap ∈ (pAp)# implies
pap ∈ A# and #(pap, pAp) = (pap)#.

Assume that pap ∈ A#. There exists b ∈ A such that

(pap)b = b(pap), (pap)b(pap) = pap, b(pap)b = b.

Pre and postmultiplying the above equalities by p and having in mind p2 = p we have

(pap)(pbp) = (pbp)(pap), (pap)b(pap) = pap, pb(pap)bp = pbp.

These equalities mean pap ∈ (pAp)#. The proof is finished.

As we said before, one of our purposes is to find the group inverse of the 2 × 2 block
matrix M represented in (3.9) under some conditions on the sub-blocks of M . One idea is to
decompose [

A B
C D

]
=
[

A B
0 0

]
+
[

0 0
C D

]
and apply Theorem 2.1. Of course, we must know when is it possible to find the group
inverse of each summand in the right-hand of the above expression. In 2001, Cao [4] gave the
following result:

Theorem 3.2. If A ∈ Cr×r, C ∈ Cs×s, and M =
[

A B
0 C

]
, then there exists M# if and

only if there exist A#, C#, and (Ir−AA#)B(Is−CC#) = 0. Furthermore, when M# exists,
it is given by

M# =
[

A# (A#)2B(Is − CC#) + (Ir −AA#)B(C#)2 −A#BC#

0 C#

]
.

From this theorem we have the following obvious consequence: Let A ∈ Cr×r, B ∈ Cr×s,
and

M =
[

A B
0 0

]
.

Then M has group inverse if and only if A is group invertible and

(Ir −AA#)B = 0. (3.12)

Under this equivalence, one has

M# =
[

A# (A#)2B
0 0

]
. (3.13)

The following lemma, that extends the above consideration, will be needed in the sequel.
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Lemma 3.1. Let A be an algebra with unity, q ∈ A an idempotent, and a ∈ A such that
qa = a. Then the following are equivalent

(i) qaq ∈ A# and
[
1− a(qaq)#

]
aq = 0.

(ii) a ∈ A#.

Under this equivalence, one has

a# = (qaq)# + ((qaq)#)2aq. (3.14)

Note (previous to the proof). Since qa = a we have qaq = qaq = 0, which means that in
the representation (3.10) the two lower entries are zero; this generalizes when a 2 × 2 block
matrix has null its lower blocks. The equality

[
1− a(qaq)#

]
aq = 0 generalizes the matrix

relation (3.12). Moreover, the equality (3.14) clearly extends formula (3.13).

Proof. (i)⇒ (ii): Let b = (qaq)#. By definition of group inverse one has

bqaqb = b, qaqbqaq = qaq, qaqb = bqaq. (3.15)

By Theorem 3.1, there exists x ∈ A such that b = qxq, and having in mind q2 = q, we get
bq = b = qb, and thus, taking into account qa = a, relations (3.15) reduce to

bab = b, abaq = aq, ab = baq. (3.16)

Let c = b + b2aq. We will prove a# = c by definition of the group inverse. First, we will
simplify ac:

ac = a(b + b2aq) = ab + ab2aq

= ab + (ab)(ba)− (ab)(baq) = ab + (baq)(ba)− (ab)(ab)
= ab + ba(qb)a− a(bab) = ab + baba− ab = ba.

Now, we compute ca. Taking into account that qa = a, and thus qa = 0, we have

ca = (b + b2aq)a = ba.

These last two equalities show ac = ca. Next, we prove cac = c:

cac = (ca)c = (ba)(b + b2aq) = (bab)(1 + baq) = b(1 + baq) = c.

Finally, we prove aca = a: Until now, we have not used (1 − ab)aq = 0. From this, and the
middle relation of (3.16) we have aba = a, and thus

aca = a(ca) = a(ba) = aba = a.

Since we have proved aca = a, cac = b, and ac = ca, we have gotten a# = c.
(ii) ⇒ (i): Firstly, let us recall qa# = qa#aa# = qa(a#)2 = a(a#)2 = a#. Now, let us

prove that qa#q = (qaq)# by checking the three conditions of the group inverse. It is easy to
see (qaq)(qa#q) = aa#q = a#aq = (qa#q)(qaq). Moreover, one has

(qaq)(qa#q)(qaq) = aa#aq = aq = qaq

and similarly (qa#q)(qaq)(qa#q) = qa#q holds. Finally, let us prove
[
1− a(qaq)#

]
aq = 0:[

1− a(qaq)#
]
aq = (1− aqa#q)aq = aq − aqa#qaq = aq − aq = 0.

The lemma is proved.
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Theorem 3.3. Let A be an algebra with unity, a ∈ A, and p ∈ A an idempotent. Assume
that pap and pap have group inverse and

papa = 0, (1− pa(pap)#)pap = 0, (1− pa(pap)#)pap = 0,

then

a# = (pap)#+(pap)#+(1−(pap)#a)[(pap)#]2ap+[(pap)#]2ap(1−(pap)#a)−(pap)#a(pap)#.

Proof. Let a1 = pa and a2 = pa. By hypothesis we have a1a2 = papa = 0. We will
use now Lemma 3.1 to prove that a1 has group inverse. Since pa1 = p(pa) = pa = a1,
pa1p = pap ∈ A#, and (1 − a1(pa1p)#)a1p = (1 − pa(pap)#)pap = 0 we have that a1 ∈ A#

and
a#

1 = (pa1p)# + ((pa1p)#)2a1p = (pap)# + ((pap)#)2pap.

