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Abstract 

Concrete filled steel tubular columns have many advantages in terms of 

bearing capacity, aesthetics, execution and fire resistance, thanks to the collaborative 

work of both materials steel and concrete. The effort made in the last decades to rise 

a high understanding of their behaviour subjected to different loads and assuming 

multiple variations has resulted in the wide spread of its use between the designers. 

Nonetheless, how to solve the connection with I-beams is still a handicap and 

requires a specific study. 

One of the most common and popular solution to connect open section steel 

beams (I-beams) to open section steel columns are endplate connections. In the 

cases of columns with hollow section, special fastenings are needed, which are able 

to be tightened from one external side and are denominated blind-bolts. Nowadays, 

there are several fastener systems that allow these types of connections. The 

characterization of their response and their capacity to support different loads is the 

objective of several investigations, where the geometrical definition and the material 

properties are crucial parameters. 

Despite the promising results of these connections at room temperature 

regarding their capability to resist bending moments, their performance is un-known 

at high temperatures. Therefore, the aim of this thesis is the study of the tensile 

behaviour of blind-bolts in endplate connections to concrete filled tubular columns 

at elevated temperatures and subjected to bending moment. 

Primarily, the research comprises the understanding of the pure thermal 

transfer problem. The temperature distribution through the connection section is 

obtained experimental and numerically. The thermal parameters that characterize the 

connections response are determined through the calibration of the numerical 

models with the experiments. Secondly, the blind-bolt capacity under pull out and at 

high temperatures is under analysis. During the fire the temperature increases while 

connection transmits loads from the beam to the column, the objective of this 

dissertation is to know how the mechanical response of the pulled blind-bolts 

changes under these conditions. Thus, the study of the material properties dependent 

on the temperature and their effect on the connection response is covered by the 

investigation. Furthermore, the influence of the concrete and the type of fastener is a 

highlighted aspect through the thermal and the fire analysis.  

Finally, the reliability of these connections to comply with requirements of 

30 minutes fire exposure before the collapse is evaluated. 
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As a result, valuable Finite Element models able to simulate the thermal 

and thermo-mechanical behaviour of the connection are developed, providing useful 

behavioural patterns of the blind-bolts. Among the main conclusions, it is noted the 

temperature reduction due to concrete core in concrete filled columns compared to 

hollow sections, in the exposed bolt surface means 100ºC less. Conversely, a longer 

bolt shank of the fastener system embedded in concrete has a negligible effect on the 

temperature of the resistant part of the bolt. Regarding the fire capacity, the concrete 

core in the steel tube columns presents significant benefits in terms of fire resistance 

time and connection stiffness. Besides, the bolt anchorage enhances the stiffness at 

elevated temperatures, however, the failure of the shank next to the bolt head causes 

that the anchorage does not mean an improvement on the fire time resistance. 

 

 



Resumen 

 

Doctoral Thesis. Ana M Pascual Pastor                                                                                              v 

Resumen 

Las columnas tubulares de acero rellenas de hormigón presentan múltiples 

ventajas en términos de capacidad de carga, estética, ejecución y resistencia al 

fuego, gracias a la acción combinada de acero y hormigón. El esfuerzo realizado en 

las últimas décadas por conocer su comportamiento frente a diferentes cargas y bajo 

distintos parámetros ha dado lugar a una amplia difusión de su uso entre los 

diseñadores. No obstante, la forma de resolver la conexión con vigas de sección en I 

sigue siendo un hándicap y requiere un estudio específico. 

Una de las soluciones más comunes y populares para conectar las vigas de 

acero de sección abierta (vigas I) a columnas de acero de sección abierta es la 

conexión con chapa de testa, que en el caso de sección hueca requiere de tornillos 

especiales denominados tornillos ciegos, puesto que reciben el par de apriete desde 

una cara de la sección. En la actualidad existen diversos sistemas de fijación que 

permiten este tipo de conexiones y cuya respuesta y caracterización es objeto de 

numerosas investigaciones. En este sentido, la definición geométrica de la unión y 

las propiedades de los materiales son parámetros cruciales en el rendimiento de la 

conexión. 

La presente tesis analiza el comportamiento de los tornillos ciegos en el 

área traccionada de conexiones de placa de testa a columnas tubulares de acero 

rellenas de hormigón sometidas a momentos de flexión y a elevadas temperaturas. 

Las prestaciones de esta solución constructiva para la unión viga-columna tubular, 

junto con la ausencia de datos relacionados con su comportamiento en situación de 

incendio la convirtió en el objetivo del trabajo.  

En primer lugar, la investigación aborda el problema de transferencia de 

calor, analizando experimental y numéricamente la distribución de temperaturas en 

la sección de la conexión. En esta parte del estudio se obtienen los parámetros 

térmicos que caracterizan la respuesta térmica de la conexión a través de la 

calibración de los modelos numéricos con los datos experimentales. En segundo 

lugar, se realiza el estudio de la capacidad de los tornillos ciegos para soportar 

cargas de tracción en situación de incendio, es decir, se analiza cómo cambia el 

comportamiento de la conexión con sus características alteradas debido a las altas 

temperaturas. El estudio de las propiedades del material en función de la temperatura 

y su efecto sobre la respuesta de la conexión constituyen una parte importante de la 

investigación. Además, se evalúa la influencia del hormigón y el tipo de elemento de 

sujeción tanto en el comportamiento mecánico como termo-mecánico de la 

conexión.  
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Por último, se estudia la capacidad de las uniones para cumplir con 

requerimientos de exposición al fuego de 30 minutos previamente al colapso. 

Como resultado de este trabajo se obtuvieron modelos de elementos finitos 

capaces de simular la conexión térmica y termo-mecánicamente, proporcionando 

patrones de comportamiento de gran utilidad en el diseño de las mismas. Entre las 

principales conclusiones, se observó la reducción de la temperatura en los tornillos 

gracias al núcleo de hormigón en columnas de hormigón lleno en comparación con 

secciones huecas, que ya en la superficie expuesta del tornillo se cuantificaba en 

100ºC menos. Por el contrario, los elementos de fijación que presentaban mayor 

longitud de vástago de tornillo embebida en el hormigón, no generaban un efecto 

significativo sobre la temperatura de la parte resistente del perno. En cuanto a la 

capacidad resistente frente a fuego, el núcleo de hormigón supuso una mejora en 

términos de rigidez y de tiempo de resistencia al fuego. Sin embargo, el fallo de los 

pernos en una sección próxima a la superficie expuesta redujo el efecto esperado del 

anclaje del tornillo, que si bien implicaba una mayor rigidez de la conexión, no 

parecía mejorar el tiempo de resistencia a fuego. Finalmente se planteó la necesidad 

de profundizar el análisis incorporando mayor número de parámetros. 
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Resum 

Els pilars tubulars d'acer omplerts de formigó (CFT) presenten molts 

avantatges en termes de capacitat de carrega, estètica, execució i resistència al foc, 

gràcies a l’acció combinada de l’acer i el formigó. L’esforç realitzat en les darreres 

dècades per conèixer el seu comportament enfront a diferents càrregues i sota 

distints paràmetres ha donat lloc a una amplia difusió del seu ús entre el 

dissenyadors. No obstant això, la manera de resoldre la connexió amb bigues de 

secció en I, continua sent un handicap i requereix d’un estudi específic.  

Una de les solucions més comuns i populars per a connectar les bigues 

d’acer de secció oberta (bigues I) a columnes d’acer de secció oberta és la connexió 

amb ‘chapa de testa’, que en el cas de la secció buida requereix de perns especials 

denominats perns cecs perquè es rosquen des d’una cara de la secció. En l’actualitat 

existeixen diversos sistemes de fixació que permeten aquest tipus de connexions,  la 

resposta i caracterització dels quals es l’objectiu de nombroses recerques. En aquest 

sentit, la definició geomètrica de la unió i les propietats dels materials son 

paràmetres crucials en el rendiment de la connexió. 

Aquesta tesi analitza el comportament dels perns cecs en l’àrea traccionada 

de connexions de ‘chapa de testa’, a pilars tubulars d’acer omplerts de formigó, 

sotmeses a moments de flexió i a elevades temperatures. Les prestacions d’aquesta 

solució constructiva per a la unió biga-pilar tubular junt amb l’absència de dades 

relacionades amb el comportament en situació d’incendi, la van convertir en 

l’objectiu d’aquest treball.  

En primer lloc, la recerca aborda el problema de transferència de calor, 

analitzant tant experimental com numèricament la distribució de temperatures en la 

secció de la connexió. En aquesta part de l’estudi, s’obtenen el paràmetres tèrmics 

que caracteritzen la resposta tèrmica de la connexió mitjançant el calibratge del 

models numèrics amb les dades experimentals. En segon lloc, es realitza l’estudi de 

la capacitat dels perns cecs per a suportar càrregues de tracció en situació d’incendi, 

es a dir, s’analitza com canvia el comportament de la connexió amb les seues 

característiques alterades degut a les altes temperatures. L’estudi de les propietats 

del material en funció de la temperatura i el seu efecte en la resposta de la connexió 

formen també part de la recerca. 

Un contingut important d’aquest treball consisteix en determinar 

l’influencia del formigó i el tipus d’element de fixació tant en el comportament 

mecànic com termo-mecànic de la connexió. 
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Per últim, s’estudia la capacitat de les unions per a complir amb els 

requeriments d’exposició al foc de 30 minuts prèviament al col· lapse. 

Com a resultat d’aquest treball s’obtingueren models d’elements finits amb 

capacitat per a simular el comportament tèrmic i termo-mecànic de la connexió, 

proporcionant patrons de comportament de gran utilitat en el disseny. Entre les 

principals conclusions, es va observar la reducció de la temperatura en els perns 

gràcies al nucli de formigó en pilars omplerts de formigó en comparació amb el 

pilars buits, on ja en la superfície esposada del cargol es quantificava en 100 ºC 

menys. Pel contrari, els elements de fixació que presentaven major longitud de 

embeguda en el formigó, no generaven un efecte significatiu en la temperatura de la 

part resistent del pern. En quant a la capacitat resistent davant del foc, el nucli de 

formigó va suposar una millora en termes de rigidesa i de temps de resistència al 

foc. Tanmateix, la fallada dels perns en una secció pròxima a la superfície esposada 

va reduir l’efecte esperat de la fixació del pern, que si be implicava una major 

rigidesa de la connexió, no semblava millorar el temps de resistència al foc. 

Finalment, es va plantejar la necessitat de aprofundir en l’anàlisi incorporant un 

major rang de paràmetres. 
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MOTIVATION AND OUTLINE OF THE THESIS 

This thesis opens a new research line regarding connections within the field 

of work related to the fire behaviour of composite structures set up by Dr Manuel 

Romero at the Universitat Politècnica de València. The research group headed by Dr 

Manuel has an extensive background in the behaviour of concrete filled tubular 

column at room and under fire conditions. More recently the fire performance of 

hollow core slabs is aiming on-going researches. In this context, the introduction to 

the study of the connection represents the natural trend in the process of completing 

the fire analysis of the structures and providing a final solution to the designer.  

Among the multiple solutions to connect an open section steel beam and a 

Concrete Filled Tubular (CFT) column, the interest was fixed in semi-rigid 

connections consisted of an endplate welded at the end of the beam and bolted to the 

column. Applicability, ease of installation, maintenance and optimization were the 

main reasons for using these endplate connections. However, bolted connections to 

hollow steel section cannot be built with conventional bolts and blind-bolt fastener 

systems have to be used instead. The research focused on a particular system named 

Hollo-bolt and a modified version of it, which is anchored within concrete. The 

motivation of this work is to gain insight into the fire performance of Hollo-bolt 

connections to tubular columns and assess its reliability to achieve 30 minutes fire 

resistance in unprotected conditions. 

The initial stage of this research was the necessary state of the art that helped 

to focus the aim on a particular connection beam to hollow section column. Once the 

decision of covering the fire analysis of endplate blind-bolted connections was 

taken, the next step was the establishment of the methodology for their study. The 

analysis under fire required to know first its thermal and mechanical response. For 

the thermal analysis of the connection, an experimental program of twelve 

specimens was carried out in a gas furnace together with a numerical simulation 

with Finite Element Analysis (FEA). Regarding the mechanical analysis at room 

temperature, the work was based on Finite Element (FE) models of the connections 

calibrated with experiments developed in the University of Nottingham. This 

validation motivated a research stay in the Faculty of Engineering of that university. 

Finally, the reliability of the thermal and the mechanical numerical simulations 

allowed the study of the connection in fire and under tensile loads. 

This document is structured according to the steps followed during the 

research. Consequently, five parts make it up: an opening part (Part 1) to introduce 

to the subject, three main parts that (Part 2, 3 and 4) describe the numerical and 
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experimental work developed, and a closing part (Part 5) summarizing the 

conclusions. Chapters included in each part are briefly presented in the following 

paragraphs. 

The first part of the document ‘Introduction, State of the Art and Aims of the 

Thesis’ includes three introductory chapters from 1 to 3. Chapter 1 describes the 

background of the research. It is an introduction to the subject of connections 

between beams and columns, their classification, the special fastener system named 

blind-bolts and finally, the structural fire analysis. Chapter 2 is the state of the art of 

the researches that serve to understand the current knowledge on the fire 

performance of connections between steel I-beams and hollow steel columns. 

Chapter 3 explains the objectives of the thesis and stablishes the scope of the study. 

Chapters 4, 5 and 6 formed the second part of the thesis ‘Thermal study of 

blind-bolted connections’ that deals with the heat transfer in the connection. Chapter 

4 describes the thermal experiments carried out in the laboratory and the analysis of 

the thermocouples measurements. Chapter 5 is about the numerical study of the heat 

flux in these connections by means of Finite Element models. Specimens tested in 

the laboratory are simulated to calibrate the model and determine the most 

influential parameters. In the Chapter 6, the reliability of using simplified methods 

from Eurocodes and several authors for the temperature calculation of the 

connection is assessed. 

The third part ‘Numerical analysis of blind-bolted connections at room 

temperature’ corresponds to chapter 7 and describes the FEA simulation and 

calibration of the connections subjected to tensile loads at room temperature. This 

numerical study serves to understand and verify the connection behaviour under 

ambient conditions and to ensure the trustworthiness of the FE model.  

The fourth part ‘Numerical study of the fire behaviour of blind-bolted 

connections’ consists of Chapter 8 and presents the advanced numerical model 

developed to calculate the resistance of the connection when a tensile load is applied 

and simultaneously the thermal load acts (exposure to the ISO834 fire curve). 

The fifth and last part ‘Conclusions and further work’ is the chapter 9 which 

gathers all the conclusions and the proposals for further studies. 

The work presented in this dissertation has produced two conference papers 

and two papers published in peer –reviewed journals. 
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1.INTRODUCTION 
 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter introduces the subject of connections to concrete-filled tubular 

columns and reports on an overview of the different ways of joining a beam to a 

column. The main structural properties of the connections, their characterization and 

classification are presented. Blind-bolted connections and the different fastener 

systems that currently are commercially available are described.  

The methods to estimate the connection behaviour are introduced, noting the 

component method. Finally, the procedure followed for the structural fire analysis is 

explained. 
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1.1. BACKGROUND 

The higher torsional rigidity and better buckling strength of Hollow Steel 

Section (HSS) columns compared with open section ones are well-known. The 

concrete inside the section enhances the structural behaviour by increasing the 

strength of the element and preventing the steel tube from local buckling. On the 

other hand, steel provides a confinement to the concrete core and improves its 

strength and stiffness. Therefore, advantages of Concrete Filled Tubes CFT thanks 

to the combine contribution of both materials have been widely demonstrated. The 

higher capacity allows the reduction of the column section, so concrete filled tube 

become more attractive for designers not only from an aesthetical point of view but 

also economically, due to the reduction in material. In addition, the external surface 

of the steel tube provides several coating possibilities. 

The advantages of CFT are also noteworthy in terms of building construction. 

Firstly, the reduction of the section implies lower weight to transport and an easy 

execution. Moreover, the steel acts as a plank mold for the concrete, consequently 

time and cost decreases. 

Not only benefits are proved at room temperature but also under fire 

conditions, the use of CFT is very convenient and helps to explain the spread of its 

use during recent years. Steel presents a high conductivity and its temperature 

increases quickly under fire exposure. Conversely, thermal properties of concrete 

produce an insulation and heat sink effect. As a result, the fire resistance increases 

for the composite element. 

Extensive studies on the performance of the CFT have been carried out in 

order to present them as recognized and advantageous solutions for the structural 

designers. Nonetheless, the way to connect the beam to the column has frequently 

represented a handicap because of the scarcity in data and knowledge of its 

appropriate definition. The selection of the connection type depends on the structural 

characteristics required for each particular case. It is not the same designing a 

connection to support shear loads and flexible to accommodate beam rotations than 

to bear seismic actions that could take place in Japan. Figure 1.1 shows two 

connections that respond to different structural necessities. 
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Figure 1.1. a) Shear connection in Transit Terminal in Wisconsin, EEUU [1]  

b) Seismic connection in Auckland airport, New Zealand [2] 

This research deals with semi-rigid connections, particularly with bolted 

endplate connections. In comparison to the welding solution, the erection by bolting 

reduces the time of installation, avoiding the cost and the maintenance problems of 

the welds. The endplate connection consisted of a plate welded to the beam at 

workshop and bolted to the column in situ. Figure 1.2 illustrates two examples of 

these connections in the case of an open section column and a hollow section 

column. It is a popular solution for connections between open steel sections due to 

its easy execution and erection. However, when the column presents a hollow 

section, conventional bolts are impossible to be tightened because of the lack of 

access inside the tube. This fact delayed initially the use of the bolted solution in 

favour of the welding, but, fastener systems able to be tightened from one side of the 

column were early developed.  



Fire behaviour of blind-bolted connections to concrete filled tubular columns under tension 

 

6                                                                   Universitat Politècnica de València 

 

Figure 1.2. Endplate connection between an I-beam and an open section and a 
hollow section column [3] 

These types of fasteners were called blind-bolts and nowadays are commonly 

used. Their application was traditionally limited to simple connections, supporting 

exclusively shear loads transferred by the beam. Nonetheless, modifications of these 

systems are being studied. The objective is to increase their capacity to undergo 

bending moments and not only shear loads, resulting in semi-rigid connections.  

In moment-resisting connections (rigid or semi-rigid connections), assuming 

frame is not subjected to wind or seismic loads, the top part of the connections is 

subjected to tensile loads whereas the bottom is under compression. In the case of 

connections to CFT the compression capacity is ensured thanks to the concrete, and 

consequently the tension part becomes the most critical zone. The tension part 

comprised the endplate, the tube and the blind-bolt. Eventually, the interest of the 

present work has concentrated on the performance of the tension area. 

The following sections serve to understand better the framework of this 

research related to the type of connection and the fastener systems. 

1.1.1. Types of connections 

First of all, this report uses the term connection instead of joint as connection 

refers to the details of the particular connected zones and joints to whole region in 

which members intersect.  

The performance of moment-resisting connections is defined by means of a 

moment-rotation curve, which results from a non-linear relation. This curve 

indicates the main structural properties of the connection: the strength or maximum 



Chapter 1. Introduction 

 

Doctoral Thesis. Ana M Pascual Pastor                                                                                              7 

bending moment acting on the connections Mj,Rd, the rotation stiffness Sj and the 

ductility or maximum rotation Φcd ,Figure 1.3. 

M

ϕϕϕϕ

initial rotational stiffness

moment resistance (strength)

rotation
capacity

ϕϕϕϕ
M

 

Figure 1.3. Moment-rotation curve. Connection structural properties [4] 

Depending on the type of analysis in terms of grade of simplification 

assumed, it is necessary to determine all the connections characteristics or just one 

of them. If a linear analysis of the frame is being carried out, only stiffness is 

required. On the contrary, if a plastic analysis is developed, strength is the property 

to characterise the connection, although ductility, as the maximum rotation capacity 

of the joint, is also needed. Finally, in the case of an elasto-plastic analysis all the 

properties have to be specified. 

On the other hand, the definition of the connection between the beam and the 

column depends on the structural performance that designers expected from the 

overall structure and particularly for each part, as it has been previously mentioned. 

Requirements are different if connection is planned to be rigid or if it is assumed to 

work pinned. In the case of rigid connections, the whole bending moment is 

transmitted from the beam to the column. Under these circumstances the focus of the 

design is on the connection and the column. Meanwhile, if a pinned connection is 

used, it only supports shear forces. For the latter, most of the attention concentrated 

on the bending moment and tension in the mid span of the beam, whose inertia 

should be increased to prevent high deflections. Nonetheless, connections normally 

do not behave strictly as rigid or as pinned, and the optimum is a realistic estimation 

of the loads that they are able to undergo. Despite this fact, the designers tend to use 

rigid or pinned connections and avoid further calculations.  

In the previous paragraph, connections have been named accordingly with a 

classification based on stiffness (rigid, pinned and semi-rigid). Strength is another 

criterion to classify the connections. Eurocode 3 (EC3) Part 1.8 [5] includes both 
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criteria and stablishes the limits to determine whether the connection belongs to one 

or another group.  

For the stiffness classification, the connection stiffness is compared with the 

beam stiffness under certain circumstances. As a result, the connection can be 

classified as: 

� Pinned: the connection transmits the shear load but its stiffness is 

not high enough to bear bending moments. 

� Rigid: the connection stiffness permits the total transmission of the 

bending moment. 

� Semi-rigid: the connection stiffness is not so low to not transmit any 

moment but not so high to transmit the whole.  

The following figure, Figure 1.4, exhibits the limits for the connections 

stiffness classification, depending if the structure presents braced or unbraced 

frames. 

 

Mj

Φ

Nominally pinned:
Sj,ini≤0.5EIb/Lb

Semi-rigid

Nominally pinned:
Sj,ini≤0.5EIb/Lb

Semi-rigid

Rigid: Sj,ini≥8EIb/Lb

 

Mj

Φ

Rigid: Sj,ini≥25EIb/Lb

Semi-rigid

Nominally pinned:
Sj,ini≤0.5EIb/Lb

 

a) Braced frames b) Unbraced frames 

Figure 1.4. Intervals of EC3 Part 1.8 [5] to classify connections as a function of 
stiffness 

According to the strength of the connection and comparing it with the 

strength of the beam and column, the connection is denominated as (Figure 1.5): 

� Pinned: the moment design capacity of the connection is lower than 

25% the yield moment capacity of the total strength connection. 
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� Total strength: the moment design capacity is higher than the yield 

moment of the elements jointed, i.e. column and beam. 

� Partial strength: the moment design capacity of these connections 

does not set them as pinned nor total strength. 

Mj

Φ

Pinned

Partial Strength

Mj,Rd

Total strength

 

Figure 1.5. Intervals to classify connections as a function of the strength [5] 

Besides these two classifications, there are other criteria to categorize the 

connection, for instance taking into account the grade of simplification. Based on it, 

connections are named as: 

� Simple: connections do not transmit any moment and there is not 

rotation continuity. 

� Continuous: the bending moment from the beam is completely 

transmitted to the column, so rotation of the beam and rotation of the 

column are the same. 

� Semi-continuous: assumptions of total continuity or discontinuity 

can not be taken as in the previous types, so their behaviour should 

be studied. 

1.1.2. Semi-rigid connections. Endplate connections 

This research focuses on semi-rigid connections, included in the group of 

moment-resisting connections because they partially resist bending moments from 

the beam. They provide a more equilibrated design of the connection itself and of 

the connected elements. Besides, the use of semi-rigid connections implies the 

consideration of their real properties in contrast to rigid or pinned connections where 

negligible or total stiffness is assumed and only verifications are performed.  
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Most popular semi-rigid connections between an I-beam and a column are 

angle and endplate connections, which are depicted in Figure 1.6. Both types use an 

intermediate element to join the beam to the column, which is an angle or plate. In 

angle connections the angle is bolted to the top and bottom flanges of the beam, 

additional angles can be added to join the web and thus gaining stiffness, conversely 

endplate connections use only a plate welded workshop to the beam and bolted in 

situ to the column. The structural properties of the connection are strongly 

dependent on the thickness of the angle or plate, their dimensions and position.  

  

Figure 1.6. Endplate and angle cleat connections 

Regarding endplate connections, pinned, semi-rigid and rigid connections 

can be obtained using different lengths of plate. For instance, if the endplate length 

is smaller than the height of the beam and is only welded to the web beam it can be 

assumed as pinned (partial endplate). On the other hand, the semi-rigid behaviour is 

attained when the endplate is welded at least to the whole end of the beam, flanges 

and web, so the length of the plate is equal or larger than the height of the beam 

(flush endplate). Nonetheless, the capacity of the connection is highly related to the 

number of bolt rows and their location in the connection. Finally, if the connection is 

designed with a row of bolts over the upper flange of the beam, the stiffness and 

strength of the connection increase (extended endplate connection) and usually it 
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behaves as rigid. Figure 1.7 shows these three different endplate connections 

described. 

   

a) Partial endplate b) Flush endplate c) Extended endplate 

Figure 1.7. Endplate connections 

1.1.3. Bolted connections to hollow steel sections. Blind-bolts 

Bolted connections to tubular column cannot be erected with conventional 

bolts. Consequently, blind-bolt fastener systems were developed, where tighten 

torque is applied from the one side of the column. Some of the most common 

systems are Flowdrill (Flowdrill B.V., The Netherlands), Hollo-bolt (Lindapter 

International,UK) or Oneside blind-bolt system (Ajax Engineered Fasters, 

Australia). As a rule, they have been proven to perform well as simple connections, 

but their capacity to transmit bending moment is not so evident. Only under certain 

circumstances or subjected to modifications in the elements of the connection they 

can resist bending moments. Concrete inside the column and the anchorage of the 

blind-bolt with the concrete are methods to enhance their capacity. 

In the next paragraphs a brief description of the most popular blind-bolts is 

presented, including some references to their main researchers. 

Welded bolts 

In this technique the bolt or stud is welded to the external face of the column 

or internally to holes in the tube as it is depicted in Figure 1.8. If welding is 

performed in–situ it has the inconvenience of execution, on the contrary, if studs are 

welded workshop, special attention should be paid during the transport. Therefore, 
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studs or bolts are checked normally, but under tensile loads they are liable to be torn 

up because of welding failure, which conduct to an abrupt connection collapse. 

Maquoi et al. [6], Vandegans [7] and Neves et al. [8] carried out researches 

based on these connections with welded bolts, where the column and the bolts 

governed the failure. In the cases where concrete filled tubes were used, concrete 

reduced the column deformation under compression and attention was focused on 

the tension area. Depending on tube slenderness, after the yielding of the tube, it 

could develop a membrane action and induced the subsequent failure of studs. So, 

the geometry of the tube and the conditions of welded bolts or studs influenced 

highly the response. On the other hand, it was highlighted that neither studs nor bolts 

had any interaction with the concrete. 

  

Figure 1.8. Welded studs or bolts [9] 

Flowdrill 

Normal threaded bolts are employed within this technique, without the 

necessity of nuts. To screw the bolt to the column, a hole is drilled at the same time 

that a truncated cone is formed in the opposite face of the tube. In a second stage, 

the hole is threaded. A scheme of the installation process can be seen in Figure 1.9. 

This fastener system is employed when column thickness is less than 12.5 mm. 

Standard bolts M16, M20 and M24 are used with grade 8.8. 

France et al. [10-12] studied the stiffness, strength and ductility of endplate 

connections to tube columns by using flowdrill connectors. Firstly, hollow sections 

were analysed using partial and flush endplates. The effect of the plate and tube 

thickness, the type of plate, the beam size and the bolt pitch were assessed. 

Secondly, extended endplate connections were considered, where the additional bolt 

row over the flange meant the enhancement of the connection capacity at the 

expense of the ductility loss. Nevertheless, the last cases were susceptible of 

suffering thread stripping. Finally, flowdrilled connections to concrete filled tubular 

columns were covered. Concrete hindered inward deflection of tube faces and 

failure was controlled by column and bolts under tension. 
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Figure 1.9. Flowdrill system [9] 

Ajax One-side  

This system is more recent than the rest of the fasteners mentioned. Figure 

1.10 shows the parts that make up the system and the installation tool. The five parts 

are: a special bolt, a washer able to be folded, a solid washer, a nut and a sleeve 

(optional). The installation process follows the steps indicated in Figure 1.11: a) the 

elements that comprised the system are assembled onto the installation system, b) 

the collapsible washer is folded to be inserted in the hole, c) once the fastener is 

inside the tube rotate the tool to unfold the washer, d) slide the bolt so that the 

washer placed against the back face and rotate the nut to clamp the system. 

The difference with the welded studs and the Flowdrill system is that it 

requires a larger hole in the plate and the tube to insert the folded washer, with the 

subsequent loss of capacity. On the other hand, it does not involve any problem with 

regards to welding or thread stripping. Lee et al. [13] demonstrated the feasibility of 

the blind-bolts connections to behave in a semi-rigid mode. 
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Figure 1.10. Parts of the fastener system Ajax ONESIDE and installation tool [13] 

 

 

Figure 1.11. Installation procedure for Ajax ONESIDE [13] 

Furthermore, the effect of extending the shank to achieve stronger and stiffer 

moment-resisting connections to concrete filled columns was investigated by Yao et 

al. [14], who welded a curved and threated extension at the end of the bolts. Wang 

and Chen [15] worked also on this anchorage extensions proving their benefits. The 

anchor within concrete permits a better stress distribution, so less stress concentrates 
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on the column face. Figure 1.12 shows the cogged extension welded to the Ajax 

ONESIDE system [14] 

 

Figure 1.12. Ajax ONESIDE with a cogged extension [14] 

Hollo-bolt 

The use of Hollo-bolt (HB) system by Lindapter [16] met with general 

acceptance because of its good performance and easy installation. The blind-bolt 

comprises five parts (Figure 1.13): a standard bolt, a sleeve with four slots, a cone 

(with a threaded hole where bolt is screwed), a collar and the High Clampling Force 

Mechanism. Like with Ajax ONESIDE fastener system the hole required should be 

larger than for a standard bolt to permit the sleeve placement, consequently the plate 

and column become weaker. 

The installation procedure is shown in Figure 1.14: firstly, the piece is 

inserted through clearance holes of the elements to join, then bolt is tightened as 

cone moves against inner face of the tube and sleeve legs expand until the total 

clamping force is transmitted.  

The advantage over Ajax ONESIDE is the use of common tools for its 

installation: a normal open ended spanner together with a calibrated torque wrench. 

An additional benefit is the use of standard bolts, e.g. M16 or M20.  

The sleeve flexibility reduces the fastener stiffness [17] and generally limits 

its use to simple connections, only supporting shear loads. As a result, modifications 

of the system were designed to enhance their capacity, so that they were capable to 

resist moments transmitted from beams (Reverse Mechanism Hollo-bolt and 

Extended Hollo-bolt) 
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Figure 1.13. Hollo-bolt.  

 

 

Figure 1.14. Hollo-bolt installation procedure [16] 

Reverse Mechanism Hollo-bolt 

A modified version of Hollo-bolt was Reverse Mechanism Hollo-bolt 

presented by Barnett et al. [18], who attempted to build a fastener system with a 

higher stiffness compared with Hollo-bolt. In order to reduce the deformation 

attributed to the sleeve, legs of slotted sleeve clamped the tube in a reverse way. The 

bolt configuration can be observed in Figure 1.15. 

The experimental test revealed the stiffness increase. On the other hand, 

similar strength to the Hollo-bolt was reached and a considerable reduction of 

ductility was detected. The failure was governed by sleeves, which had a fragile 

fracture. 
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Figure 1.15. Reverse Mechanism Hollo-bolt [18, 19] 

 

Extended Hollo-bolt 

The other attempt of enhancing the stiffness of Hollo-bolt is the Extended 

Hollo-bolt (EHB). The novelty is the use of a longer shank that ends in a screwed 

nut, as it is depicted in Figure 1.16. Its installation follows the same steps as in the 

clamping process of Hollo-bolts. Its purpose is similar to the cogged extensions 

welded at the end of Ajax ONESIDE, to reduce the stress concentration in steel tube 

and to distribute it within concrete.  

 

 

Figure 1.16. Extended Hollo-bolt. 

Researches carried out by Tizani et al. [20, 21] proved the capability of the 

fastener system to provide semi-rigid connections. 
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Finally, the promising results obtained by Tizani et al. [20] related to the 

achievement of moment resisting connections motivated the study accomplished in 

the present thesis. 

1.2. METHODS OF ANALYSIS. THE COMPONENT METHOD 

As in many research fields, three different methods are commonly employed 

to perform the investigation: experiments in the laboratory, numerical models and 

analytical methods. Experiments provide the most reliable results but the complexity 

and cost of testing real connections do not allow researching many variables. On the 

other hand, numerical models such as Finite Elements (FE) models permit 

simulating the real behaviour of complex connections with a reduced economic cost. 

Nonetheless, the suitability of the models should be validated by comparison with 

experimental results. Once, models are calibrated, the versatility of FE simulations 

helps to carry out extensive parametric studies. Finally, analytical methods consist 

of equilibrium equations that define the connection perform. Their reduced 

computational cost and simple application compared with Finite Element Analysis 

(FEA) make them attractive for the designers. Equal to numerical methods, the 

reliability of equations should be proved by calibration with tests or validated FE 

models. 

The following subsection reports a general explanation of the most extended 

and known method to calculate connections in an analytical way, ‘the component 

method’. It is the framework for most of the investigations on connections, which 

generally attempt to understand the connection behaviour by the comprehension of 

the performance of each of their parts and often have the further purpose of 

obtaining a characterization expression.  

1.2.1. The component method 

In the case of analytical characterization, some researchers have studied 

specific connections and focused on determining their behaviour by means of an 

equation (moment-resisting curve), disregarding the further application to another 

connections. Conversely, many other researches have aimed the detection and 

definition of general mechanisms that happened in a wider range of connections, 

which are attributed to a certain part of the connection. This last method permits 

applying the findings to other connections susceptible of developing the same 

mechanisms. It considers the connection as an assembly of parts that comprised its 

response, which is more effective and practical. As a result, the equations derived 
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for each part can be applied to all the connections where these parts contribute to 

support the load.  

This analytical technique is known as “the component method”, since the 

final connection response can be predicted by means of their components behaviour. 

