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In this work, a recent theoretically predicted phenomenon of enhanced permittivity
with electromagnetic waves using lossy materials is investigated for the analogous
case of mass density and acoustic waves, which represents inertial enhancement.
Starting from fundamental relationships for the homogenized quasi-static effective
density of a fluid host with fluid inclusions, theoretical expressions are developed
for the conditions on the real and imaginary parts of the constitutive fluids to have
inertial enhancement, which are verified with numerical simulations. Realizable
structures are designed to demonstrate this phenomenon using multi-scale sonic
crystals, which are fabricated using a 3D printer and tested in an acoustic impedance
tube, yielding good agreement with the theoretical predictions and demonstrating
enhanced inertia. C 2014 Author(s). All article content, except where otherwise
noted, is licensed under a Creative Commons Attribution 3.0 Unported License.
[http://dx.doi.org/10.1063/1.4901880]

I. INTRODUCTION

Sonic crystals are periodic lattices of acoustic scatterers which have been utilized as structures
for a wide range of acoustic applications, associated with both the acoustic bandgaps at higher
frequencies1–4 in addition to the quasi-static behavior as an effective, homogenized fluid.5,6 In recent
years, the quasi-static nature of sonic crystals has found renewed interest due to enabling the design
of acoustic metamaterials, which utilize the dynamics of a microstructural arrangement to produce
extreme macroscopic properties, such as acoustic metafluids with anisotropic inertia.7,8 Using a
homogenized fluid or acoustic metafluid has found great interest in proposed acoustic metamaterial
devices, including transformation acoustic cloaking, acoustic scattering cancellation and acoustic
hyperlenses.9–13

Most research on acoustic metamaterials and metafluids have focused on utilization with
idealized lossless materials and have sought to minimize the effects of inherent losses in real sys-
tems. Recently, there has been an interest in utilizing acoustic metamaterials for sound absorption
applications, which has lead to a more detailed look at the effects of losses in acoustic meta-
materials.14–18 While much of this work has focused on resonant structures such as membranes
and mass-spring-damper systems,19–21 several recent works have investigated the homogenized
properties of sonic crystals in viscous fluids,22,23 demonstrating that the complex-valued acoustic
properties of sonic crystals could be formulated and experimentally verified.

Recently, theoretical and experimental approaches have examined the homogenized properties
of lattices with complex-valued permittivities for electromagnetic (EM) waves.24–26 Particularly,
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the theoretical work by Godin26 observed that for some cases the homogenized properties of
complex-valued constituent materials exhibited a non-monotonic variation with respect to the filling
fraction, leading to a maximum value which exceeds the bounds of either constituent material for
both the real and imaginary parts of the permittivity. Expanding this analysis to acoustics can pro-
vide insight into the homogenized effective density of lossy acoustic media, and provide a means for
enhancing the acoustic properties and expanding the traditional bounds for a composite structure.

In this work, enhancement of homogenized effective properties will be examined for acoustic
waves and a formulation of the conditions for inertial enhancement will be presented, which is
detailed in Sec. III. These results are then considered as a function of the filling fraction, which
are illustrated for several examples and verified with finite element simulations in Sec. IV. For
realization of the necessary complex-valued effect fluids, the use of multi-scale sonic crystals
are proposed, which enable the combination of two arbitrary sonic crystal lattices. This process
is described in Sec. V, and the fabrication and experimental testing of multi-scale sonic crystal
structures demonstrating enhanced inertia are presented in Sec. VI.

II. BACKGROUND

To determine the applicability and relevance of Godin’s results26 to acoustics, one must first
examine the relationship between the EM variables and acoustic variables. The governing equation
employed for the electric potential u is26

∇ · [ε(r)∇u(r)] = 0, (1)

where ε(r) is the permittivity (which is a function of the spatial position). Note that even though
Godin defines u and ε as functions of frequency, Eq. (1) is actually Laplace’s equation, which is the
limiting case to the Helmholtz equation if ω → 0.

After homogenizing the solution for the electric potential, the resulting effective permittivity is
given for an arbitrary periodic lattice arrangement. For the case of an isotropic lattice based on a
periodic distribution of cylinders, these results simplify to give26

εeff = εex

1 + εin−εex
εin+εex

Λ f

1 − εin−εex
εin+εex

Λ f
, (2)

where f is the fraction of the volume occupied by the cylinders, εin and εex correspond to the
permittivity in interior (cylinders) and exterior (surrounding medium), respectively, and Λ is a
geometry-dependent coefficient obtained from the expansion of the electric potential.

