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Abstract

In the last two decades an anomalous variation in the asymptotic
velocity of spacecraft performing a flyby manoeuvre around Earth has
been discovered through careful Doppler tracking and orbital analysis.
No viable hypothesis for a conventional explanation of this effect has
been proposed and its origin remains unexplained. In this paper we
discuss a strong transversal component of the gravitomagnetic field as
a possible source of the flyby anomaly. We show that the perturba-
tions induced by such a field could fit the anomalies both in sign and
order of magnitude. But, although the secular contributions to the
Gravity Probe B experimental results and the Lense-Thirring effect in
geodynamics satellites can be made null, the detailed orbital evolution
is easily in conflict with such an enhanced gravitomagnetic effect.
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1 Introduction

In the last decades we have entered an era of high-precision astrodynam-
ics in which spacecraft, planets and satellites can be tracked with radar
ranging, laser ranging and Doppler techniques [Downs and Reichley(1975),
Williams and Dickey(2002), Duev et al.(2012)]. These improved methods
have allowed the testing of orbital trajectories in General Relativity to un-
precedented accuracy. In particular, the determination of the β and γ pa-
rameters in parametrized post-Newtonian dynamics is now possible to the
level of ∼ 10−5, ruling out alternative models, such as Brans-Dicke theory,
or putting stringent constraints upon them [Perivolaropoulos(2010)].

Error checking and detailed modelling of spacecraft geometry and thermal
properties has also proven useful in the improvement of accurate navigation
methods. A finite-element model for the anisotropic thermal radiation from
the on-board radioisotope generators has been build for the Pioneer space-
craft. This model has explained away the anomalous recoil acceleration di-
rected toward the Sun which has been found both for Pioneer 10 and Pioneer
11 spacecraft [Rievers and Lämmerzahl(2011), Turyshev et al.(2012)].

Another anomalous behaviour of spacecraft was reported in 2008 by An-
derson et al [Anderson et al.(2008)]. These authors have analyzed the data
for several Earth flybys of deep-space missions that took place between De-
cember 1990 and September 2005. Flybys are a common manoeuvre in space-
craft missions which allows the spacecraft to gain or lose of heliocentric energy
with the purpose of reaching their objective [Borcherds and McCauley(1994)].
An analysis of the data for these flybys have shown X-band Doppler residuals
that are interpreted in terms of a change of the hyperbolic excess velocity,
V∞, of a few mm/s. Anderson et al. have proposed the phenomenological
formula:

∆V∞
V∞

= K(cos δi − cos δo) , (1)

where δi, δo are the declinations for the incoming and outgoing osculating
velocity vectors and K is a constant. The value of K seems to be close to
2ωERE/c, where ωE is the angular rotational velocity of the Earth, RE is the
Earth radius and c is the speed of light. Although this formula works reason-
ably well for the six flybys studied in the paper, the proposal for the relation
of K with the Earth’s tangential velocity at the Equator is an unjustified and
speculative hypothesis, taking into account that the flybys of other planets
with different rotational velocities and radii have not been considered.
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In the aforementioned paper, Rievers et al. [Rievers and Lämmerzahl(2011)]
also analyzed the thermal radiation pressure on a model of the Rosetta space-
craft and found it insufficiently small to account for the anomaly as well as
wrong in sign. Other conventional effects that have been considered and es-
timated are: atmospheric drag, ocean or solid Earth tides, charge and mag-
netic moment of the spacecraft, Earth albedo, Solar wind and spin-rotation
coupling [Lämmerzahl et al.(2008)]. Iorio has also computed the effect of
the perturbation induced by the Earth’s gravitomagnetic field as predicted
by General Relativity [Iorio(2009)]. This effect is five orders of magnitude
smaller than the observed velocity change. We will see that the enhanced
gravitomagnetic effect, proposed from a phenomenological point of view in
this paper, is modulated by a parameter β much larger than the prefactor
rS/r (the quotient of the Schwarzschild radius and the distance from the
planet’s center to the spacecraft) of the standard gravitomagnetism of a ro-
tating planet in General Relativity. Another attempt to explain the anomaly
uses the transversal Doppler effect in Special Relativity [Mbelek(2009)] but
this explanation is also dismissed because the spacecraft movement is not
always transversal to the Earth surface and the anomaly appears also in the
ranging data as well as in the Doppler data. It has also been suggested that
a second-order error in the integration method could manifest as the alleged
anomaly [Acedo(2014)].