The component method is included in EC3. Part 1.8 [5]. Connection is considered as 

a spring whose structural characteristics (Mj,Rd  Sj, Φcd) are obtained by assembling 

the springs of the parts that contribute to support the external load. The stress 

distribution through the connection should comply with the following aspects: 

� Equilibrium exists between external and internal forces. 

� All parts of the connection should have the strength capacity to 

resist the force. 

� The deformation capacity of the parts is not exceeded because of the 

connection deformation. 

� There is displacement compatibility amongst the parts. 

The application of the component method, as Figure 1.17 indicates, follows 

the next steps: 

� Identification of stress distribution through the connection and the 

components that consequently act to resist the external load. 

� Calculation of strength and stiffness of each component. 

� Assembly of the components. 

 

 

 

 

 

 

 

 

 

 



Fire behaviour of blind-bolted connections to concrete filled tubular columns under tension 

 

20                                                                   Universitat Politècnica de València 

COMPONENT METHOD 

3 steps 

 

1º Step. 
Component 

Identification 

Column web in 
shear 

Column web in 
compression 

Column web in tension 

   

2º Step. 
Component 

characterization    

Stiffness of each component ki 

Strength of each component FRdi 

3º Step. 
Components 

assembly 

 

Connection Stiffness Sj,ini=Ez2/Σki 

Connection Strength MRd=min(FRdi).z 

Figure 1.17. Application of the component method to a welded endplate connection 
between an I-beam and an open steel section column. 
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Next paragraphs contain an outline of the calculation phases in the 

application of the component method. 

Component identification  

Assuming connections is supporting moment bending and shear loads, first 

step is identifying the components involved and whether they are under tension 

compression or shear stress. Frequently, the same part of the connection is bearing 

tension and shear, so two springs are needed to characterize it since the part 

contributes as a compression/tension component and as a shear component. Figure 

1.18 shows the components that act in an endplate connection and Figure 1.19 the 

corresponding springs that represent the mechanical model. 

 

Figure 1.18. Endplate connection components. 
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Figure 1.19. Springs representing the endplate connection components. 

Calculation of strength and stiffness of each component 

Once components that resist the load are identified, the stiffness and strength 

of each spring (component) has to be calculated. EC3 Part 1.8 [5] provides equations 

to calculate the components of the most common connections between steel open 

section beams and steel open section columns. However, it is noted that components 

to characterize the connections between open steel section beams and hollow steel 

section columns are not included.  

On the other hand, it is highlighted that in bolted connections the behaviour 

of several components, such as the flange of the column, the endplate or the cleat 

angle can be defined by means of a T-stub equivalent, Figure 1.20. Zoetemeijer [22] 

proposed this design method that simplifies the study of many areas of the 

connection, and reseached on the mechanisms that induced the failure of the 

component. EC3 Part 1.8 [5] adopted equivalent T-stubs to define several 

components of connections between steel open sections.  
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Figure 1.20. T-stub in tension components of endplate connections [23] 

Figure 1.21 shows the three modes or mechanisms of failure that can be 

detected in the equivalent T-stub depending whether bolt or plate controls the 

failure: 

 
 

Mode 1: Complete yielding of the flange 

 
 

Mode 2: Bolt failure with yielding of the flange 

  
Mode 3: Bolt failure 

Figure 1.21. Mechanisms of failure of T-stub [9] 



Fire behaviour of blind-bolted connections to concrete filled tubular columns under tension 

 

24                                                                   Universitat Politècnica de València 

For the definition of the equivalent T-stub that represents a particular part of 

the connection it is neccesary to set its effective length. In that respect, the number 

of bolts involved in the collapse mechanism influences the lenght. For some 

connection configurations, both, the individual mechanism of one bolt row and the 

group mechanism of more than one row have to be considered. The most 

desfavorable case should be adopted.  

The simple T-stub connection has served to characterize the components in 

steel bolt connections under tension, and represents a valuable method to accomplish 

the study of new components still unknown. 

Regarding composite steel and concrete connections, EC4 Part 1.1 and its 

Annex A [24] gives spefications concerning the composite joints shown in Figure 

1.22. These composite joints involve the concrete reinforcement by the concrete slab 

connected to the beam or the concrete encasement of the column, but connections to 

concrete filled steel columns are not taken into account.  

 
Figure 1.22. Composite joints in EC4 Part 1.1 [24] 

Components assembly 

The final phase in the application of the component method is the assembly 

and calculation of the connection strength and stiffness. 
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Strength 

The strength or maximum bending moment acting on the connections Mj,Rd is 

determined by the capacity of weakest part of the connection and z or distance 

between the compression and tension resultants. As an example, in welded 

connections, the distribution of internal forces is equal to a tensile load acting in the 

upper flange of the beam FRd and a compression load in the bottom flange FRd. So, 

the resistance moment Mj,Rd is defined by the distance between the axis of the upper 

and bottom flange z, (approximately the height of the connection) and the 

component with the lowest capacity, as it is indicated in equation (1.1). Figure 1.23 

illustrates the strength distribution for a welded connection between steel open 

sections beam and column. 

( ),j Rd Rd fb RdM F h t F z= ⋅ − = ⋅  (1.1)

Where 

- FRd is the component with lowest strength 

- h is the height of the beam. 

- tfb is the thickness of the beam flange 

- z is the arm of the load application 

  

Figure 1.23. Distribution of internal forces in a welded connection. 

In the case of a bolted connection, Mj,Rd is not so directly obtained because 

the internal force distribution depends on the bolt row that governs the failure, which 

also makes the rest of rows behave one way or another, as can be observed in Figure 

1.24. Alternatively, the plate or the flange column under compression is able to 

control the failure as well. 
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Figure 1.24. Distribution of internal forces in the bolted endplate connection  

Stiffness 

The initial stiffness Sj,ini is calculated by assembling the elastic stiffness of 

component. Springs representing each component act in parallel or in series. The 

successive association of these springs gives the equivalent stiffness of the overall 

connection. Figure 1.25 depicts the scheme for the spring association in an endplate 

connection with n bolt rows in the tension area. 

 

Figure 1.25. Spring assembly for an endplate connection with n bolt rows in the 
tension area 

Regarding the deformation capacity or ductility of the connections EC3 Part 

1.8 [5] stablishes for a particular range of connections the limits with which it has to 
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comply, in order to assert that ductility or maximum rotation Φcd  is adequate for a 

plastic analysis of the structure. 

In conclusion, the component method is a powerful tool to determine the 

performance of the connections in terms of strength and stiffness. It is the 

framework for most of the researches on connections. The difficulty in studying all 

together the elements and parameters that condition the connections is the reason of 

focusing on a part or component. Although nowadays the scope of the method is 

restricted to connections between steel open sections, a significant effort is being 

made for its applicability to connections involving HSS and CFT columns [21, 25-

27]. In these cases the components that usually govern the failure are the column 

and the blind-bolt.  

The present research focuses on the blind-bolt component under fire 

conditions for a further implementation of the findings within the component 

method. 

1.3. FIRE BEHAVIOUR OF CONNECTIONS 

The calculation of the connection fire resistance has got around by designers 

since they are assumed colder than the elements jointed. The lower section factor 

Am/V (exposed area per length of the element /volume of the exposed element per 

length) of the connection conducted to protect it in the same way as the rest of the 

elements. Thus, during many years, a wide gap of knowledge related to the fire 

behaviour of the connections has existed. However, Cardington tests [28] and the 

collapse of the World Trade Center buildings [29, 30] served to highlight the 

necessity of further research on the fire analysis of the connection, as connection 

capacity was being overestimated and crucial effects of the rest of the elements was 

also being disregarded. 

The study of any structure under fire exposure includes three stages of 

analysis: the fire dynamics analysis, the heat transfer analysis and the stress-strain 

analysis. In order to obtain the thermo-mechanical response of the connection the 

three phases have to be completed. In the following subsection a theoretical 

explanation of them is presented. 

1.3.1. Fire dynamics analysis 

The initial step in any study of structures exposed to fire is the fire dynamic 

analysis, which stablishes the temperature evolution in the compartment where 
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connection is placed. In the energy balance that comprised the fire dynamic analysis 

there are several parameters that define the heat energy released: the fire load 

(quantity and type of combustible materials), ventilation and insulation conditions, 

compartment geometry and fire location. 

Figure 1.26 depicts the evolution of a real fire in a building, the temperature 

grows and decreases according to the mass and energy balance in the compartment. 

Four phases can be distinguished: incipient phase, growth phase, fully developed 

phase and decay phase. In the incipient phase a chemical reaction takes place with 

heat, oxygen and combustible materials resulting in fire, it is the ignition. If there is 

oxygen and combustible material the heat release increases, this the growth phase. 

Two layers of gases appear, the hot layer extends down the ceiling while the cold 

one extends up from the floor. At the same time, flames reach the ceiling and move 

horizontally. The flashover is the sudden ignition of all the combustible materials in 

the compartment, it occurs due to flames radiation and the growth of hotter gas 

layer. Afterwards, the fire reaches the full development and the maximum 

temperatures are registered. Fire lasts until the decrease of oxygen or the 

consumption of all combustible materials led to the decay of the fire. 

 Heat energy released 

Time 

INCIPIENT GROWTH 
FULLY 

DEVELOPED DECAY 

FLASHOVER 

 
Figure 1.26. Evolution of a real fire. 

Nominal and natural fire models can be used to characterize the fire. Nominal 

models do not take into account any parameter to define the fire, do not represent a 

realistic fire evolution. These models were created to compare the fire response of 

different elements by standards and laboratories. Conversely, natural fires models 
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consider a range of parameters and intend to simulate real conditions and 

temperatures curves. 

The Section 3.3 of Eurocode 1 (EC1) Part 1.2 [31] indicates different natural 

fire models: simplified models for compartment fires or localized fires, and 

advanced fire models. The simplified models take into account at least the fire load 

density and the ventilation conditions, whereas the advanced ones employ more 

parameters such as the gas properties, the mass exchange and the energy exchange. 

Annexes of the referred code include a more detailed description of them. 

The scenario where fire of Figure 1.26 occurs, corresponds with a natural fire 

and one zone model, flashover takes place at the same time and temperature for the 

whole compartment. Nevertheless, for compartment fires, EC1 Part 1.2 [31] in its 

Section 3.3 considers another two types of natural fire models: two-zone models and 

computational fluid dynamics (CFD) models. Two-zone models present an upper 

and lower layer with time dependent thickness and time dependent uniform 

temperature. On the other hand, CFD models are appropriate to use in large places 

where gaseous state boundaries can not be set and the analysis should consider the 

smoke movement  

As it has been aforementioned, nominal fires do not represent real fires, they 

are independent of compartment parameters, such as geometry characteristics, 

quantity of oxygen or combustible. Nominal fires are temperature-fire exposure time 

curves created to be able to compare the performance of different structural 

solutions and study their fire resistance. 

Many building codes agree in using the time-temperature curve defined in 

ISO 834 standard [32] to calculate the fire resistance of a structural element. It does 

not represent a realistic fire. The curve is shown in Figure 1.27 and is characterized 

by a gas temperature which grows quickly until 550-600ºC (when flashover occurs) 

and then continues increasing slowly, but without a decay stage. The ISO834 fire 

curve has become a common standard pattern between the laboratories for testing 

the fire resistance of structural elements. The time obtained through this test does 

not give the real time that the structural element bears the load until its collapse, but 

provides a relative comparison. 

The standard ISO 834 [32] curve is described in Section 3.2.1 of EC1 Part 

1.2 [31] and its equations is as follows: 

C)(º  )1·8(·log34520 10 ++= tgθ  (1.2)
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where: 

- θg is the gas temperature in the fire compartment ºC. 

- t is the time in minutes. 

Section 3.2 of EC1 Part 1.2 [31] includes other nominal fire curves more 

appropriate under certain circumstances: the external fire curve and the hydrocarbon 

curve. 

External fire curve is adequate to study structural elements located outside 

the building such as external members. The elements are exposed to fire through the 

openings of the building enclosure, and so, the temperature of the gas affecting the 

member tends to be lower for a certain amount of time. 

On the other hand, hydrocarbon fire curve is used when materials with a high 

calorific value are stored in the compartment, for instance in petrochemical plants. 

In those cases, very severe fires can take place. 

Figure 1.27 depicts the three nominal temperature-time curves: the ISO834 

fire curve, the external and the hydrocarbon fire curve, as well as a parametric fire 

curve. 
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Figure 1.27. Different fire curves [33] 

1.3.2. Heat transfer analysis 

Once the fire scenario is known, the next stage is to obtain the temperature 

distribution in the connection at the instant when the fire resistance wants to be 
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verified. With this purpose the heat transfer analysis is carried out, which consists of 

two phases: firstly, the heat transfer from the fire to the exposed surfaces and 

secondly, the heat flux through the connection. 

The thermal transfer or heat flux through the connection itself occurs by 

conduction. This mechanism of internal energy transfer is due to the microscopic 

diffusion and collisions of particles of the element when there is a temperature 

difference between two points, i.e. a temperature gradient. In the case of the 

connection that comprised several parts, conduction takes place when two parts are 

in contact or through the part itself. 

The heat conduction is evaluated by means of the Fourier differential 

equation. It states that the thermal flux q is proportional to the negative temperature 

gradient ∇θ, which is expressed as follows: 

θλ∇−=q  (1.3)

- q is the heat flux vector per unit surface 

- λ is the thermal material conductivity tensor 

- ∇θ is the temperature gradient 

Assuming that the total energy of the system can not change, the law of 

conservation of energy states: 

·Q q Q∆ = −∇ +  (1.4)

- ∆Q is the change in internal energy in the material per unit of volume 

- ∇q is the gradient of the heat of flux 

- Q is the internal heat generation rate per unit of volume.  

The change in the internal energy ∆Q of the material is proportional to 

temperature variation as follows: 

Q c
t

θ
ρ

∂
∆ =

∂
 (1.5)

- ρ is the density 

- c is the specific heat 
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- t the time  

Substituting equation (1.4) for ∆Q in equation (1.3), the law of conservation 

of energy is expressed: 

Qq
t

c +−∇=
∂

∂
·

θ
ρ  (1.6)

Finally, replacing heat conduction equation (1.3) in equation (1.6) results: 

·( )c Q
t

θ
ρ λ θ

∂
= ∇ ∇ +

∂
 (1.7)

Equation (1.7) is the conductive heat transfer equation. This equation is 

nonlinear because of the variation of material properties with the temperature, both 

the thermal conductivity and the specific heat. 

To solve equation (1.6) is needed to stablish an initial condition and the 

corresponding boundary conditions. The initial condition is given by the temperature 

of the connection at the initial time. The boundary conditions are the thermal loads 

in the fire exposed surface, which are the result of the heat flux from the fire to the 

surfaces and represents the first mentioned phase of the heat transfer analysis. 

The boundary condition on the exposed surface is a Neumann type, which 

specifies the normal derivate of the temperature, i.e.: 

m

net
h

n

θ
λ

∂
=

∂
&  (1.8)

- θm is the temperature in the surface of the member ºC 

- n is the normal to the surface 

- neth&  the net heat flux per unit surface. 

The thermal actions which must be taken into account when conducting the 

heat transfer analysis are specified in EC1 Part 1.2 [31] Section 3 and are given by 

the net heat flux ( neth& ) to fire exposed surfaces. The net heat flux ( neth& ) comprised 

two different heat transfer mechanisms: convection ( cneth ,
& ) and radiation ( rneth ,

& ). 

)(W/m  2
,, rnetcnetnet hhh &&& +=  (1.9)



Chapter 1. Introduction 

 

Doctoral Thesis. Ana M Pascual Pastor                                                                                              33 

Convection is the transfer of thermal energy by the movement of fluids. The 

fluid motion is caused by forces resulted from density variations due to variations of 

temperature in the fluid. The net convective heat transfer component per unit surface 

is given by the following expression: 

)(W/m  )-·( 2
, mgccneth θθα=&  (1.10)

- αc is the coefficient of heat transfer by convection W/m2K 

- θg is the gas temperature in the vicinity of the fire exposed member ºC 

- θm is the temperature in the surface of the member ºC 

The coefficient of heat transfer by convection αc is dependent on the media, 

gas or liquid, the flow properties and the temperature. So, its value is different for 

each nominal fire curve. The value of αc=25 W/m2K is assumed for the standard or 

external temperature-time curve, αc=35 W/m2K when a parametric fire curve is 

used, and αc=50 W/m2K when the hydrocarbon temperature-time curve is adopted. 

On the unexposed side of separating members, the coefficient of heat transfer 

by convection should be taken as αc=4 W/m2K. On the other hand, when it is 

assumed to contain the effects of heat transfer by radiation the value of αc=9 W/m2K 

should be used. 

Radiation is the transfer of thermal energy by means electromagnetic 

radiation. The thermal radiation is caused by the motion of charged particles when 

the temperature of the element is higher than absolute zero. The net radiative heat 

flux component per unit surface is given by the following expression: 

[ ] )(W/m  273)(-273)(···· 244
, ++= mrfmrnet Φh θθσεε&  (1.11)

- Φ is the configuration factor 

- εm is the surface emissivity of the member  

- εf is the emissivity of the fire 

- σ is the Stephan-Boltzmann constant (5.67×10-8 W/m2K4) 

- θr is the effective radiation temperature of the fire environment ºC 

- θm is the temperature in the surface of the member ºC 



Fire behaviour of blind-bolted connections to concrete filled tubular columns under tension 

 

34                                                                   Universitat Politècnica de València 

The configuration factor takes into account the shadow effects that could 

affect the radiation to a certain surface. It is considered as Φ=1 according to EC1 

Part 1.2 [31] Section 3.1(7), unless the exposed surface position is in shadow and a 

lower value may be used. A method to calculate the configuration factor is given in 

Annex G of EC1 Part 1.2 [31]. 

The surface emissivity of the member depends on the material. If the fire 

design part of the different Eurocodes does not specify, Clause 3.1(6) of EC1 Part 

1.2 [31] indicates that a value of εm = 0.8 may be adopted. Eurocode 4 (EC4) Part 

1.2 [34] in Section 2.2(2) states that the emissivity coefficient for steel and concrete 

related to the surface of the member should be εm=0.7. The emissivity of the fire is 

normally taken as εf =1.0.  

When the structural element is totally immersed in the fire, the radiation 

temperature can be assimilated to the gas temperature around the member θr=θg, 

according to EC1 Part 1.2 [31] Section 3.1(8). The gas temperatures may be known 

by the previously described nominal temperature-time curves or by fire models. 

Radiation component of the boundary conditions is non-linear considering 

the relationship with the temperature. As it has been aforementioned, material 

properties present also a non-linear variation with the temperature. Consequently, 

the heat transfer equation is highly non-linear and numerical models are normally 

employed to solve it since analytical solutions of the differential heat transfer 

equation are complex and tedious to obtain. 

Nonetheless, in the case of circular concrete filled hollow section columns 

exposed to fire, Lie and Chabot [35, 36] developed an analytical model for the 

prediction of the cross-sectional temperature using the finite differences method. . 

The problem was reduced to a two-dimensional heat flux where column cross-

section was divided in concentric layers. Eventually, the model consisted of an 

iterative process that solved repeatedly the temperature equations for the layers 

proposed by the authors. Figure 1.28 shows the cross-section divisions used in Lie’s 

method [37] 
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Figure 1.28. Arrangement of layers in the cross-section [37] 

A model for rectangular concrete filled tubular columns was also developed 

by the same author [38] 

Recently, several researches such as Espinos et al. [39] and Leskela [40] have 

intended to simplify the calculation of temperatures in the CFT section. So, the 

temperature of the concrete is summarized in a unique equation that gives an 

equivalent value for the concrete temperature, and similarly, an equivalent value of 

temperature is derived for the steel.  

For the section of connections that include additional elements, for instance 

blind-bolt fastener systems, no analytical method has been found in the bibliography 

that predicts temperature distribution even less the blind-bolt influence. Currently, 

numerical models represent the most convenient technique to tackle the analysis. 

1.3.3. Structural analysis 

During the fire exposure the structure is not only under the thermal load but 

forces acting on the structure previously to the fire remain applied. So, once the 

temperature distribution of the structure is known, the stress-strain analysis under 

these circumstances should be carried out. Mechanical properties of the materials are 

dependent on the temperature, so constitutive equations have to be solved for each 

temperature to obtain stress and strain in the structural element. Finally, a way to 

indicate the fire resistance of the structure is by means of the fire time exposure that 

is able to bear the load before its failure. 
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In the case of the connections to HSS and CFT columns, to determine the 

stress and strain distribution through the connection is very complex and the most 

feasible and practical way requires once again the use of numerical methods such as 

Finite Element Analysis.  

On the other hand, several investigations have been developed attempting the 

adaptation of the aforementioned ‘component method’ to take into account the high 

temperatures. But, up to now, they are limited to connections are between open 

section beams and columns. 

1.4. CONCLUSIONS 

As a first stage before going deeply into the connection research, learning 

about the different ways to connect beams to columns and their influence on the 

structural performance was necessary. Connections can be classified according to 

different criteria, considering stiffness criterion this research focuses on semi-rigid 

connections, which are able to transmit moments but not the whole. Among the 

semi-rigid connections, bolted endplate connections concentrate the attention of this 

work. Moreover, it was highlighted the fact that bolted connections in tubular 

columns require special fastener systems designed to be tightened from one side of 

the column. In this respect, a review of the most common systems (blind-bolts) is 

presented. 

The different methods to calculate the connections are also introduced with a 

more detailed description of the analytical technique called ‘component method’. 

This technique to determine the capacity connection is included in European codes, 

but its application is currently limited to connections between open sections. 

Nonetheless, several researches have been done to extend its use to connections 

between open section beams and tubular columns. 

Finally, the procedure to calculate a structure when a fire is taking place is 

studied through the different stages, from the fire development in the compartment 

until the structural analysis. 
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The state of the art described in this chapter is a review of researches that 

have served to understand the behaviour at room temperature and under fire 

conditions of the blind-bolted connections to concrete filled tubular columns.  

At room temperature, it was necessary going through the studies of 

connections to hollow steel sections as they were primary covered, in order to move 

later to the investigations on concrete filled columns. Similarly, the review of 

investigations on connections at elevated temperature started from the works on 

connections to open section columns and then the current knowledge about 

connections to hollow and concrete filled columns was studied. 

The performance of materials has an important role in the connection 

response, specifically the steel of the bolts. Therefore, main contributions to the 

understanding of high strength steel bolts at elevated temperatures are also outlined. 
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2.1. CONNECTIONS AT ROOM TEMPERATURE 

Since the 70s, connections between tubular steel sections have been the 

objective of many researches, so the investigations carried out during this period 

have provided a better knowledge of them. Before tubular sections, connections 

between open sections had been already under study. However, much more limited 

is the information about the connections between open section beams and tubular 

columns. 

The research programs from the reviewed literature are based on 

experimental, numerical and/or analytical works. The most comprehensive studies 

include their own experiments that are often accompanied by numerical or analytical 

models. Current computational resources make possible the calculation of complex 

numerical models, which once calibrated with experiments allow the development 

of parametric studies. The high versatility of the numerical FE models permits 

detecting patterns of behaviour that otherwise, using experiments, would involve a 

high economic cost. 

First researches on connections between an I-beam and a tubular 

column 

Earliest studies on the behaviour of connections between I-beams and tubular 

columns correspond to welded joints, which were first widespread because of the 

lack of access of the tube for tightening normal bolts. 

First investigations on unstiffened connections between plate or I-beams and 

hollow section columns were carried out in Japan. Kanatani et al. [41] performed 

first investigations on connections to Rectangular Hollow Section (RHS) columns 

capable of resisting bending moments. Further connections between a flange plate 

and a RHS column were studied by Wardenier [42] and Davies and Packer [43]. The 

design formulas inferred from the experimental tests were limited to joints axially 

loaded in a single plane, where the range of geometric parameters was small as well. 

Lu [44] and de Winkel [45] intended to include new aspects not considered 

so far in the previous investigations, such as: the multiplane effect of loads and 

geometry, the transmission of bending moments, the effect of concrete infill and the 

influence of a composite floor with ribbed sheet. De Winkel [45] focused on 

connections to Circular Hollow Sections (CHS) columns while Lu [44] worked on 

connections to Rectangular Hollow Sections (RHS) columns. 
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Figure 2.1 shows the connections analyzed in the research program of Lu 

[44]. The investigation covered welded connections and comprised experimental 

tests and numerical modelling. After model calibrations, parametric studies to obtain 

the equation for the resisting bending moment were developed. Conversely, stiffness 

was not determined directly, but it was deduced from the moment-rotation curves. 

Important findings were drawn, for instance the increase of strength and stiffness 

thanks to the composite floor and the concrete infill. 

 

 

Figure 2.1. Research program of Lu [44] 
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The use of bolted connections between a beam and a tubular column spread 

with the development of the blind-bolt fastener systems. Among the most common 

and extended blind-bolts the Flowdrill and the Hollo-bolt by Lindapter [16] 

highlighted. The differences between connections with blind-bolts and normal bolts 

are due to the fastening system, and in many cases, to the larger diameter of the hole 

of the column and plate required. 

Yeomans [46, 47] studied flowdrilled bolted connections to tubular columns 

where he distinguished the following mechanisms governing the capacity of the 

connections : 

- Bolts under shear and tension load or subjected to the combination 

of both 

- Stripping of the bolts  

- Plate yielding  

- Column yielding 

- Column shear punching 

- Lateral column crippling 

In comparison with welded connections, in bolted connections two more 

failure modes intervened, which were the bolt collapses and the plate yielding. 

Equations to determine the capacity by the bolt stripping, column shear punching 

and lateral column crippling were developed, which are included in the Design 

Guide 9 for Structural Hollow Section Column Connections by CIDECT [9]. 

Regarding column yielding two patterns were detected, depending on the 

relation between the width of the plate and the width of the column. When the plate 

was stiffer than column and its width was smaller as well, it pulled out the column in 

the tension part and pushed in it in the compression part. So, the yield lines involved 

the whole area of the connection, Figure 2.2 case a. Nevertheless, it was 

recommended for moment-resisting connections that the plate and the column width 

were similar in order to enhance its stiffness and strength, thus, the yield line 

appeared only in the tension part, as it is indicated in Figure 2.2 case b. In that 

respect, Yeomans [48, 49] suggested an equation for the yield capacity of the 

column face when the tension part of the column comprised two row of bolts. 
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Case a: small stiff end plate 

 

 

Case b: full width stiff end plate 

Figure 2.2. Yield line pattern for small and full plate width [9]. 

 

Finally, the maximum moment that connection can support is given by its 

weakest part and the height of the beam. An example of the calculation of the 

maximum moment for a bolted endplate connection to a tubular column is presented 

in the following table (Table 2.1), where the mechanisms that can cause the collapse 

are indicated: 
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Table 2.1. Maximum moment calculation of a bolted endplate connection. 

M=min (Fts Fps Fp lNc) (hb - tb,f) 

Strippling of the threads (Flowdrill) Fts=0.6 fc,y π tc db (tc+8mm) 

Column shear punching (Flowdrill) Fps=0.6 fc,y π tc (db+tc) 

Column shear punching (Hollo-bolt) Fps=0.6 fc,y π tc db 

Column face yielding  Fpl=fc,ytc
2
(2(hb-db)/b’+4(1-c/b’)

0.5
)/ 

(1-c/b’)f(n) 

Column crippling (bc/tc) Nc=2 fc,y tc (tb,f+2 tp+5tc) 

Where: 

fc,y is column yield strength 

tc is column thickness 

db  is bolt diameter 

hb  is beam height  

b’’=bc - tc 

bc is the beam width 

c =g-db 

g is the bolt gauge 

f(n)=1-n<1 

n is the maximum column stress 

tb,f is the thickness of the beam flange 

tp is the thickness of the plate 

Equivalent T-stub to characterize tension areas of connections 

When the thickness of the plate is small, it becomes less stiff and its capacity 

is determinant in the connection collapse. The failure mechanism linked to the 

tension resistance of the plate is studied through the equivalent T-stub developed by 
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Zoetemeijer [22], which serves to characterize this component of the connection 

when column presents an open section and for tubular columns as well. The 

usefulness of the T-stub to determine the capacity of several components under 

tension turned it in the basis of many researches. For instance, Jaspart and Bursi [50-

52] worked in the development of numerical models that simulated the T-stub 

behaviour, for which they used two different FEA packages, stablishing the 

guidelines for the correct definition of the numerical model. 

Studies of the connection in the framework of the component method. 

The column face bending. 

The researches previously described identified the parts that conduct to the 

connection collapse and obtained their behavioural patterns, these same parts can 

appear in other connections. So, it can be concluded that their findings were 

implicitly within the framework of the component method. 

As it has been indicated in chapter 1, EC3 part 1.8 [5] includes the 

component method for the connections analysis and the mechanisms of the 

equivalent T-stub to characterize the components in bolted connections as well. The 

strength and stiffness capacity of connections between open sections can be 

determined by using EC3 part 1.8 [5] since all the parts involved are there defined. 

In the case of connections to tubular columns, the components intervening in the 

load bearing are those related to the beam failure (beam flange in compression and 

tension), the plate under tension, the column bending (yielding), the deflection of 

lateral faces of the column and the bolts failure. Although most of these components 

can be calculated following EC3 part 1.8 [5] recommendations, the ones that mainly 

control the connection collapse still have not been comprised, which are the column 

face bending and the blind-bolt failure. 

Regarding the application of the component method to a hollow tubular 

profile it is noteworthy the work carried out by Jaspart and Weynand in the 5BM 

[53] and 5BP [54] CIDECT projects, which were part of the research programs by 

the International Committee for the Development and Employment profile Tubular 

Construction, CIDECT. In these projects the basic actions were: a review of the 

experimental, numerical and analytical studies to determine the strength, stiffness 

and ductility of each component in tubular connections; the evaluation of existing 

analytical expressions; the development of new proposals for components still not 

studied and for those not considered adequate; the evaluation of the new proposals; 

and finally, the compilation of the equations and findings in a design guide. They 

noted the role of the tubular face bending in the characterization of the connection 
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and highlighted the work done by Gomes [55] and Neves [56] to evaluate its 

strength and stiffness.  

The tubular column face was assimilated by Gomes [55] and Neves [56] to 

the web of an open section column when the beam connection is to the minor axis of 

the column. The moment-rotation curve of the web is initially linear until the 

beginning of the web yielding that is followed by a stiffness decrease, nonetheless, 

the membrane effect prevent the descending, Figure 2.3. The rigidity of the plastic 

part of the curve is called post membrane rigidity and is closely related to the web 

slenderness of the column and thickness/width ratio. The ultimate moment resisted 

by the face column is not easy to identify, consequently, different criteria was use, 

e.g. deformation in the work of Lu [44]. 

 

Figure 2.3. Moment-rotation curve of the column web [57]. 

Gomes et al. [58] conducted a plastic analysis with the aim of knowing the 

bending moment resistance of the column. Their model was valid for low and 

medium slenderness and was based on particular yield patterns that can be observed 

in Figure 2.4. 
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Figure 2.4. Gomes model to determine the strength of the column web [55]. 

On the other hand, the work of Neves et al. [59] focused on the calculation of 

the initial stiffness of the column web. The equations derived from their research 

considered an area with a certain loaded rigid surface, which presented an 

unidirectional behaviour and a restricted rotation of the edges connected to flanges, 

Figure 2.5. Furthermore, the case of unrestricted flanges was also undertaken [57], 

which produced the subsequent stiffness reduction. 
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Figure 2.5. Neves model for the calculation of the initial stiffness of the column 
web [57] 

Da Silva et al. [26] addressed the stiffness and strength of connections to 

concrete-filled tubular columns. Concrete prevented the inward deformation and the 

yield pattern was modified including only the pull out part. The strength and the 

stiffness increased at expense of the loss of ductility. The axis for the compression 

forces varied and consequently the force application arm changed.  

In addition to these researches, it is also important to highlight the 

contribution by the investigation Ghobarah et al. [60] in extended endplate 

connections to tubular columns. Instead of decomposing the connection in different 

part and assembling later, they stablished a nonlinear equation to calculate the 

moment-rotation relationship in the connection. The expression implied that 

connection deformation was governed by the plate and column under tension. 

Moreover, their research took into account the influence of concrete when the 

column is CFT, using a coefficient to modify the column’s deformation. 

2.1.1. Blind-bolted connections 

The characteristic that makes different blind-bolted connections from the rest 

of the connections are the fastener systems. Up to now, several different blind-bolt 

systems have been designed, such as Flowdrill (Flowdrill B.V., The Netherlands), 

Hollo-bolt (Lindapter International, UK) or Oneside blind bolt system (Ajax 

Engineered Fasters, Australia). These systems are able to provide simple 

connections, but their capacity to resist partly moments transmitted by beams is still 

the aim of many researches.  
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France et al. [10, 11] carried out experimental investigations on simple and 

moment-resisting connections between I-beam and hollow section columns through 

endplates bolted with Flowdrill system. Columns filled with concrete (CFT) were 

also included in these studies [12]. Concrete increased the strength and stiffness of 

the connection in comparison with unfilled hollow section (HSS) columns. 

Lee et al. [13] studied T-stub connections to unfilled hollow section by using 

the Ajax ONESIDE blind bolt system. They numerically probed the feasibility of the 

blind-bolts connections to behave in a semi-rigid mode. The same fastener system 

was utilized by Yao et al. [14] as well, but in T-stub connections to CFT under 

tensile forces. Furthermore, curved and threated extensions were welded at the end 

of the bolts in order to anchor within concrete and distribute stresses on the column 

face. Results indicated that stronger and stiffer moment-resisting connections were 

obtained. Benefits of the blind-bolt extensions anchored within concrete were also 

confirmed with the experimental investigations of Wang and Chen [15], but for the 

case of complete extended end plate connections to CFT. 

The present investigation deals with the Hollo-bolt system by Lindapter [16] 

and its modified version named Extended Hollo-bolt [19], that helps to obtain 

moment-resisting connections. Hollo-bolt system has been studied by Elghazouli et 

al. [61] in angle connections between a beam and a tubular unfilled column under 

monotonic and cyclic load. Their experimental program included also tension tests 

of the blind bolts that gave notice of the deformation induced by the sleeve of the 

bolt system. Liu et al. [62] examined these same type of connections, subjected first 

to shear loads and later on to axial loads. The column and the angle thickness in 

addition to the distance between the Hollo-bolts and the beam flange were the 

principal parameters that influenced joint capacity and deformation. These studies 

comprised numerical analysis and component characterization that achieved a good 

agreement with experimental results. Moreover, strength and stiffness of Hollo-bolt 

system in T-stub connections were assessed by Wang et al. [63], who noted the 

higher flexibility introduced by the sleeve ductile behaviour. They finally developed 

a theoretical expression for the Hollo-bolt stiffness taking into account the 

deformation of the sleeve part. 