The equivalent behavior in an acoustic system can be examined by considering the effective
fluid density. In the quasi-static limit, the effective density for an infinite lattice of fluid cylinders has
been extensively studied, and can be written as6

ρeff = ρex
ρin(∆ + f ) + ρex(∆ − f )
ρin(∆ − f ) + ρex(∆ + f ) , (3)

where ρex is the density of the exterior fluid and ρin is the density of the cylinders as illustrated in
Fig. 1, and ∆ is a coefficient which depends on the geometry and filling fraction of the lattice. The
coefficient ∆ has previously been written as an expansion to include a leading order term propor-
tional to f 2, but for low to moderate filling fractions it has been shown that27 ∆≈1. Equation (3) can
be rewritten in a form similar to that of Eq. (2), such that

ρeff = ρex

1 + 1
∆


ρin − ρex
ρin + ρex


f

1 − 1
∆


ρin − ρex
ρin + ρex


f
. (4)

This is identical to the expression for ρeff by the acoustic analogy to the solution developed for
electromagnetic waves, except that the Λ term has been replaced by 1/∆.

While an exact formulation for ∆ has been given previously,27 an approximate form is sought
in terms of the filling fraction and neglecting higher order (multiple interaction) scattering terms.
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FIG. 1. Geometry for a sonic crystal with lattice parameter a and cylinder radius r0. The complex-valued density of the host
(exterior) medium is ρex and ρin for the inclusion (interior) medium.

The effective density accounting for single scattering effects can be expanded in terms of the filling
fraction, which gives28

ρeff ≈ ρex


1 + j

8
π

Z1

(kexr0)2
f −

32
π2

Z2
1

(kexr0)4
f 2

, (5)

with j being the imaginary unit ( j =
√
−1) and

Z1 =

ρin
ρex

J ′1(kexr0)J1(kinr0) − kin
kex

J ′1(kinr0)J1(kexr0)
ρin
ρex

H ′1(kexr0)J1(kinr0)− kin
kex

J ′1(kinr0)H1(kexr0)
, (6)

where kin and kex are the wavenumbers in the interior and exterior fluids, respectively. J1 and H1

are the Bessel and Hankel functions of the first order, and the prime denotes the first derivative.
Expanding Eq. (4) and matching terms, one finds that

ρeff ≈ ρex




1 +
2
∆


ρin − ρex

ρin + ρex


f +

2
∆2


ρin − ρex

ρin + ρex

2

f 2


, (7)

which by comparison with Eq. (5) gives

∆ ≈ − j
π

4
(kexr0)2

Z1


ρin − ρex

ρin + ρex


. (8)

Note that when kexr0≪1, Eq. (6) simplifies to give28

Z1 ≈ − j
π

4
(kexr0)2


ρin − ρex

ρin + ρex


, (9)

and therefore ∆ ≈ 1 as expected. Thus, although Eq. (4) is relatively simple and strictly valid only
in the quasi-static limit, it can be applied to more moderate frequencies and filling fractions of
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interest where single scattering effects become important through the use of the coefficient ∆ in its
approximate form given by Eq. (8).

III. THEORETICAL FORMULATION FOR ENHANCED INERTIA

To examine the conditions necessary to achieve an enhancement of the complex inertia, the
complex densities of the effective lossy fluids in the exterior and interior media can be expressed as

ρex = ρ0− j ρ′0, (10)

ρin = ρ − j ρ′. (11)

Use of these expressions in Eq. (3) enables the effective density to be written in terms of the real and
imaginary terms, which yields

ρeff =


αρ0 − βρ′0

γ


− j


βρ0 + αρ′0

γ


, (12)

where

α = [ρ(∆+ f )+ρ0(∆− f )][ρ(∆− f )+ρ0(∆+ f )]
+ [ρ′(∆+ f )+ρ′0(∆− f )][ρ′(∆− f )+ρ′0(∆ + f )], (13)

β = 4 f∆[ρ0ρ
′ − ρρ′0], (14)

γ = [ρ(∆− f )+ρ0(∆+ f )]2+[ρ′(∆− f )+ρ′0(∆ + f )]2. (15)

For the enhancement of the effective density, this corresponds to two different possibilities,
where either the real or imaginary part are greater than the maximum value of either of the constit-
uent materials. Thus, it follows from Eq. (12) that the criteria for these two cases can be expressed
as


αρ0 − βρ′0

γ


> ρmax, (16)


βρ0 + αρ′0

γ


> ρ′max, (17)

for real and imaginary inertia enhancement, respectively, where ρmax=max(ρ, ρ0) and ρ′max
=max(ρ′, ρ′0).