Moreover, a mismodelling of the coordinate systems may also be involved
in the anomaly because the fitting equation of Anderson et al. [Anderson et al.(2008)]
involves only geometrical parameters [Lämmerzahl(2011)]. The subtleties of
the energy transfer process during planetary flybys have also been analyzed
in detail for some real missions in the hope of gaining some insight on the
origin of the flyby anomaly but to no avail [Anderson et al.(2007)]. In the
flyby manoeuvres the spacecraft gains or lose energy with respect to the
barycenter of the Solar System but the strange fact about the anomaly is
the apparent energy change observed in the Earth-centered system. In this
paper we will study transient variations of the perturbed velocities and posi-
tions for the spacecraft as the consequence of a two-body interaction among
the spacecraft and a phenomenological proposal for a gravitomagnetic field
of the Earth. So, our results are expected not to be affected by the definition
of the coordinate frame.

Some proposals for a non-conventional explanation have also been made:
Adler has worked out a model for an halo of dark matter particles bound by
the Earth gravitational field. The explanation of the anomaly requires very
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strong constraints on the cross sections, the energy of the particles and the
dominance of inelastic and elastic processes along different trajectories to ac-
count for the increase or decrease of the spacecraft velocities [Adler(2009)].
A five dimensional theory of gravity has also been considered by Gerrard
and Sumner [Gerrard and Sumner(2010)]. Other proposals include radical
modifications of well established principles such as the principle of equiv-
alence [McCulloch(2008)] or Lorenz invariance [Cahill(2008)]. Busack has
also derived a phenomenological formula for a velocity dependent potential
with three adjustable parameters which fits the observed discrepancies in
the flybys [Busack(2013)]. However, these radical proposals are unlikely to
receive further support because they are disconnected from the theoretical
paradigms or other domains of empirical data.

In this paper we take the data for the flyby anomalies at face value and we
consider a scenario in which the anomalies are the consequence of a modelling
force unpredicted by the current theory of gravitation. To select this model
we follow an intuition given by the authors of the seminal paper on this topic
[Anderson et al.(2008)]. In their work, Anderson et al. suggest that the
latitude dependence of the anomaly could be related with a frame-dragging
effect much larger than the one predicted by standard General Relativity
[Iorio et al.(2011)]. It is well-known that linearized General Relativity can
be interpreted in terms of a gravitoelectric field (containing Newton’s law)
and a gravitomagnetic field [Rindler(2006)], which for a rotating planet takes
the form:

B = −1

5

rS
r

(
R

r

)2

[Ω− 3 (Ω · r̂) r̂] , (2)

where rS = 2GM/c2 is the Schwarzschild radius of the body, R is the plan-
etary radius and Ω is the angular velocity vector. This field imparts an
acceleration in a test particle given by a Lorentz force law:

a = −2

c
v ×B , (3)

which justifies the denomination of B as gravitomagnetic field. This effect,
jointly with direct detection of gravitational waves, is one the most feeble
and difficult predictions of General Relativity to be measured but, after sev-
eral decades of planning, the gravitomagnetic field of Earth (as well as the
larger geodetic effect due to the movement in the curved space-time around
the planet) has finally been studied experimentally and the final result is
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in good agreement with the theory [Everitt et al.(2011)]. The frame drag-
ging drift was measured with four high precision electrically suspended gy-
roscopes mounted in the Gravity Probe B satellite in a polar circular orbit
642 km height. Being a secular effect, it piled up orbit after orbit during
one year of data collection and a final effect of −3.72(0.72) × 10−2 arcsec
was derived. The measured effect is in good agreement with the predic-
tions of General Relativity but the 20% error is still high. It is remarkable
that this data was obtained after a careful modelling of a much larger effect
on the alignment of the gyroscopes caused by electrostatic interactions be-
tween the rotors and their housing [Everitt et al.(2009), Keiser et al.(2009),
Muhlfelder et al.(2009), Silbergleit et al.(2009)].

The prefactor rS/r in Eq. (2) is ' 1.26 × 10−9 for the Gravity Probe B
orbit and this gives us an idea of the small magnitude of the frame-dragging
effect. One could think that the results of this mission rule out the possibility
of any other gravitomagnetic effect beyond conventional General Relativity.
However, we must take into account that Gravity Probe B was not designed
to detect non-secular contributions. A contribution of such a kind could
arise from a gravitomagnetic field tangential, at every point, to the celestial
parallel in the form:

B = B(r, θ)φ̂ , (4)

where θ is the polar angle and φ is the azimuthal angle. Notice that for any
circular orbit around the Earth there is always a symmetric point, for any
other point, in which the vector field in Eq. (4) has opposite direction to the
vector in the first point of the trajectory. This implies that the gyroscope
precession induced by this field do not add up orbit after orbit but cancels out.
Moreover, we will calculate the contributions to the Lense-Thirring precession
of the longitude of the ascending node of the geodynamics satellites to check
the viability of our proposal in the context of the most accurate measurements
of this effect to date[Iorio et al.(2011)].