The version of the Hollo-bolt with the anchorage was called Extended Hollo-

bolt. Instead of using the standard bolt as in normal Hollo-bolts, Extended Hollo-

bolt utilizes a longer shank ended in a screwed nut. The modification was proposed 

by the University of Nottingham with the purpose of improving the stiffness 

connection by reducing the stress concentration in steel tube and distributing it 

within concrete. Tizani et al. [20] carried out eight full scale tests on endplate 
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connections between I-beams and CFT columns with Extended Hollo-bolts, through 

them the capability of the fastener system to provide semi-rigid connections was 

demonstrated. Recently, Pitrakkos and Tizani [21] accomplished an extended 

experimental program focused on Extended Hollo-bolt tensile behaviour and the 

preload level quantification. They distinguished and evaluated the four elements 

contributing to Extended Hollo-bolt response that are depicted in Figure 2.6: internal 

bolt elongation, expanding sleeves, shank bond and anchored nut. Within the 

parameters considered for the research, the blind-bolt was able to support the pull 

out developing the full capacity of the shank inside. 

 

Figure 2.6. Components of the Extended Hollo-bolt response [21]. 
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2.2. CONNECTIONS AT HIGH TEMPERATURES  

The fire resistance of concrete filled tubular column has been the aim of 

many studies and there are several codes that include simple method for its 

calculation, which have been also under review to evaluate their range of  

applicability, as in the works of Espinos et al. [39] or Mensinger et al. [64].  

However, regarding blind-bolted connections to CFT columns it is still a lot 

of work to do on their characterization and introduction into codes, not only at room 

temperature, but also at elevated temperatures where the gap of understanding is 

comparatively deeper. 

The study of the connections under fire conditions was initially postponed, 

the common practice was using the same protection or assuming the same resistance 

in the connections as in the elements connected. However, catastrophic events 

occurred in The World Trade Center gave clear proof of the necessity of a better 

knowledge of the connections performance [29, 30]. Besides the material 

deterioration, thermal expansions and contractions appear during the fire and induce 

forces that usually were not considered in connection design. Figure 2.7 shows the 

failure of the connections in the WTC Building 5, which were projected to support 

shear loads, but the tensile loads attributed to thermal beam expansions were not 

taken into account. 

 

 

 

 

 

 

 

 

 

 

Figure 2.7. Connection failure in building 5 of The World Trade Center [65]  



Fire behaviour of blind-bolted connections to concrete filled tubular columns under tension 

 

50                                                                   Universitat Politècnica de València 

Previously to these events, real full scale tests in an open plan office had been 

carried out in Building Research Establishment facilities at Cardington [28]. They 

were part of the research program developed by The British Steel’s Swinden 

Technology Centre in Rotherham. The purpose was obtaining experimental data of 

the temperature distribution in the structural elements and connections, in addition to 

knowledge of the internal forces in the connections and its transfer through the 

composite slab. Fin plate connections and partial depth endplate connections were 

used. The main failure observed in the former was the opening of the holes and in 

the latter, the fracture of the endplates. In some cases, the collapse appeared during 

the heating but many other times the tensile forces induced by beam contractions 

during the cooling phase conducted to the connection failure. 

The literature review revealed that first studies on the connection fire 

performance were on steel connections, between steel open section beams and steel 

open section columns. Spyrou et al. [66, 67] studied the compression and tension 

zone components in endplate connections at high temperatures. They developed 

simplified analytical expressions based on empirical results to know the behaviour 

of both connection areas at elevated temperatures. It is worth noting the contribution 

of Spyrou [68] first and Block [69] later in the development of a component-based 

model to define the fire behaviour of connections between I-beam sections and open 

section columns.  

Al-Jabri et al. [70] conducted an experimental program on the fire 

performance of semi-rigid connections between steel open section beams and 

columns, from which moment-rotation-temperature curves were obtained. 

Afterwards, FE analysis were accomplished by the same authors [71] to simulate 

numerically the connection behaviour at elevated temperatures, the comparison of 

the results with the experimental data proved the accuracy achieved with the FE 

numerical models. Eventually, the study was completed with a spring model [72], 

which responds to the adaptation of the component method for high temperature 

conditions. The stiffness and strength of components were affected by the reduction 

factors of EC3 Part 1.2 [73], a trilinear relation force-displacement was used to 

defined the behaviour of each spring.  

Da Silva et al. [25] worked also in the extension of the component method to 

the analysis of endplate steel connections at high temperatures. The potential 

possibilities of the adaptation were demonstrated since good agreement was 

obtained by comparison with experimental results from cruciform connections. 
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These attempts of adapting the component method to take into account the 

behaviour of the connections at high temperature were extended to the components 

of connections to tubular columns. An example is the work from Colina et al. [74] 

on the stiffness characterization of lateral faces of the column at elevated 

temperatures under compression together with the evaluation of its component 

equation from EC3 Part 1.8 [5]; or the experimental work developed by Lopes et al. 

[75] to determine the stiffness, strength and ductility of the reverse channel 

component. 

Further studies focused on the tying capacity due to catenary action of the 

beam and ductility of connections as the clue for the structure robustness at elevated 

temperatures. In this respect, it should be highlighted the importance of the 

European funded project COMPFIRE [27], whose aim was the design of joints to 

composite columns for improved fire robustness. This project involved five 

Universities: the University of Coimbra, Lulea University of Technology, the 

Technical University of Prague, the University of Sheffield, the University of 

Manchester; and two companies: Desmo a.s. and Tata Steel UK. It provided a 

helpful insight into the thermal behaviour of connections to partially encased 

composite columns and concrete filled tubular columns (mainly reverse channel 

connections). Most of the investigations that are reported next resulted of this 

project. For instance, Yu et al. [76] and Huang et al. [77] undertook the tying force 

and large rotations of connections through an experimental program on flush steel 

endplate connections and steel beam to partially-encased H-section columns. The 

importance of the connection ductility to accommodate large deflections was 

highlighted, thinner plates and strong bolts under certain circumstances represented 

a good strategy to prevent an anticipated fracture. 

Robustness was also the concern of the research by Wang et al. [78] and Dai 

et al. [79]. Two columns sizes and five different types of connections between open 

steel section beams and columns were assessed experimental [78] and numerically: 

Fin plate, web cleat, flush endplate, flexible endplate and extended endplate. The 

limiting temperature of the connections, beam deflections and the failure modes 

were studied for each connection. Differences lower than 50ºC in the limiting 

temperature between the different types of connection were derived. Nonetheless, 

the connection with a better performance subjected to the catenary actions of the 

beam was the web cleat connection.  

In the case of bolted connections to CFT columns, Ding and Wang [80] 

carried out an experimental study on fire that comprised ten tests and dealt with fin 

plate, endplate, reverse channel and T-stub connections. They evidenced the 
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importance of the connection flexibility and strength to achieve the full capacity of 

the beam, i.e. beams were able to support high deflection as long as connections 

resisted the tensile forces. The reverse channel connections performed better than 

the rest due to their higher strength, stiffness and rotational capacity. Moreover, 

temperatures of the elements of the connection were measured in these experiments. 

The knowledge of the temperature distribution through the connection was crucial to 

understand their fire performance. So, in parallel, these tests allow Ding and Wang 

[81] to analyze the pure thermal response of the connections. They identified certain 

areas of the connection with similar temperature and studied the suitability of 

applying the equation in clause 4.2.5.1 of EC3 Part 1.2 [73] to calculate the 

temperature. It is noted their contribution modifying the section factor to adapt the 

method. In addition, the gradient included in Annex D of EC3 Part 1.2 [73] to 

determine joint temperature was assessed. On the other hand, the blind-bolt used in 

the endplate connection was not studied deeply as it did not concentrate the interest 

of that investigation. 

Elsawaf et al. [82] developed a numerical study of connections to CFT 

columns using reverse channel, which connected the beam with the column by 

means of flexible, flush, extended endplate and the combination of flexible-flush 

and flexible-extended. The objective was to set the solution that resisted the catenary 

actions with the higher strength and ductility. Different parameters were assessed, 

such as the reverse channel thickness, the bolt diameter and the grade, including the 

use of Fire Resistant (FR) steels.  

Lopes et al. [75], also in the framework of the COMPFIRE project, carried 21 

tests on reverse channel joint component under tension and compression. They 

analyzed the stiffness, strength and ductility at ambient and elevated temperatures, 

determining the most influential parameters. Besides, they noted the necessity of a 

further study on the analytical characterization of the component since the equations 

for the RHS column were not appropriate. 

All in all, connections to CFT columns have been scarcely researched at high 

temperatures. Moreover, regarding the fire behaviour of blind-bolts and anchored 

blind-bolts in endplate connections to HSS and CFT, no investigations have been 

found on the literature. Hence, the purpose of the present research is to gain insight 

into the high temperature response of blind-bolted moment-resisting connections, 

with the focus on the tension zone. The thermal analysis of the connection should be 

first addressed, and the deformational analysis considering also the tensile loading 

completes the research. 



Chapter 2. State of the Art 

 

Doctoral Thesis. Ana M Pascual Pastor                                                                                              53 

2.2.1. Behaviour of steel at elevated temperatures 

The fire behaviour of the connections is the consequence of the material 

response at high temperatures, so properties of concrete and steel will be 

determinant. Recommendations for concrete definition at high temperatures were 

extracted from Eurocode 2 (EC2) Part 1.2 [83] and Eurocode 4 (EC4) Part 1.2 [34]. 

In the case of the steel characterization in fire, due to the importance in the final 

connections performance, not only Eurocode 3 (EC3) Part 1.2 [73] was considered, 

but also a literature review in that respect was done. It allowed observing that in 

most cases mild steel properties are employed to characterize any steel despite of the 

fact that steel is high strength. The reason is that normal steel is widely tested and is 

the basis of codes recommendations. Therefore, the study of high strength steel at 

elevated temperatures is still the aim of many researches, together with high strength 

steel of bolts. The thermal process during high strength steel manufacture is 

different as well as its chemical composition (higher amount of carbon is exhibited 

by the high strength steel), thus same properties as in mild steel can not be assumed 

without verification. In the following paragraphs the bibliography reviewed with 

regard to high strength steel at elevated temperatures is described. 

High strength steel  

Kodur et al. [84] performed a comparison between recommendations for 

structural steel properties at high temperatures available in American [85] and 

European codes [73]. At the same time, experimental results from other authors 

were included in that review, Figure 2.8 and Figure 2.9 show the mentioned 

comparison. Regarding the thermal properties, both standard predictions were 

similar below 700ºC. Conversely, differences were observed in the stress-strain 

relationship between the two standards, that were attributed to the use of a 

proportional limit to define the elastic phase and the consideration of steel creep by 

EC3 Part 1.2 [73]. Therefore, it was concluded that European standard allowed more 

realistic predictions of the structural fire resistance. 
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Figure 2.8. Comparison of thermal properties of mild steel [84]. 

 

  

Figure 2.9. Comparison of mechanical properties of mild steel [84]. 

Qiang [86] studied the effect of using High Strength Steel in endplate 

connections in fire and after fire. He carried out experimental test and numerical 

models of connections with endplate steel S460N, S690 and S960, and compared 

with mild steel endplates. Current codes were not proved conservative for the fire 

design of steel structures, and consequently new proposals to define their 

mechanical were accomplished. The use of high strength steel allowed thinner 

endplates than with mild steel, which achieved the same moment resistance and 

higher rotational capacity. Moreover, promising results derived from the fact that 

absence of effect on the capacity of the high strength steel was detected after the fire 

when the maximum temperature reached was lower than 600ºC. 
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Guanyu [87] studied the fire and post fire behaviour of fire ASTM A992 

structural steel by means of tensile coupon tests, as well as the performance of 

simple shear connections at high temperatures. From that work reduction factors 

were obtained for ASTM A992 structural steel that affected the young modulus and 

strength of the steel and were quite similar to the recommendations from EC3 Part 

1.2 [73] and AISC specification [88]. Furthermore, the FE models developed for the 

connection simulation achieved good agreement with experimental tests, although 

the first fracture and the following ones were not detected. Large deformations and 

rotations were observed during fire and post fire, in addition, the failure of the 

connection was usually located on the bolt due to its faster loss of strength. Among 

the conclusions it was drawn that higher strength or diameter bolts were able to 

enhance the connection resistance, although in those cases the mode of failure could 

change to other parts of the connections such as the beam. 

High strength steel bolts 

Kirby [89] studied the shear and tensile capacity of grade 8.8 bolts at high 

temperatures (up to 800ºC). The results were compared with the UK guidelines from 

BS5950 Part 8, which were considered conservative and new guidelines were 

proposed. The loss of capacity took place between 300 and 700 ºC and the 

manufacturing process of the bolt influenced slightly their ultimate capacity. 

Besides, the importance of preventing the thread stripping in the interaction between 

the bolt and the nut was highlighted. Finally, the residual hardness of bolts post fire 

was also covered, the softening appeared on these bolts heated over the tempering 

temperature of the manufacturing process. 

Kodur et al. [90] carried out laboratory tests on Grade A325 (fy=630 MPa, 

fu=830 MPa) and A490 bolts (fy=895 MPa, fu=1030 MPa). They obtained data that 

permitted the development of analytical expressions to characterise the thermal and 

mechanical properties of high strength steel bolt at elevated temperatures. Figure 

2.10 depicts the reduction factors for the yield strength derived from the tests of 

A325 and A490 steels, and the published data and code recommendations for 

conventional steel. High strength steel retains its capacity up to 400º, then it 

decreases fast until 5% of its capacity at 700ºC. 
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Figure 2.10. Comparison of reduction factor for yield strength of A325 and A490, 
published data and code recommendations for mild steel [90]. 

Gonzalez and Lange [91] tested grade 10.9 bolts under tension. They used 

steady state and transitory analysis, and concluded that the transitory calculation 

provided a more accurate response due to sequence of load application, which is 

more realistic and capture of the creep deformation. Their aim was proving that the 

chemical composition and heat treatment during the manufacture influenced the high 

temperature response of the bolt. Experiments gave a lower strength ratio at 2% in 

comparison with strength reduction factor from EC3 Part 1.2 Annex D [73] 

Hanus et al. [92] performed tests on grade 8.8 M12 bolts at room 

temperature, steady-state tests at elevated temperatures and natural fire tests under 

heating-cooling cycles. The data at room temperature was used to reference the 

results at high temperatures. Steady-state tests served to compare the reduction 

factor with EC3 Part 1.2 [73], in which slight differences were drawn. Moreover, 

heating-cooling data was used to adjust a stress-strain law for high strength steel 

bolts, which depended on the maximum temperature reached and the final 

temperature of the test.  

Li et al. [93] carried out tests on two of the most common steel types used in 

China: structural steel 16Mn (fy=345 MPa, fu=510 MPa), and bolt steel 20 MnTiB 

(fy=940 MPa, fu=1040-1240 MPa). Based on the results they highlighted the higher 

ductility of the steel with the temperature. Furthermore, equations dependent on the 

temperature were developed for the yield strength, tensile strength, modulus of 

elasticity, elongation and expansion at high temperatures of both steels. Finally, their 
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suggestion was the development of specific tests for each steel used in the structure 

to analyze as different performance was detected depending on the type of steel bolt. 

Liang [94] developed a research on the shear strength of A325 and A490 

bolts at elevated temperatures and after fire exposure. This work includes a wide 

literature review on the elevated temperatures properties of structural steel and steel 

bolts. Moreover, reduction factors for shear strength and post fire residual shear 

strength were derived from the experimental tests. The nominal shear resistance was 

not affected in those cases where temperature did not exceed the tempering 

temperature of the bolt manufacturing process. The post fire slip capacity was also 

evaluated in the bolted connections, which varied with the maximum temperature 

reached during the fire exposure. 

Fire resistant steel 

Furthermore, fire resistant (FR) steel was reviewed as it represents a method 

to enhance the connection behaviour at elevated temperatures. Its chemical 

composition with alloying elements such as Mo, Nb and Cr, together with heat 

treatment conditions allows better strength retention than in normal high strength 

steel. FR steel was a demand of steel constructors in Japan two decades ago.  

Kelly and Sha [95] tested FR structural steel and S275 steel up to 700ºC and 

compared their tensile and creep properties. It was observed that FR steel retains 

50% of its nominal strength at a temperature of 650ºC while S275 retains 50% of the 

strength around 550ºC. Furthermore, FR steel presented better creep properties, 

detecting lower strains and strain rate than S275 steel. 

Sakumoto et al. [96] developed an experimental program testing the tensile 

and shear strength of FR steel bolts for FR steel constructions. The Table 2.2 shows 

the reduction factors for FR steel bolts from Sakumoto et al. [96] under tensile load. 
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Table 2.2. Reduction factors for FR steel bolts from Sakumoto et al. [96] 

under tensile load. 

Test temperature ºC Proof Stress Tensile strength Young’s Modulus 

20 1 1 1 

300 0.852 0.959 0.898 

400 0.792 0.874 .896 

500 0.692 0.747 0.790 

550 0.551 0.624 0.716 

600 0.343 0.430 0.608 

650 0.190 0.273 0.444 

700 0.10 0.166 0.333 

800 0.049 0.074 0.234 

Despite their promising advantages, retaining steel properties up to 600ºC 

with the subsequent reduction in fire protection safety of the structures, bibliography 

related to FR steel and FR bolt steels is scarce and codes still do not include them in 

their recommendations.  

2.3. CONCLUSIONS 

Up to know, many different connections between steel beams and columns 

have been researched, the purpose was usually characterizing their rotational 

stiffness and moment bending strength. For that, the analyses normally focused on a 

part of the connection that conditions the failure and attempt to determine its 

capacity. The review of the connection researches served to know about the work 

already developed to define each of these parts, which are able to appear in different 

connections.  

In the case of endplate connections using blind-bolts, it was extracted that 

two main components make them different to the rest of the connections and, at the 

same time, are the cause of the failure: the column under bending moment and the 

fastener system. 
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Concerning the column face under bending moment, different yield patterns 

have been observed that involve tension and sometimes compression areas as well, 

which define the ultimate strength of the component. The yielding under 

compression does not take place in concrete filled tubular columns, modifying the 

yielding mechanism of the hollow section. Regarding the fastener system, Hollo-

bolts have been tested under different loads and in several types of connections, their 

flexibility has been assessed trying to offer stiffer versions, nonetheless, their 

influence on strength and stiffness capacity of the connections are still under study.  

Under fire conditions, researches are restricted to connections between open 

sections and some other composite connections. For instance, significant efforts 

have been made to understand reverse channel connections and their benefits for 

robustness. However, very few knowledge exists regarding the blind-bolted 

connections at elevated temperatures. 

Through the literature related to the fire connection behaviour, the 

importance of steel bolts in the response was noted. Its faster deterioration due to the 

higher amount of carbon of the high strength bolt steel compared to mild steel 

produces frequently its failure. European codes include strength reduction factors for 

high strength bolt steel, but many other authors have researched their properties to 

attain the most appropriate characterization adequate to the specific steel. A brief 

description of some of these works is included in the chapter. 

Finally, several investigations on Fire Resistant steel were revised since they 

represented a way to enhance the fire performance of the connection. 
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This chapter describes the general aim of this thesis, as well as the specific 

objectives which were established throughout the investigation for its consecution. 

The scope of the research work is also presented. 
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3.1. AIM OF THIS THESIS 

The general aim of this thesis is to investigate the fire behaviour of the 

tension area of blind-bolted endplate connections between I shape section beams and 

Concrete Filled Tube (CFT) columns. The interest of the tension area resides in the 

important role that it develops in the performance of moment-resisting connections 

of this type. 

The first objective before the development of the fire analysis is obtaining 

data for a better understanding of the thermal transfer through the connection. With 

this purpose, small-scale thermal experiments and numerical models are carried out. 

The attention focuses on the role developed by the concrete and the blind-bolt on the 

temperature distribution. Blind-bolts are partially embedded in concrete, so both 

parts, the steel bolt and the concrete, are able to influence each other. The thermal 

response is assessed by comparison of connections to CFT versus connections to 

HSS, and Hollo-bolt versus Extended Hollo-bolt. Moreover, the characterization of 

the steel thermal properties is also evaluated. 

Once the first objective is achieved, the thermo-mechanical analysis is 

carried out, so the final aim of obtaining data and gaining insight into the fire 

performance of the tension area of blind-bolted connections, is covered. In the 

thermo-mechanical analysis, forces are loading the element and introducing 

mechanical deformations at the same time that thermal actions take place. The 

numerical results permit determining the failure modes and predicting the fire 

exposure time before the connection collapse (Fire Resistance Rating FRR), as well 

as assessing the influence of the blind-bolt and concrete core infill of columns. 

Consequently, preliminary guidelines about the performance and benefits of using 

CFT or anchorage bolts or different steel are given. 

3.1.1. Specific objectives 

For the achievement of the final aim of this thesis, the following specific 

objectives are previously covered: 

- Initial review of the different solutions to connect the beam to a hollow steel 

column in order to stablish the focus of interest and the gap of knowledge. 

Subsequent review of investigations related to blind-bolt connections at room 

temperature and under fire conditions. Observation of the studies on steel bolt 

properties at high temperatures.  
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- Accomplishment of an experimental program to measure the temperature in 

connections exposed to IS0834 [32] and to obtain the temperature 

distribution through the connection section.  

- Development of a numerical thermal model that simulates properly the 

thermal transfer that takes place in the connection.  

- Establishment of the appropriate values for the different parameters to 

characterize the performance of the connection at high temperatures. 

- Assessment of the suitability of Eurocodes and other proposals to calculate 

the temperature in a section of a blind-bolted connection to a CFT. 

- Development and validation of a numerical model of the mechanical 

behaviour of blind-bolted connections subjected to pull out and at room 

temperature. 

- Development of a thermo-mechanical model based on a sequentially coupled 

calculation that uses the mechanical and thermal models previously 

calibrated. 

- Analysis of the fire connection behaviour observing the mode of failure and 

the time that connections were able to support pull out loads under fire 

exposition. 

- Evaluation of the influence on the fire connection behaviour exerted by the 

concrete and the anchorage of the blind-bolts. Moreover, analysis of the 

effect caused by the type and characterization of the steel bolt. 

3.2. SCOPE OF THIS THESIS 

The scope of this thesis is limited to unprotected endplate connections to 

rectangular hollow section columns. Circular sections have not been included due to 

the extension of the work.  

The research focused on the tension part of the connections. The whole 

endplate connection will be the aim of a future research. 

The numerous elements that comprised the connections multiply the 

parameters involved in the problem, but, it is not possible to cover all of them in 

only one research. Therefore, the parameters here adopted have as main purpose the 

understanding of the blind-bolt behaviour. 
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Furthermore, among the different fastener systems commercially available, 

Hollo-bolts were chosen to connect the plate with the tubular section, due to their 

advantages and potential. So, the conclusions are extracted for this particular system, 

nonetheless, most of the results are likely to be extended to other blind-bolts since 

the mechanisms are similar. 
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This chapter presents a description of the thermal experimental program on 

small-scale specimens of blind-bolted connections. Three different variables were 

considered in the tests: the tube section, the concrete infill and the type of bolt. The 

measurements of the temperatures during the fire exposure are reported, analysing 

the effect of different parameters on the thermal response of the connections.  
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4.1. INTRODUCTION 

The fire analysis requires a previous thermal analysis of the connections, 

however experimental data with respect to the temperature distribution through the 

connection was not found in the bibliography, consequently a test programme of 

twelve unloaded specimens was undertaken. Small-scale samples with only one 

fastener were tested for the sake of simplicity together with the lack of funds to 

experiment the whole endplate connection. The main objectives were to know how 

the embedment of the bolt within the concrete and the lower conductivity of the 

concrete influence the temperature evolution of the connection section during the 

fire exposure. 

4.2. TESTS DESCRIPTION 

The experimental program was divided into four series of three specimens 

each, which are shown in Figure 4.1.  

 
Series1. 

150x150 t=8mm 
Series 2. 

220x220 t=10mm 
Series 3.  

250x150 t=10mm 
Series 4. 

350x150t=10mm 

UHB 
Hollo-bolt 

in HSS 
  

 
 

HB 
Hollo-bolt 

in CFT 
 

  

 

EHB 
Extended 

Hollo-bolt 

in CFT  
 

 
 

Figure 4.1. Test specimens. 
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The parameters that vary through the specimens were the section dimensions 

of the column, the fastener system type and the type of column (Table 4.1). Four 

different sections were considered: two square sections 150x150x8 mm (Series 1) 

and 220x220x10 mm (Series 2), where last number indicates thickness; and two 

rectangular sections, with dimensions 250x150x10 mm (Series 3) and 350x150x10 

mm (Series 4). Two different types of fasteners were used: Hollo-bolts (HB) and 

Extended Hollo-bolts (EHB). The last variable was the type of the column: concrete 

filled tube column (CFT) or hollow steel section column (HSS) 

The series were organized in the following way: each one was tested on a 

different day and included specimens with the same column section dimensions. 

Therefore, three examples comprised each series: the first specimen was a 

connection to a HSS column with a Hollo-bolt (termed UHB from Unfilled section 

with Hollo-bolt), the second one was a connection to a CFT column with a Hollo-

bolt (termed with the same abreviation given to the blind-bolt HB), and the last 

example used an Extended Hollo-bolt (termed with the same abreviation given to the 

blind-bolt EHB) in a CFT column. 

Table 4.1. Fire tests specimens 

Specimen index Type of bolt 

Shank 

Length 

(mm) 

Type of 

column 

Series 1-Section 150x150 t=8 mm       

UHB16-8.8D-150x150x8 Hollo-bolt 75 HSS 

HB16-8.8D-C30-150x150x8 Hollo-bolt 75 CFT 

EHB16-8.8D-C30-150x150x8 Extended Hollo-bolt 120 CFT 

Series 2-Section 220x220 t=10 mm       

UHB16-8.8D-220x220x10 Hollo-bolt 75 HSS 

HB16-8.8D-C30-220x220x10 Hollo-bolt 75 CFT 

EHB16-8.8D-C30-220x220x10 Extended Hollo-bolt 120 CFT 

Series 3-Section 250x150 t=10 mm       

UHB16-8.8D-250x150x10 Hollo-bolt 75 HSS 

HB16-8.8D-C30-250x150x10 Hollo-bolt 75 CFT 

EHB16-8.8D-C30-250x150x10 Extended Hollo-bolt 120 CFT 

Series 4-Section 350x150 t=10 mm       

UHB16-8.8D-350x150x10 Hollo-bolt 75 HSS 

HB16-8.8D-C30-350x150x10 Hollo-bolt 75 CFT 

EHB16-8.8D-C30-350x150x10 Extended Hollo-bolt 120 CFT 
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4.2.1. Specimens 

The examples were formed of a piece of column 285 mm long, a plate with a 

square section 110 mm long and 15 mm thick and the fastener system, Figure 4.2. 

The length of the column was previously proved to be large enough not to produce 

any interference in the isotherms distribution of the connection section. The plate 

aimed to simulate the effect of an endplate in a real connection.  

The fastener system was composed of several parts as it was described in the 

introduction section: the standard bolt, the sleeve, the tighten cone, the collar, the 

high clamping force mechanism and a hexagonal nut attached at the end of the bolts 

in the case of the Extended Hollo-bolts. A standard bolt with diameter of 16 mm was 

used. The outer diameter of the sleeve was 25 mm and the diameter of the hole 

drilled in the column and the plate was 26 mm, the clearance hole was slightly larger 

to accommodate the sleeve. The length of the bolt shank varies depending on the 

type of fastener used: 75 mm for the Hollo-bolt (HB) and 120 mm for the Extended 

Hollo-bolt (EHB). The standard sleeve was used in all cases, which presents four 

slots that allow the expansion during the clamp force application. The sleeve length 

depends on the total thickness that has to fasten and it is given by the Lindapter 

catalogue [16]. For these cases, all the sleeves were 41.5 mm long. 

Although specimens were tested unloaded, the blind-bolts were tightened 

with the recommended torque, which was 190 Nm. So, the sleeve was in the 

expanded state and the cone was placed in tightened position, as it would occur in a 

real connection. In the connections to CFT columns the torque application was 

previous to the concrete pouring. Figure 4.2 shows the Hollo-bolt and the Extended 

Hollo-bolt specimens before the thermocouples colocation and the concrete pouring. 

   

a) b) c) 

Figure 4.2. Test specimens before pouring the concrete: a) Hollo-bolt sample, b) 
Extended Hollo-bolt sample, c) lateral view. 
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The steel of tube columns was structural cold formed steel of grade S355 

(fy=355 MPa), while the bolts utilized in the fastener system were high strength steel 

M16 grade 8.8. The first digit is the value of ultimate strength (fu=800 MPa) and the 

second one is the portion of ultimate strength that indicates the value of yield 

strength (i.e. fy=640 MPa). For the sleeve steel, the Lindapter catalogue [16] 

specifies a strength of 430 MPa. In the case of the plates, they were mild steel. 

The concrete mixture had normal strength (fc=30 MPa) with calcareous 

aggregates. In order to define the specific heat of the concrete it is necessary to 

know the moisture content, which was measured in the laboratory by means of cubic 

specimens (150x150x150 in mm). These specimens were placed into an oven at 150º 

C for 28 days and their weight was taken before and after. The weight difference 

gave the value for the moisture content, which was approximately 7% in concrete 

weight, the same for all the mixtures. 

4.2.2. Test setup and instrumentation 

Tests were performed in a gas furnace located at AIDICO (Instituto 

Tecnológico de la Construcción) installations in Valencia, Spain. The horizontal 

furnace has a section of 5x3 m. It is equipped with 16 gas burners able to reproduce 

the standard fire curve ISO834 [32]   

The three specimens of each series were tested at the same time. They were 

placed at mid-height of the furnace chamber by means of bases made of heat-

resistant concrete, as it is depicted in Figure 4.3 (more pictures from the experiments 

have been included in Annex I). Both ends of specimens were protected by thick 

mineral wool to prevent the loss of heat through these surfaces. 

 

Figure 4.3. Location of test specimens in furnace [97] 
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Type K thermocouples were used to measure the evolution of temperatures at 

different points of the bolt and specimen. Figure 4.4 shows some of them before the 

fire exposure. These devices are made up of two conductors that detect the 

difference of temperature between two parts of the circuit and transform it in a 

voltage.  

  

  

Figure 4.4. Thermocouples in specimens. 

In concrete filled specimens, temperature measurements were made at 11 

different locations. Two sections were controlled in all the specimens: Section A-A’, 

which coincides with the blind-bolt section and Section B-B’, placed 40 mm from 

the column end (Figure 4.5). The objective was to know the isotherms across the 

section and also along the piece. 

At least three positions of the bolt were monitored: the head of the bolt (point 

1), the shank next to the tightened cone (point 2), and the end of shank that goes 

inside the tubular section (point 3). One additional thermocouple was utilized in the 

Extended Hollo-bolt fasteners, at an intermediate point of the shank length, (point 

7). Figure 4.5 depicts the location of the thermocouples for the specimens of the 

series 1 and the notation used. The thermocouples are identified with the letters of 
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the type of the column (UHB, HB or EHB) and the number which indicates the 

position.  
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Figure 4.5. Thermocouple positions in specimens of series 1 [97] 

4.3. TESTS RESULTS 

The analysis of the thermocouple measurements permitted gaining insight 

into the heat flow across the section and the effect of the three variables: the tube 

section dimensions, the concrete infill and the type of bolt.  

The fire curve generated by the burners was measured by thermocouples 

placed inside the furnace, which detected some deviation in relation to the standard 

fire curve ISO834 [32], Figure 4.6. Moreover, during the experiments some 

thermocouple protections failed and the values monitored were not valid, this fact 

explains the absence of some of the measurements in the figures of the present 

section or the drop of others at a certain temperature. 
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Isotherms and effect of the blind-bolt 

Figure 4.7 and Figure 4.8 show the temperatures during the fire exposure in 

specimens of series 2 for HB and EHB respectively. In this section measurements of 

sections AA’ and BB’ are compared.  
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Figure 4.6. Fire curves from the four experiments in the furnace in comparison with 
the standard fire curve ISO834 [32] 

Concerning the thermocouples placed in the exposed surfaces, the values 

obtained for the section BB’(HB8 and EHB8) were higher than the those of section 

AA’(HB1, EHB1, EHB4). It was attributed to a dissimilar distribution of the 

temperature inside the furnace or to the installation of the devices. On the other 

hand, no difference was observed between HB6 and HB9 or HB5 and HB10 (Figure 

4.7), that had the same position related to the exposed surface. Despite some 

alterations around 30 min of exposure, similar behaviour was also detected in EHB6, 

EHB5 and EHB10 (Figure 4.8). Among all the thermocouples measurements only 

positions HB11 and EHB11 measured slightly colder temperatures linked to the 

larger distance to the exposed surface. 
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Figure 4.7. Time-temperature response measured by thermocouples in CFT 
connection with HB of series 2. 
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Figure 4.8. Time-temperature response measured by thermocouples in CFT 
connection with EHB of series 2. 

Figure 4.9 presents the temperature evolution during fire for specimen with 

HB and CFT column of series 3. Thermocouples on the exposed steel surface 

reported similar values (HB1 HB4 and HB8) up to aprox. 30 min, afterwards, they 

separated, but differences were not higher than 50ºC. Temperatures in section AA’ 

and BB’ were approximately the same, as can be proved by comparing the following 

pairs of thermocouples measurements: HB5 with HB10, HB6 with HB9, and HB7 

with HB11. Thermocouples in HB6 and HB9 reached higher temperatures than 
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HB5, HB7, HB10 and HB11, because the former were closer to the exposed surface. 