In a similar way, we use Lemma 3.1 to prove that a2 ∈ A#; but, we will use the idempotent
p instead of p as before. In fact, since pa2 = a2, pa2p = pap ∈ A#, and (1− a2(pa2p)#)a2p =
(1− pa(pap)#)pap = 0, we get

a#
2 = (pap)# + ((pap)#)2pap.

By Theorem 2.1 we have
a# = (a1 + a2)# = aπ2a#

1 + a#
2 aπ1 .

Next thing we do is simplifying aπ1 and aπ2 . To this end, let us denote b = (pap)#, and since
b = (pap)# ∈ (pAp)#, by item (ii) of Theorem 3.1, we get bp = b = pb. Having in mind that
b = (pap)# we get papb = bpap, papbpap = pap, and bpapb = b or equivalently,

pab = bap, pabap = pap, bab = b.

Now we have

aπ1 = 1− a1a
#
1 = 1− pa(b + b2pap) = 1− pab− pab2pap = 1− bap− bap = 1− ba.

Similarly, if we denote c = (pap)#, we get aπ2 = 1− ca. Therefore, recalling that pb = b = bp,
pc = c = cp, and cb = bc = 0, we obtain

a# = aπ2a#
1 + a#

2 aπ1

= (1− ca)(b + b2pap) + (c + c2pap)(1− ba)
= b + b2pap− cab− cab2pap + c + c2pap− cba− c2papba

= b + b2ap− cab− cab2ap + c + c2ap− c2aba

= b + c + (1− ca)b2ap + c2ap(1− ba)− cab.

This concludes the proof.

In what follows we shall apply Theorem 3.3 to the operator M ∈ B(X × Y ) represented

M =
[

A B
C D

]
, (3.17)

where X and Y are Banach spaces, A ∈ B(X), B ∈ B(Y,X), C ∈ B(X, Y ), and D ∈ B(Y ).
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Theorem 3.4. Let M be an operator of the form (3.17). If A and D are group invertible,
BC = 0, BD = 0, AπB = 0, DπC = 0, then M is group invertible and

M# =
[

A# (A#)2B
−D#CA# + (D#)2CAπ D# −D#C(A#)2B − (D#)2CA#B

]
.

Proof. We will apply Theorem 3.3 identifying M ↔ a and the idempotent

P =
[

IX 0
0 0

]
↔ p,

where IZ denotes the the identity operator in the Banach space Z. Since A is group invertible
in B(X) and PMP = A ⊕ 0 we obtain that PMP is group invertible in B(X × Y ) and
(PMP )# = A#⊕0. In a similar way we get the group invertibility of PMP and (PMP )# =
0 ⊕ D#. From BC = 0 and BD = 0 we easily get PMPM = 0. An evident computation
shows [

IX×Y − PM(PMP )#
]
PMP =

[
0 AπB
0 0

]
.

Hence from the hypothesis of this theorem we get
[
IX×Y − PM(PMP )#

]
PMP = 0. Anal-

ogously, from DπC = 0 we obtain
[
IX×Y − PM(PMP )#

]
PMP = 0. We can apply Theo-

rem 3.3 obtaining the formula of this theorem.

Theorem 3.5. Let M be an operator of the form (3.17). If A and D are group invertible,
CA = 0, CB = 0, AπB = 0, DπC = 0, then M is group invertible and

M# =
[

A# − (A#)2BD#C −A#B(D#)2C (A#)2BDπ −A#BD#

(D#)2C D#

]
.

Proof. This theorem has the same proof as the former Theorem 3.4, but now identifying
M ↔ a and the idempotent P = 0⊕ IY ↔ p,

For the following two results, we need to recall that given an operator T ∈ B(X, Y ), the
adjoint of T (which generalizes the concept of the conjugate transpose of a matrix) is an
operator T ∗ ∈ B(Y ∗, X∗), where Z∗ denotes the dual space of the Banach space Z. It is easy
to see that if T ∈ X is group invertible, then T ∗ is also group invertible and (T#)∗ = (T ∗)#.
Also, as is easily seen from the definition, one has (T ∗)π = (T π)∗.

Theorem 3.6. Let M be an operator of the form (3.17). If A and D are group invertible,
BC = 0, DC = 0, CAπ = 0, BDπ = 0, then M is group invertible and

M# =
[

A# A#BD# + AπB(D#)2

C(A#)2 C(A#)2BD# − CA#B(D#)2 + D#

]
.

Proof. It is enough to apply Theorem 3.4 to operator M∗.

Theorem 3.7. Let M be an operator of the form (3.17). If A and D are group invertible,
AB = 0, CB = 0, CAπ = 0, BDπ = 0, then M is group invertible and

M# =
[

A# −BD#C(A#)2 −B(D#)2CA# B(D#)2

DπC(A#)2 −D#CA# D#

]
.

Proof. As before, it is enough to apply Theorem 3.5 to operator M∗.
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[9] C. Deng, D. S. Cvetković-Ilić, Y. Wei. Some results on the generalized Drazin inverse of
operator matrices. Linear Multilinear Algebra. 2009, (in press)
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