On the other hand, the effects of this new field would manifest on highly
eccentric elliptical orbits or in asymmetrical flybys. This could explain why
the anomaly discovered in the flybys of the Earth only appears on these
particular orbits. Our objective is to propose a reasonable form for B(r, θ) in
Eq. (4) by dimensional and continuity arguments and analyze its potential
as an explanation of the flyby anomaly.

The paper is organized as follows: In section 2 we discuss the form of
the transversal gravitomagnetic field and develop a perturbative approach
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to analyze its influence on flybys. Section 3 is devoted to the calculations
of the perturbations for the NEAR, Galileo, Cassini, Rosetta flybys. We
also give a prediction for the most recent Juno flyby. The effects on the
Gravity Probe B experiment and the LAGEOS, LARES and GRACE Lense-
Thirring precession is discussed in Section 4. Finally, we remark on the
context and further development of the idea of a transversal gravitomagnetic
field in Section 5.

2 Flybys in a transversal gravitomagnetic field

We should begin by proposing a reasonable hypothesis for a transversal com-
ponent of a gravitomagnetic field. Firstly, we can expect it to be proportional
to the total angular momentum of the Earth. Moreover, the continuity con-
dition B(r, θ = 0) = B(r, θ = π) = 0 must be verified. We can also argue
that B(r, θ) is an even function of the polar angle, B(r,−θ) = B(r, θ). From
these conditions alone we suggest that a simple form for a transversal grav-
itomagnetic field is:

B(r, θ) = β Ω
R

r
sin θ cos θ φ̂ , (5)

where Ω is the angular velocity of the Earth, R is its radius and β is a
constant to be determined. The reason for the particular dependence in the
polar angle, θ, and the decrease as the inverse of the distance to the center
of the Earth, r, will be revealed in Sec. 4 in relation with the constraints
imposed by other precise measurements of the Earth’s gravitational field.
The unit azimuthal vector, φ̂ can easily be expressed in the cartesian celestial
coordinate system whose x axis points toward the first point of Aries (the
point where the Sun crosses the celestial equator during the Vernal equinox).
In this system the z axis points towards the celestial pole and this defines
the remaining y axis in a right handed coordinate system. So, we have:

sin θ cosφ =
r · ı̂
|r|

sin θ sinφ =
r · ̂
|r|

.

(6)

In order to calculate the contribution of the small acceleration a = v×B to
the perturbation of the hyperbolic orbit in a flyby we must take into account
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Figure 1: Plot of the NEAR flyby orbit (January 23, 1998). The solid vector
points towards the Sun and the dashed vector points towards the Moon at
the instant of the closest approach. The asymptotic ingoing direction is also
shown.

also the additional second-order effects induced by the Earth’s Newtonian
gravitational field, the Sun and the Moon. We must start with some standard
relations for the celestial mechanics of a flyby hyperbolic orbit.

2.1 Ideal flyby orbits

In Fig. 1 we have plotted the trajectory of the NEAR spacecraft during its
flyby of January 23, 1998. Parameters for this and other flyby orbits are
given in Table 1. It is expedient to parametrize these hyperbolic trajectories
in a coordinate system relative to the orbit. So, we choose a unit vector
along the periapsis direction corresponding to the point of closest approach,
ŝ, a second unit vector pointing along the direction of the inclination vector
of the orbit, ŵ, and a third one perpendicular to those two, n̂. This third
unit vector is defined in such a way that the scalar product with the initial
radiovector of the spacecraft, rin, is positive. These vectors are given as
follows:

ŝ = cos θp k̂ + sin θp cosαp ı̂ + sin θp sinαp ̂

ŵ = cos I k̂ + sin I cosαI ı̂ + sin I sinαI ̂

n̂ = ±ŵ × ŝ ,

(7)

where θp, αp are the celestial polar angle and right ascension of the periapsis,
I and αI are the inclination and the right ascension of the inclination vector
and the sign in the last expression for n̂ depends on the orientation of the
orbit. The orthogonal system ı̂, ̂, k̂ is, obviously, the celestial coordinate
system.

In the NEAR flyby case the parameters were (all angles in degrees): θp =
57, αp = 280.43, I = 108.0, αI = αp + arccos(− cot I cot θp) = 358.24. The
incoming direction is given by θi = 69.24 and αi = 81.17. In this particular
case, it can be shown that n̂ = ŵ × ŝ.