The fact of obtaining similar measurements in the last four locations indicated that 

they belonged to the same isotherm.  
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Figure 4.9. Time-temperature response measured by thermocouples in CFT 
connection with HB of series 3 [97] 

Same conclusions were extracted from the EHB connection of the same 

series, Figure 4.10. Regarding temperatures in concrete, it is worth noting that 

thermocouples EHB6 and EHB9 were equal, so, although EHB6 is relatively close 

to the end nut of the EHB no effect was detected due to the longer embedded shank. 
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Figure 4.10. Time-temperature response measured by thermocouples in CFT 
connection with EHB of series 3. 

As a conclusion, neither the embedment of HB nor the EHB influenced the 

temperature at the exposed surfaces as values were the same on the head bolt 

(position 1) and at the opposite face of the tube column (position 4). On the other 

hand, isotherms in concrete will be affected by the blind-bolt around the embedded 

part, beyond a certain distance the influence disappears, that explains the similar 

measurements in concrete at the section of the bolt (AA’) and at a further section 

(BB’).  
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Regarding the temperatures in the unfilled columns, thermocouples directly 

exposed to the fire presented the same values (UHB1 and UHB4), while the other 

points of control located in the bolt registered lower temperatures (UHB2 and 

UHB3). Similarly, the latter thermocouples, 2 and 3, had the same temperature due 

to the high conductivity of the steel, which was around 100ºC lower than in point 1 

and 4. These assessment can be drawn from Figure 4.13 and Figure 4.14 which 

corresponds to unfilled specimens (HSS) of series 2 and 3 respectively. 

The same conclusions were drawn through measurements of the samples of 

series 1 and 4 whose respective Figures have been included in Annex I. 
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Figure 4.11. Time-temperature response measured by thermocouples in HSS 
connection with HB of series 2. 
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Figure 4.12. Time-temperature response measured by thermocouples in HSS 
connection with HB of series 3. 

Effect of the section size 

The temperatures at points 1, 2 and 3 of the bolts for the connections to HSS 

columns were quite similar for the four series, as it is shown in Figure 4.13.  
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Figure 4.13. Comparison of bolt temperature between different steel sections in test 
specimens of HB to HSS connections. 

 

In Figure 4.14 it can be observed the same comparison for the four tube 

sections, but in the Hollo-bolt connected to CFT column specimens. Differences 

between series were not higher than 50ºC. 
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Figure 4.14. Comparison of bolt temperature between different steel sections in test 
specimens of HB to CFT connections. 

Finally, temperatures in the connections with EHB were assessed, Figure 

4.15. Misregarding the measurements that failed for other reasons, again similar 

results for points 1 (EHB1) and 2 (EHB2) were detected for all the series. However, 

the temperature of point 3 for series 1 increased quicker beyond 40 min of fire 

exposure, which was attributed to the smaller dimensions and its closeness to the 

exposed surface.  
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Figure 4.15. Comparison of bolt temperature between different steel sections in test 
specimens of EHB to CFT connections. 

As a conclusion, the range of dimensions utilized on the experimental 

program did not produce a significant change of bolt temperatures for the first 50 

minutes of fire exposure. Nonetheless, a wider range of section dimensions should 

be further considered. 
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Effect of the concrete 

In connections to HSS, the whole bolt was almost at the same temperature 

(UHB1, UHB2, UHB3), except for the slightly higher value at the exposed surface 

(UHB1). Conversely, in connections to CFT, temperatures along the bolt were 

noticeably dissimilar. For instance, after 30 minutes of fire exposure, the 

temperature in the exposed head of the bolt (HB1 and EHB1) was 150ºC higher than 

in position 2 (HB2 and EHB2), and around 400ºC higher with respect to point 3 

(HB3 and EHB3). These findings can be observed in Figure 4.16 and Figure 4.17 , 

which show the temperature in the bolt for specimens of series 1 and series 3 

respectively (results of series 2 and 3 have been included in Annex I) 
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Figure 4.16. Temperatures of the three types of connections in tests of section 
150x150 mm (series 1)[97] 
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Figure 4.17. Temperatures of the three types of connections in test section 250x150 
mm (series 3)[97] 

The concrete influence was evidenced by means of comparison between HSS 

and CFT results, in Figure 4.16 and Figure 4.17. After 30 min of fire exposure, point 

1 (UHB1) in the bolt head of HSS connection was aproximately 150ºC hotter than 

HB1 or EHB1 in CFT connections. For the point 2 (UHB2), in the HSS column, 

temperatures were 250ºC higher than in HB2 and EHB2. Finally, these differences 

were higher than 400ºC for the deepest locations. Therefore, it was confirmed that 

concrete reduced drastically the temperature of the blind-bolt, more with a larger 

length embedded in concrete. 
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Some specimens were cut after the experiments to verify the bolt embedment 

within the concrete and the state of the concrete mixture. Figure 4.18 illustrates how 

concrete filled every gap between the parts of the fastener system, so any empty 

space appeared. Moreover, the clearance hole to accommodate the sleeve presented 

also concrete mixture. In addition, Figure 4.18 shows the effect of the fire exposure 

on the chemical composition of the concrete, which was detected in the hottest 

layers of the infill because of the different coloration. Additional pictures of the 

specimen after fire exposure are shown in Annex I. 

 

Figure 4.18. Specimen after fire exposure [97] 

Effect of the type of bolt: Hollo-bolt or Extended Hollo-bolt 

One of the objectives of the experimental tests was to assess the influence of 

the longer bolt shank used by Extended Hollo-bolts in comparison with Hollo-bolts. 

It was initially assumed that having more length of bolt shank embedded in concrete 

the temperature of the rest of the bolt could be reduced, nonetheless, it was proved 

looking at pairs HB1 - EHB1 and HB2- EHB2 (Figure 4.16 and Figure 4.17), that no 

effect was finally detected. Differences in the temperature of the point 3 occured as 

they corresponded to different relative position, in the case of EHB the point 3 is 

located deeper in concrete. So, it can be concluded that the effect of the EHB on the 

temperature of the rest of the bolt (positions 1 and 2) was almost negligible. 
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4.4. CONCLUSIONS 

To summarize, concrete isotherms were affected by the HB and the longer 

embedded shank of the EHB at a certain distance of the system, but beyond it, the 

temperature in concrete was the same, which could be verified comparing 

measurements at section AA’ with BB’. Besides, temperature in exposed surfaces 

was not influenced by the blind-bolt. 

Furthermore, the range of section dimensions used in this research did not 

represent significant differences in bolt temperatures. Conversely, concrete reduced 

to a large extent the temperature of the bolt during the fire exposure: in unfilled 

sections (HSS) temperatures increased faster and reached higher values than in filled 

sections (CFT). On the other hand, no influence was observed on the bolt 

temperatures at positions 1 and 2 due to the longer shank of the Extended Hollo-

bolts.  

Finally, the thermocouples measurements were essential for the validation of 

the thermal numerical models developed in the present research, which is reported in 

the following chapter. 
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This chapter deals with the numerical modelling of the pure heat transfer in 

blind-bolted connections. A description of the parameters and the material properties 

utilized is included besides the definition of the thermal flux through the 

interactions. Firstly, a model of one single blind-bolt was developed and validated 

with the experimental data, which served to accomplish a sensitivity analysis of 

some variables related to the thermal conduction. Secondly, a simulation of a whole 

endplate connection was performed, which allowed the comparison with the results 

of the small scale model. 
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5.1. INTRODUCTION 

For the further development of the thermo-mechanical numerical model of 

the connection it was necessary to set up the simulation of the heat transfer. Three-

dimensional numerical models were performed by using the Finite Element Analysis 

(FEA) package ABAQUS [98]. Fire was applied to the model as a thermal load by 

defining the temperature-time curve. Then, heat was transferred to the exposed 

surfaces by means of convection and radiation. Finally, conduction determined the 

heat flux through the materials, giving as a result the temperature distribution 

through the connection. 

The twelve specimens tested in the own experiments were simulated to 

calibrate the model, so that, findings were able to serve as the basis for the thermal 

modelling of other blind-bolted connections. The sensitivity analysis took into 

account the material properties and conduction resistance in the interfaces. 

5.2. DESCRIPTION OF THE FINITE ELEMENT MODEL 

The tridimensional finite element model of the tested specimens represented 

the assembly of the four different parts involved in the connections (Figure 5.1): the 

hollow steel section column, the steel plate, the blind-bolt and the concrete infill 

when column was CFT. At the same time, the fastener system was represented by 

means of two parts. Instead of modelling the 5 or 6 parts that actually compose the 

bolt, a simplified geometry was used. One included the shank, the bolt head, the 

collar and the fastener cone. The second part characterized the sleeve in the 

expanded state. The former changed in connections with Extended Hollo-bolt, where 

the length of the shank was larger and included a screwed nut attached at the end. 

Figure 5.1c shows the parts composing the FEM model of the bolt. In order to 

reduce the geometric complexity, the screw thread in bolt shank was not simulated 

and the hexagonal shape of the bolt head and the nut was assumed round. 
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a) Hollow steel section b) Steel Plate 

  

c) Fastener system d) Concrete infill 

Figure 5.1. Parts of the connection used in the FEM model [97] 

Despite the simplification, the blind-bolt introduced multiple surfaces and 

subsequent interactions between them and the rest of parts of the connections. As a 

result, the FEM model required a detailed definition of the thermal contacts. 

The finite element utilized was DC3D8, which is a three-dimensional eight-

node heat transfer solid element with thermal degree of freedom. A mesh sensitivity 

analysis was performed and finer elements were used for bolts (2-5 mm) due to the 

size of the piece and to guarantee accuracy on the critical part. The size for the rest 

of the elements was not higher than 20 mm.  

5.2.1. Thermal properties of material 

5.2.1.1. Steel  

In order to know the heat flux through the steel, the definition of its thermal 

properties is needed, i.e. the specific heat and the thermal conductivity. Both 

properties are temperature dependent and the equations from EC3 Part 1.2 [73] were 

used to determine them. These expressions are based on the behaviour of the mild 
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steel and have been traditionally taken to characterize any steel, for instance high 

strength structural steel or bolt steel. Nonetheless, steel properties depend on its 

chemical composition (carbon content) and the process of manufacturing, i.e. the 

heat treatments suffered during the fabrication process, that are different for mild 

steel and high strength steel. The blind bolts of this research were manufactured with 

high strength steel instead of mild steel. The data related to the thermal properties of 

high strength steel bolts is scarce. Finally, together with EC3 Part 1.2 [73] 

definitions, Kodur et al. [90] recommendations for high strength steel bolts were 

utilized for the comparison.  

Kodur et al. [90] tested and proposed new equations for thermal properties of 

steel bolts of grades A36 (conventional steel fy=290 MPa and fu=500 MPa), A325 

(fy=630 MPa and fu=830 MPa) and A490 (fy=895 MPa and fu=1030 MPa), whose 

chemical composition and mechanical properties are indicated in Figure 5.2 [90]. 

The temperature range covered was from 20ºC to 735ºC, since at 735ºC a phase 

change occurs in steel and it was difficult to measure the specific heat and thermal 

conductivity.  

 

Figure 5.2. Chemical composition and mechanical properties of normal and high 
strength steel tested by Kodur et al. [90] 

The thermal properties from EC3 Part 1.2 [73] and Kodur et al. [90] are 

shown in Figure 5.3, where it can be observed that differences are not significantly 

high. It was detected that a higher level of carbon, as possessed by A429, increased 

the specific heat and reduced slightly the conductivity in comparison with A325 or 

A36 steel. Nonetheless, the assessment of the effect on the connection thermal 

response was analysed by means of the FEM model and reported in section 5.3.1. 



Chapter 5.Thermal Numerical Model 

 

Doctoral Thesis. Ana M Pascual Pastor                                                                                            93 

0

1000

2000

3000

4000

5000

0 200 400 600 800 1000

S
pe

ci
fi

c 
H

ea
t (

J/
kg

ºK
)

Temperature (ºC)

EC3

A36

A325

A490

 

0

10

20

30

40

50

60

0 200 400 600 800 1000 1200

T
he

rm
al

 C
on

du
ct

iv
it

y 
(W

/m
K

)

Temperature (ºC)

EC3

A36

A325

A490

 

Figure 5.3. High-temperature thermal properties of high strength steel of bolts. 
Comparison between EC3 Part 1.2 [73] provisions and experimental data from 

Kodur et al. [90] 

5.2.1.2. Concrete 

Concrete specific heat and thermal conductivity were taken from EC4 Part 

1.2 [34], both thermal properties varied with temperature.  

The specific heat indicates the ratio of the heat added to an element to the 

resulting temperature change. In the case of the concrete this ratio has a peak 

between 100ºC and 200ºC, around 115ºC, when moisture content evaporates. This 

phase change implies a consumption of an amount of internal energy called latent 
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heat, which for this thesis was modelled implicitly in the specific heat formulation. 

EC4 Part 1.2 [34] recommends a peak value of 2020 J/kg K for a moisture content 

of 3% in concrete weight, and 5600 J/kg K for a moisture content of 10%. Figure 5.4 

illustrates these peaks. For intermediate values a linear interpolation was used to 

calculate the peak. The moisture content of test specimens was measured and gave a 

value of 7% in concrete weight. 

In the case of the thermal conductivity of normal weight concrete, it may be 

determined between the upper and lower limits shown in Figure 5.4. However, 

clause 3.3.2 (9) of EC4 Part 1.2 [34] recommends the use of the upper limit in the 

case of steel and concrete composite structural elements.  
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Figure 5.4. High-temperature thermal properties of concrete from EC4 Part 1.2 [34] 
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5.2.2. Analysis procedure 

A nonlinear thermal analysis was performed for all the specimens of the 

experimental program. Finite element formulation was used to solve the energy 

balance equation that has the following expression: 

   V S V
QdV qdS rdV= +∫ ∫ ∫&  (5.1)

where V is a volume of solid material, and S the surface area S; Q& is the material 

time rate of the internal energy; q is the heat flux per unit area of the body; and r is 

the external heat supplied into the body per unit volume. 

The internal energy of the element was only function of the material 

temperature θ: ( )Q Q θ= , since the further thermo-mechanical analysis was assumed 

uncoupled. Similarly, q and r do not depend on the strains or displacements of the 

body. The internal energy of the material is defined by its specific heat. 

( )
dQ

c
d

θ
θ

=  (5.2)

On the other hand, as it was introduced in section 1.3.2, heat conduction is 

governed by the Fourier law, 

x
q

∂

∂
−=

θ
λ  (5.3)

where λ is the thermal conductivity tensor, λ = λ(θ); q is the heat flux vector per unit 

surface; and x is the position. 

The boundary conditions to solve the heat conduction equation can be given 

as prescribed temperature, θ = θ (x, t); prescribed surface heat flux, q = q(x, t) per 

area; prescribed volumetric heat flux, q = r(x, t) per volume; or as surface 

convection ( cneth ,
& ) and radiation ( rneth ,

& ). For this research only convection and 

radiation boundary conditions were applied as were described in section 1.3.2 of 

chapter 1 of the present thesis. 

The convection boundary condition is given by: 

2
, ·( - )  (W/m )

net c c m
h α θ θ=&  (5.4)

where αc is the coefficient of heat transfer by convection, θ m = θ m(x, t) is the 

temperature at a particular point of the surface of the element and θ = θ (x, t) is the 

gas temperature in the vicinity of the fire exposed surface. 
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The radiation boundary condition is defined with: 

4 4 2
, · · · · ( ) -( )   (W/m )net r m f z m zh Φ ε ε σ θ θ θ θ = + + 

&  (5.5)

where εm εf are the emissivity of the surface and the fire, σ is the Stefan-Boltzmann 

constant and θ z is the absolute zero on the respective temperature scale. 

The θ or thermal load that determined the heat flux was applied by means of a 

temperature time curve. For an accurate simulation, instead of using the theoretical 

curve ISO834 [32], the approximate fire curve registered in the furnace by the 

thermocouples was adopted.  

The value of the parameters that define the heat flux by convection and 

radiation are included in EC1 Part 1.2 [31] section 3.1: 

- Coefficient of heat transfer by convection at the exposed surface for the 

normalised curve time-temperature: αc=25 W/m2K. 

- Configuration factor for radiation at the exposed surface: ϕ=1. 

- Stephan-Boltzmann constant: σ=5.67 x 10-8 W/m2K4. 

- Emissivity of the exposed surface: εm=0.7 from EC4 Part 1.2 [34] in Section 

2.2(2) 

- Emissivity of the fire: εf=1. 

- Initial temperature: θo=20ºC. 

Results from the nonlinear thermal analysis were temperature curves 

obtained for each node of the three dimensional model.  

5.2.2.1. Definition of the thermal contact between surfaces 

From the exposed surface the heat transfer takes place by conduction through 

the materials of connection. The parameter which defines the conduction flux is the 

thermal conductivity of the material.  

In the case of the interfaces between elements, both, the heat radiation and the 

conduction transfer occur, although mainly the latter governs the heat flux. For the 

conduction, the contact between surfaces can be assumed as perfect which means 

that there is no resistance to the flux and the same temperature for the points at 

boundaries. Nevertheless, depending on the interaction characteristics it is 
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appropriate to define a thermal resistance (gap conductance), which reduces the heat 

conduction. As a rule, many authors have neglected this and assumed perfect 

contact, consequently, predicted results were far from the real ones. 

ABAQUS [99] allows the conductance modelling between surfaces by 

defining the heat conduction across the interface as follows: 

)( BAkq θθ −=  (5.3)

where q is the heat flux per unit area crossing the interface from point A on one 

surface to point B on the other, θA and θB are the temperatures of the points on the 

surfaces, and k is the gap conductance, which is defined as: 

),,,,( mfpdkk &γθ=  (5.4)

where: 

- )(
2

1
BA θθθ +=  is the average of the surface temperatures at A and B, 

- d is the clearance between A and B, 

- p is the contact pressure transmitted across the interface between A and B, 

- )(
2

1 BA
fff γγγ +=  is the average of any predefined field variables at A and 

B, and 

- )(
2

1
BA

mmm &&& +=  is the average of the magnitudes of the mass flow rates 

per unit area of the contact surfaces at A and B. 

However, the gap conductance k is commonly used as a function of the 

clearance d. In ABAQUS [99] it must be introduced in the form of tabulated data, 

starting with the value of k for a zero clearance d (closed gap) and modifying k as d 

increases, at least two pairs k-d points must be used. Alternatively, the gap 

conductance can be defined as a function of the contact pressure, p. Figure 5.5 

shows two examples of the gap conductance variation as a function of clearance or 

contact pressure [99] 
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Figure 5.5. Two examples of gap conductance k as a function of clearance d or 
contact pressure p [99] 

If the gap conductance is defined variable with the clearance, the further 

thermal-stress analysis required is fully coupled, because the temperature field then 

depends on the evolution of the relative transversal displacement between the 

surfaces. Espinos et al. [100] carried out their preliminary studies on CFT columns 

using a clearance dependent analysis for the heat conduction between the steel tube 

and the concrete core. They concluded that the accuracy of the result was similar to 

that obtained by means of a sequentially coupled thermal-stress analysis, where a 

constant value for the gap conductance along the fire exposure time was assumed. 

The sequentially coupled analysis allowed the separate evaluation of the thermal and 

mechanical responses and a notable reduction of the computational time. 

Based on that experience and the work from other authors [101], constant 

values of gap conductance were used for the interfaces reported in this research. In 

the case of the connections not only the interaction between steel tube and concrete 

core existed, but also several contacts occurred due to the fastener system. Through 

a sensitivity analysis included in section 5.3.2 the following definition was assumed 

(Figure 5.6): perfect contact was deemed in all contacts, except for steel of sleeve 

interaction with hole surfaces and internal surface of steel column contact with 

concrete infill, where a gap thermal conductance of 200 W/m2K was employed.  
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Figure 5.6. Gap conductance across interactions. 

5.3. RESULTS AND VALIDATION WITH EXPERIMENTS 

In order to validate the numerical model, the temperature evolution of the same 

points monitored in the experiments was recorded through the simulations. Besides, 

the thermal distribution across the section was also registered during the fire.  

The overall temperature-time responses for the three positions of the bolt 

(indicated again in Figure 5.7) are illustrated in Figure 5.8. The curves extracted 

from the FE models were compared with the experimental data from the connections 

to CFT columns of the four series. A good correlation was observed between 

experiments and FEA calculations. After 30 minutes of fire exposure no more than 

50ºC of difference was detected and at 60 min temperature was almost equal. The 

most noticeable differences were detected at the beginning of the exposure for 

location 1 on the exposed surface. The sudden increase in that point was probably 

caused by an uneven distribution of heat in the furnace or an inappropiate 

thermocouple installation. 

 
Figure 5.7. Thermocouple positions in the blind-bolts. 
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Figure 5.8. Bolt temperatures in connections to CFT columns. Test measurements 
and FE models results in HB and EHB for the four experimental series. 
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Figure 5.9 and Figure 5.10 show the isotherms of series 2 for the two sections 

of the specimens (AA’ and BB’) that were controlled in the laboratory, at 30 min 

and 60 min of fire exposure. The connections depicted in Figure 5.9 correspond to 

the Hollo-bolt in a CFT column, and to the Extended Hollo-bolt in Figure 5.10. It 

was observed that the temperature of the tube and of the external part of the bolt is 

not affected by the type of bolt. Comparing the sections for each connection the 

findings from experiments were verified, i.e. the isotherms were affected by the 

embedded blind-bolt, however, the influence was negligible at a certain distance 

from the bolt and in the exposed surface as well. 

 

 AA’ BB’ 

 
 

 

 

a) 30 min 

 AA’ BB’ 

 

 

 

 

b) 60min 

Figure 5.9. Temperature distribution in CFT connection with HB of series 2 at        
a) 30 min and b) 60 min of fire exposure. 
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 AA’ BB’ 

  

 

 

a) 30 min 

 AA’ BB’ 

  

 

 

b) 60min 

Figure 5.10. Temperature distribution in CFT connection with EHB of series 2 at     
a) 30 min and b) 60 min of fire exposure. 

The same conclusions were extracted by analysing the temperature distribution 

from the models of CFT specimens of series 3, which presented a rectangular 

column section. The differences with the previous series were directly related to the 

shape of the section, see Figure 5.11 and Figure 5.12. 
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 AA’ BB’ 

 
 

 

 

a) 30 min 

 AA’ BB’ 

  

 

 

b) 60min 

Figure 5.11. Temperature distribution in CFT connection with HB of series 3 at      
a) 30 min and b) 60 min of fire exposure. 
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 AA’ BB’ 

 

 

 

a) 30 min 

 AA’ BB’ 

  

 

 

b) 60min 

Figure 5.12. Temperature distribution in CFT connection with EHB of series 3 at    
a) 30 min and b) 60 min of fire exposure. 

In the following sections the influence of the thermal material properties of 

high strength steel bolts and the thermal resistance in the contacts is discussed, 

furthermore the accuracy with test results is analysed. 

5.3.1. Thermal properties of steel bolts  

The chemical components and the heat treatment suffered during the 

manufacturing process make high strength steel bolts behave different to 

conventional mild steel. Carbon content affects the thermal properties of steel, a 

higher quantity of carbon, as in high strength steel, reduces its heat conductivity. 

However, in the abscense of experimental data, the properties from normal steel 

have been also traditionally assumed for high strength steel. 
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As it was described in section 5.2.1.1, Kodur et al. [90] researched the thermal 

properties of high strength bolt steel. The comparison with EC3 recommendations 

was analyzed through FEM simulations and is presented here. Specimens of series 2 

were calculated considering both thermal properties, from EC3 Part 1.2 [73] and 

Kodur et al. [90] for bolts M16 grade 8.8 (fy=640 MPa and fu=800 MPa). 

Eventually, the slight differences in properties meant negligible influence on the 

connection temperatures, as Figure 5.13 ilustrates. 
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b) 

Figure 5.13. Temperature-time evolution for points in bolts of series 2, specimens a) 
UHB and b) HB 
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5.3.2. Gap thermal conductance in interactions 

A gap conductance coefficient was employed at the boundary of the 

elements in contact, taking into account the resistance to the heat transfer conduction 

across the interactions. In order to study the gap influence on the temperature field, 

the connection interfaces were grouped in steel-steel and steel-concrete as follows.  

Steel-steel interfaces 

Figure 5.14 indicates the interfaces between the steel elements surfaces of the 

connection: headbolt to plate, sleeve to plate hole surface, sleeve to tube hole 

surface, sleeve to bolt shank, sleeve to tightener cone and plate to tube column. 

 

Figure 5.14. Steel-steel interfaces 

First approach adopted null thermal resistance in all the interfaces. However, 

several clearances appeared between some of these surfaces looking at tested 

specimens, which as a second approach led to introduce resistance to heat 

conduction. Most perceptible voids were located between sleeves and hole surfaces, 

and between sleeve and bolt shank as well. Moreover, it was observed that concrete 

mixture filled these spaces, Figure 5.15. Eventually, a gap conductance was utilized 

in sleeve to hole surface and sleeve to shank interactions. The recommended 

constant value [100, 101] of 200 W/m2K was evaluated, obtaining accurate results. 
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Figure 5.15. EHB connection after fire exposure. Concrete mixture filling voids. 

Figure 5.16 shows the comparison between the bolt temperatures 

numerically calculated, considering perfect contact against the use of the mentioned 

thermal resistance, for the HB connection to CFT of series 1. The values form the 

experiments are also included in the figure. The results by modelling interfaces as 

perfect contact overestimated bolt temperatures, as it can be observed in Figure 5.16. 

The inclusion of the indicated thermal resistance enhanced the FE model accuracy. 

Point 1 (HB1), which is directly exposed to fire, presented the same temperature 

with and without the thermal resistance. However, the temperature at points 2 and 3 

(HB2 and HB3) decreased in respect of the case of using perfect contact. 
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Figure 5.16. Influence on the bolt temperature of the gap conductance in interaction 
sleeve-hole surfaces for HB in CFT connection (series 1) [97]. 

Different values of the gap conductance were studied: 100 or 10 W/m2 K, 

but they did not substantially affect the results. 

Concrete-steel interfaces 

The concrete-steel interfaces are indicated in Figure 5.17: the contact 

between the steel tube column and the concrete infill together with the contact of the 

embedded parts of the fastener system with the concrete mixture around them.  

 

Figure 5.17. Concrete-steel interfaces 

All the interactions steel to concrete without distinction were assumed with 

a gap conductance as a first approach. During the fire exposure, the higher dilatation 

of steel involved the separation between the steel tube and concrete infill, as a 

consequence, a gap thermal conductance appeared. However, in the area of the 

HB1 

HB2 

HB3 
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tighened bolt, dilatation of steel was limited by the concrete sorrounding, so, 

separation between concrete infill and steel bolt surfaces was consistently difficult to 

materialize. As a result, in a second approach the elimination of the gap around 

fastener was considered, despite the probable moisture flow.  

Again, following the guidance of [100, 101], a value of 200 W/m2 K for 

gap conductance was used. 

Comparison between both approaches and test values is presented in Figure 

5.18, for HB connection of series 1. The effect of considering perfect contact at 

boundaries of the blind-bolt with concrete reduced the temperature at points 2 and 3, 

and enhanced the correlation with the experiments.  
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Figure 5.18. Influence on bolt temperature of gap conductance in interaction 

concrete-fastener system for HB in CFT connection (series 1) [97] 

5.4. NUMERICAL MODEL OF THE WHOLE CONNECTION 

The previous validation of the FEA simulations with the test specimens 

guarantees the suitability of the model to reproduce the thermal response of the 

connection. In this section the assumptions which were adopted for the small-scale 

connections are applied for the development of a numerical model of the whole 

endplate connection. The aim was to extend the insight into the thermal behaviour of 

a small scale blind-bolted connection to a real connection between an I-beam and a 

HSS and CFT column. The FE model of the complete joint is shown in Figure 5.19. 

HB1 

HB2 

HB3 
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Figure 5.19. FE model of the connection between an I-beam and a hollow section 
column [97] 

5.4.1. Model description 

The endplate connection model was composed of five or six parts depending 

whether the connection was to a HSS or a CFT. These parts are described below and 

depicted in Figure 5.20: 

- a hollow square steel section column with the same size as the specimens of 

series 2, i.e. 220x220 mm and thickness of 10 mm. 

- a standard I-shape section steel beam IPE180, which has a height of 180 mm. 

- four Hollo-bolt fasteners M16 grade 8.8, in two rows separated 100 mm in 

height and with a gauge of 90 mm. 

- a rectangular steel endplate 200x130x15 mm. 

- a concrete slab on the beam, which has the purpose of representing real 

conditions of a building frame. 

- a concrete infill inside the tube column for the cases of connections to CFT. 
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Figure 5.20. Geometrical definition of an I-beam to 220x220x10 mm hollow section 
column connection 

The symmetry of the assembly around the vertical plane of the beam was used 

to reduce the computational cost and to model only half of the connection. The same 

thermal material properties as in the small scale examples were defined. Besides, the 

parameters of the thermal transfer were equally designed. Fire development was 

assumed in a certain storey, therefore the exposed areas were all the external 

surfaces of the elements except for the upper flange of beam, the concrete slab and 

the part of column over the concrete slab. The thickness of the concrete slab is not 

relevant in this study and only its effect as heat sink and storey separator was taken 

into account. Nonetheless, to prove the lack of slab thickness influence, the bolt 

temperature for slabs 20 and 60 mm thick was compared, detecting negligible 

differences. 

5.4.2. Results and discussion 

The overall temperature-time response for the three locations in the blind-

bolts was obtained. Due to the similar behaviour patterns detected during the whole 

fire exposure, only results at 30 min will be analyzed here. 

The bolt temperature in the two rows from the endplate connection was 

compared with values calculated numerically and experimentally in the small-scale 

specimens. Figure 5.21 shows the results for the HB connections of series 2. 

Figure 5.21a depicts value results for the I-beam connection to the HSS 

column. Values calculated in the small-scale model matched accurately the 

temperature of the bottom row bolts, which were located closer to the bottom flange 
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of the beam. Conversely, bolt temperatures in the upper row registered 100ºC less 

than in the case of the simple FE model. The reason for this difference was the effect 

of the concrete slab that was not included in the small-scale models. 

 

a) 

 

b) 

Figure 5.21. Comparison of bolt temperatures between experimental and FE models 
for the small scale piece and the whole connection at 30 min of fire exposure in     

a) a HSS column b) a CFT column. 

For the connections to CFT columns similar patterns of behaviour were 

detected, as it is illustrated in Figure 5.21b. The simple model with the single blind-

bolt achieved better correlation with the bolts of the lower row, which were less 
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influenced by the concrete slab. In addition, the most embedded section of the blind 

bolt (HB3) was the least affected by the concrete slab, and consequently negligible 

differences appeared between the simple model and the model of the whole 

connection. 

In conclusion, blind-bolts in the complete endplate connection registered the 

same temperature distribution as in the small-scale models, except for the influence 

of the concrete slab insulation. Therefore, these simple models provided a good 

approach in order to represent the thermal behaviour of the blind-bolt in the 

connection. Moreover, they made a safe prediction in the case of bolts closer to the 

concrete slab. 

5.5. CONCLUSIONS 

The FEA of the thermal transfer in connections simulated with high accuracy 

the results from the experiments. The thermal properties included in Eurocodes for 

steel and concrete provided good temperature estimations altough they always 

require a special attention since they are the key of the heat flux. In addition, it was 

noted the influence of interactions characteristics related to the definition of the gap 

conductance, which implied the observation and consideration of possible voids 

involving thermal resistance to the heat flux. 

The simulation of the complete connection served to demonstrate that the 

small scale models resulted appropriate simplifications for the evaluation of the heat 

transfer through the blind-bolted connection. Nonetheless, the insulation by a 

concrete slab and its consequent effect on the temperature was not able to be 

considered in the simple or small scale models.  
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In this chapter equations from Eurocode 3 and proposals from other authors 

are presented as approximations to calculate the temperature in the exposed surface 

of the connections, i.e. in the bolt heads. Results from those analytical expressions 

are compared with experiments and numerical calculations obtained in previous 

chapters. 
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6.1. INTRODUCTION 

The development of advanced numerical models to calculate the temperature in 

connections is not always practical, thus a literature review was accomplished to 

find out simple analytical methods. Eurocodes and several researches were revised. 

However, no specific techniques were found to determine the temperature in 

connections to HSS or CFT columns. Actually this fact has led to the overestimation 

of the connection temperature, its protection as the surrounding elements or the 

selection of other frame designs.  

On the one hand, EC3 Part 1.2 in Clause D3 of Annex D [73] encloses a simple 

method based on the behaviour of steelworks, which consists of a gradient 

expression to determine the temperature in connections from the beam flange 

temperature. Moreover, EC3 Part 1.2 Clause 4.2.5.1 [73] provides an equation to 

define the temperature in an exposed steel element based on the section ratio Am/V 

(Am exposed area of the element per unit of length divided by V volume of the 

element per unit of length in steel sections) which Ding and Wang [81] used to 

estimate the temperature in a CFT connection. On the other hand, EC4 Part 1.2 [34] 

only gives some requirements that specific connections should comply to provide 

adequate fire resistance, but temperature distribution was not dealt with. 

Besides Eurocodes, the works from Espinos et al. [39] and Leskela [40] were 

also considered in this revision. They aimed the prediction of the temperature in the 

steel tube of CFT sections assuming the influence of concrete. 

The suitability of all these proposals to calculate the temperature of the blind-

bolted connections to HSS and CFT columns is evaluated in the following section. 

For the comparison and validation, the FE model of the whole endplate connection 

developed in the previous chapters was used together with experimental results 

(chapter 4).  

6.2. DESCRIPTION AND EVALUATION OF THE METHODS 

6.2.1. Simple calculation method of EC3 Annex D 

The method of EC3 Part 1.2 in Clause D3 of Annex D [73] consists of 

equations (6.1) to (6.3), which determine the temperature θh in a certain depth of the 

connection h as a proportion of the temperature of the beam bottom flange at the 

midspan θo. Figure 6.1 illustrates the equations that can be applied to calculate 
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temperature in connections beam to column and beam to beam, where D is the 

height of the beam.  

 

Figure 6.1. Temperature gradient in connection from EC3 Part 1.2 Clause D3 of 
Annex D [73] 

 

 ( )D 400                         0,88 1 0,3 /
h o

h Dθ θ≤ = −    (6.1) 

              D > 400   

      h D/2≤                     0,88 
h o

θ θ=  (6.2) 

                  h > D/2                     ( )0,88 1 0,2 1 2 /h o h Dθ θ= − −    (6.3) 

In the present work this method was employed to estimate the temperature in an 

exterior point of the connection that was presented in the previous chapter and 

whose description is shown again in Figure 6.3. It was a connection between a steel 

I-beam (IPE180) and a square tube column 220x220 mm. Both, HSS and CFT 

columns were considered in the assessment.  