To examine Eqs. (16) and (17) further, we will now consider the case where the imaginary part
in each medium is much less than that of the real part, in which case the relationships between α, β
and γ simplify to yield

β

α
≈

4 f∆[ρ0ρ
′ − ρρ′0]

[ρ(∆+ f )+ρ0(∆− f )][ρ(∆− f )+ρ0(∆+ f )] , (18)

γ

α
≈

[ρ(∆+ f )+ρ0(∆− f )]
[ρ(∆− f )+ρ0(∆+ f )] =

ρ0

ρ
(0)
eff

, (19)

where ρ
(0)
eff is the effective density given by Eq. (3) without losses, which corresponds to when ρex

and ρin are real.

A. Enhancement of Im[ρeff]
The first case is that of enhancement of the imaginary part of the inertia, which is prescribed

by Eq. (17). For ordinary composites the imaginary part would be increased by using inclusions
with ρ′>ρ′0, resulting in an imaginary part of the effective density greater that ρ′0 but less than ρ′.
Alternatively, we will consider the enhanced imaginary inertia for the case where ρ′<ρ′0, which for
an ordinary composite would lead to a decrease in the imaginary effective density. In this case,
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ρ′max=ρ
′
0, and substitution of Eq. (18) and (19) into Eq. (17) yields the following criteria on ρ for

enhancement:

ρ2 − 2ρ + ρ0


2∆ρ′ − ρ′0(∆ + f )

ρ′0(∆− f )

> 0. (20)

To determine the critical value of ρ at which the enhancement occurs, we consider the case where
the lefthand side of Eq. (20) is identically equal to zero, so that ρ>ρcrit, where

ρ2
crit − 2ρcrit + ρ0


2∆ρ′ − ρ′0(∆ + f )

ρ′0(∆− f )

= 0. (21)

Equation (21) is simply a quadratic equation in terms of ρcrit, which can be solved to obtain

ρcrit = ρ0


1 +


2

1− f
∆

 
1−

ρ′

ρ′0


, (22)

Given that ρ′<ρ′0, the square root term in Eq. (22) will be positive, ensuring a real solution (though
leading to an increasingly large value of ρcrit for f /∆→1). Since ρ>ρcrit, this gives the condition for
enhancement of Im[ρeff]:

ρ > ρ0


1 +


2

1− f
∆

 
1−

ρ′

ρ′0


, ρ′ < ρ′0. (23)

Thus, it is apparent that the real part of the interior (inclusion) density must be larger than the real
part of the exterior (host) density. In fact, this highlights the underlying physical mechanism by
which the enhancement occurs: that it is the large values of the real parts of the density which are
leading to an increase in the homogenized imaginary part. In particular, this coupling between the
real and imaginary parts can be traced back to the cross products that result during the process of
separating ρeff into real and imaginary terms in Eq. (12).

B. Enhancement of Re[ρeff]
Similar to the result of enhancement of Im[ρeff] which arose from an increase due to real

components of the density, one would be expected that a correspondingly large increase in the
imaginary part could result in the enhancement of Re[ρeff]. To examine this, let us consider the
condition prescribed by Eq. (16) for the enhancement of the real part of the effective density, which
can be rewritten through the use of Eqs. (18) and (19) to obtain

δlossless −
4 f∆[ρ0ρ

′ − ρρ′0]
ρ′0
ρ0

ρ
(0)
eff

ρmax

[ρ(∆+ f )+ρ0(∆− f )][ρ(∆− f )+ρ0(∆+ f )] > 0, (24)

δlossless =



ρ
(0)
eff

ρmax
− 1


. (25)

From Eq. (25), it can be observed that δlossless is associated with the contribution from the lossless
component of the effective density, ρ

(0)
eff. However, ρ

(0)
eff≤ρmax, which means δlossless≤0, and thus

this term inhibits the enhancement prescribed by Eq. (24). To obtain the optimal conditions for
enhancement we seek the condition where δlossless=0 (and therefore ρ

(0)
eff=ρmax), which occurs when

ρ=ρ0. In this case Eq. (16) reduces to

ρ′0
ρ0

>
ρ′

ρ
, (26)

or, since ρ=ρ0, this expression is simply given by ρ′0>ρ′. This result shows that to obtain the
enhancement of Re[ρeff], one should seek the same real part of the density in both the exterior
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and interior materials, with the exterior material having a larger imaginary part than the interior.
Analogous to the results observed in the previous section, it is the imaginary parts of the density
which describe the conditions for enhancement of the real part of the effective density.