It is also usual to use the eccentric anomaly, η, instead of time, t, or the
true anomaly, ν. The true anomaly is the angle formed by the radiovector
at any instant and the radiovector at the instant of closest approach to the
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Earth. The relation among η and ν is given by:

cosh η =
ε+ cos ν

1 + ε cos ν
, (8)

where ε > 1 the eccentricity of the hyperbolic orbit. The time of flight can
also be given in terms of the eccentric anomaly by:

t = T (ε sinh η − η) , (9)

where the time-scale T =
√

(−a)3/µ, a being the semi-major axis of the
orbit and µ is the product of the gravitational constant and the mass of the
Earth, µE = 398600.4 km3/s2.

The equations for the radiovector and the velocity of the spacecraft in the
ideal hyperbolic orbit are then given by

r(η) = a(cosh η − ε) ŝ− a
√
ε2 − 1 sinh η n̂ (10)

v(η) =
a

T (ε cosh η − 1)
(sinh η ŝ

−
√
ε2 − 1 cosh η n̂) , (11)

Concerning the tracking of the spacecraft and the inference of the flyby orbit
from the tracking data there are many practical problems still not analyzed
in full detail. An accurate flyby model should take into account the most
recent GGM03 model for the Earth gravitational field as elaborated from the
data of the GRACE satellite [Tapley et al. (2007)]. This model has achieved
a large geographical resolution and a precision on the variations of the grav-
itational field at the Earth’s surface down to 1 milligal (10−5 m s−2). On
the other hand, the position and velocity of the spacecraft is tracked by
different ground stations around the globe in different relative movements
with respect to the spacecraft. This should be also be taken into account
in the modelling of the Doppler effect. Preliminary assessments showed that
these effects are relatively small and unimportant in connection with the
anomaly [Lämmerzahl et al.(2008), Páramos and Hechenblaikner(2012)] but
their rigorous analysis should help in the improvement of the error bars on
the anomalous accelerations.

2.2 First and second-order perturbations

In the following it is useful to use the non-dimensional parameters, τ = t/T
for time and v? = Tδv/|a| for the velocity. A first-order perturbation comes
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from the acceleration imparted by the gravitomagnetic field in Eq. (5) as
follows:

amg = B?(r, θ) v? × φ̂ , (12)

with B?(r, θ) = B(r, θ) ∗ T . The cross product in Eq. (12) is readily
calculated in cartesian coordinates from Eqs. (6), (7) and (11). The position
of the spacecraft deviates from the ideal hyperbolic orbit discussed in Section
2.1 as a consequence of this first-order acceleration. However, this implies
another second-order contribution from the change of the Earth’s Newtonian
gravitational field at the new orbital points:

δaEarth = −µ?
E

δr?

r?3
+ 3µ?

E r? · δr? r?

r?5
, (13)

where µ?
E = TµE/|a|3 is the scaled gravitational constant times the mass of

the Earth. As it is well-known, most of the orbital perturbations come from
the tidal forces exerted by the Sun (and in minor proportion by the Moon).
If the Sun is located at radiovector R, with the center of the Earth as origin,
and the spacecraft is found at r the tidal force is given by:

atidal = µS

(
− R

R3
+

R− r

(r2 +R2 − 2r ·R)3/2

)
, (14)

with µS = 1.3271244×1011km3/s2 as the product of the gravitational constant
and the mass of the Sun. The change in the position of the spacecraft from
the transversal gravitomagnetic force induces a second-order contribution
from the tidal force as follows:

δaSun = −µS
δr

(r2 +R2 − 2r ·R)3/2

+ 3µS
(R− r) · δr

(r2 +R2 − 2r ·R)5/2
(R− r) .

(15)

Assembling these results in Eqs. (12),(13) and (15) we find that the evolution
of the perturbations in the position and the velocity of the spacecraft coming
from the effect of the transversal gravitomagnetic field should be calculated
from the system:

dδr?

dτ
= δv?

dδv?

dτ
= amg + aEarth + aSun .

(16)
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Table 1: Parameters for the spacecraft flybys of the Earth.
Spacecraft Date ε a (km) θin θout θp I αin αp αI

NEAR 1/23/1998 1.8135 -8494.87 69.24◦ 161.96◦ 57◦ 108◦ 81.17◦ 280.43◦ 358.25◦

Galileo I 12/8/1990 2.4729 -4977.24 77.48◦ 124.25◦ 64.8◦ 142.9◦ 86.60◦ 319.96◦ 11.48◦

Galileo II 12/8/1992 2.3194 -5058.31 55.74◦ 94.87◦ 123.8◦ 138.7◦ 39.47◦ 302.72◦ 77.56◦