Before the application of the thermal gradient (i.e. equation 6.1 for D<400mm), 

it was necessary to determine temperature in the exposed bottom flange of the beam 

θo. For that purpose, as only analytical formulation from Eurocodes wanted to be 

used, the equation from EC3 Part 1.2 Clause 4.2.5.1 [73] was utilized:  

,

/m

a t sh net

a a

A V
k h t

c
θ

ρ
∆ = ∆&

 (6.4) 

This expression gives a uniform value of temperature for an unprotected steel 

section exposed to fire by means of increments of time ∆t. The flux of heat hnet is 
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divided by ca ρa, which are the specific heat and the unit mass of steel, respectively. 

The ratio Am/V has been previously defined and ksh is the correction factor for the 

shadow effect, whose value was calculated following the recommendations of EC3 

Part 1.2 [73] 

6.2.1.1. Results from the application to blind-bolted connections 

Firstly, the accuracy of the beam temperature prediction by using equation (6.4) 

from EC3 Part 1.2 Clause 4.2.5.1 [73] was verified against values from the FE 

model. Good adjustment was obtained as it was expected (Figure 6.2), since the 

beam was a steel element. 
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Figure 6.2. Temperature-time curve for beam. Results from EC3 and FE model. 

Secondly, temperatures at two depths of the connection were calculated by 

means of equation (6.1) of Annex D [73]. These positions corresponded to the axis 

of the two bolt rows (Figure 6.3): the head of the blind-bolt in the upper row, located 

at 0.75D from the bottom flange of the beam, and in the lower row, at 0.25D.  
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Figure 6.3. I-beam to HSS or CFT column connection [97] 

Figure 6.4 presents results for connections to HSS columns. In comparison 

with FE calculations, equation (6.1) of EC3 Part 1.2 Annex D [73] was conservative 

up to approximately 20 min of fire exposure for the bolts in the top row, and 23 min 

for the ones in the bottom row.  

In addition, the temperature of the HSS column was calculated using 

equation (6.4). Figure 6.4 shows a good correlation of the time-temperature curve 

for the column analytically and numerically calculated. 

Moreover, the aim was also to know whether HSS column temperature by 

equation (6.4) was able to be directly used to approach the temperature of the bolts. 

In connections to HSS, the temperature of the column represented a safe estimation 

of the blind-bolts in the bottom row, except for the first 10 min of fire exposure. 

Meanwhile, for the case of the blind-bolts in the top row, the use of column 

temperature implied that bolt temperature was overestimated by 150ºC after 30 min 

of exposure.  
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Figure 6.4. Temperature-time curve in the column and head of the blind-bolt. 
Results from EC3 and FE models for the connection I-beam to HSS column [97] 
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Figure 6.5. Temperature-time curve in the column and head of the blind-bolt. 
Results from EC3 and FE models for the connection I-beam to CFT column [97] 

Figure 6.5 depicts results for connections to CFT columns. Predictions using 

EC3 Part 1.2 Annex D [73] were safe up to 30 min for the top row bolts and 34 min 
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for the bottom row bolts, which meant 10 min more of fire exposure than in the case 

of the HSS column. 

It is highlighted that equation (6.4) is not applicable for calculating 

temperature in CFT columns, which will be discussed in next section. Therefore, 

Figure 6.5 includes only the time-temperature curve for the CFT column from the 

FE model. The temperature of the column and blind-bolts from FEA simulations 

showed slight differences between them. Bolts in the bottom row were 20-30 ºC 

higher because the concrete infill influence was less important in the connection 

section than in the column section. Conversely, temperature in upper bolts was 30-

50 ºC lower than the column temperature. 

To summarize, equation of EC3 Part 1.2 Annex D [73] provided a rough 

approximation of blind-bolt temperatures for HSS and CFT column connections. 

Despite the case of CFT connections gave safe values up to 30 min of fire exposure, 

it is not appropriate its use as a feasible tool to determine the temperature in the 

bolts.  

6.2.2. Simple calculation method of EC3 Part 1.2  

In this section it is discussed the direct application of the given equation (6.4) 

from EC3 Part 1.2 Clause 4.2.5.1 [73] for the temperature bolt calculation.  

As it was above introduced, that equation (6.4) requires the definition of the 

section factor Am/V. EC3 Part 1.2 [73] includes in its table 4.2 some expressions to 

calculate this ratio, but always for steelworks. Therefore, for composite steel and 

concrete sections it cannot be applied unless the columns is considered either as a 

hollow section, disregarding the effect of concrete (termed as HSS), or as solid steel 

section (termed as CFT). Table 6.1 contains the values of Am/V under these two 

hypotheses. It can be observed the drastic difference between them, the ratio for 

HSS columns is five times the one for the CFTs, which will mean a notably quicker 

increase of temperature for the former. 

Furthermore, EC3 Part 1.2 [73] simple method was employed by Ding and 

Wang [81] to calculate the temperatures in connections to CFT columns. They 

proposed modified expressions for section ratio Am/V, which depended on the part 

of the joint and the type of assembly. Table 6.1 presents these section factors for the 

cases of endplate bolted connections. The section factor 1 only considered the 

endplate being heated from one side and used the thickness of the endplate (t1). The 

factor 2 assumed that the combined endplate (t1) and tube thickness (t2) were heated 

from one side. Finally, the factor 3 considered the heating corner as well and used 
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the thickness (t1) and width of the endplate (l1) together with the thickness (t2) and 

width of the tube (l2) 

Table 6.1. Section Factors [97] 

SECTION 

FACTOR 
150x150x8 220x220x10 250x150x10 350x150x10 

HSS A/VHSS 131.02 103.85 104.27 103.35 

CFT A/VCFT 26.45 18.04 21.12 18.91 

Factor 1 (Ding and Wang) 1/t1 66.67 66.67 66.67 66.67 

Factor 2 (Ding and Wang) 1/(t1+t2) 43.48 40.00 40.00 40.00 

Factor 3 (Ding and Wang) l2/(t1l1+t2l2) 52.63 57.14 47.62 47.62 

6.2.2.1. Results from the application to blind-bolted connections 

The suitability of these methods to calculate the external temperature of the 

blind-bolt was assessed by comparison with the temperatures from laboratory tests 

for the thermocouple position 1, which was placed in the head of the bolt. Provided 

that the type of bolt, Hollo-bolt or Extended Hollo-bolt, in CFT column connections 

did not influence the temperature of that thermocouple, Hollo-bolt values were 

considered for instance. The fire exposure time used as a reference was 30 min and 

the four different tube section dimensions were taken into account for the 

comparison. 

Equation 6.4 from EC3 Part 1.2 [73] was evaluated assuming the following 5 

different section ratios for the connection section: as a hollow section (EC3-HSS), as 

a solid section of steel (EC3-CFT), and the three proposals of Ding and Wang [81]. 

Figure 6.6 shows that the section factor for the hollow section produced the highest 

temperature, around 150ºC more than in the tests. Nonetheless, the adjustment was 

better than for the steel solid section, which underestimated the temperature by 

300ºC.  
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Figure 6.6. Temperature in an exposed point of the bolt. Comparison between 
experiments and simple calculation methods for the four series [97]  

Regarding Ding and Wang [81] ratios, factor 1 (EC3-F1 WANG) achieved 

the best approximation, differences with experiments were not higher than 30ºC, as 

it is depicted in Figure 6.6. In the case of the section 220x220 mm (series 2), the 

same accuracy was obtained for factor 1 and 3 (EC3-F3 WANG). For the rest of 

sections, factor 3 miscalculated the temperature in 100ºC less. In all cases, factor 2 

(EC3-F2 WANG) provided temperatures around 150ºC lower than the measured 

ones. Consequently, factors 2 and 3 represented unsafe temperature predictions. 

In conclusion, factor 1 estimated values of temperature higher than factors 2 

and 3, so that it was the most suitable ratio for thicker sections, where concrete 

effect was smaller and bolts reached higher temperatures. Nonetheless, it is also 

noteworthy that when the endplate width (l1) was considerably smaller than the tube 

side length (l2), factor 3 achieved also good adjustment, as it was pointed out for the 

column with dimensions 220x220 mm. 

Conversely, in the work of Ding and Wang [81], factor 3 gave the most 

appropriate values, which is attributed to the thinner column used there. 

1 2 3 4 
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6.2.3. Proposals from Espinos et al. and Leskela 

The absence of code recommendations to stablish the temperature in CFT 

sections has created the necessity of covering this gap. For instance, the 

investigations from Espinos et al. [39] and Leskela [40] include the development of 

equivalent temperature for steel and concrete in CFT columns. Their aim was to 

make a simple method that provided a uniform value of temperature for each 

material of the section, so that the temperature calculation did not represent a 

problem to determine the design capacity of the composite element. 

The formula proposed by Espinos et al. [39] for the equivalent temperature of 

steel was applicable for any fire resistance time. Although it was obtained for 

circular sections, here it is assessed for square and rectangular sections. The value of 

temperature depended on the ratio Am/V and the time R.  

2
, 342.1 10.77 0.044 3.922 / 0.025 /

a eq m m
R R A V R A Vθ = + − + − ⋅  

(6.5) 

Leskela [40] provided two tables with equations for circular and rectangular 

CFT columns. Those estimated the steel temperature for different time resistance 

periods as a function of the diameter and the side length (b). For a fire exposure of 

30 min, the temperature in the square section was given by the following equation: 

,

400
650 45

280a eq

b
θ

−
= + ⋅  120 400b≤ ≤  (6.6) 

6.2.3.1. Results from the application to blind-bolted connections 

Temperatures calculated using the equations proposed by Espinos et al. [39] 

and Leskela [40] are indicated also in Figure 6.6. They both gave very similar values 

and overestimated the temperature of the exposed part of bolts, 100ºC for square 

sections 150x150 mm and 80ºC for the rest of the sections. 

6.3. CONCLUSIONS 

There are not specific equations to calculate the temperature in the 

connection section when columns are CFT and that consider the elements of the 

connection (e.g. embedded blind-bolts). Therefore, the suitability of current 

equations from EC3 Part 1.2 [73] and other authors’ proposals were assessed 
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comparing the results from their application with numerical and experimental data 

from the previous chapters 4 and 5. 

The gradient equation given in Clause D3 of Annex D EC3 Part 1.2 provided 

poor approximations of the bolt temperature in the connections to HSS and CFT 

columns. On the other hand, the equation 6.4 from EC3 Part 1.2, applying the 

modifications of the section ratio Am/V from Ding and Wang [81], was able to 

achieve significantly accurate estimations of the bolt temperature in CFT 

connections, although a deeper study will be necessary. 

Furthermore, the equations from Espinos et al. [39] and Leskela [40] to 

obtain an equivalent temperature for the steel of CFT columns overestimated the 

temperature of the head of the bolt in 100ºC. 
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This chapter presents the development and validation of FE models that 

simulate the behaviour of blind-bolt connections under tensile loads and at room 

temperature. The procedure to achieve the successful simulation involved an 

extensive calibration work, starting with the modelling of standard bolts in steel 

connections until the final model of the blind-bolted connection to a CFT column. A 

description of this work and the definition of the final models of the connections 

used in the further thermo-mechanical analysis are included. 

Finally, connections performance at room temperature is assessed, 

highlighting the role of the concrete and the fastener system. 
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7.1. INTRODUCTION 

Two particular blind-bolted connections have been studied under fire 

conditions in this research: a single blind-bolted connection and a double T-stub 

connection to a tube column. These connections subjected to tensile loads represent 

the behaviour of the blind-bolts in the tension area of an endplate connection 

between an I-beam and a CFT column, Figure 7.1 and Figure 7.2. The geometric 

description of the two connections and the cases considered at room temperature for 

each one is depicted in Figure 7.3 and Figure 7.4. 

Previously to the thermo-mechanical FE analysis of the blind-bolted 

connections their study at room temperature was accomplished, which is presented 

in the section. With that aim, tri-dimensional FE models of the connections tensile 

loaded were developed using the commercial program ABAQUS [98]. To calibrate 

the FE simulations it was necessary to make use of the laboratory tests on these 

specimens at room temperature from Pitrakkos and Tizani [19, 21]. These same 

models were further used for the numerical analysis at elevated temperatures 

described in chapter 8. 
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Figure 7.1. Single blind-bolted connection from the tension area of the endplate 
connection. 

  

 

Figure 7.2. T-stub blind-bolted connection from the tension area of the endplate 
connection. 
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Figure 7.3. Connection of a single blind-bolt connection [102] 
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Figure 7.4. Double T-stub connection to a HSS/CFT 200x200x10 [102] 

7.2. PRELIMINARY CALIBRATION WORKS 

The mechanical performance of the two aforementioned connections was 

modelled after calibration works that involved the simulation of other simpler 

assemblies. These works were motivated for the complexity of capturing the whole 

mechanisms occurring in the blind-bolt connections linked mainly to the multiple 

interactions and non-linearities, which at the same time implied many convergence 

problems. Therefore, the calibration works aimed assuring the adequacy of the final 

models utilized in the thermo-mechanical analysis. Simpler models with standard 
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bolts and only steel elements were first developed, as good correlation was being 

obtained, the calibration process moved to more complex connections. Table 7.1 

lists the connections modelled, the experiments used to validate the simulations [20, 

52, 63, 103, 104] and the values of the ratio experimental to FE model results at 

maximum load, ξ. This ratio was always between 1.10 and 0.90, which proved the 

accuracy of the FEA models.  

Table 7.1. List of connections of the calibration work [102] 

Type of 

connection 

Calibration test 

(authors) 

Type of 

bolt 
Beam Beam/Column 

ξ=Mu,test/

Mu,FEM 

(Nu,test/Nu,

FEM) 

2 T-stub  
Jaspart and Bursi 

[52] 
M12 grade 

8.8 IPE 300 IPE 300 0.93 

Flush 
endplate  Janss et al[103]  

M16 grade 
10.9 IPE 300 HEB160 1.01 

2 T-stub Wang et al[63] 
M16 grade 

8.8  
I-section  
t=15 mm I-section  t=15 mm 0.98 

2 T-stub Wang et a[63]l 
HB16 

grade 8.8  
I-section  
t=25 mm I-section  t=25 mm 1.02 

Flush 
endplate 

Mesquita et 
al[104] 

HB20 
grade 8.8 IPE 330 SHS 200x200x8 0.90 

Flush 
endplate Tizani et al[20] 

EHB16 
grade 8.8  356x171x67 

CFT 200x200x12.5 
(fc=40N/mm2) 1.05 

Flush 
endplate Tizani et al[20] 

EHB16 
grade 8.8  457x152x52 

CFT 200x200x10 
(fc=40N/mm2) 0.99 

Extended 
endplate Tizani et al[20] 

EHB16 
grade 8.8  356x171x67 

CFT 200x200x10 
(fc=40N/mm2) 1.05 

Flush 
endplate Tizani et al[20] 

EHB16 
grade 8.8  457x152x52 

CFT 200x200x8 
(fc=40N/mm2) 0.96 

Flush 
endplate Tizani et al[20] 

EHB16 
grade 8.8  356x171x67 

CFT 200x200x8 
(fc=40N/mm2) 1.05 

Flush 
endplate Tizani et al[20] 

EHB16 
grade 8.8  457x152x52 

CFT 200x200x12.5 
(fc=40N/mm2) 1.05 

Flush 
endplate Tizani et al[20] 

EHB16 
grade 8.8  356x171x67 

CFT 200x200x10 
(fc=40N/mm2) 1.08 

Flush 
endplate Tizani et al[20] 

EHB16 
grade 8.8  356x171x67 

CFT 200x200x10 
(fc=60N/mm2) 1.07 

The following sections give a description of each model, its calibration with 

tests and the main findings extracted. In order not to extend this section, part of this 

previous work is presented in Annex II.   
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7.2.1. T-stub connections with standard bolts 

Firstly, a T-stub connection using standard bolts was modelled. These type of 

connections are able to reproduce the main mechanisms that happen in bolted beam 

to column connections [22] under tension forces, as it was pointed out in the 

introduction chapter of the present work. 

The numerical model used as a basis the work from Bursi and Jaspart [50-

52], who employed two different finite element software to reproduce the bolt 

behaviour: LEGAMINE and ABAQUS. Bursi and Jaspart [50-52] verified their 

simulations with experimental data and set the guidelines regarding the element 

types, contact relationship, bolt modelling, element discretization and material 

properties. 

Figure 7.5 presents the model for the connection of two T-stub specimens by 

means of bolts M12. T-stubs were extracted from IPE300 steel sections, the 

connection was subjected to tension forces applied pulling apart the ends of the T-

stubs. As in Bursi and Jaspart’s work [50], all elements were meshed using three 

dimensional eight-noded solid elements with reduced integration. More than two 

layers of elements were considered through the thickness of the plate to capture the 

non-linear behaviour. The bolt with the nut formed a solid piece as it is shown in 

Figure 7.5b. The preload of the bolts was defined using ABAQUS function ‘bolt 

load’ and it was introduced in a previous step to the load application. Surface 

interactions were defined by “hard point” contact formulation in normal direction 

and by Coulomb friction law in tangential direction. Interactions took place between 

the T-stub surfaces, the head of bolt and the nut with the T-stub, and the bolt shank 

with the surfaces of the hole. 
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a) b) 

Figure 7.5. FE model of the T-stub connection with standard bolts. 

The results from the numerical calculations demonstrated good accuracy with 

test data [50], as it can be observed in the comparison of the force-displacement 

curves in Figure 7.6. 
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Figure 7.6. Comparison of force-displacement curve from FE model and Bursi and 
Jaspart’s results [50] 
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7.2.2. Beam to column connections with standard bolts 

The next step in the calibration process was the application of the FE models 

assumptions in an extended endplate connection between a steel I-beam and a steel 

H-column. In this case, connection was subjected to a bending moment caused by a 

load acting on the opposite end of the beam. Therefore, not only tensile loads acted 

on the upper row bolts but also shear stress appeared. 

The connection tested by Janss et al. [103] was utilized for the calibration of 

the model. It connected an IPE300 beam with a HEB160 column using preloaded 

bolts M20 grade 10.9. The plate was 20 mm thick. The failure of the connection 

took place when the shear capacity of the web column was exceeded. 

Figure 7.7 shows the FE model developed in the described calibration. It was 

defined following the same criteria than in the T-stub connections regarding finite 

element, interactions, bolt simulation and torque application. Welds between beam 

and endplate were not represented with additional elements, alternatively they were 

assumed as ties between the beam and the plate. Two layers of elements were 

defined for the thickness of the plate, the beam flange and the column flange. 

Besides, the mesh was denser in areas around bolts where more precision was 

required. 

 

Figure 7.7. FE model of the endplate connection I- beam to H-column with standard 
bolts. 
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The rotation was measured by comparing the displacements of the bolts from 

the two rows whereas the bending moment was known from the force applied and 

the distance to the connection. The moment-rotation curve from the FE model 

correlated well the initial and post-yield stiffness of the experimental curve, as it is 

shown in Figure 7.8. 
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Figure 7.8. Comparison of moment-rotation curve from FE model and Janss et al. 
results [103]  

7.2.3. T-stub connections with Hollo-bolts 

The connections described previously used standard bolts but, in contrast, this 

subsection reports on the first mechanical analysis on Hollo-bolt. Blind-bolt system 

increased the number of elements and contacts and thus, the complexity of the 

model. 

The third FE model of the validation process attempted to capture the 

flexibility of the blind-bolt. It was based on the T-stub investigations of Wang et al. 

[63]. They carried out a numerical analysis of the connections using commercial 

package ANSYS and compared results with Barnett experiments [105]. They 

already detected the difficulty to achieve a good correlation in the plastic range, 

nonetheless, the elastic range and the ultimate resistance matched well with 

experiments. 

Figure 7.9 shows the FE model developed in the present work. Blind-bolt 

was simulated by means of two parts called shank and sleeve. Shank was made up 
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by the bolt head, the bolt shank itself and the cone. The sleeve part considered the 

simulation of the four slots that were necessary to define the deformation of the 

sleeve as the cone moved against the surface of the clamped element. Thus, the 

blind-bolt was represented in its tightened state. New interactions appeared in 

comparison with the standard bolt connections, which took place between sleeve 

surfaces and shank parts, and between sleeve and clamped elements. The tighten 

torque was applied to the shank part of the blind-bolt system in a similar way as in 

standard bolts. 

 

sleeve shank 

Figure 7.9. FE model of the T-stub connection with Hollo-bolt system. 

The relation between the force acting on the T-stub ends that pulled them 

apart and the bolt displacement was compared with tests from Barnett [105], Figure 

7.10. The initial stiffness and ultimate force were correctly adjusted, but the plastic 

range differed from experimental data. Despite this discrepancies and considering 

also the problems encountered by Wang et al. [63] to achieve accuracy in that part of 

the curve, it was decided to move to another connection with Hollo-bolt where the 

suitability of the model was proved. 
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Figure 7.10. Comparison of the force-displacement curve from FE model and 
Barnett’s results [105] 

7.2.4. Beam to HSS column connections with Hollo-bolt 

The same sequence followed for the connection with standard bolts was 

repeated with blind-bolts. Therefore, the next model considered the Hollo-bolt 

system in an endplate connection, but in this case between an open-section beam and 

a hollow section column. 

The simulation was addressed using for comparison the experimental program 

of Mesquita et al. [104], who completed a group of 13 full-scale test of beam to RHS 

columns connections under three different building arrangements: external, corner 

and internal joints. The connections supported bending moment by applying a load 

at the end of the beam. They observed that the failure of the sleeve occurred due to 

the shear forces transmitted by the beam bending. In addition, the membrane action 

of the column and the effect of the beam joined to the column in orthogonal 

direction was noticeable. 

In the present work an external connection was simulated, as it is shown in 

Figure 7.11, where the same guidelines as in T-stub connections with Hollo-bolt 

were assumed. 

Moment-rotation curve from the FE models predicted with sufficiently 

precision the experimental results as it can be observed in Figure 7.12, so it provided 

a good estimation of the stiffness and the strength. Consequently, the problems 
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detected to represent the behaviour of the T-stub connection with accuracy were 

bypassed. 

 

 
 

Figure 7.11. Numerical model of the RHS column connection with Hollo-bolts. 
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Figure 7.12. Comparison of moment-rotation curve from FE model and Mesquita’s 

results [104] 
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7.2.5. Beam to CFT column connections with Extended Hollo-bolt 

The last FE model of the preliminary calibration works used a column filled 

with concrete. It was an endplate connection between an I-beam and a CFT column 

and was also the first model that simulated Extended Hollo-bolts. 

The connection definition was based on experiments from Tizani et al. [20]. 

They tested in the laboratory eight endplate blind-bolted connections between I-

beams and square hollow section columns. Their purpose was to know the response 

under bending moments of the novel Extended Hollo-bolt fastener system. Different 

parameters were varied such as the type of concrete (40 MPa or 60 MPa), the type of 

endplate (Flush or Extended), the bolt pitch (100-140 mm) and the beam section 

size. All the specimens from that program were modelled in this part of the 

calibration works, see Table 7.1. 

Figure 7.13 shows one of FE model developed and a section view of the blind-

bolt embedded in the concrete core. The concrete infill meant a modification of the 

analysis procedure as concrete pouring took place after bolt tightening. So, in a first 

step, preload application occurred but concrete was not inside the column yet. 

Afterwards, in the next stage, the load acted while the concrete was already filling 

the hollow column, preload was also input on to the model as an initial state 

affecting the steel parts of the connection. The compatibility of the strains at the 

beginning of the load step introduced some convergence problems. Furthermore, the 

Extended Hollo-bolt was simulated in a similar way as Hollo-bolt except for the 

shank that was longer and presented an attached nut at the end, Figure 7.13. 
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Figure 7.13. Numerical model of the connection between the beam and the CFT 
column with Extended Hollo-bolt from Tizani et al. [20]  

The FE models achieved accurate simulations of the connection performance. 

Figure 7.14 shows the moment-rotation curve predicted by means of the FE model 

compared with the curve of the connection from the experiments. The comparison is 

made for one connection, nonetheless the results for the rest of the connections can 

be found in Annex II subsection 1.3. The ratio of experimental to numerical results 

at maximum load, ξ, indicated that differences were not higher than 10% for all the 

FE models, Table 7.1. 

The capability to represent correctly the behaviour of blind-bolts in an endplate 

connection between an I-beam and a CFT column gave assurance to accomplish the 

numerical model of the embedded blind-bolt in simpler connections. 
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Figure 7.14. Comparison of moment-rotation curve from FE model and Tizani et al. 
[20] connection. 

7.2.6. Conclusions 

The adequate correlation with the experiments through these preliminary works 

led to undertake the modelling of the two blind-bolt connections: the single blind-

bolt connections and the T-stub connections to HSS and CFT columns, shown in 

Figure 7.3 and Figure 7.4. The findings extracted from the FEA calibration works 

were essential in the successful accomplishment of this task. 

7.3. FEM OF BLIND-BOLTED CONNECTIONS 

The present section includes the detailed description of the common and 

main aspects that were set through the calibration works and were taken into account 

for addressing the FE models of the blind-bolted connections to HSS and CFT 

columns under tensile loads, i.e. the model of the single blind-bolt and the double T-

stub connection. This definition was crucial for the further development of their fire 

performance analysis, reported in chapter 8. 

7.3.1. Model definition 

The finite element analysis package ABAQUS [98] was used for the 

development of the tridimensional finite element models. Figure 7.15 depicts the 
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models performed for the simulation of the connections studied at room and fire 

conditions.  

 

 

a) Single blind-bolt connection 

 

b) T-stub connection 

Figure 7.15. FE models of the single and double T-stub blind-bolt connection. 

As in the simulations exhibited in the calibration work, the fastener system 

was modelled in the tightened state, i.e. assuming the folded shape for the sleeve and 

the position for the fastener cone once torque had been already applied. Hollo-bolt 

was simplified into the two aforementioned parts: the first one included the standard 

bolt and the fastener cone (Figure 7.16b) while the second one represented the 

sleeve in the expanded state, Figure 7.16a. The Extended Hollo-bolt model exhibited 

a longer shank and a nut attached at the end, Figure 7.16c. For the sake of simplicity, 

the screw thread in the bolt shank was not considered, nor the hexagonal shape of 

the nut and bolt head that were assumed round. 
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a)Sleeve b)Shank in HB c)Shank in EHB 

Figure 7.16. FE models of the parts that composed the fastener systems. 

Three-dimensional eight-nodded solid elements with reduced integration 

(C3D8R) were employed for all the parts of the connection. Mesh density was finer 

in areas where higher stress gradient occurred, i.e. around blind bolts, where most 

interactions happened. Conversely, mesh size increased in the zones were lower 

stress and strain concentration was expected. 

7.3.2. Interactions 

Interactions were defined as surface to surface contact with finite sliding 

formulation. ABAQUS [99] calls the surfaces of the contact as “contact pairs”. 

Contact conditions between two bodies are defined in terms of a strict master-slave 

algorithm. For each node on the slave surface ABAQUS [99] tries to find the closest 

point on the master surface of the contact pair where the master surface’s normal 

passes through the node on the slave surface, Figure 7.17. The interaction is finally 

discretized between the point on the master surface and the slave node. Therefore, 

the order in which the two surfaces are specified is critical. 

Headbolt 

Shank 

Threaded cone 

nut 

Threaded 
cone 

Shank 

Headbolt 
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Figure 7.17. Contact and interaction discretization [99] 

The slave nodes are constrained not to penetrate into the master surface. 

Conversely, the master surface can penetrate into the slave surface, as it is illustrated 

in Figure 7.18. The contact direction is always normal to the master surface, whose 

surface is needed to be known. Alternatively, the unique data needed from the slave 

surface is the location of its nodes. Usually the master surface should belong to the 

stiffer body or the surface with coarser mesh. 

 

Figure 7.18. Penetration of master surface [99] 

Finite–sliding contact was used instead of small-sliding as a first approach 

because the former assumed the shape of the elements changes throughout the 

analysis, so contact area and contact pressure were calculated according to the 

deformed shape of the model. However, in many of the interactions defined in the 
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present work, it was checked that no difference existed between using one or 

another. 

The mechanical behaviour of the contacts was characterized in the normal 

and tangential direction as follows. 

Normal contact 

The normal behaviour made use of a “hard” contact formulation [98], which 

allows any pressure when the surfaces are in contact and transmits no pressure when 

the surfaces do not contact and a clearance separates them. Figure 7.19 [98] shows 

the contact pressure-clearance relationship used in the numerical model.  

 

Contact 
pressure (p) 

Clearance (d) 

Any pressure possible when in contact 

No pressure when no contact 

 

Figure 7.19. Pressure-clearance relationship [99] 

Tangential contact 

In the tangential direction the basic Coulomb friction model was adopted. It 

relates the maximum allowable frictional (shear) stress across an interface to the 

contact pressure between the parts interacting. In the basic form of the Coulomb 

friction model, two contacting surfaces can carry shear stresses up to a certain 

magnitude before they start sliding one over the other; this state is identified as 

sticking. This critical shear stress, τcrit, at which sliding of the surfaces starts is a 

fraction of the contact pressure, p, between the surfaces (τcrit = µp). The stick/slip 

calculations determine when a point moves from sticking to slipping or from 

slipping to sticking, Figure 7.20. The fraction, µ, is known as the friction coefficient. 

The value for the friction coefficient in the interaction steel-concrete was 

assumed 0.25 [106]. In the case of steel to steel, different values presented in the 

bibliography were considered, from 0.25 of Bursi and Jaspart [52] to 0.44 of Shi et 
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al. [107] or 0.5 used by Cabrero [108]. Finally, 0.25 was adopted except for the 

particular interactions at boundaries of the folded part of sleeve where the 

phenomenon of slip/stick was complex at the same time that produced instabilities in 

the calculation. Therefore, in the contacts between sleeve-hole and sleeve-cone 

friction coefficient presented higher values so that calculation converged at the same 

time that the response adjusted with accuracy the results from the tests. The friction 

coefficient for each connection is specified in the following sections where the FE 

models are described. 

 

Contact 
pressure (p) 

Equivalent 
shear stress 

(τ ) 

µ (Friction coefficient) 

Critical shear stress 

STICK REGION 

 

Figure 7.20. Slip regions for the Coulomb friction model [99] 

The friction coefficient is assumed the same in all directions (isotropic 

friction) by the basic friction model. In a three-dimensional simulation there are two 

orthogonal components of shear stress, τ1 and τ2, along the interface between the 

two bodies. ABAQUS [98] combines the two shear stress components into an 

“equivalent shear stress” τ , for the stick/slip calculations, where: 

2
2

2
1 τττ +=  (7.1)

The friction coefficient value used in the connections of the present research 

is specified in the models definition section of each one, sections 7.4.1 and 7.5.1. 
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7.3.3. Constitutive models of materials 

7.3.3.1. Steel material model  

The mechanical behaviour of steel was represented by means of an isotropic 

elasto-plastic model that uses von Mises yield criterion. It defines an isotropic 

yielding, independently of the hydrostatic pressure, as it is confirmed experimentally 

for most metals.  

The von Mises yield criterion stablishes that the yielding of materials begins 

when the second deviatoric stress invariant J2 reaches a critical value or when Mises 

equivalent stress, σv, reaches the yield strength, fy. The Mises equivalent stress, σv, is 

a scalar stress value that can be computed from the stress tensor and can be 

calculated as follows, equation (7.2): 

( ) ( ) ( )[ ]2
31

2
32

2
212

2

1
3 σσσσσσσ −+−+−== Jv  (7.2)

The von Mises yield surface in the three-dimensional space of principal 

stresses is a circular cylinder of infinite length with its axis inclined at equal angles 

to the three principal stresses, Figure 7.21. It utilized the uniaxial stress-strain curve 

obtained from the tensile strength tests for its definition. 

 

σ2 

σ3 

σ1 

Hydrostatic axis 

σ1 = σ2 = σ3 

von Mises 
yield surface 

 

Figure 7.21. Von Mises yield criterion in the three-dimensional principal stress 
space [98] 

Finally, the model uses an associated plastic flow rule, so there is no 

volumetric plastic strain. That means that plastic strains once the stresses have met 
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the yield criterion, follow the direction normal to the yield surface. This assumption 

is valid for most metals. 

The uniaxial stress-strain curve for steel parts of the connections was 

obtained from the experimental data given by the authors of the tests [19] [21] 

7.3.3.2. Concrete material model 

The plasticity model used to represent the brittle behaviour of concrete, was 

the concrete damaged plasticity model, which is one of the plasticity models for 

concrete implemented in ABAQUS [98]. This model represented with the required 

precision the mechanical response of concrete in the simulations, at the same time 

that minimized the convergence problems.  

The concrete damaged plasticity model assumes an elastic behaviour of 

concrete, isotropic and linear, but once material reached yield surface it followed a 

non-associated plastic flow and the flow potential is the Drucker Prager hyperbolic 

function. 

This model considers two failure mechanisms which are tensile cracking and 

compressive crushing of the concrete material. The evolution of the yield surface is 

controlled by two hardening variables, pl

t
ε and pl

c
ε , which are tensile and 

compressive equivalent plastic strains, respectively. The following sections discuss 

the main assumptions about the mechanical behaviour of concrete. 

Uniaxial tension and compression stress behaviour 

The uniaxial tensile and compressive response of concrete assumed by the 

model are shown in Figure 7.22. Under uniaxial tension the stress-strain response 

follows a linear elastic relationship until the value of the failure stress, 0t
σ , is 

reached. The failure stress represents the onset of micro-cracking in the concrete 

material. Beyond the failure stress there is a softening stress-strain response that 

corresponds macroscopically to the formation of micro-cracks. Under uniaxial 

compression the response is linear until the value of initial yield, 0c
σ . Afterwards, 

the response is characterized by stress hardening followed by strain softening 

beyond the ultimate stress,
cu

σ . 