It is interesting to remark that one-dimensional photonic crystals made of dielectric materials
having permittivities with the same real part but different imaginary part have been numerically
studied by Erokhin et al.29 but, unfortunately, they didn’t pay attention to their homogenization
properties. On the other hand, Carbonell et al.30 have reported the homogenization properties of
lattices of dielectric cylinders (with small losses) embedded in air, but they studied anisotropic
properties of the effective media.

IV. COMPARISON OF RESULTS WITH FINITE ELEMENT SIMULATIONS

To highlight and verify the interesting features of the enhanced homogenized inertia given in
Sec. III A and III B, these results will be compared with simulations based on the finite element
method. The calculations were performed using the commercially available software Comsol Mul-
tiphysics. A 2D simulation of an acoustic domain containing circular fluid inclusions embedded
in an exterior fluid medium with complex-valued parameters was utilized to verify the results. By
creating a finite slab of this composite structure, the effective acoustic properties were extracted
using well-established techniques.23,31 Each point in the data set was obtained by varying the radius
and spacing of the lattice to achieve the desired filling fraction.

Two specific cases are presented, which utilize complex-valued properties for both the interior
and exterior fluids to create enhanced inertia, as predicted by the theoretical formulation developed
in the previous sections.

A. Enhancement of Im[ρeff ]

The enhancement of the imaginary part of the effective density is illustrated in Figure 2 as
a function of the reduced filling fraction, f /∆. For this case, the exterior fluid has a complex
density of ρex=1−0.5 j and two different fluid inclusions have been considered: ρin=6−0.125 j and
ρin=4−0.125 j, which are represented in Fig. 2(a) and 2(b), respectively. The analytical results have
been obtained from Eqs. (12)–(15) since the imaginary parts are not much smaller than the real
parts. The Comsol simulations have been performed with a lattice parameter a =5 mm and using
an impinging wavelength λ =1.7m, the different filling fractions being obtained by changing the
cylinder’s radius. It is observed that the resulting real part varies monotonically between the bounds
of the exterior and interior values (denoted by the dashed and dash-dotted lines, respectively),
whereas the magnitude of the imaginary part exceeds the bounds of ordinary composites, which
are denoted by the shaded regions between the respective densities of the constituent components.
There is excellent agreement between the analytic results obtained with Eq. (4) and Comsol simula-
tions for both the real and imaginary parts and across the entire range of filling fractions examined.
Furthermore, the observed enhancement is identical to that numerical investigated previously for the
effective permittivity.26

From a physical perspective, the imaginary part of a material property corresponds to the losses
in the system. Therefore, the observed increase in the magnitude of the imaginary part means that
the effective properties of the homogenized structure will display higher losses than the losses
associated with the individual components. While conceptually very intriguing, such an effect is
not uncommon for porous acoustic absorbers, which are made up of a stiff porous structure (often
modeled as a rigid, lossless frame) with a viscous fluid filling the pores. The increased viscous
friction between the fluid and the pore walls leads to significantly higher losses than either the
frame or the viscous fluid alone. However, it is interesting that in the results presented in Fig. 2, no
physical mechanism for losses are included in the analysis, such as thermal or viscous effects for
the acoustic system, and therefore the enhanced losses observed are due solely to the quasi-static
homogenization of complex-valued (lossy) materials.
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FIG. 2. Effective mass density of a hexagonal lattice of fluid-like cylinders with density ρin embedded in an external
fluid with ρex =1-0.5j. The normalized values are depicted as a function of the reduced filling fraction for two cases:
(a) ρin =6-0.125j and (b) ρin =4-0.125j. A comparison between analytical and numerical results (Comsol simulations) is
shown, COMSOL simulations being performed with a lattice constant a/λ = 3 × 10−3.