Cassini 8/18/1999 5.8525 -1555.09 102.92◦ 94.99◦ 113.5◦ 25.4◦ 154.33◦ 245.59◦ 221.90◦

Rosetta 3/4/2005 1.3118 -26710.9 92.81◦ 124.29◦ 69.8◦ 144.9◦ 166.68◦ 22.71◦ 324.28◦

Rosetta II 11/13/2007 1.5401 -33417.5 79.32◦ 71.70◦ 154.7◦ 115.0◦ 45.95◦ 304.0◦ 130.9◦

Rosetta III 11/13/2009 1.5976 -25491.1 108.4◦ 65.65◦ 97.44◦ 155.6◦ 31.78◦ 276.2◦ 169.5◦

Juno 9/10/2013 4.6489 -3645.92 104.21◦ 50.59◦ 123.39◦ 47.13◦ 215.40◦ 344.14◦ 291.85◦

By solving this system for the differential equations of motion we should be
able to compare with the anomalous perturbations of the Earth flybys in the
next section. To perform this integration it is usually more convenient to
employ the eccentric anomaly instead of time as defined in Eq. (9).

3 Numerical results

In Table 1 we show the parameters for the orbits of several spacecraft flybys
in which the anomalous variation of the velocity has been found. We have
displayed only the parameters necessary for the calculations including the
orbital eccentricity, ε, the semi-major axis of the hyperbolic orbit, a, the
polar and azimuthal angles locating the incoming and outgoing directions,
the perigee and the inclination vector. These data were collected or inferred
from the JPL Horizons on-line system data [JPL Horizons(2014)] as well as
Anderson et al. paper [Anderson et al.(2008)]. We should also know the
average position of the Sun during the flyby as this is the major source of
second-order perturbations. These data are tabulated in Table 2 for the eight
flybys considered.

Using Eqs. (12), (13) and (15)we have performed a numerical integration
of the system in Eq. (16) for η = 0 onwards and backwards. A typical result
for the Galileo II flyby is plotted in Fig. 2. In this particular case we see that
the perturbation corresponds to a decrease of the orbital velocity after the
closest approach to the Earth. The observed variation in the velocity can be
compared with the differences in the temporal averages of δV after and before
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Table 2: Average distance and average unit vector towards the Sun during
the flybys in the celestial cartesian coordinate system.

Spacecraft 〈RS〉 (108 km) 〈r̂S〉
NEAR 1.4727 (0.5413,-0.7700,-0.3338)

Galileo I 1.4739 (-0.2594,-0.8852,-0.3838)

Galileo II 1.4737 (-0.2510,-0.8872,-0.3847)

Cassini 1.5147 (-0.8072,0.5403,0.2343)

Rosetta 1.4835 (0.9587,-0.2580,-0.1119)

Rosetta II 1.4809 (-0.6513,-0.6951,-0.3013)

Rosetta III 1.4808 (-0.6447,-0.7002,-0.3035)

Juno 1.4882 (-0.9615,-0.2479,-0.1075)

Figure 2: Velocity perturbations induced by the transversal gravitomagnetic
field in the Galileo II flyby. In this case we have taken β = 2.0×10−3. Notice
that the average difference between the sections of the orbits after and before
the perigee is negative in agreement with the observed decrease during this
flyby.
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Figure 3: Modelled anomalous increases of the velocity during the NEAR
(circles), Rosetta (squares) and the Galileo II flybys (triangles) versus the
parameter β. Horizontal solid, dashed and dotted lines correspond to the
observed values for the NEAR, Rosetta and Galileo II flybys, respectively.

Figure 4: The same as Fig. 3 but for the Galileo I (open circles), Juno
(closed circles) and Cassini (squares) flybys. In the case of the Galileo I
flyby a velocity increase of 3.92 mm/s was reported. This was a decrease of
−2 mm/s for the Cassini spacecraft. Notice that, according to this model,
the result would be similar for the most recent Juno flyby.

this perigee. A simple rough measure of the variation δV can be obtained as
the difference among the peak perturbations occurring in the post-encounter
and pre-encounter regions. In Fig. (3) we have plotted the results for the vari-
ation of δV in the cases of the NEAR, Rosetta and Galileo II flybys in terms
of the value of the parameter β in Eq. (4). In the NEAR case the largest ve-
locity increase, amounting to 13.46 mm/s as it was deduced from the X-band
Doppler residuals, was detected [Anderson et al.(2008)]. This amounted only
to 1.8 mm/s for the Rosetta flyby. The Galileo II spacecraft approached suf-
ficiently close to the Earth surface (a 303 km altitude at the perigee) for the
atmospheric drag effect to be important. Nevertheless, Anderson et al. de-
duced an unexpected decrease of −4.6 mm/s. These results are compatible
with a β parameter value in the range 1.4×10−3 ≤ β ≤ 3.0×10−3. Similarly,
in Fig. (4) we plot the results for the Galileo I, Juno and Cassini flybys. For
this Cassini flyby (whose perigee was much higher for any atmospheric drag
to be relevant) a decrease of −2 mm/s was derived from the orbital data
[Anderson et al.(2008)]. Our model can also predict the result for the still
not analyzed Juno flyby. The prediction is a behaviour very similar to the
Cassini flyby and, consequently, a similar decrease is expected. On the con-
trary, Anderson et al.’s fitting equation [Anderson et al.(2008), Iorio(2013)]
predicts an increase around 6 mm/s. However, we must consider that the
uncertainties could be large in these isolated measurements.