It is usual that the uniaxial stress-strain curves are converted into stress 

versus plastic-strain curves. Thus, 

( ), , ,pl pl

t t t t ifσ σ ε ε θ= &  (7.3) 
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( ), , ,pl pl

c c c c ifσ σ ε ε θ= &  (7.4) 

where the subscripts t and c refer to tension and compression, respectively; 
pl

t
ε and pl

c
ε  are the equivalent plastic strains, pl

t
ε& and pl

c
ε&  are the equivalent plastic 

strain rates, θ is the temperature and fi (i=1,2,…) are other predefined field variables. 

Moreover, Figure 7.22 illustrates the damage in the stiffness of the unloading 

response when the concrete specimen is unloaded from any point on the strain 

softening branch of the stress-strain curves. The degradation of the elastic stiffness 

is characterized by two damage variables, dt and dc, which can be functions of the 

plastic strains, temperature and field variables: 

( ), ,pl

t t t id d fε θ=  0 1
t

d≤ ≤  (7.5) 

( ), ,pl

c c c id d fε θ=  0 1
c

d≤ ≤  (7.6) 

The value for damage variables can be from zero, corresponding to the 

undamaged material, to one, which represents total loss of strength. 

 

a) Concrete in tension 
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b) Concrete in compression 

Figure 7.22. Response of concrete [98] 

Taking into account that E0 is the initial (undamaged) elastic stiffness of the 

material, the stress-strain relations under uniaxial tension and compression in the 

unloading branch, were: 

( )0(1 ) pl

t t t td Eσ ε ε= − −  (7.7) 

( )0(1 ) pl

c c c cd Eσ ε ε= − −  (7.8) 

Tension behaviour or tension stiffening 

The tension postfailure can be specified by means of a postfailure stress-

strain relation or by applying a fracture energy cracking criterion. 

Thus, the postfailure stress can be given as a function of cracking strain, ck

t
ε , 

which is the total strain minus the elastic strain of the undamaged material: 

0
ck el

t t t
ε ε ε= − , where 0 0

el

t t
Eε σ= , as shown in Figure 7.23. This option is generally 

used if there is reinforcement. 

Cracking strain values are automatically converted by ABAQUS [98] into 

plastic strain values using the following relationship: 
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0(1 )
pl ck t t

t t

t

d

d E

σ
ε ε= −

−
 (7.9) 

 
 

Figure 7.23. Definition of the cracking strain for the definition of the postfailure 
tension behaviour or tension stiffening [98] 

If stiffness material does not degrade there will not be tensile damage and 
pl ck

t t
ε ε= . 

The choice of tension stiffening parameters is important. Generally, higher 

tension stiffening enhances the numerical convergence, since it prevents temporarily 

unstable behaviour in the overall response associated to local cracking failure of the 

model. 

The use of cracking strain ck

t
ε  is linked to the presence of reinforcement, but 

in the cases with little or no reinforcement, the specification of a postfailure stress-

strain relation introduces mesh sensitivity in the results. Consequently, proposals as 

the Hillerborg’s [109] using fracture energy are assumed. Hillerborg et al. [109] 

defined the energy required to open a unit area of crack, Gf, as a material parameter, 

using brittle fracture concepts. In this respect, the brittle behaviour of concrete can 

be characterized by a stress-displacement response rather than a stress-strain 

response, as shown in Figure 7.24. 
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Figure 7.24. Postfailure stress-displacement curve [98] 

Alternatively, the fracture energy, Gf, can be set directly as a material 

property. This model assumes a linear loss of strength after cracking and uses two 

parameters: a failure stress, 0t
σ and the associated fracture energy Gf, as shown in 

Figure 7.25. The cracking displacement at which complete loss of strength takes 

place is, therefore, 0 0
2t f t

u G σ=  .Typical values of Gf range from 40 N/m for a 

typical construction concrete (with a compressive strength of approximately 20 

MPa) to 120 N/m for a high-strength concrete (with a compressive strength of 

approximately 40 MPa). 

 

Figure 7.25. Postfailure stress-fracture energy curve [98] 

If tensile damage, dt, is specified, the cracking displacement values are 

converted to “plastic” displacement ones using the following relationship: 

0

0(1 )
pl ck t t

t t

t

d l
u u

d E

σ
= −

−
 (7.10) 

where the specimen length, l0 , is assumed to be one unit length, l0=1 . 
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Compressive behaviour 

The stress-strain behaviour of plain concrete in uniaxial compression outside 

the elastic range can be defined beyond the ultimate stress, into the strain-softening 

regime. Hardening data are given in terms of an inelastic strain, in

c
ε , instead of 

plastic strain, pl

c
ε .  

In undamaged material, 0
in el

c c c
ε ε ε= − , where 0 0

el

c c
Eε σ= Figure 7.26. 

Alternatively, unloading data considering the damage, dc, in terms of plastic strain 

values is: 

0(1 )
pl in c c

c c

c

d

d E

σ
ε ε= −

−
 (7.11) 

 

Figure 7.26. Definition of the compressive inelastic strain [98] 

In the absence of compressive damage pl in

c c
ε ε= . 

Concrete plasticity 

Before giving the expressions for the calculation of flow potential, yield 

surface, and viscosity parameters for the concrete damaged plasticity material 

model, it is necessary define the effective stress invariants. 

The effective stress is defined as: 

 (7.12) 

The first stress invariant of the effective stress tensor, namely the hydrostatic 

pressure stress is, 

( )0 :el pl
Dσ ε ε= −
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( )
1

3
p trace σ= −  (7.13) 

and the second invariant or Mises equivalent effective stress, 

( )3
:

2
q S S=  (7.14) 

Where S  is the effective stress deviator, defined as: 

S pIσ= +  (7.15) 

Plastic flow 

A nonassociated potential plastic flow is assumed by the model. The flow 

potential G used is the Drucker-Prager hyperbolic function: 

2 2
0( tan ) tan

t
G q pεσ ψ ψ= + −  (7.16) 

Where, 

ψ(θ, fi) is the dilation angle measured in the p–q plane at high confining 

pressure; 

( )0 0, 0
, pl pl

t t
t i tf

ε ε
σ θ σ

= =
=

&
is the uniaxial tensile stress at failure, taken from the 

user-specified tension stiffening data; and 

є(θ, fi) is a parameter, named eccentricity, that defines the rate at which the 

function approaches the asymptote (the flow potential tends to a straight line 

as the eccentricity tends to zero). 

The default value for the flow potential eccentricity is є=0.1, which implies 

that the material has almost the same dilation angle over a wide range of confining 

pressure stress values. Higher values imply the dilation angle increases more rapidly 

as the confining pressure decreases. Lower values than the default may lead to 

convergence problems. 
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Yield function 

Yield function is taken from Lubliner et al. [110], with the modifications 

proposed by Lee and Fenves [111] to account for different evolution of strength 

under tension and compression. The evolution of the yield surface is controlled by 

the hardening variables, pl

t
ε  and pl

c
ε . In terms of effective stresses, the yield 

function is expressed as follows 

( )( ) ( )( ) ( )max max

1 ˆ ˆ3 0
1

pl pl

c c
F q pα β ε σ γ σ σ ε

α
= − + − − − =

−
 (7.17) 

With 

( )
( )

0 0

0 0

1
;    0 0.5

2 1
b c

b c

σ σ
α α

σ σ

−
= ≤ ≤

−
 (7.18) 

( )
( )

( ) ( )1 1
pl

c c

pl

t t

σ ε
β α α

σ ε
= − − +  (7.19) 

( )3 1

2 1
c

c

K

K
γ

−
=

−
 (7.20) 

Where, 

maxσ̂ is the maximum principal effective stress; 

0 0b c
σ σ is the ratio of initial equibiaxial compressive yield stress to initial 

uniaxial compressive yield stress (the default value is 1.16); 

K c is the ratio of the second stress invariant on the tensile meridian, q(TM), to 

that on the compressive meridian, q(CM), at initial yield for any given value of the 

pressure invariant p  such that the maximum principal stress is negative, max
ˆ 0σ < , 

(see Figure 7.27); it must satisfy the condition 0.5< K c <1 (the default value is 2/3); 

( )pl

t tσ ε is the effective tensile cohesion stress; and 

( )pl

c cσ ε is the effective compressive cohesion stress. 
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Figure 7.27. Yield surfaces in the deviatoric plane [98] 

Figure 7.27 and Figure 7.28 show typical yield surfaces in the deviatoric 

plane and in plane stress, respectively. 

 

Figure 7.28. Yield surface in plane stress [98] 
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Softening behaviour and stiffness degradation of the materials often lead to 

severe convergence difficulties. A common technique to overcome some of these 

convergence difficulties is the use of a viscoplastic regularization of the constitutive 

equations, since it makes the consistent tangent stiffness of the softening material 

positive for sufficiently small time increments. Normally the viscosity parameter is 

zero, so that no viscoplastic regularization is performed. 

For the numerical models of the present research the parameter values  

recommended by ABAQUS [98] were assumed. Two values of dilation angle (ψ ) 

were used: 30º and 15º. Due to the confinement effect was not important in the 

specimens analysed, there were no differences between the two dilatancies. The 

default value for ratio (K) is 0.66, but 0.8 was also studied, both of them provided 

similar results. The other three parameters that complete the model definition were: 

eccentricity (є=0.1), ratio of initial equibiaxial compressive stress to initial uniaxial 

yield stress (fb0/fc0=1.16) and the viscosity parameter (0.01) 

For the designation of the concrete plastic regime under compression, the FE 

models used stress-strain hardening and softening curve from EC2 Part 1.1. [112]. 

On the other hand, the post failure tension behaviour stress-fracture energy law was 

defined following the guidance of the Model Code 2010 [113]. There, fracture 

energy is stablished from the compressive strength values of concrete which were 

obtained through the calibration tests.  

Eventually, parameters of damage were not used, which reduced the 

complexity of the calculation. The reason was the proper results obtained by the first 

approach that did not consider the damaged elasticity. Moreover, the monotonic 

nature of the load could lead to assume that unloading process did not occur in 

compression nor in tension. 

7.3.4. Analysis procedure. Non linear solution method 

The analysis procedure attempted to reproduce the actual execution steps of 

the specimen. In the first stage and before the concrete filling took place, the torque 

was applied using the ABAQUS “bolt load” function. In the second step, the 

concrete was inside the tube and the tension load was transmitted as a static 

displacement. 

From the previous sections it has become clear that the finite element model 

developed in this work is nonlinear and involves a great number of variables. In 

terms of the variables of the model, the equilibrium equations obtained by 

discretizing the virtual work equation can be expressed symbolically as: 
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0)( =MN uF  (7.21)

where FN is the force component conjugate to the Nth variable in the problem and uM 

is the value of the Mth variable. The basic problem is to solve this equation for uM 

throughout the history of interest. 

The problem presented in this work is history-dependent, so the solution must 

be developed by a series of “small” increments. 

Newton’s method is the numerical technique generally used by ABAQUS for 

solving nonlinear equilibrium equations. The reason is primarily the convergence 

rate exhibited compared to the convergence rates obtained by modified Newton or 

quasi-Newton methods. Therefore, it was the nonlinear solution method used in the 

simulations, its formulation is presented as follows. 

Assume that, after an iteration i, an approximation M
iu  to the solution has 

been obtained. Let M
ic 1+  be the difference between this solution and the exact 

solution to the discrete equilibrium equation. This means that: 

0)( 1 =+ +
M
i

M
i

N cuF  (7.22)

Expanding the left-hand side of this equation in a Taylor series about the 

approximate solution M
iu  then gives: 

0...  )( )()( 11

2

1 =+
∂∂

∂
+

∂

∂
+ +++

Q
i

P
i

M
iQP

N
P
i

M
iP

N
M
i

N ccu
uu

F
cu

u

F
uF  (7.23)

If M
iu  is a close approximation to the solution, the magnitude of each M

ic 1+  

will be small, and so all but the first two terms above can be neglected giving a 

linear system of equations: 
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= is the Jacobian matrix and )( M
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The next approximation to the solution is then M
i

M
i

M
i cuu 11 ++ +=  and the 

iteration continues until the solution is found. The accuracy of the approximation is 

introduced to the program or defined by the fault for it. 
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The process of convergence will depend on the approximation defined for the 

solution (residual force) and the increment size. 

In the case of the connections of this work local instabilities appeared in the 

interfaces of the sleeve with concrete and tube. These instabilities were associated to 

frictional stick-slip behaviour in interactions and large initial deformations 

introduced in concrete due to the imported preload initial state. They were finally 

solved by transforming local strain energy in viscous dissipated energy until a new 

stable configuration was found. The temporary numerical instability problem is 

bypassed using ‘automated viscous damping’ function of ABAQUS [98]. This 

technique considers a damping factor C that becomes active when the temporary 

numerical instability has to be solved. The artificial damping is determined in such a 

way that the viscous dissipation energy is a small fraction of the model’s strain 

energy. This small fraction, called the dissipation intensity, is controlled by the user. 

and has a default value of 2x10-4. 

When artificial viscous damping is used to solve temporary instabilities it is 

necessary to assess its influence on the model’s behaviour in the stable regime. So, 

one of the following verifications has to be carried out: 

- Compare and determine if viscous dissipation energy is small relative to the 

internal energy, so adequate viscous forces are provided during unstable 

behaviour.  

- Reduce damping parameters and run again the simulation. If the analysis 

converges and there is not difference in the solution, the damping is not 

affecting the model in the stable regimen. 

In some cases of this research the dissipated energy fraction suggested by 

ABAQUS [98] 2x10-4 had to be applied. Afterwards, viscous dissipation energy and 

viscous forces were checked in order to prevent any spurious results. Figure 7.29 

shows the results of this verification for one of the connections, in particular, the 

connection with a single EHB. The same technique was used by Dai et al. [79] to 

solve numerical temporary instabilities attributed to localised buckling and large 

deformations in FE models of steel connections. 
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a) Viscous dissipation energy versus internal energy 

 

 

b) Viscous forces versus internal forces 

Figure 7.29. Verification of non-spurious results after application of viscous 
damping. 
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7.4. SINGLE BLIND-BOLTED CONNECTIONS AT ROOM 

TEMPERATURES 

This section reports on the calibration of the FE model at room temperature 

of the single blind-bolted connection that will be studied under fire in chapter 8. It 

consisted of a single blind-bolt clamping a loading frame plate and a part of a tube 

column, as it is depicted in Figure 7.3. 

An overall of 8 specimens from Pitrakkos and Tizani [21] were simulated, 

Table 7.2. The parameters that varied through the program were the bolt grade, the 

concrete resistance, the type of bolt (standard bolt, Hollo-bolt and Extended Hollo-

bolt) and the type of column (HSS and CFT) 

The tube column of the specimens was not strictly a real commercial HSS, it 

was an arrangement of plates that worked as a proper tube and where the top plate 

was 20 mm thick. The thickness of the plates was designed in order to behave in the 

elastic range and in consequence, all attention was focused on blind-bolts 

performance. Tensile force was transmitted to blind-bolts through the rigid loading 

frame plate, which was 30 mm thick.  

Table 7.2. List of single blind-bolted connections 

Specimen designation 

Shank 

length 

bolt 

grade 
fc 

Maximum load 

(KN) 
ξ=Nu,test/Nu,FEM 

    (mm)   (MPa) Nu,test Nu, FEM   

Type HB (without concrete) 

HB16-100-8.8D-0-1 100 8.8   139 129 1.08 

Type HB (concrete-filled) 

HB16-100-8.8D-C40-1 100 8.8 40 140 138 1.01 

HB16-100-8.8D-C60-1 100 8.8 60 142 139 1.02 

HB16-100-10.9E-C40-1 100 10.9 40 175 168 1.04 

Type M (concrete-filled) 

M16-150-8.8D-C40-3 150 8.8 40 142 128 1.11 

Type EHB (concrete-filled) 

EHB16-150-8.8D-C40-2 150 8.8 40 142 137 1.04 

EHB16-150-8.8D-C60-1 150 8.8 60 140 138 1.01 

EHB16-150-10.9E-C40-1 150 10.9 40 176 168 1.05 
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7.4.1. Model definition of the single blind-bolted connections 

Figure 7.30 depicts the tridimensional finite element model of the single 

blind-bolted connections. Although the figure in the subsection 7.3.1 showed the 

whole specimen, in fact, only a quarter was simulated thanks to the symmetry about 

the vertical planes, reducing the computational cost. 

 
 

a) Hollo-bolt connection b) Extended Hollo-bolt connection 

Figure 7.30. FE model of the single blind-bolted connection. 

The fastener system was modelled in the tightened state and simplified into 

two parts. The first one included the standard M16 grade 8.8 and the fastener cone. 

The shank length of the standard bolt varied depending on the type of fastener used, 

the Hollo-bolt (HB) shank was 100 mm and the Extended Hollo-bolt (EHB) 150mm. 

For the second part or sleeve, specification was provided in the Lindapter catalogue 

[16]. Its length depended on the complete thickness to fasten, in this case (30+20=50 

mm) sleeves 63 mm long had to be used. 

Interactions 

A total of 9 contacts were detected which could be classified into two groups: 

- Contacts between steel surfaces: headbolt to plate, sleeve to plate flange hole 

surface, sleeve to tube column hole surface, sleeve to fastener cone and tube 

column to plate. 

- Contacts between steel and concrete surfaces: steel tube column to concrete, 

sleeve to concrete, shank to concrete and nut to concrete (when Extended 

Hollo-bolt) 
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For interactions, “hard” contact behaviour was defined in normal direction as 

usual, whereas in the tangential direction, the Coulomb friction model was 

employed. A friction coefficient of µ=0.25 [106] was used in concrete-steel and 

steel-steel contacts except for the interaction of the sleeve with the fastener cone 

interaction and the folded part of the sleeve with the tube hole. In these contacts it 

was necessary to increase the sticking area, otherwise slippage of surfaces 

introduced bolt motion and made the convergence difficult. Sleeve to fastener cone 

interaction used 0.5 friction coefficient [108] and the contact between the folded 

sleeve and the hole in the plate utilized 0.8 since it showed more accurate results. 

Figure 7.31 exhibits the effect of using µ=0.8 or µ=0.5 for the contact between 

sleeve and plate hole surface, in addition it demonstrates that the correlation 

enhanced with µ=0.8. 
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Figure 7.31. Force-displacement curves for the single blind-bolted connection using 
two different friction coefficients for the contact sleeve to plate hole surface [102] 

Materials 

Linear behaviour of steel was defined through Young’s modulus and Poisson 

ratio’s until Von Mises yield surface was reached, i.e. the steel yield strength fy.  

Standard bolts that formed the fastener system were high strength steel M16 

grade 8.8 (fy=640 MPa and fu=800 MPa), but the real yield strength and ultimate 

strength extracted from tests of the material [21] were respectively fy=836 MPa and 

fu=931 MPa. The steel strength for the sleeve given by Lindapter catalogue was 

430MPa although values from Liu et al. [114] were finally adopted. Finally, the 
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structural steel of the tube section and the plate of the frame load were of grade S355 

and the values of yield and ultimate strength were obtained from similar tubes tested 

by Tizani et al. [20] although both elements behaved in the linear range. Table 7.3 

resumes the mechanical properties of the steel. 

Table 7.3. Mechanical properties of the steels in the single blind-bolted connection 
and their source.  

 
fy (MPa) fu (MPa) E (GPa) ν Reference 

Plates 440 517 205 0.3 Tizani et al. [20] 

Sleeve bolt 382 512 210 0.3 Liu et al. [114] 

Shank bolt 836 931 210 0.3 Pitrakkos and Tizani [21] 

Moreover, the change in material volume beyond the yield limit was 

considered by using the true stress-strain curve instead of the engineering stress-

strain curve, defined as follows:  

(1 )
t e e

σ σ ε= +  (8.1) 

ln  (1 )
t e

ε ε= +  (8.2) 

The compression strength capacity of concrete was extracted from tests [21], 

where concrete of grade C40 (cubic strength 40 MPa) was used for all specimens 

except for those cases with C60 (cubic strength 60 MPa). 

7.4.2. Validation of the FE model of the single blind-bolted connections 

A total of eight single blind-bolts subjected to pull out in connections to HSS 

and CFT were modelled and validated, which are listed in Table 7.2 where 

specimens’ notation from tests [21] was maintained. The bolt displacement and the 

force applied to the system were controlled through simulations. Figure 7.32 shows 

the force-displacement curve for two of the specimens and their correlation with test 

data, where the higher stiffness of the Extended Hollo-bolt can be observed (the 

same comparison for the rest of the specimens can be found in Annex II). Table 7.2 

indicates the maximum load values reached by the numerical model (Nu, FEM) and 

tests (Nu, test). The ratio ξ indicates differences between test data and FE models were 

not greater than 5% in HB and EHB, 8% for HB in the unfilled column connection 

and 11% for the standard bolt M16. 
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Figure 7.32. Comparison of the force-displacement curves of the single blind-bolted 

connections from the FE models and the tests [102] 

Besides the force-displacement curve, the stress and strain distribution 

through the connections was analysed. Figure 7.33 shows Mises stress at failure for 

the connection with HB, where the bolt shank presented the highest stress followed 

by the sleeve. In addition, the plastic strain plot of Figure 7.34 allowed detecting the 

yielding in the bolt shank and the crushing of the concrete around the sleeve.  
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Figure 7.33. Mises stress (N/m2) in the single HB connection. 

 

 

 

 

Figure 7.34. Plastic strains (m/m) in the single HB connection. 
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Figure 7.35 and Figure 7.36 shows Mises stress and plastic strains for the 

EHB connection.  

 

 

Figure 7.35. Mises stress (N/m2) in single the EHB connection. 

 

 

 

Figure 7.36. Plastic strains (m/m) in single the EHB connection. 
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In the same way, for the connection with Extended Hollo-bolt, Mises stress 

distribution presented the highest values of stress in the bolt shank, Figure 7.35. So, 

although the bolt shank resistance was higher than the rest of the parts, it 

concentrated most of the damage and consequently controlled failure, as it happened 

in the experiments.  

Regarding the plastic strains through the EHB connection (Figure 7.36), it 

can be observed that concrete yielding did not take place around the sleeve, but 

around the nut. Moreover, the cone of strains affected larger volume of concrete and 

stiffened the connection response by reducing the stress in sleeve and around it. 

7.5. DOUBLE T-STUB CONNECTIONS TO TUBE COLUMN AT 

ROOM TEMPERATURES 

The second connection involved two T-stubs bolted to opposite sides of a HSS 

200x200x10 whose experimental data was extracted from Ellison and Tizani [19], 

Figure 7.4. As in the specimen with the single blind-bolt, the main interest was in 

the blind-bolt behaviour, so the thickness of T-stub flanges was 50 mm to avoid 

prying action. 

Load was applied by pulling out the upper T-stub while the bottom one was 

maintained fixed. Two specimens were calculated and validated, which considered 

the connection to a concrete filled tubular (CFT) column with the two different 

fastener systems: the Hollo-bolt and the Extended Hollo-bolt, Table 7.4. 

Table 7.4. List of T-stub connections to tubular column. 

Specimen designation 

Shank 

length 

bolt 

grade 
fc 

Maximum load 

(KN) 
ξ=Nu,test/Nu,FEM 

    (mm)   (MPa) Nu,test Nu, FEM   

Type HB (concrete-filled)             

T-HB16-120-88D-C50 120 8.8 50 532 540 0.99 

Type EHB (concrete-filled)             

T-EHB16-150-88D-C50 150 8.8 50 627 606 1.03 
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7.5.1. Model definition of the double T-stub connections to tube column 

Figure 7.37 depicts the tridimensional finite element model, only a quarter of 

it was simulated taking advantage of the symmetry about the vertical planes, which 

reduces the computational cost. 

The blind-bolt fastener system used a standard bolt of 16 mm in diameter 

(M16 grade 8.8) with a shank 120 mm long for the HB and 150 mm long for the 

EHB. The sleeve length was 84 mm accordingly to the total thickness of plates 

clamped (50+10=60 mm).  

 

 
 

Figure 7.37. Numerical model of the T-stub connection to a CFT column.  

Interactions 

Similarly to the single blind-bolted connection a total of 9 contacts were 

tackled, grouped as follows: 

- Contacts between steel surfaces: headbolt to T-stub, sleeve to T-stub hole 

surface, sleeve to tube column hole surface, sleeve to fastener cone and tube 

column to T-stub. 

- Contacts between steel and concrete surfaces: tube column to concrete, 

sleeve to concrete, shank to concrete and nut to concrete (when Extended 

Hollo-bolt). 
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For the friction contact definition a value of µ=0.25 in concrete-steel and 

steel-steel contacts was used, whereas µ was 0.35 for the sleeve to the fastener cone 

interaction and 0.5 for the sleeve to the tube hole. These friction coefficients gave a 

good correlation between FEA results and experiments and prevent the convergence 

problems obtained with lower values. 

Materials 

The HSS column was S355 but its real strength derived from the test of the 

same tubes performed by Tizani et al. [20]. For the sleeve, values of yield and 

ultimate strength were taken from Liu et al. [114]. The capacity of the steel bolts 

that was measured in tests from Ellison and Tizani [19], despite of being both M16 

grade 8.8, was different in the HB and in the EHB. The Table 7.5 indicates the 

values input in the mode. The T-stub behaves linearly, so only Young’s Modulus 

and Poisson were defined. 

Table 7.5. Mechanical properties of steels in the T-stub connections and their 
source.  

 
fy 

(MPa) 
fu 

 (MPa) 
E  

(GPa) 
ν Reference 

HSS 440 517 205 0.3 Tizani et al. [20] 

Sleeve bolt 382 512 210 0.3 Liu et al. [114] 

Shank bolt HB 692 865 210 0.3 Ellison and Tizani [19] 

Shank bolt EHB 793 992 210 0.3 Ellison and Tizani [19] 

 

For concrete, it was assumed a C50 since cube strengths at the time of testing  

[19] varied between 54 N/mm2 and 57 N/mm2. 

7.5.2. Validation of the FE model of the double T-stub connections to tube column 

The double T-stub connections to CFT column involved a total of 8 blind-

bolts, the connection performance at room temperature was calibrated for two 

specimens (specified in Table 7.4). The pulling load applied to the upper T-stub by 

means of imposed displacements was controlled in the FE model measuring the 

reaction force in the opposite T-stub. The displacement under evaluation was the 

separation of the two T-stub flanges. Figure 7.38 proved that the curves force-plate 

separation presented good correlation with the test data [19]. The Extended Hollo-

bolt system exhibited higher stiffness than the Hollo-bolt, due to the anchorage. The 
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ratio ξ for the maximum load indicated differences with experiments no higher than 

5%, as presented in Table 7.4. 
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Figure 7.38. Comparison between force-displacement curve from FEA and test 
[102] 

Mises stress distribution for both connections, HB (Figure 7.39) and EHB 

(Figure 7.40), demonstrated that highest stress was suffered by shank. So, it was 

assumed that the bolt shank controlled the failure, although in the case of the HB 

connection, the sleeve registered localized peaks of stress.  

Figure 7.41 shows the plastic strain across the HB connection. A cone of 

strains around the sleeve was detected, which revealed the areas of concrete 

crushing. On the other hand, the closeness of the bolt to the tube limited the stress 

distribution and produced an asymmetric deformation around the bolt. 

Moreover, regarding the connection with the EHB, Figure 7.42 depicts that 

anchored nut reduced the crushing around sleeve detected in HB, and stress moved 

to the nut and through the concrete. Finally, it could be concluded that EHB helped 

to increase the stiffness of the connection by means of the stress distribution within 

the concrete.  
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Figure 7.39. Von Mises stress (N/m2) in the T-stub HB connection. 

 

Figure 7.40. Von Mises stress (N/m2) in the T-stub EHB connection. 
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Figure 7.41. Plastic strains (m/m) in the T-stub HB connection. 

 

 

Figure 7.42. Plastic strains (m/m) in the T-stub EHB connection. 



Chapter 7. Behaviour of connections at room temperatures 

 

Doctoral Thesis. Ana M Pascual Pastor                                                                                            177 

7.6. CONCLUSIONS 

An extensive calibration work on different types of connections led to the 

achievement of FE models that accurately predicted the behaviour of blind-bolted 

connections to CFT columns at room temperature. Main findings were related to the 

definition of the blind-bolt, mechanical properties of materials (constitutive models) 

and frictional process in interactions. Besides the overall non-linear behaviour, the 

torque application previous to concrete pouring introduced also convergence 

problems, which were finally solved using viscous damping to the system. 

The FE analysis of the single blind-bolt connections and double T-stub 

connections to CFT columns provided accurate force-displacement curves at the 

same time that captured the highest stress in shank and peaks of stress in sleeve. 

Therefore, as in the bibliography experiments, the enhancement produced by the 

concrete core and the influence of the anchorage extension of the Extended Hollo-

bolt were evidenced numerically. 

Furthermore, the models not only allowed a suitable estimation of connection 

strength and stiffness but also the stress and strain distribution through the 

connection and the subsequent detection of the failure modes. Consequently, FE 

models were proved adequate to accomplish the thermo-mechanical study of the 

connections. 
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8.THERMO-MECHANICAL 
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This chapter presents the study of the fire performance of blind-bolted 

connections to HSS and CFT columns. This analysis is based on numerical thermo-

mechanical models that reproduce the connections behaviour when tensile loads are 

pulling out the bolts and a fire is taking place simultaneously. A description of the 

models is here included, which explains, among other aspects, the calculation 

procedure and the material behaviour at high temperatures.  

The influence of several variables is studied through the response of the 

connections, mainly the effect of: the concrete, the anchorage of the Extended 

Hollo-bolt and the type of steel used in bolts. The enhancement by assuming Fire 

Resistant steel bolts is also assessed. Finally, a steady state analysis of the blind-

bolted connections is carried out in order to evaluate their stiffness and strength at 

different temperatures in comparison with their capacity at room temperature. 
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8.1. INTRODUCTION 

The fire analysis was based on FE models due to the absence of experiments 

in the literature besides the lack of funds to carry out laboratory tests. The 

calculation of the fire connection performance was undertaken once mechanical and 

thermal numerical models were proved to capture the connections behaviour with 

reliability, so the suitability of the thermo-mechanical simulations was ensured. 

The two blind-bolted connections representatives of the tension area in 

moment-resisting connections were studied under tensile load and at elevated 

temperatures: the single blind-bolted connection and the double T-stub connection, 

shown in Figure 8.1a and b, respectively (also in Figure 7.1 and Figure 7.2, both in 

chapter 7). The objective was gaining insight into their fire resistance and how 

stiffness and strength were affected during the fire. The selection of the tension part 

of the connection for the study is linked to the fact of being the most damaged area 

and responsible for the connection failure.  

 

 
a) Single blind-bolted 

connection 
b) Double T-stub connection 

Figure 8.1. Connections studied under tension load and elevated temperatures.  

For both connections three cases were analysed: Hollo-bolt (HB) in hollow 

steel section (HSS) columns, HB in concrete filled tubular (CFT) columns and 

Extended Hollo-bolt (EHB) in CFT columns, Table 8.1 and Figure 8.2. Through 

these cases it was possible to obtain conclusions about the influence of the concrete 

core and the type of blind-bolt. Moreover, some other variables were considered in 

each case, such as the load level or the steel bolt properties, as it is listed in Table 

8.1. 
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Table 8.1. List of connections simulated under fire conditions 

Specimens 
Type of 

connection 

Type 

of bolt 

Type of 

column 
Variables  

UHB16-100-8.8D single bolt HB HSS 
load level, steel bolt 

(EC3/Kodur/FR)  

HB16-100-8.8D-C40 single bolt HB CFT 
load level, steel bolt 

(EC3/Kodur/FR)  

EHB16-100-8.8D-C40 single bolt EHB CFT 
load level, steel bolt 

(EC3/Kodur/FR)  

T-UHB16-100-8.8D double T-stub HB HSS steel bolt (EC3/FR)  

T-HB16-100-8.8D-C50 double T-stub HB CFT steel bolt (EC3/FR)  

T-EHB16-100-8.8D-C50 double T-stub EHB CFT steel bolt (EC3/FR)  

 

   
a) b) c) 

Single blind-bolted connections 

   

a) b) c) 

T-stub blind-bolted connections 

Figure 8.2. Connections under analysis for the single blind-bolt and the T-stub: 
a)HB to HSS column, b)HB to CFT column and c)EHB to CFT column.  
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8.2. DESCRIPTION OF THE FINITE ELEMENT MODEL 

The definition of the assembly of all the parts that composed the connections 

was equal to the description for the analysis at room temperature (chapter 7) 

Regarding the calculation procedure, sequentially coupled thermal-stress 

analyses were carried out, which assume that stress-strain depends on the 

temperature field but not the opposite. Conversely, in a fully coupled analysis, the 

mechanical and thermal response affect each other, the stress and thermal analysis 

are simultaneous. The latter procedure is closer to reality, but at the expense of high 

computational cost and convergence problems. Thus, recommendations from 

Espinos et al. [100], who proved that the accuracy improvement is not worth noting, 

were followed. 

For the sequentially coupled thermal-stress analysis, two finite element 

models were needed: a thermal model and a mechanical model. Firstly, a pure heat 

transfer model was computed. Temperature-time curves were obtained for each node 

and kept to be applied to the mechanical model as a prescribed thermal. Secondly, a 

mechanical model for the stress-strain was developed, where the stress-strain values 

in nodes of the steel parts produced by bolt tightening were input as an initial state. 

Later on, once concrete was already filling the tubular section, the load application 

in the mechanical model took place. Finally, the previously kept temperature field 

was introduced while load propagated. This calculation scheme is illustrated in 

Figure 8.3. 
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Figure 8.3. Scheme of the analysis procedure. 

8.2.1. The thermal analysis 

Initially, the nonlinear heat transfer analysis was carried out for each 

connection. External surfaces of specimens were exposed to the standard ISO834 

fire curve [32] that acted as a thermal load by means of convection and radiation 

mechanisms. Later on, through the elements of the connections, the heat transfer 

occurred mainly by conduction. The finite element used for all the parts was a three-

dimensional eight-nodded heat transfer brick element with temperature as the unique 

nodal degree of freedom DC3D8. 