B. Enhancement of Re[ρeff ]

The results demonstrating enhancement of the real part of the effective density are illustrated
in Fig. 3 as a function of the reduced filling fraction, f /∆. For this example, the exterior fluid
has a complex density of ρex=1− j, with two different cases of fluid inclusions ρin=0.99−0.5 j and
ρin=1.01−0.5 j, which are presented in Fig. 3(a) and 3(b), respectively. The resulting imaginary
part varies monotonically between the bounds of the exterior and interior values, and it is the real
part that exceeds the bounds of either of the individual components. Due to the small scale of the
enhancement relative to the magnitude of the densities of the constitutive components, a zoomed-in
view of the real part is presented in Fig. 3(c) and 3(d). For each configuration and filling fraction,
excellent agreement is observed between the analytic results and Comsol simulations.

Physically, the observed increase in the real part means that the effective properties of the
homogenized structure will display higher inertia properties with respect to the propagating wave
than those associated with the individual components. Furthermore, although the effective quasi-
static density of fluid-saturated structures is known to increase the density over static values as
described by Eq. (3), this value includes these effects, and therefore the enhancement exceeds even
these bounds when compared with those of the lossless case. A similar enhancement of the real part
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FIG. 3. Effective mass density of a hexagonal lattice of fluid-like cylinders with density ρin embedded in an external
fluid with ρex=1- j . The normalized values are depicted as a function of the reduced filling fraction for two cases:
(a) ρin=0.99-0.5 j and (b) ρin=1.01-0.5 j . A zoomed-in view of the real part is illustrated for (c) ρin= 0.99−0.5 j and
(d) ρin= 1.01−0.5 j . A comparison between analytical and numerical results (Comsol simulations) is shown, Comsol
simulations being performed with a lattice constant a/λ = 3 × 10−3. The legend is the same as in Figure 2.

was also observed for the permittivity with EM waves.26 Although the enhancement illustrated in
Fig. 3 is somewhat modest, the selected values of the individual fluids represent a realistic range of
physically attainable fluid properties.

V. REALIZATION USING MULTI-SCALE SONIC CRYSTALS

The theoretical framework for enhanced inertia was presented in the previous sections, for which
arbitrary fluids with complex densities were used to create the desired enhancement. Although theo-
retically simple, realization of structures made of fluids having specific complex values of density
presents significant challenges. The primary obstacles to realizing this inertial enhancement are asso-
ciated with creating the necessary complex-valued fluids (particularly those with large imaginary
components), and then being able to combine fluid elements with different properties in a precise,
structured manner. It is widely known that complex-valued densities can be used to represent the
losses present in real fluids. However, these losses often arise from viscous and thermal effects which
are intrinsic to the fluid, and are difficult to modify to achieve the necessary conditions for inertial
enhancement.
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FIG. 4. Lattice geometry for the multi-scale sonic crystal examined in this work to demonstrate the enhancement of the
imaginary component of the effective density.

One means of overcoming this challenge is through the use of effective fluids created using
sonic crystals. Previously, sonic crystals have been utilized to achieve the acoustic properties of
Argon gas using wooden cylinders in air.6 More recently, this work has been expanded to creating
lossy effective fluids, both theoretically and experimentally.22,23 With a plastic lattice made using a
3D printer, the complex-valued effective density and bulk modulus were measured for sonic crystal
lattices with moderate filling fractions by the authors, and shown to be in excellent agreement with
theoretical results.23 To accurately account for the imaginary part of the density, the thermoviscous
effects must be considered, which for a sonic crystal in air can be expressed as23

ρeff = ρ0


1+ f
1− f

 
1 − j

F̄sc

ω̄sc


, (27)

F̄sc = +


1+ j

1
2
ω̄scMsc, (28)

ω̄sc =
1

2 f ( δ
r0
)2


1+ f
1− f

 
−

1
2

ln f −
3
4
+ f −

1
4

f 2

, (29)

Msc =
8 f

(1− f 2)2


1+ f
1− f


−

1
2

ln f −
3
4
+ f −

1
4

f 2

, (30)

where ρ0 is the density of air and δ is the viscous boundary layer thickness. Through the use of
sonic crystals, an effective medium can be created that acoustically acts as a lossy fluid, but which
is mechanically rigid. This unique combination of characteristics allows for precise geometries and
lattices to be realized. In the present work, sonic crystals are used to obtain fluids with different
complex-valued densities to create an effective fluid host (exterior medium) and fluid inclusions
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FIG. 5. Comparison of theoretical and experimental data for lattice geometry described in Fig. 4.