Finally, we must discuss the Rosetta II and Rosetta III flybys, which have
been the subject of some polemic [Páramos and Hechenblaikner(2012)]. The
phenomenological formula by Anderson et al. in Eq. (1) predicts small, but
measurable, increases of the asymptotic velocity around 0.36 mm/s and 0.46
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mm/s for the Rosetta II and III, respectively. However, a careful analysis
of the data showed no anomalous behaviour of the fitted trajectory. Con-
sequently, despite the success in fitting the previous flyby anomalies, we
cannot attribute a general validity to that equation. Using the gravitomag-
netic model discussed in this paper we obtain ∆V ' 0.65 mm/s for β = 10−3

in the last Rosetta flyby, in the same range of te prediction of Eq. (1), but
different from the zero result obtained from the data analysis.

We have also noticed that the value of β that we need to fit the anomaly in
the case of the Cassini and Galileo I flybys is larger than the one correspond-
ing to the other three flybys (NEAR, Galileo II and Rosetta). Inspecting
Table 1 we can associate this inconsistency in the β values with the larger
eccentricities in the Cassini and Galileo I orbits. On the other hand, we could
elaborate an improved model in which β is not a constant but a function of
r in order to obtain a better fit of the flybys. However, we are about to see
that further speculation along this line is not required because the transver-
sal gravitomagnetism phenomenological model cannot be made compatible
with the flyby anomalies as well as the Gravity Probe B and the geodynamics
satellites data.

4 Observational Constraints

A problem which arises in any putative model of the flyby anomaly is that
we have already many constraints based upon careful measurements of the
Earth’s gravitational field by using low orbit satellites. The extra perturba-
tion detected in the flybys can be considered very large in the context of the
present degree of accuracy achieved in these measurements. Consequently,
we must discuss the contributions of any new interaction, postulated to ex-
plain the flyby anomaly, in other experiments performed on satellites and
check whether its contribution is sufficiently small to remain still undetected
or not. There are two high-precision measurements of the Earth’s gravita-
tional field (including gravitomagnetic effects): the geodynamics satellites
and the Gravity Probe B experiment.

The LAGEOS and LAGEOS II are spherical artificial spacecraft entirely
covered by retroreflectors which have been accurately tracked by laser rang-
ing since their launch in 1976 and 1992, respectively. One of the objec-
tives of these geodynamics satellites is to check the so-called Lense-Thirring
effect, i. e., the precession of the longitude of the ascending node of the
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orbit as the consequence of the perturbation induced by the Earth’s gravit-
omagnetic field as predicted by General Relativity. This effect is very small
(around 30 milliarcsec/year) in comparison with the much larger perturba-
tions contributed by the zonal harmonic coefficients of the Earth’s geoid
[Ciufolini(1987)]. However, the classical nodal precession depends on the
cosine of the inclination of the orbit in contrast with the relativistic Lense-
Thirring effect which is independent of the orbital plane orientation. This
gives a chance to deduce the tiny relativistic effect by comparing the data for
several satellites. More recently, the similar LARES and GRACE missions
added more data to the analysis. Despite these efforts, no conclusive results
have been obtained yet [Iorio et al.(2011)].

We should now calculate the contribution of the postulated extra gravit-
omagnetic field in Eq. (5) to the precession of the longitude of the ascending
node in these artificial satellites. In terms of the true anomaly, ν, the equa-
tions of the elliptic orbit can be written as follows [Valtonen and Karttunen(2005)]:

r = p
cos ν n̂ + sin ν ŝ

1 + ε cos(ν − ω)
(17)

v =

√
µE

p
{−(sin ν + ε sinω) n̂ (18)

+ (cos ν + ε cosω) ŝ} , (19)

where p = a(1 − ε2) is the semi-latus rectum and ω is the argument of
the pericenter, i. e., the angle between the radiovector of the periapsis and
the direction of the ascending node. The system of reference in cartesian
coordinates is given by n̂ = ı̂, ŝ = cos I ̂ + sin I k̂ and ŵ = cos I k̂− sin I ̂, I
being the inclination of the orbital plane. So n̂ points towards the direction
of the ascending node, ŵ is the inclination vector and ŝ forms a right-handed
orthogonal system with them.