Thermal properties for concrete, i.e. specific heat and thermal conductivity, 

were taken from EC4 Part 1.2 [34] (Annex III). To define the peak value in the 

specific heat linked to the latent heat of water vaporisation, moisture content was 

assumed 3% in concrete weight, that in the absence of data it is the value 

recommended by EC4 Part 1.2 [34] 

High strength steel bolts behave differently to mild steel, dependent on the 

chemical composition and heat treatments during the manufacturing process. In the 

chapter 5 of the present work and also in author’s publication [97] was noted the 

lack of data relating to the thermal properties of high strength bolt steel at elevated 

temperatures. In that respect, proposals by Kodur [90] for high strength steel bolts 
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were assessed, but finally, the small differences with definitions from EC3 Part 1.2 

[73] for conventional steel, led to assume EC3’s temperature dependent thermal 

properties for all the steels. 

Regarding thermal interaction characteristics between the different parts of 

the connections, a perfect contact was defined, except for the sleeve to the hole 

surface of the plate and the steel tube column to the concrete infill, where a gap 

conductance of 200 W/m2K was used. These thermal properties for the interactions 

were drawn from FE models described in chapter 5.  

8.2.2. The structural analysis 

A nonlinear stress-strain analysis was subsequently conducted, where blind-

bolts were subjected to tensile load. The force applied to the connections was half 

the maximum force that connections were able to support at room temperature. As in 

FE models calibrated at room temperature (chapter 7), before loading the 

connection, bolts were preloaded at 190 Nm of tightening torque, as Lindapter 

catalogue [16] recommends. The bolt tightening produced a stress-strain state in the 

steelwork previously to the concrete pouring that was first input into the thermo-

mechanical model. Later on, tension load was applied in the filled connection and, in 

the ultimate stage, nodal temperature-time curves from the thermal model were 

input. 

The finite element mesh and the node numbering were exactly the same 

through the different models used for the final thermo-mechanical analysis: the 

thermal model, the tightening model and the thermo-mechanical model. A three-

dimensional eight-nodded element was employed with three degrees of freedom 

(C3D8R) 

Interactions between the different parts of the connection were defined by 

means of surface to surface contact. In the normal direction, a ‘hard’ contact model 

was used whereas Coulomb friction model described the contact in the tangent 

direction. Furthermore, the same friction coefficients as at room temperature were 

assumed (see sections 7.4.1 and 7.5.1 in chapter 7) since through the consulted 

bibliography there was not observed the use of friction coefficients dependent on the 

temperature.  

8.2.3. Mechanical material properties at elevated temperature 

Material capacity deteriorates during the fire, strength and stiffness decrease 

with temperatures. Therefore, the uniaxial stress-strain changed, which implied 
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modifications in their elastic regime and also in the yield surface and post-yield 

behaviour. However, the same plasticity models used at room temperature were 

assumed at high temperatures, i.e. Von Mises for steel and Damage Plasticity Model 

for concrete. 

Steel 

The effect of temperature on steel stress-strain relationship is undertaken by 

applying reduction coefficients. These coefficients affect consequently the yield 

strength fy, the proportional limit fp and the Young modulus E. EC3 Part 1.2 [73] 

provides values of reduction coefficients (Figure 8.4) dependent on the temperature 

and founded in the performance of normal steel. But, normal steel and high strength 

steel of bolts present different response at elevated temperatures. Alternatively, EC3 

Part 1.2 Annex D [73] gives specific strength reduction factors for steel bolts based 

on Kirby’s research [89], shown in Figure 8.4. It can be observed that steel bolts 

suffer a more important loss of strength compared with yield strength of 

conventional steel that remains the same at 400ºC while the ultimate strength of steel 

bolts presents 20% reduction. Moreover, at 500ºC the strength of bolts is close to 

half the maximum whereas conventional steel has 80% strength. 
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Figure 8.4. Reduction factors for the stress-strain relationships of structural and bolt 
steel at elevated temperatures according to EC3 [73] 
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The stress-strain relationship at high temperatures was defined from the 

capacity of the steels at room temperature extracted from tests (specified in chapter 

7) and following EC3 Part 1.2 [73]. Figure 8.5 shows the stress-strain curve for the 

steel of the bolts in the single blind-bolted connection at different temperatures, 

where curves are affected by the reduction coefficients from EC3 Part 1.2 Annex D 

[73] and consider strain hardening recommended by the same code (Annex III of the 

thesis). Moreover, the change in material volume beyond the yield limit was 

considered by using the true stress-strain curve instead of the engineering stress-

strain curve. 
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Figure 8.5. Stress-strain relationship for steel bolts in single blind-bolted 
connections at elevated temperatures. 

At the same time that steel deforms because of the mechanical stress, there 

is an expansion of the material due to the thermal load. This was considered using 

the relative thermal elongation ∆l/l of steel depicted in Figure 8.6 and given by EC3 

Part 1.2 [73] 
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Figure 8.6. Thermal elongation of steel at elevated temperatures according to EC3 
Part 1.2 [73] 

Concrete 

The compressive stress-strain relationship for concrete at elevated temperatures 

was defined by means of the concrete strength tested at room temperatures 

(indicated in chapter 7) and the law specified in EC2 Part 1.2 [83] (detailed in 

Annex III of the thesis). The reduction factors applied to the parameters of the 

stress-strain relationship distinguishes whether the mixture is made up of siliceous 

or calcareous aggregates (Figure 8.7), for the present work calcareous aggregates 

were assumed. Figure 8.8 shows the curves for the concrete in the single blind-

bolted connections. It was taken into account that the compressive strength was 

measured in cube specimens, so the strength of 40MPa [21] was reduced for the 

calculations, 80% of this strength was finally input.  
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Figure 8.7. Reduction coefficients for the compression strength of concrete at 

elevated temperatures according to EC2 Part 1.2 [83] . 
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Figure 8.8. Stress-strain relationship for concrete in single blind-bolt connections at 

elevated temperatures. 

The tensile strength of the concrete was also reduced using the coefficients 

depicted in Figure 8.9 from EC2 Part 1.2 [83]. The concrete behaviour under tension 

was defined by using fracture energy, nevertheless in some models the stress-

cracking strain law was used instead, in order to bypass convergence problems but 
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not without first checking its suitability. Figure 8.10 exhibits the relationship tensile 

stress-fracture energy for concrete C40 in single blind-bolt connections at high 

temperatures, where the area delimited by the line and axis defines the fracture 

energy Gf.  

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0 100 200 300 400 500 600

R
ed

uc
ti

on
 f

ac
to

r

Temperature (ºC)
 

Figure 8.9. Reduction factor for tensile strength of concrete at elevated 

temperatures according to EC2 Part 1.2 [83] 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.0 0.1 0.2 0.3 0.4

S
tr

es
s 

( 
M

P
a)

Cracking displacement  (mm)

20ºC

100ºC

200ºC

300ºC

400ºC

500ºC

 
Figure 8.10. Tensile stress- fracture energy relationship for concrete in single blind-

bolted connections. 
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In the definition of the concrete thermal elongation, EC2 Part 1.2 [83] 

distinguishes again between siliceous and calcareous as it can be observed in Figure 

8.11. 
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Figure 8.11. Thermal elongation of concrete at elevated temperatures from EC2 Part 
1.2 [83] 

 

8.3. FIRE PERFORMANCE 

The data obtained through the numerical calculations of the single blind-

bolted connections and the double T-stub connections was analysed, taking into 

account the resulting stress-strain distribution and the temperatures field. The main 

findings were related to the mode of failure and the Fire Resistance Rating FRR (the 

fire exposure time before the connection collapse), which provided an estimation of 

which element controls mostly the performance of the connection and their fire 

capacity. 

Furthermore, the comparison of the results between the three cases of the two 

connections, i.e. the HB to the HSS (UHB), the HB to the CFT (HB) and the EHB to 

the CFT (EHB), allowed the assessment of the concrete effect and the influence of 

the bolt anchorage. 
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8.3.1. SINGLE BLIND-BOLTED CONNECTIONS 

8.3.1.1. Failure mode in single blind-bolted connections 

As it is mentioned in section 7.4 of this document, the plate and tube 

thickness of single blind-bolted test specimens were designed in order that the 

connections failed as a consequence of the fastener system fracture (plate was 30 

mm thick and tube 20 mm thick). In the same way that at room temperature, at 

elevated temperatures the two parts of the fastener system determined the response: 

the shank of the bolt and/or the sleeve. Depending on the type of connection, the 

failure was governed by one of them or both at the same time. In case of being 

dominated by the sleeve, strength was lower but flexibility higher. 

Stress, strength capacity and temperature along the shank and the sleeve of 

the bolt at failure are depicted in Figure 8.12 and Figure 8.13, for the three types of 

connections: UHB to HSS column, HB to CFT and EHB to CFT column. They show 

the comparison of Mises stress along the two parts of the bolt (UHBMISES,T, 

HBMISES,T and EHBMISES,T) with their respective steel strength capacity (UHBfu, HBfu 

and EHBfu), immediately before the collapse. The axis indicating the stress value is 

on the left side. In addition, the second axis located at the right side of the figures 

serves to know the temperature at failure for the shank and sleeve paths. When the 

stress reached the ultimate capacity, i.e. the two curves met, the corresponding part 

was assumed to fail. For the shank bolt, the failure section was next to the bolt head 

(Figure 8.12), where temperature was highest and, consequently, the steel strength 

was lowest. Meanwhile, in the sleeve, the highest stress was concentrated around the 

folded section, Figure 8.13. The same pattern was observed for all the connections. 
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Figure 8.12. Mises stress (MISES,T), ultimate steel strength (fu,T), and temperatures 
(T) in shank at failure for the three types of single blind-bolted connections. 
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Figure 8.13. Mises stress (MISES,T), ultimate steel strength (fu,T), and temperatures 
(T) in sleeve at failure for the three types of single blind-bolted connections. 
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In the HB connection to the HSS column (UHB), sleeve and shank failed at 

the same time, Figure 8.12 and Figure 8.13. However, in connections to CFT 

columns (HB and EHB) the failure was dominated by the shank fracture, due to the 

fact that stresses were distributed through the concrete and thus, sleeve damage was 

reduced. As a conclusion, in all the connection types, the ultimate strength capacity 

of the shank bolt was reached at the collapse. 

These results can be verified looking at the following figures extracted from 

the FE models. They show the stress distribution and the temperature at failure for 

the three cases of single blind-bolted connections: HB to HSS in Figure 8.14, HB to 

CFT in Figure 8.15 and EHB to CFT in Figure 8.16. 

 

 

  

Figure 8.14. Mises stress (N/m2) and temperatures (ºC) in the FE model of the single 
HB connected to HSS at failure (20.55 min of fire exposure) 
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Figure 8.15. Mises stress (N/m2) and temperatures (ºC) in FE model of the single 
HB connected to CFT at failure (24.68 min of fire exposure) 
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Figure 8.16. Mises stress (N/m2) and temperatures (ºC) in FE model of the single 
EHB connected to CFT at failure (24.70 min of fire exposure) 

Looking at the temperatures along both parts, shank and sleeve, in Figure 

8.12 and Figure 8.13, it was observed that failure occurred when the most damaged 

section of shank was around 500ºC, at which almost 50% reduction of steel bolt 

capacity took place. Furthermore, the temperature of the head bolt at failure was the 

same for the connections to the HSS and to the CFT columns. This fact was 

corroborated by extracting the temperature-time curve for the headbolt of the three 

connections that is shown in Figure 8.17. Although the total time of fire exposure 

was shorter for the HSS, it heated faster than the connection to the CFT column. 
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Figure 8.17. Temperature-time curve for exposed head bolt and at the moment of 
failure in single blind-bolt connections. 

Finally, the temperature of the bolt at failure was compared with the critical 

temperature obtained applying the equation (8.1) from EC3 Part 1.2 [73] section 

4.2.4, which considers a uniform distribution of the temperature in the section. It 

gives the value of temperature at which the element fails according to the degree of 

utilization at time t=0, µ0. In the case of the connections, the degree of utilization 

was assumed equal to 0.5, taking into account that the load employed in calculations 

was half the maximum. Nonetheless, reduction factors normally affect the value, so 

in practice it would correspond to a higher value. Eventually, the critical temperature 

obtained was 585ºC, similar to 570ºC obtained in the head bolt and slightly higher 

than 500ºC observed at the failure section of the shank. 
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8.3.1.2. Fire Resistance Rating (FRR) of single blind-bolted connections 

A useful indicator of the connection fire resistance is the Fire Resistance 

Rating (FRR) or time in minutes that the connection is capable of sustaining the 

loads before failure.  

Firstly, FRR was evaluated for single blind-bolted connections under 

different load levels with regards to the maximum load supported at room 

temperature, the aim was knowing the load influence. Table 8.2 shows that FRR 

increased by 11 minutes for the three connections types when load level decreased 

from 50% to 20% load level. Expectedly, as the load level was lower, the FRR 

improved. Moreover, it was worth noting that unprotected connections to CFT 

columns reached around 36 min of FRR when 20% loaded. 

Table 8.2. FRR for different load level in single blind-bolted connections. 
Comparison between the connections to CFT and HSS columns.  

Specimen index Load level  FRR FRRHB/EHB-FRRUHB 

  % min min % 

UHB16-100-8.8D-L50 50 20.55     

UHB16-100-8.8D-L40 40 23.15     

UHB16-100-8.8D-L20 20 30.78     

HB16-100-8.8D-C40-L50 50 24.68 4.13 20.12 

HB16-100-8.8D-C40-L40 40 27.01 3.87 16.71 

HB16-100-8.8D-C40-L20 20 35.60 4.82 15.67 

EHB16-150-8.8D-C40-L50 50 24.70 4.15 20.21 

EHB16-150-8.8D-C40-L40 40 27.14 4.00 17.27 

EHB16-150-8.8D-C40-L20 20 35.63 4.85 15.77 

 

Comparing FRR between connections to HSS and to CFT loaded at 50% 

maximum load, the ones to CFT gained 4-5 min (16-20%) of FRR with respect to 

HSS connections, Table 8.2. It was observed that concrete effect on bolt temperature 

became more important in the area of the bolt directly in contact (Figure 8.12). 

Besides, temperatures in Figure 8.15 and Figure 8.16 helped to verify the 

observation. However, the shank failure occurred next to the exposed area of the 

bolt, so concrete influence was not as remarkable as it was expected. On the other 
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hand, the heat sink effect of concrete was assumed more important in case of thinner 

tube and plate. 

Furthermore, regarding the type of blind-bolt, there were no differences in 

FRR between the Hollo-bolt and the Extended Hollo-bolt connection to CFT 

columns, Table 8.2. It was also attributed to the fact that the fracture took place next 

to the head of the bolt and the bolt anchorage within the concrete did not reduce the 

stress or the temperature in that section (Figure 8.15 and Figure 8.16) 

8.3.2. DOUBLE T-STUB CONNECTIONS TO TUBE COLUMN 

8.3.2.1. Failure mode of the double T-stub connections to tube column 

The FE model of the double T-stub bolted connection permitted gathering 

more data to understand the fire performance of the connections. Thickness of the T-

stub flange (50mm) was designed to eliminate any influence on the behaviour, 

however, the tube thickness was significantly lower (10 mm) than in single blind-

bolted connections (20 mm), so its effect should not be totally neglected. 

As for single blind-bolted connections, Mises stress and ultimate capacity 

were compared along shank and sleeve, in order to know which of them controlled 

the failure of the connection and where fracture was assumed to happen. Similarly, 

Figure 8.18 and Figure 8.19 present two axes, left and right, which indicate the 

stress and the temperature respectively. At failure, Mises stress in the shank of the 

connections to CFT columns (HBMISES,T and EHBMISES,T) was equal to its ultimate 

capacity (HBfu,T and EHBfu,T), which meant that shank was suffering large stress and 

strain and was not able to support load. Conversely, in the case of the connection to 

HSS, Mises stress in shank (Figure 8.18) was lower than its ultimate strength while 

the sleeve registered the maximum stress level that was able to resist (Figure 8.19). 

In addition, sleeve was also critical in the HB connected to the CFT column, where 

both shank and sleeve were assumed to fail at the same time, Figure 8.19. 

Again, the failure of the bolt shank was placed next to the head of the bolt as 

corresponded with the hottest part with the highest stress. In the case of the sleeve, it 

failed by the folded area (Figure 8.18 and Figure 8.19) as in the previous 

connections. 
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Figure 8.18. Mises stress (MISES,T), ultimate steel strength (fu,T), and temperatures 
(T) in shank at failure for the three types of T-stub connections. 
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Figure 8.19. Mises stress (MISES,T), ultimate steel strength (fu,T), and temperatures 
(T) in sleeve at failure for the three types of T-stub connections. 
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Regarding the deformation of the tube column at the connection failure, 

Figure 8.20 shows the shape column acquired while bolts were being pulled apart by 

the load acting in the T-stub. It is noteworthy how concrete prevented the 

deformation of the tube column that took place in the HSS, as it occurred at room 

temperature. 

Besides, Figure 8.20 and Figure 8.21 indicate respectively Mises stress and 

plastic strain values across the connection, which helped for the detection of the 

failure mode for each type of connection. It was verified that in the connection to the 

unfilled column, stress on the sleeve determined the failure (Figure 8.20a), despite 

the similar stress in shank and sleeve, the lower sleeve capacity conducted to the 

higher damage. Alternatively, Figure 8.21a shows clearer the sleeve failure, since 

the shank did not present plastic deformations. Furthermore, it should be noted that 

HSS connection presented a peak of stress that distorted the colour scale of the FE 

model output in Figure 8.20a. Eventually, the area of the plate around the hole 

presents also high stress that could be influencing the failure.  

In the case of connections to CFT columns, again the highest stress levels 

were detected in sleeve and shank (Figure 8.20b and Figure 8.20c). Nonetheless, the 

plastic strains distribution observed in Figure 8.21b and Figure 8.21c, gave more 

information about the damage state in the blind-bolts. The large strains in the bolt 

shank led to the instable equilibrium in the specimen and the resulting end of the 

calculation. Compared with the single blind-bolted connections, stress distribution 

through concrete was limited by the closeness of the tube column. Meanwhile the 

deformation of the tube, due to the smaller thickness, introduced a new factor to be 

further considered. Moreover, the bolt did not present a symmetric behaviour about 

the vertical planes as it was observed in the specimens with the single blind-bolt. 
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a)HSS connection b)HB in CFT connection c)EHB in CFT connection 

Figure 8.20. Mises stress (N/m2) at failure in the double T-stub connection. 
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a)HSS connection b)HB in CFT connection c)EHB in CFT connection 

Figure 8.21. Plastic strain (m/m) at failure in the double T-stub connection. 
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a)HSS connection b)HB in CFT connection c)EHB in CFT connection 

Figure 8.22. Temperature (ºC) at failure in the double T-stub connection. 

Finally, the temperatures across the section for the three cases are indicated 

in Figure 8.22. Differently from single blind-bolted connections, the temperature of 

the exposed head of the bolts in the T-stub connections was not the same at the 

connection failure when column was HSS or CFT, Figure 8.18 and Figure 8.19. For 

the HSS column the temperature was lower in the exposed area. In addition, Figure 
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8.23 shows the temperature evolution in the head of the bolt during the fire exposure 

for the three cases and differences between the section with and without concrete 

were small. This fact was attributed to the larger thickness clamped in the T-stub 

connections which reduced the sink effect of the concrete. The temperature at failure 

is pointed out in Figure 8.23 to prove that the bolt in the HSS connection did not 

reach the temperature read in the CFT connections as the sleeve failed before. 
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Figure 8.23. Temperature-time curve for exposed head bolt and at the moment of 
failure in T-stub connections. 

8.3.2.1. Fire Resistance Rating (FRR) of the double T-stub connections to 

tube column 

The results in terms of FRR are summarized in Table 8.3 (load level 50% 

maximum force supported) where FRR enhancement in connections filled with 

concrete relative to unfilled columns meant around 4 min, i.e. 25% increase. On the 

other hand, no differences were detected between the Hollo-bolt and the Extended 

Hollo-bolt response. In the latter, the part of the bolt deepest embedded in concrete 

was colder (Figure 8.22), but it had no effects on the temperature of the bolt fracture 

section.  
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~520ºC 
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Table 8.3. FRR for double T-stub blind-bolted connections and comparison of 
values between connections to the HSS and the CFT columns. 

Specimen index Load level  FRR FRRHB/EHB-FRRUHB 

  % min min % 

T-UHB16-120-8.8D 50 17.78     

T-HB16-120-8.8D-C50 50 22.15 4.37 24.55 

T-EHB16-120-8.8D-C50 50 22.05 4.27 23.99 

 

8.4. INFLUENCE OF THE MECHANICAL PROPERTIES OF 

STEEL BOLTS AT ELEVATED TEMPERATURES 

As a result of the previous analysis it was concluded that the fire response of 

the connection is determined to a great extent by the properties of the high strength 

steel bolt of the fastener system at elevated temperatures. Although EC3 Part 1.2 

Annex D [73] proposes a strength reduction factor for high strength steel bolt, 

several authors have noted the necessity of further research, for instance Kodur et al. 

[90], whose approaches have been considered in the FE models of the single blind-

bolted connections. Kodur et al. [90] carried out laboratory tests on Grade A325 

(fy=630 MPa, fu=830 MPa) and A490 bolts (fy=895 MPa, fu=1030 MPa) which 

served to characterize their thermal and mechanical properties at elevated 

temperatures. The results from that work are compared to EC3 Part 1.2 Annex D 

[73], Figure 8.24 indicates strength reduction factors comparison and Figure 8.25 is 

related to the relative elongation. 
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Figure 8.24. Comparison of strength reduction factors for high strength steel bolts 
from Kodur [90] and EC3 Part 1.2 Annex D [73] 
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Figure 8.25. Comparison of relative thermal elongation for high strength steel bolts 
from Kodur [90] and EC3 Part 1.2 [73] 
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The versatility of the numerical model allowed the assessment of the influence 

on FRR of using Kodur’s predictions [90] for bolts A325. Figure 8.24 exhibits that 

the reduction factor by Kodur [90] was over the recommendations of Annex D [73] 

up to 450ºC, but never again beyond this temperature. Concerning the temperature 

in the fracture section of shank at failure in the single blind-bolted connection, it was 

around 500ºC (Figure 8.12), so reduction factors from Kodur [90] estimated a value 

under Annex D [73] recommendation and consequently the FRR would be two 

minutes lower, Table 8.4. 

It was concluded that the proposal from Kodur [90] did not introduce important 

differences in the connections response with respect to FRR. 

Table 8.4. Effect on FRR of using Kodur properties in single blind-bolt. 

Specimen index FRR FRRKodur-FRREC3 FRRCFT-FRRHSS 

  min min % min % 

UHB16-100-8.8D-EC3 20.55         

UHB16-100-8.8D-Kodur 18.33 2.22 10.79     

HB16-100-8.8D-C40-EC3 24.68     4.13 20.11 

HB16-100-8.8D-C40-Kodur 21.87 2.82 11.41 3.53 19.27 

EHB16-150-8.8D-C40-EC3 24.03     3.48 16.95 

EHB16-150-8.8D-C40-Kodur 21.88 2.15 8.9 3.55 19.36 

8.5. FIRE RESISTANCE STEEL BOLTS 

The crucial role of the steel bolt led to consider fire resistant (FR) steel bolts 

as a method to enhance the connection behaviour at elevated temperatures, whose 

effect on blind-bolted connections is reported in this section. The chemical 

composition and manufacturing heat treatments of FR steel bolts allow better 

strength retention than in normal high strength steel. FR steel was a demand of steel 

manufacturers in Japan two decades ago and hence Sakumoto et al. [96] developed 

an experimental program testing the tensile and shear strength of FR steel bolts for 

FR steel constructions. Figure 8.26 shows the reduction factors for the FR steel bolts 

from Sakumoto et al. [96] under tensile load and the ones for high strength steel 

bolts from EC3 Annex D [73]. It can be observed that at 500ºC the reduction factor 

from Annex D [73] was 0.55 while experiments by Sakumoto et al. [96] pointed out 

a value of aprox. 0.75, so tensile strength was significantly higher for FR steel bolts. 
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The FRR improvement that these bolts meant for the blind-bolted connections is 

presented in the next subsection. 
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Figure 8.26. Comparison between reduction factors from EC3 Annex D [73] for 
steel bolts and from Sakumoto [96] for fire resistance steel bolts. 

8.5.1. Effect of FR steel bolts on single blind-bolted connections 

Table 8.5 indicates the FRR for the three specimens of single blind-bolted 

connections with normal steel bolts and with FR steel bolts. Comparing the values, 

in connections to HSS the FRR improvement was around only 1 min because the 

failure was dominated by the sleeve. However, when the tube column was CFT, the 

FR steel bolts provided 4 min FRR increase compared with normal steel, that meant 

FRR 16% enhancement in the case of using HB fastener system and 20% for EHB. 

In conclusion, when the shank of the blind-bolt governed the connection collapse, 

the enhancement provided by the FR steel bolt was not high, but it should be taken 

into consideration as a further method to comply with certain structural fire 

resistance requirements (i.e. 30 min of fire exposure resistance) 

The use of FR steel bolts in addition to the concrete infill increased the 

differences in FRR between connections to HSS and CFT. Table 8.5 shows that FR 

steel bolts in CFT connections represented 35% FRR improvement compared with 

the same bolts in connections to HSS columns. 
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Table 8.5. Effect on FRR of using FR steel bolts in single blind-bolted connections. 

Specimen index FRR FRRFR-FRREC3 FRRCFT-FRRHSS 

  min min % min % 

UHB16-100-8.8D-EC3 20.55         

UHB16-100-8.8D-FR 21.48 0.93 4.54     

HB16-100-8.8D-C40-EC3 24.68     4.13 20.11 

HB16-100-8.8D-C40-FR 28.83 4.15 16.81 7.35 34.21 

EHB16-150-8.8D-C40-EC3 24.03     3.48 16.95 

EHB16-150-8.8D-C40-FR 28.88 4.85 20.18 7.40 34.45 

8.5.2. Effect of FR steel bolts on T-stub connections to tube column 

The response of double T-stub connections was also numerically simulated 

using FR steel bolts in order to determine the enhancement derived. Table 8.6 

resumes the values of FRR extracted from the models with high strength steel bolts 

and with FR steel bolts. 

For connections to unfilled columns, the use of FR steel bolts did not involve 

any improvement. The sleeve was the most damaged element and controlled the 

FRR, consequently the use of FR steel bolts did not have any influence. 

In connections to CFT column and Hollo-bolts as the fastener system, FRR 

increased by 2 min. In these connections, together with the shank, the sleeve was in 

its ultimate stage of strength, so the enhancement of the steel bolt strength made the 

fracture move definitely to sleeve, which was capable to resist the load only 2 

minutes more than in the case of normal high strength steel bolts. Conversely, in 

connections to CFT with EHB, the FRR increased by 36% compared with high 

strength steel bolts. The anchorage achieved a better distribution of stress, so that, 

stress did not concentrate in the sleeve, and the bolt shank dominated the connection 

failure. Eventually, it was observed the influence of the thickness plate in the fire 

response of the connection since it was one of the most significant differences 

between the single blind-bolted connection and the double T-stub connection. 

As a result, the effect of the anchorage and the use of FR steel bolts can be 

important in those cases where the tube thickness was not rigid enough to neglect its 

contribution to the connection fire performance, nonetheless, a further study is 

required. In addition, the combination of concrete filling the column, EHB as a 
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fastener system and FR steel bolts represented 69.48% improvement compared with 

HB to a HSS, i.e. FRR increased from 17.78 min to 30.13 min as it can be observed 

in Table 8.6. 

Table 8.6. Effect on FRR of using FR steel bolts in T-stub connections. 

Specimen index FRR FRRFR-FRREC3 FRRCFT-FRRHSS 

  min min % min % 

T-UHB16-120-8.8D 17.78         

T-UHB16-120-8.8D-FR 17.78 0  0 0  0 

T-HB16-120-8.8D-C50 22.15     4.37 24.55 

T-HB16-120-8.8D-C50-FR 24.10 1.95 8.80 6.32 35.52 

T-EHB16-120-8.8D-C50 22.05     4.27 23.99 

T-EHB16-120-8.8D-C50-FR 30.13 8.08 36.6 12.35 69.4 

8.6. FORCE-DISPLACEMENT CURVE AT HIGH 

TEMPERATURES 

At room temperature, the stiffness increase of the connection linked to the 

concrete core of CFT columns and the anchorage of EHB has been already proved 

[19, 21]. However, at high temperatures, materials deteriorate and introduce new 

connection behaviour patterns. This section reports the force-displacement curve for 

each connection at high temperatures in order to assess the reduction in strength and 

stiffness as a consequence of materials weakening. For this analysis, steady state 

calculations were carried out. Contrary to transient state analyses where connections 

are loaded up to a constant load and then are exposed to a uniform temperature 

increase, in the steady state analysis, connections were first heated linearly 

(10ºC/min) to the specified temperature, and then, at constant temperature load was 

applied until the connection failure. Nonetheless, the steady state analysis does not 

represent a real process of loading that could take place in a connection since they 

disregards the previous strain history of the connection, so the results from it serve 

only to obtain a qualitative pattern of behaviour. 

Both, the single blind-bolted connections and the double T-stub connections, 

were calculated at two different temperatures which corresponded to 450ºC and 

550ºC at the head of the bolt. The force-displacement curves at 450ºC and 550ºC 
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were compared with the ones at room temperature (20ºC). High strength steel bolts 

were employed using reduction factors from EC3 Part 1.2 Annex D [73] 

Figure 8.27 shows the force-bolt displacement curve for the single blind-

bolted connections: HB connected to HSS column, HB to CFT column and EHB to 

CFT column. Differences in stiffness that appeared at room temperature between the 

three connection types were also observed at 450ºC and 550ºC. The highest stiffness 

was therefore presented by the connection with EHB, due to the anchorage, and 

secondly by HB in the connection to the CFT column. Concrete still increased its 

influence at high temperatures, even more due to its relative better behaviour at 

elevated temperatures in comparison with steel. In the case of the HB connection to 

the CFT, an initial slip was detected, which was attributed to the adjustment of 

sleeve in its interaction with the plate once load was applied. That fact modified 

locally the trend, but the overall curve confirmed the findings related to the higher 

stiffness of HB connections when column is filled. Moreover, Figure 8.27 illustrates 

that stiffness of the EHB to CFT connection at 550ºC was similar to the stiffness of 

the HB to HSS connection at room temperature, so the improvement due to the 

concrete was substantial. Concerning the maximum strength, steel bolt capacity was 

reached, except for the connection to the unfilled section at 450ºC and 550ºC where 

the failure occurred before bolt shank fracture.  
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Figure 8.27. Comparison of force-bolt displacement curves from the steady state 

analysis for the single blind-bolted connections. 
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Similar conclusions were obtained for the double T-stub connections, as it 

can be observed in Figure 8.28, where load-plate separation curves were depicted. 

At room and high temperatures, stiffer connections were attained when hollow 

section was filled with concrete and using Extended Hollo-bolt instead of Hollo-

bolt. Connection strength was governed by the bolt shank strength, except for 

connection to the unfilled section at room temperature. However, at 450ºC and 

550ºC the ultimate capacity of the shank was reached in all the connections. The 

difference here with the transient analysis is that in the steady analysis the load is 

applied when materials have already changed their properties due to the temperature, 

conversely they do not present any deformation at the beginning of the loading. This 

fact implies other terms in the equilibrium equations of the system and modifies the 

solution. On the other hand, as in the single connections, when the column was CFT 

(HB and EHB) stiffness at 550ºC was higher than in connections to HSS columns at 

room temperature, Figure 8.28. Again, the concrete helped to enhance considerably 

the connection stiffness. 
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Figure 8.28. Comparison of force-plate separation curve at different temperatures for 
the double T-stub connections. 

To conclude, this analysis revealed that stiffness enhancement due to 

concrete infill and anchorage was also observed at high temperatures, the increase 
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was assumed even higher than at room temperature, nonetheless, it required a further 

study. On the other hand, stiffness achieved in connections with EHB at 550ºC was 

similar to stiffness in connections to HSS at room temperature, which highlighted 

the benefits of the concrete and the blind-bolt anchorage. 

8.7. CONCLUSIONS 

Thermo-mechanical FE models of blind-bolted connections to CFT and HSS 

columns representing the tension zone of moment-resisting connections at elevated 

temperatures were developed. These models were based on calibrated numerical 

simulations of the thermal and mechanical behaviour of the connections.  

Two connections were analyzed, a single blind-bolt joining a plate to a tube 

column and a double T-stub connection to a tube column. The type of column (HSS 

and CFT) and the type of fastener system (HB and EHB) were the main variables 

considered in each connection.  

The objective was to provide data to gain insight into the behaviour of tensile 

loaded blind-bolted connections in fire and to assess the effect of concrete infill and 

the anchorage of the blind-bolt. It should be noted that an important parameter for 

the comparison was the Fire Resistance Rating FRR. 

The main conclusions extracted from the numerical study were the following: 

- Lower load level meant higher FRR, as it could be observed in the single 

blind-bolt connections. 

- Concrete filling the tube column resulted in 16-20% enhancement in FRR 

for the connection with the single blind-bolt compared with connections to unfilled 

columns, and around 25% for the double T-stub connections. In single blind-bolt 

connections, when column was HSS the connection failure was shared by the sleeve 

and the shank of the fastener system. On the other hand, in the connections to CFT 

columns, the shank of the fastener system governed the connection collapse, since 

stresses in the sleeve were lower due to the concrete. In the case of T-stub 

connections with HSS columns, failure took place in sleeve while the ultimate 

strength of the shank was not reached. Finally, in T-stub connections to CFT 

columns, as it happened in the single bolted connection, shank was at its ultimate 

capacity for both, HB and EHB, although HB sleeve also presented stresses close to 

failure. As a result, in columns with concrete the bolt was able to develop its 

ultimate strength, while in HSS failure of the sleeve will cause an earlier or 
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simultaneous collapse of the connection and the shank could not be at the last stage 

of capacity. 

- The EHB’s anchorage of the bolt into the concrete did not represent an 

increase in the FRR compared with the HB in connections to CFT columns. The 

failure of the shank was localised next to the bolt head and neither temperature nor 

stress were affected by the anchorage.  