(interior medium). Therefore, Eq. (4) can be applied to determine the density for each lossy effec-
tive medium, whose internal ρin and external ρex densities can be calculated from Eq. (27)–(30).

Given a means for obtaining effective lossy fluids, the next challenge to be addressed is
combining two different sonic crystal structures. Previous work23 has shown that an acoustic meta-
material absorber made from alternating layers of uniform cylinders (with different lattice param-
eters in each layer) can be achieved. However, these results were obtained with sonic crystals
possessing uniform cylinders but significantly different filling fractions, which created sufficient
contrast between the two effective media. In general, though, as the contrast between the two
different sonic crystal decreases, the two layers will appear more like a single effective fluid. Alter-
natively, when the cylinders of the lattice in each effective fluid are significantly different in size, the
smaller cylinders will appear as a homogenized medium even for similar filling fractions due to the
difference in scale, thereby creating a multi-scale structure.

A sample was designed and fabricated using a multi-scale sonic crystal structure. It is intended
to demonstrate the enhanced inertia effect for the imaginary part, whose effect is more pronounced
than that observed in the real part and lead to more interesting applications since the absorptive
properties of the metamaterial are enhanced. The scheme of the sample is illustrated in Fig. 4.
As shown, the external medium is implemented through a regular lattice of small cylinders. To
enhance the imaginary part, an interior medium density ρin with large real and small imaginary
part is needed. This condition is satisfied with a sonic crystal having large solid cylinders with a
moderate separation between them. It is worth to note that the dimensions of the cylinders defining
the external medium are limited by the ability of the 3D printer, while the low number of cylinders
of the interior medium is due to the dimensions of the impedance tube where the experiments were
carried out.
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VI. EXPERIMENTAL RESULTS

To verify the theoretical model for the multi-scale sonic crystals, the sample illustrated in Fig. 4
was fabricated using ABS plastic by using a 3D printer. It was experimentally tested in a standard
circular cross-section acoustic impedance tube, using the same method and equipment described in
previous works.23 In brief, the pressure field inside the tube is measured at four different points (two
on each side of the sample) and the effective parameters are obtained through the transfer-matrix
formulation introduced in Ref. 31. The radius of the cylinders are rex = 1mm and rin = 9.7mm for
the external and internal medium, respectively. The lattice constants of the two sonic crystals are
aex = 2.5mm and ain = 33.7mm. In addition to the sample, a uniform (single-scale) sonic crys-
tal was constructed with a lattice geometry corresponding to the exterior medium to verify the
constituent effective fluid.

A comparison of theoretical and experimental results is presented in Fig. 5. In Fig. 5(a), the real
part of the effective density normalized by the density of air is presented, with the lines representing
theoretical values and the markers representing the experimental data. The shaded region indicates
the ordinary range of a composite structure for this case. As observed in Fig. 5(a), the experimental
results show that for enhancement of Im[ρeff], the real part of ρeff lies within the bounds of an
ordinary composite, as predicted by the theory. In Fig. 5(b), the imaginary part of the effective
density normalized by the real part of ρex is presented. There is good agreement between the experi-
mental data and theoretical results, which clearly show an enhancement in the imaginary part of the
effective density, nearly twice that of the upper bound for an ordinary composite structure.

VII. CONCLUSIONS

In this paper, the basic analytic solution for the homogenized effective parameters with complex-
valued constituents are examined for acoustic waves. Approximate analytic expressions are developed
to describe the regions of the parameter space which exhibit enhanced inertial effects, thereby leading
to either an increase in the real or imaginary part of the effective density beyond the bounds of either
constituent fluid. The results of this analysis are highlighted using several examples as a function of
the filling fraction and are in excellent agreement with Comsol simulations. Realization of a structure
which exhibits inertial enhancement is achieved using multi-scale sonic crystals, which allows for
two different sonic crystal structures to be used to obtain the desired complex-valued properties of
the constituent effective fluids. A multi-scale sonic crystal structure was fabricated using a 3D printer,
and acoustic testing was performed using an air-filled impedance tube. The experimental results are
in good agreement with the theoretical predictions and demonstrate inertial enhancement.
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