The polar and azimuthal angles can also be expressed in terms of the true
anomaly and the inclination of the orbit as follows:

cos θ = sin ν sin I (20)

cosφ =
cos ν√

1− sin2 I sin2 ν
. (21)

The contribution of the perturbation forces to the instantaneous variation of
the longitude of the ascending node, Ω, is given by [Burns (1976), Pollard(1966),
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Danby(1988)]:
dΩ

dt
=

r sin ν

H sin I
N , (22)

where H =
√
µEp is the angular momentum of the orbiting spacecraft per

unit mass and N is the component of the perturbing force perpendicular to
the orbital plane. In our case, we have:

N = β Ω
R

r
sin θ cos θ v × φ̂ · ŵ , (23)

From Eqs. (17),(20) and (22) we finally have:

dΩ

dt
= β Ω

R

a(1− ε2)
{

sin3 ν cos ν(sin I − cos I)

+ ε cosω sin3 ν sin I − ε sinω sin2 ν cos ν cos I
}
.

(24)

Remarkably, every term in Eq. (24) cancels out when averaged over a full
orbit, ν ∈ (0, 2π). As the determination of the Lense-Thirring precession is
plagued with difficulties, arising from the very large contributions of the
Earth’s zonal harmonic coefficients [Iorio et al.(2011), Ciufolini(1987)], it
could be argued that a phenomenological law, as that in Eq. (5), could consis-
tently fit the flyby anomalies without impacting noticeably in the precession
of the line of nodes of the satellites. However, if a sufficiently strong field of
the form in Eq. (5) is assumed, the contribution to the precession of a gyro-
scope in a low orbit exhibits large oscillations during the orbit which should
have been found in the Gravity Probe B experiment [Everitt et al.(2011)].
The result shown in Fig. 5 implies a cancellation of the precession every half-
orbit. Nevertheless, the average value of these oscillations is as large as 11.6
arcsec for the β = 2×10−3 parameter which we have shown to be compatible
with the flyby anomalies.

It is also interesting to provide an estimation of the value of the bounds
on the value of β according to the Gravity Probe B experiment. The North-
South orientation of the gyroscopes was measured with the average precision
of 18.3× 10−3 arcsec/yr in connection with the determination of the geode-
tic effect which implied a secular reorientation of the gyroscopes in that
direction [Everitt et al.(2011)]. Consequently, we can estimate a maximum
non-secular average fluctuation of the North-South orientation of the gyro-
scopes of this magnitude, which should correspond to β ≤ 3× 10−6. Clearly
insufficient to explain the flyby anomaly but, perhaps, within the range of
other measurements in the Solar System.
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Figure 5: Contribution to the North-South orientation of a gyroscope in the
Gravity Probe B orbit by a gravitomagnetic field of the form given in Eq.
(5) with β = 2× 10−3.

5 Conclusions and Remarks

In this paper we have explored the idea of a strong gravitomagnetic field
as the source of the flyby anomaly. Although this has been done in a pure
phenomenological context is not at all excluded in principle. The condition
of general covariance is too weak to restrict the form of the field equations of
General Relativity, as many authors have recognized since the early days of
the theory almost a century ago. Since them, many alternatives have been
considered and dismissed [Goenner(2004)] and some with local and cosmo-
logical implications, such as torsion models, are still a field of active research
[Hehl(1976), Pop lawski(2010)]. We have shown that a transversal component
of a gravitomagnetic field would exhibit a maximum contribution to orbital
perturbation effects in hyperbolic or highly eccentric elliptical orbits and it
can be defined in such a way that the secular contribution to the Lense-
Thirring precession is null. This is, precisely, what in the general features of
the flyby anomaly is found.

On the other hand, the detailed orbital evolution of the perturbations
in gyroscope and Lense-Thirring precessions appear to be very large for a
sufficiently strong field predicting a velocity variation in the millimeter range
among the post-encounter and pre-encounter sections of the hyperbolic flyby
orbit. Similar stringent constraints have been found in the earth-bound dark
matter model [Adler(2009)]. The difficulties in settling interaction models
verifying the conditions of being compatible with precise measurements of
satellites in circular and elliptical orbits and also the large anomalies in the
flyby data could point out towards a possible systematic error as the source
of the discrepancies in the X-band Doppler residuals [Anderson et al.(2008),
Acedo(2014)].

Anyway, many theoretical and computational work remains to be done
in order to clarify all the conventional sources of perturbation on the flyby
trajectories. In particular, a detailed numerical model of the atmospheric
drag taking into account the density of the atmosphere and the geome-
try of the spacecraft in a finite-element model is necessary to provide any
reliable prediction of the dragging effects suffered by the spacecraft cross-
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ing the thermosphere during their closest approach to the Earth (this was
specially noticeable in the case of the Galileo II flyby). The influence of
albedo and infrared radiation will also be possible to analyze in detailed
models of the spacecraft geometry as those build for the Pioneer 10 and 11
[Rievers and Lämmerzahl(2011), Turyshev et al.(2012)].

The solution to this riddle could also be found through the forthcoming
Space-Time Explorer and Quantum Equivalence Principle Space Test (STE-
QUEST) mission in which a spacecraft would be launched to a an elliptic
orbit with very large eccentricity ε = 0.773 specially suited to simulate an
Earth flyby every period of 16 hours [Páramos and Hechenblaikner(2012)].
Another forthcoming mission: Gravity Recovery and Climate Experiment-
Follow On (GRACE-FO) will also provide even more accurate data on the
Earth’s gravitational field that could be instrumental in the next few year to
elucidate this issue [Gruber (2010)].

References

[Downs and Reichley(1975)] Downs S. G. & Reichley P. E., Radar Ranging
of the Planet Mars at 8495 MHz, JPL Deep Space Network Progress Report
(Report No. 42-29, p. 95, 1975). Available online at
http://tmo.jpl.nasa.gov/progress report2/42-29/29P.PDF

[Williams and Dickey(2002)] Williams J. G. & Dickey J. O., Lunar Geo-
physics, Geodesy and Dynamics, in Proceedings of the 13th International
Workshop on Laser Ranging, October 7-11, 2002, Washington, D. C., R.
Noomen, S. Klosko, C. Noll, and M. Pearlman, eds. NASA/CP−2003 −
212248, p. 75–88, 2003. Available at http://cddisa.gsfc.nasa.gov/lw13/

[Duev et al.(2012)] Duev D. A. et al., Spacecraft VLBI and Doppler
tracking: algorithms and implementation, A & A 541, A43 (2012).
arXiv:1203.4408v1

[Park et al.(2005)] Park R. S. et al., Estimating Parameterized Post-
Newtonian Parameters from Spacecraft Radiometric Tracking Data, J. of
Spacecraft and Rockets 42, 3, 559-568 (2005).

[Perivolaropoulos(2010)] Perivolaropoulos L., PPN Parameter γ and Solar
System Constraints of Massive Brans-Dicke Theories, Phys. Rev. D 81,
047501 (2010). arXiv:0911.3401v3

17



[Rievers and Lämmerzahl(2011)] Rievers B. & Lämmerzahl C., High preci-
sion thermal modeling of complex systems with application to the flyby
and Pioneer anomaly, Ann. Phys. 523, 439-449, (2011).

[Turyshev et al.(2012)] Turyshev S. G. et al., Support for the thermal
origin of the Pioneer anomaly, Phys. Rev. Lett. 108, 241101 (2012).
arXiv:1204.2507.

[Anderson et al.(2008)] Anderson J. D. et al., Anomalous Orbital-Energy
Changes Observed during Spacecraft Flybys of Earth, Phys. Rev. Lett.
100, 091102 (2008).

[Borcherds and McCauley(1994)] Borcherds P. H. & McCauley G. P., The
gravitational three body problem: optimizing the slingshot, Eur. J. Phys.
15, 162-129 (1994).

[Lämmerzahl et al.(2008)] Lämmerzahl C., Preuss O. & Dittus H., Is the
Physics Within the Solar System Really Understood?, in: Lasers, Clocks
and Drag-Free Control, edited by H. Dittus, C. Lämmerzahl, and S. Tury-
shev, Astrophysics and Space Science Library Vol. 349 (Springer, Berlin,
Heidelberg, 2008) p. 75. arXiv: gr-qc/0604052

[Iorio(2009)] Iorio L., The Effect of General Relativity on Hyperbolic Orbits
and Its Application to the Flyby Anomaly, Scholarly Research Exchange
2009, ID807695 (2009). arXiv:0811.3924v2

[Mbelek(2009)] Mbelek J. P., Special relativity may account for the space-
craft flyby anomalies, arXiv: gr-qc/0809.1888.

[Acedo(2014)] Acedo L., Second-Order Perturbations in Encke’s Method for
Spacecraft Flybys, in Mathematical Modeling in Social Sciences and En-
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