- FR steel bolts were assessed as a method to improve the FRR. For the 

connections to HSS, FR steel bolts did not involve any benefit because the failure 

was dominated simultaneously by the sleeve whose properties did not change. In the 

single blind-bolt connections to CFT, 15-20% improvement related to normal high 

strength steel was obtained for HB and EHB, respectively. In the T-stub connections 

with HB and CFT columns, both shank and sleeve were simultaneously close to 

failure, so a slight FRR increase of 2 min was achieved and the failure moved 

definitely from shank to sleeve. Nevertheless, in T-stub connections with EHB, the 

anchorage reduced stress concentration in sleeve and FR steel bolts governed the 

failure and meant 36% (8min) improvement in FRR compared with the use of 

normal high strength steel bolts. So, the effect of the FR steel and the anchored 

blind-bolt was more significant when column tube was thinner, nonetheless, a 

further study is required. 

Finally, steady state analyses were carried out to observe the stiffness and 

strength of blind-bolted connections at 450ºC and 550ºC. Same conclusions as at 

room temperature were obtained, i.e. the use of EHB provided a better stress 

distribution achieving stiffer connections and the concrete core reduced tube 

deformation and sleeve damage. Consequently, EHB enhanced the connection 

stiffness but not its ductility. Moreover, it was worth noting that connections to CFT 

showed the same stiffness at 550ºC as connections to HSS at room temperature.  
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This chapter presents a brief summary of the work, the main conclusions 

drawn in this dissertation and the guidelines for a further work. 
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9.1. SUMMARY 

This work deals with the fire behaviour of blind-bolted connections to 

concrete filled tubular connections, specifically with the tension part of moment 

resisting connections. For the thermo-mechanical analysis three-dimensional 

numerical models of the connections were developed, which were based on 

sequentially coupled FE models of the thermal and the mechanical part of the 

connection behaviour. Therefore, connections were first studied thermally and 

mechanically separately.  

The absence of laboratory data regarding the temperature distribution in 

blind-bolted connections exposed to fire led to develop a short experimental 

program. Besides the analysis of the measurements, the data extracted was used to 

calibrate the thermal numerical model and to assess some analytical approaches to 

calculate the temperature in the bolt. On the other hand, the behaviour of the blind-

bolted connections at room temperature had already been objective of researches, so 

the FE models could be calibrated with data from the literature. 

Finally, the contribution of this work is the new data related to the fire 

performance of blind-bolted connections and the conclusions drawn regarding the 

role of the concrete and the fastener system on the connection characteristics at high 

temperatures. 

9.2. CONCLUSIONS 

Main conclusions extracted from this dissertation are presented next: 

From the state of the art (Part I) 

Through the literature review a gap on the study of blind-bolted connections 

under fire conditions was observed. However, in the case of room temperature 

conditions, advantages of blind-bolts over welding in connections to hollow sections 

had been already proved, as well as their capability to support some bending 

moments. Moreover, attempts to enhance the stiffness of the fastener system were 

under analysis, which were linked to the use of the bolt anchorage within the 

concrete core of CFT columns. 

On the other hand, the state of the art revealed the numerous studies on the 

fire performance of connections between steel open sections beam to column, and 

other composite connections, but never considering blind-bolted connections. 
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Furthermore, the importance of the steel of the bolt in the blind-bolt response 

under fire conditions conducted to review the current work on the properties of high 

strength steel bolts at elevated temperatures. The chemical components and the heat 

treatments in the manufacturing process determine the bolt response, nonetheless, 

EC3 recommendations represents a good approach in most of the cases. In addition, 

FR steel was taken into account in many investigations and also here, as a way of 

improving the fire capacity. 

Finally, it was detected a further work to do related to the development of 

simple methods that characterize blind-bolted connections at room and elevated 

temperatures (i.e. implementation within the component method) without the 

necessity of experiments or complex numerical models. 

From the thermal study of the blind-bolted connections (Part 2) 

From the thermal experimental program that comprised 12 small-scale 

specimens of single blind-bolted connections and where variables were: the section 

dimensions of tube column (150x150, 220x220, 250x150, 350x150 mm), the type of 

fastener system (Hollo-bolt or Extended Hollo-bolt), and the type of column (to HSS 

or CFT), the following conclusions were extracted: 

- Slight differences, lower than 30ºC, were detected throughout the entire 

period of fire exposure between the four different sizes studied. So, the size and 

thickness tested did not have a significant influence on the thermal response. 

- The effect of concrete filling the steel section tube was noticeable, even in 

the exposed head of blind-bolts, where 100ºC lower temperatures were measured in 

CFT with respect to HSS column connections.  

- The longer shank embedded in concrete of Extended Hollo-bolt presented a 

negligible effect on the temperature of the external and more damaged part of the 

bolt. 

From the calibration of the heat transfer numerical model the main aspects to 

take into account were: 

- The use of the thermal properties of mild steel for high strength steel bolts 

from EC3 Part 1.2 [73],i.e. thermal conductivity and specific heat, represented a 

good approximation. Relative small differences compared with other authors from 

the literature [90] were observed. 

- The importance of detecting the thermal resistance to heat transfer 

conduction in the boundaries between different parts of the connections was noted. 
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Therefore, for the tested blind-bolted connections, it was considered the necessity of 

assuming a gap conductance of 200 W/m2K for the sleeve interaction with the hole 

surfaces in the clamped plates and for the steel tube with the concrete core. 

In addition, the FE model of whole endplate connections between an IPE180 

beam and a tubular column (HSS and CFT) justified the use of small-scale 

connections to study the thermal behaviour of the connections, since comparison 

revealed similar and safe predictions from the FEM simulations of the small-scale 

specimens.  

From the assessment of simple analytical methods to obtain the bolt 

temperatures in the connections, the main highlights were: 

- The thermal gradient from Annex D of EC3 Part 1.2 [73] was deemed a 

poor approximation, safe up to 20 min and 30 min of fire exposure for connections 

to HSS and CFT, respectively.  

- The equation of EC3 Part 1.2 Clause 4.2.5.1 [73], which is function of ratio 

Am/V, was found not appropriate to be used in CFT column connections except for 

the case of adopting ratios Am/V (factor 1) proposed by Ding and Wang [81], which 

gave more realistic approaches. However, the application of Ding and Wang’s 

factors should be carefully considered depending on the elements involved in the 

connections. 

- The equations from Espinos et al. [39] and Leskela [40] that established 

equivalent temperature for the  steel tube in CFT columns, overestimated the 

temperature in the exposed part of the bolt by around 100ºC.  

From the numerical analysis of blind-bolted connections at room 

temperature (Part 3) 

From the calibration work of the FE models that reproduced the response of 

connections under tensile loads at room temperature the main conclusions were: 

- The blind-bolt system can be modelled by means of two parts assuming the 

tightened position, which simplified the geometry at the same time that captured 

correctly the blind-bolt behaviour. 

- In connections to CFT the tightening of the bolt had to be applied in a 

previous stage to the concrete pouring and it was input as an initial state of stress-

strain for the steel parts of connections. 

- The mechanical behaviour on interactions between the different parts of the 

connections was characterized in the normal direction by means of the ‘hard’ contact 
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model and in the tangent direction using the Coulomb friction model. The friction 

coefficient in the surfaces contact was 0.25 except for the higher values in the sleeve 

interfaces where the complexity of the interaction and slippage of surfaces 

introduced convergence problems.  

- Steel constitutive model used Von Mises yield surface to define its plastic 

behaviour, while Damage Plasticity model was used to define the brittle behaviour 

of concrete. Regarding damage parameters for concrete behaviour, finally they were 

not necessary due to the good correlation obtained without their consideration. 

- The non-linear behaviour of the connection besides the multiple interactions 

produced several convergence problems, which were solved introducing viscosity 

forces that helped to bypass the temporary instabilities. 

The outcomes of the numerical simulations verified the results from the 

bibliography experiments [19, 21]: 

- The concrete filling in CFT columns prevented the inward deformation of 

columns sides and the shear failure of the sleeve of the Hollo-bolt. In CFT 

connections the failure normally occurred because the strength capacity of the shank 

was exceeded, since the concrete helped to reduce the damage in the sleeve. 

- The anchorage of the Extended Hollo-bolt resulted in a stiffness increase of 

the connections compared with Hollo-bolt, because the anchorage allowed a better 

distribution of stress through the concrete and limited strains in the sleeve. 

From the numerical study of the fire behaviour of blind-bolted 

connections (Part 4) 

Two types of connections were analysed under fire conditions: a single blind-

bolt connecting a plate to a tube column and a double T-stub connection to a tube 

column. For each connection three cases were considered: Hollo-bolt system to HSS 

column, Hollo-bolt system to CFT column and Extended Hollo-bolt to CFT column. 

The conclusions drawn from the numerical study were evaluated in terms of Fire 

Resistance Time, or time that connections are capable of supporting the load under 

fire exposure until the failure: 

- A reduction of the load level supported by the connections represented 

higher FRR. 

- The FRR enhancement for connections to CFT was 16-20% compared with 

connections to HSS in the case of the single blind-bolted connections, and around 

25% for the double T-stub connections. Exposed to the fire, failure in connections to 
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HSS was detected in the sleeve and in the shank of the fastener system in the case of 

the single blind-bolt, and just in sleeve when T-stub connections. However, in the 

connections to CFT columns the shank bolt of the fastener system governed the 

connections collapse, meanwhile stresses in the sleeve were lower due to the 

concrete. Again, for the T-stub connections with HB to CFT column, the sleeve 

suffered high stress level and both sleeve and shank were at their ultimate capacity 

in the moment of failure. The thinner plate of the T-stub connections was a factor 

that influenced the response. 

- Extended Hollo-bolt did not represent an increase in the FRR compared 

with the Hollo-bolt in connections to CFT columns. The fact that failure of the 

shank was localised next to the bolt head produced that neither temperature nor 

stress were affected by the shank anchorage.  

- FR steel bolts were assumed as a method to improve the FRR. In the case of 

the connections to HSS, FR steel bolts did not involve any benefit because the 

failure was dominated simultaneously by the sleeve. In the single blind-bolted 

connections to CFT, 15-20% improvement related to normal high strength steel was 

obtained for HB and EHB, respectively. In the T-stub connections when HB was the 

fastener system, the failure was taking place almost at the same time in sleeve and 

shank, with the better performance of steel bolts failure definitely moved to sleeve 

and only 2 minutes more in FRR were achieved. Alternatively, in T-stub 

connections with EHB, 36% (8min) improvement in FRR compared with the use of 

normal high strength steel bolts was observed. It was attributed to fact that the 

anchorage reduced stress concentration in the sleeve and FR steel bolts governed the 

failure, which was also linked to the lower thickness of the tube column. 

Finally, in order to evaluate the stiffness and strength of connection at 

particular stage of the fire exposure, steady state analyses were developed. The 

force-displacement curves at 450ºC and 550ºC for the single blind-bolted connection 

and the double T-stub connection were obtained. They demonstrated that stiffness 

enhancement in CFT connections due to the concrete itself and the use of EHB 

observed at room temperature, extended to high temperatures. The anchorage of 

EHB permitted stiffer connections as a consequence of the better stress distribution. 

It was highlighted that connections to CFT were capable of achieving the same 

stiffness at 550ºC as connections to HSS at room temperature.  
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9.3. FUTURE WORK 

This research attempts to gain insight into the fire behaviour of blind-bolted 

connections, which involves many aspects and considerations that exceeds the scope 

of the work and were not able to be covered. Next paragraphs indicate 

recommendations for further works to know better their fire performance. 

Regarding the pure heat transfer in blind-bolted connections 

- Additional experimental work is suggested that permits the evaluation of a 

wider range of parameters such as size and thickness of the column, different types 

of steel bolts, different concrete mixtures and also some examples of the whole 

connection. 

- From these experimental data the numerical model could extend the range 

of variables and values, detecting new influential parameters. 

- Finally, by means of the data extracted in the two previous works it would 

be interested the elaboration of simple expressions to determine the temperature in 

the bolt, for both, HSS and in CFT connections. 

Regarding blind-bolted connections behaviour at room temperature 

Further work is currently being carried out at the University of Nottingham, 

which takes into account some aspects not considered yet. The purpose is the 

characterization of the blind-bolt and the tube column in the framework of the 

component method included in EC3 Part 1.8 [5] 

Regarding the fire behaviour of blind-bolted connections 

The proposed tasks will be oriented to increase the data provided by the 

present dissertation and to accomplish therefore guidelines for the designers to use 

these types of bolts under any temperature. These works include: 

- Laboratory experiments on blind-bolted connections of small-scale 

specimens as a first approach to discuss the conclusions drawn in this work and also 

adding new variables such as different thickness of the tube, different bolt diameters 

and shear loads acting at the same time. Moreover, it is interesting that the tests 

consider the postfire response of the connection, so the capacity of the connection 

after the fire can be assessed. The experiments would be completed with tests on 

examples of a whole endplate connection. In fact, these works should be 

simultaneously to the proposed thermal experiments. 
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- A numerical parametric study of blind-bolted connections in fire using the 

experimental data for the calibration and extending the range of values of the 

variables considered. 

- The use of all the previous data to determine how to affect the blind-bolted 

connection capacity at room temperature to consider the deterioration suffered at a 

certain temperature. Besides, it will be useful the development of guidelines to 

ensure a required FRR for any specific frame. 

- Eventually, it would be highly interesting the development of an 

economical-functional-aesthetical study of blind-bolted connections for a particular 

fire resistance requirement. Different strategies, such as the use of Fire Resistance 

steels or protection of certain parts of the frame, could be considered to obtain the 

optimal solution (beam, column, bolts, endplate, slab) 
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AI.1. PICTURES FROM THE EXPERIMENTAL TESTS 

 

a) 

  

b) c) 

Figure AI.1. Application of the tightening torque to one of the specimens: 

a)Calibrated torque wrench, Extended Hollo-bolt and plate; b)Hollo-bolt 

inserted in the tube before the tightening; c)Hollo-bolt already tightened. 
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a) 

 

b) 

Figure AI.2. Specimens inside the furnace previously to fire exposure: 

a)Sample of series 1 (150x150mm) and position of the burners; b)Sample of 

series 2 (220x220mm)  
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a) 

 

b) 

Figure AI.3. Specimens inside the furnace previously to fire exposure: 

a)Samples of series 3 (250x150mm); b)Samples of series 4 (350x150mm) 
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a) 

 

b) 

Figure AI.4. Specimen of connection EHB from series 1 cut after fire exposure: 

a) Concrete surrounding the EHB; b) Concrete filling the voids of the 

sleeve. 
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a) 

 

b) 

Figure AI.5. Extended Hollo-bolt of series 1 after fire exposure: 

a)Sleeve cut; b)Shank and cone. 
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AI.2. THERMOCOUPLE MEASUREMENTS 

The following subsection includes the figures with the evolution of the 

temperature measured by thermocouples in Series 1 and 4 of the experimental 

program. In addition, the comparison of the test temperature-time curve between the 

three types of bolts for the Series 2 and 4 is shown in subsection AI.2.2. 

AI.2.1. Thermocouples measurements of series 1 and 4 

Thermocouples of Series 1 
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Figure AI.6. Time-temperature response measured by thermocouples in HSS 

connection with HB of series 1. 
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Figure AI.7. Time-temperature response measured by thermocouples in CFT 

connection with HB of series 1. 
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Figure AI.8. Time-temperature response measured by thermocouples in CFT 

connection with EHB of series 1. 
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Thermocouples of Series 4 
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Figure AI.9. Time-temperature response measured by thermocouples in HSS 

connection with HB of series 4. 
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Figure AI.10. Time-temperature response measured by thermocouples in CFT 

connection with HB of series 4. 
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Figure AI.11. Time-temperature response measured by thermocouples in CFT 

connection with EHB of series 4. 
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AI.2.2. Comparison between types of bolts in series 2 and 4. 
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Figure AI.12. Temperatures of the three types of connections in tests of section 

220x220 (Series 2) 

 



Annex I. Data from thermal experiments 

 

Doctoral Thesis. Ana M Pascual Pastor                                                                                         AI-13 

 

0

100

200

300

400

500

600

700

800

900

0 10 20 30 40

T
ª 

(º
C

)

Time (min)

FURNACE-Series 4

UHB1

UHB2

UHB3

HB1

HB2

HB3

EHB1

EHB2

EHB3

 

   

Figure AI.13. Temperatures of the three types of connections in tests of section 

350x150 (Series 4) 





 

ANNEX II 

 

NUMERICAL VALIDATION AT 

ROOM TEMPERATURE 

 

 

 

 

 

 

 

 

 

 





Annex II. Numerical Validation at room temperature  

 

Doctoral Thesis. Ana M Pascual Pastor                                                                                        AII-1 

 

AII. VALIDATION OF THE FE MODEL AT ROOM 

TEMPERATURE 

This Annex adds the data from the calibration of the FE models of the 

connections that has not been reported in chapter 7. Similarly, calibration results are 

presented by means of the force-displacement curve or moment-rotation curve 

extracted numerically in comparison with the respective curve from the tests of the 

bibliography. 

AII.1. Connections from the preliminary calibration work 

The connections that were simulated in the preliminary calibration work and 

served to set the guidelines for the further fire analysis are exhibited in the following 

table. In particular, this annex shows the connections that were not included in 

chapter 7 (highlighted in blue) 
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Table AII.1. List of connections of the calibration works. 

Type of 

connection 

Calibration 

test (authors) 
Type of bolt Beam Beam/Column 

ξ=Mu,test/Mu,FE 

(Nu,test/Nu,FE) 

2 T-stub 
Jaspart and 

Bursi 

M12 

grade 8.8 
IPE 300 IPE 300 0.93 

Flush 

endplate 
Janss et al. 

M16 

grade 10.9 
IPE 300 HEB160 1.01 

2 T-stub Wang et al. 
M16 

grade 8.8 

I-section 

 t=15 mm 
I-section t=15 mm 0.98 

2 T-stub Wang et al. 
HB16 

grade 8.8 

I-section 

 t=25 mm 
I-section  t=25 mm 1.02 

Flush 

endplate 

Mesquita et 

al. 

HB20 

grade 8.8 
IPE 330 SHS 200x200x8 0.90 

Flush 

endplate 
Tizani et al. 

EHB16 

grade 8.8 
356x171x67 

CFT 200x200x12.5 

(fc=40N/mm2) 
1.05 

Flush 

endplate 
Tizani et al. 

EHB16 

grade 8.8 
457x152x52 

CFT 200x200x10 

(fc=40N/mm2) 
0.99 

Extende

d endplate 
Tizani et al 

EHB16 

grade 8.8 
356x171x67 

CFT 200x200x10 

(fc=40N/mm2) 
1.05 

Flush 

endplate 
Tizani et al 

EHB16 

grade 8.8 
457x152x52 

CFT 200x200x8 

(fc=40N/mm2) 
0.96 

Flush 

endplate 

Tizani et 

al. 

EHB16 

grade 8.8 
356x171x67 

CFT 200x200x8 

(fc=40N/mm2) 
1.05 

Flush 

endplate 
Tizani et al 

EHB16 

grade 8.8 
457x152x52 

CFT 200x200x12.5 

(fc=40N/mm2) 
1.05 

Flush 

endplate 
Tizani et al 

EHB16 

grade 8.8 
356x171x67 

CFT 200x200x10 

(fc=40N/mm2) 
1.08 

Flush 

endplate 
Tizani et al 

EHB16 

grade 8.8 
356x171x67 

CFT 200x200x10 

(fc=60N/mm2) 
1.07 
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AII.1.1. Calibration of T-stub connection with standard bolts (test Wang et al) 

In this case the calibration was accomplished comparing FE results with the 

curve calculated numerically by the authors of the work (Wang et al) 
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Figure AII.1. Comparison of force-displacement curve from FE model and FE 

model from Wang et al. 
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AII.1.2. Beam to CFT column connections with Extended Hollo-bolt (Tizani et al) 
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Figure AII.2. Comparison of moment-rotation curve between the FE model and tests 

for the connection I-beam 356x171x67 to CFT 200x200x12.5 from Tizani et al. 
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Figure AII.3. Comparison of moment-rotation curve between the FE model and tests 

for the connection I-beam 457x152x52 to CFT 200x200x10 from Tizani et al. 
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Figure AII.4. Comparison of moment-rotation curve between the FE model and tests 

for the connection I-beam 356x171x67 to CFT 200x200x10 from Tizani et al. 
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Figure AII.5. Comparison of moment-rotation curve between the FE model and tests 

for the connection I-beam 457x152x52 to CFT 200x200x8 from Tizani et al. 
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Figure AII.6. Comparison of moment-rotation curve between the FE model and tests 

for the connection I-beam 457x152x52 to CFT 200x200x12.5 from Tizani et al. 
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Figure AII.7. Comparison of moment-rotation curve between the FE model and tests 

for the connection I-beam 356x171x67 to CFT 200x200x10 from Tizani et al. 
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Figure AII.8. Comparison of moment-rotation curve between the FE model and tests 

for the connection I-beam 356x171x67 to CFT 200x200x10 and fc=60N/mm
2
 from 

Tizani et al. 



Fire behaviour of blind-bolted connections to concrete filled tubular columns under tension 

 

AII-8                                                                   Universitat Politècnica de València 

 

AII.2. Single blind-bolted connections 

All the specimens of single blind-bolted connections at room temperature 

tested by Pitrakkos and Tizani were simulated by means of FEA. The results from 

these FEA works that complete the information given in chapter 7 is included below 

In Table 2 the specimens that are here presented have been highlighted. 

Table AII.2. List of single blind-bolted connections 

Specimen designation 

Shank 

length 

bolt 

grade 
fc 

Maximum load 

(KN) 
ξ=Nu,test/Nu,FEM 

    (mm)   (MPa) Nu,test Nu, FEM   

Type HB (without concrete) 

HB16-100-8.8D-0-1 100 8.8   139 129 1.08 

Type HB (concrete-filled) 

HB16-100-8.8D-C40-1 100 8.8 40 140 138 1.01 

HB16-100-8.8D-C60-1 100 8.8 60 142 139 1.02 

HB16-100-10.9E-C40-1 100 10.9 40 175 168 1.04 

Type M (concrete-filled) 

M16-150-8.8D-C40-3 150 8.8 40 142 128 1.11 

Type EHB (concrete-filled) 

EHB16-150-8.8D-C40-2 150 8.8 40 142 137 1.04 

EHB16-150-8.8D-C60-1 150 8.8 60 140 138 1.01 

EHB16-150-10.9E-C40-1 150 10.9 40 176 168 1.05 

 

In the case of the connections HB16-100-88D-C60-1 and HB16-100-10.9E-

C40-1, the data available from the tests instead of the displacement of the head of 

the bolt, was the displacement of embedded end that indicates the slip of the blind-

bolts. Nonetheless, the curve force-displacement of the head bolt from the FE 

models is also included in the Figure 10 and the Figure 11. 
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Figure AII.9. Comparison of the force-displacement curve between the FE model 

and tests for the connection with Hollo-bolt HB16-100-8.8-D-0-1 from Pitrakkos 

and Tizani. 
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Figure AII.10. Comparison of the force-displacement curve between the FE model 

and tests for the connection with Hollo-bolt HB16-100-8.8D-C60-1 from Pitrakkos 

and Tizani. 
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Figure AII.11. Comparison of the force-displacement curve between the FE model 

and tests for the connection with Hollo-bolt HB16-100-10.9D-C40-1 from Pitrakkos 

and Tizani. 
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Figure AII.12. Comparison of the force-displacement curve between the FE model 

and tests for the connection with standard bolt M16-150-8.8D-C40-3 from Pitrakkos 

and Tizani. 
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Figure AII.13. Comparison of the force-displacement curve between the FE model 

and tests for the connection with Extended Hollo-bolt EHB16-150-10.9E-C40-1 

from Pitrakkos and Tizani. 
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Figure AII.14. Comparison of the force-displacement curve between the FE model 

and tests for the connection with Extended Hollo-bolt EHB16-150-8.8D-C60-1 from 

Pitrakkos and Tizani. 
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AIII.1. STEEL PROPERTIES AT ELEVATED TEMPERATURES 

AIII.1.1. Thermal properties of steel at elevated temperatures from Eurocode 3 

Eurocode 3 Part 1.2 Section 3.4 comprised the description of the thermal 

properties of steel at elevated temperatures. The same definition of the thermal 

properties has been included in the last version of EC4 Part 1.2 Section 3.3, with 

some minor changes that will be highlighted along this section. 

Thermal elongation 

The thermal elongation of steel (∆l/l)a may be determined from the following 

equations, referred to the length of the member at room temperature (20ºC): 

4 5 8 2( / ) 2.416 10 1.2 10 0.4 10
a a a

l l θ θ− − −∆ = − ⋅ + ⋅ ⋅ + ⋅ ⋅  for 20ºC ≤ θa ≤ 750ºC 

2( / ) 1.1 10−∆ = ⋅
a

l l  for 750ºC ≤ θa ≤ 860ºC 

3 5( / ) 6.2 10 2 10
a a

l l θ− −∆ = − ⋅ + ⋅ ⋅  for 860ºC ≤ θa ≤ 1200ºC 

Where θa is the temperature of steel, in ºC. 
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Figure AIII.1. Thermal elongation of steel at elevated temperatures according to 

EC3 Part 1.2.  
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In simple calculation models, the relationship between the thermal elongation 

of steel (∆l/l)a and steel temperature may be considered to be linear, through the 

following expression: 

( )6
( / ) 14 10 20θ−
∆ = ⋅ ⋅ −

a a
l l  

Specific heat 

The specific heat of steel ca is given by the following expressions: 

1 3 2 6 3425 7.73 10 1.69 10 2.22 10  (J/kgK)θ θ θ− − −= + ⋅ − ⋅ + ⋅
a a a a

c  for 20ºC ≤ θa ≤ 

600ºC 

13002
666  (J/kgK)

738
a

a

c
θ

= +
−

 for 600ºC ≤ θa ≤ 735ºC 

17820
545  (J/kgK)

731
a

a

c
θ

= +
−

 for 735ºC ≤ θa ≤ 900ºC 

650 (J/kgK)=
a

c  for 900ºC ≤ θa ≤ 1200ºC 

Where θa is the temperature of steel, in ºC. 
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Figure AIII.2. Specific heat of steel at elevated temperatures according to EC3 Part 

1.2.  
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In simple calculation models, EC4 Part 1.2 Section 3.3.1(6) allows for the use 

of a specific heat of steel independent of the temperature, adopting a value equal to 

600 J/kgK. 

Thermal conductivity 

The thermal conductivity of the steel should be determined from the 

following equations: 

λa=54-3.33 10
-2
θa (W/mK)

 
for 20ºC ≤ θa ≤ 800ºC 

λa=27.3 (W/mK) for 800ºC ≤ θa ≤ 1200ºC 

Where θa is the steel temperatures, in ºC. 
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Figure AIII.3. Thermal conductivity of steel at elevated temperatures according to 

EC3 Part 1.2.  

In simple calculation models, the thermal conductivity may be considered 

independent of the steel temperature according EC4 Part 1.2 Section 3.3.1(9), 

adopting the the value λa=45 W/mK. 
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Density 

According EC4 Part 1.2 Section 3.4(1), the density of steel ρa shall be 

assumed independent of the temperature with a value ρa (20ºC) =7850 kg/m
3
. 

AIII.1.2. Mechanical properties of steel at elevated temperatures from Eurocode 3 

The mechanical behaviour of steel at elevated temperatures is defined by 

means of the general stress-strain curve in Figure AIII.4, which corresponds with the 

following mathematical model in Section 3.2.1 of EC3 Part 1.2. 

 

Strain range Stress Tangent modulus 

ε≤ εp,θ ε Ea,θ Ea,θ 

εp,θ ≤ ε ≤ εy,θ fp,θ-c+(b/a)[a
2
-(εy,θ-ε)

2
]

0.5 

 

εy,θ ≤ ε ≤ εt,θ fy,θ 0 

εt,θ ≤ ε ≤ εu,θ fy,θ[1-(ε-εt,θ)/ (εu,θ-εt,θ)] - 

ε= εu,θ 0 - 

Parameters εp,θ=fp,θ/Ea,θ        εy,θ=0.02         εt,θ =0.15      εu,θ =0.2 

Functions 

a
2
=(εy,θ-εp,θ) (εy,θ-εp,θ + c/ Ea,θ) 

b
2
=c(εy,θ-εp,θ)Ea,θ+c

2
 

 

Where:  

- εp,θ=fp,θ/Ea,θ is the strain at the proportional limit 

- εy,θ is the yield strain 

- εt,θ is the limiting strain for yield strength 
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- εu,θ is the ultimate strength 

 

Figure AIII.4. Stress-strain relationship for structural steel at elevated temperatures 

according to EC3 Part 1.2.  

The paramaters fy,θ (effective yield strength), fp,θ (proportional limit) and Ea,θ 

(elastic modulus) for a certain temperature θa are obtained applying the reduction 

factors ky,θ , kp,θ , kE,θ to the corresponding values at room temperature fy , Ea which 

are listed in Table 3.1 of EC3 Part 1.2 Section 3.2.1 (Figure AIII.5)  
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Figure AIII.5. Reduction factors for the stress-strain relationships of structural steel 

at elevated temperatures according to EC3 Part 1.2. 
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In Annex A of EC3 Part 1.2 an alternative stress-strain relationship is defined 

allowing for strain-hardening (Figure AIII.6). For temperatures below 400ºC, this 

relationship will be defined as follows 

, , , ,50 (f -f ) 2f -f
a u y y uθ θ θ θσ ε= +  for 0.02 <ε< 0.04 

,f
a u θσ =  for 0.04 ≤ ε ≤ 0.15 

[ ],f 1 20( 0.15)
a u θσ ε= − −  for 0.15 < ε < 0.2 

0,00
a

σ =  for ε ≥ 0.2 

Where fu,θ is the ultimate strength at elevated temperatures, allowing for 

strain-hardening, which should be determined as follows: 

, ,f =1.25 f
u yθ θ  for θa < 300ºC 

( ), ,f =f 2 0.0025u y aθ θ θ− ⋅  for 300ºC ≤ θa < 400ºC 

, ,
f =f

u yθ θ  for θa≥ 400ºC 

 

 
 

Figure AIII.6. Alternative stress-strain relationship allowing for strain hardening for 

steel at elevated temperatures according to EC3 Part 1.2 Annex A.  
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For steel bolts and welds EC3 Part 1.2 in Table D.1 of its Annex D includes 

the reduction factors for bolts and welds dependent on the temperature. The 

comparison of these values with the reduction factors defined for fy in Table 3.1 of 

EC3 Part 1.2 is exhibited in Figure AIII.7. 
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Figure AIII.7. Comparison of reduction factors for strength of steel bolts and 

structural steels at elevated temperatures according EC3 Part 1.2   

AIII.2. CONCRETE PROPERTIES AT ELEVATED 

TEMPERATURES 

AIII.2.1. Thermal properties of concrete at elevated temperatures from Eurocode 2 

The formulation of each of the thermal properties of concrete, according 

Eurocode 2, is hereafter transcribed. 

Thermal elongation  

The thermal elongation of concrete may be determined from the following 

equations, which are referred to the length of the member at ambient temperature 

(20ºC) and are dependent on the type of the aggregates. 

Siliceous aggregates: 

4 6 11 3( / ) 1.8 10 9 10 2.3 10
c c c

l l θ θ− −∆ = − ⋅ + ⋅ ⋅ + ⋅ ⋅  for 20ºC ≤ θc ≤ 700ºC 
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3( / ) 14 10
c

l l −∆ = ⋅  for 700ºC ≤ θc ≤ 1200ºC 

Calcareous aggregates: 

4 6 11 3( / ) 1.2 10 6 10 1.4 10
c c c

l l θ θ− −∆ = − ⋅ + ⋅ ⋅ + ⋅ ⋅  for 20ºC ≤ θc ≤ 805ºC 

3( / ) 12 10
c

l l −∆ = ⋅  for 805ºC ≤ θc ≤ 1200ºC 

Where θc is the concrete temperature in ºC. 

0

2

4

6

8

10

12

14

16

0 200 400 600 800 1000 1200

R
el

at
iv

e 
el

o
n
g
at

io
n
 ∆

l/
lx

1
0

-3
(m

/m
)

Temperature (ºC)

Siliceous aggregates

Calcareous aggregates

 

Figure AIII.8. Thermal elongation of concrete at elevated temperatures EC2 Part 

1.2.  

According to EC4 Part 1.2 Section 3.3.2(3), in simple calculation models, the 

relationship between the thermal elongation (∆l/l)c and concrete temperature may be 

considered to be linear, through the following expression: 

( )6
( / ) 18 10 20θ−
∆ = ⋅ ⋅ −

c c
l l  

Specific heat 

The specific heat may be determined for dry concrete (moisture content of 

0%) from the following equations, with calcareous or siliceous aggregates: 
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900 (J/kgK)=
c

c  for 20ºC ≤ θc ≤ 100ºC 

900 ( 100) (J/kgK)θ= + −
c c

c  for 100ºC ≤ θc ≤ 200ºC 

1000 ( 200) / 2 (J/kgK)θ= + −
c c

c  for 200ºC ≤ θc ≤ 400ºC 

1100 (J/kgK)=
c

c  for 400ºC ≤ θc ≤ 1200ºC 

Where θc is the concrete temperature in ºC. 

If the moisture content is not considered explicitly in the calculation method, 

the previous formulae may be completed with a peak value cc,peak between 100ºC and 

115ºC, with a linear decrease between 115ºC and 200ºC, which permits to model 

implicitly the heat consumption which occurs due to water evaporation in this range 

of temperatures. This peak value is equal to: 

cc,peak=900 J/kgK for a moisture content of 0% of concrete weight 

cc,peak=1470 J/kgK for a moisture content of 1.5% of concrete weight 

cc,peak=2020 J/kgK for a moisture content of 3% of concrete weight 

In the case of hollow sections filled with concrete, EC4 Part 1.2 considers a 

moisture content 10% of concrete weight may occur, for which cc,peak =5400 J/kgK. 
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Figure AIII.9. Specific heat of concrete at elevated temperatures EC2 Part 1.2. 
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For intermediate values of moisture content the peak will be obtained by 

linear interpolation. Moreover, if data is not available, EC4 Part 1.2 indicates that 

moisture content should not exceed 4 % of the concrete weight. 

In simple calculation models, EC4 Part 1.2 allows for the use of a constant 

value for the specific heat equal to 1000 J/kgK. 

Density 

The variation of the density of concrete ρc with temperature is influenced by 

water loss, and defined as follows: 

 (20ºC)ρ ρ=
c c

 for 20ºC ≤ θc ≤ 115ºC 

 (20ºC) (1-0.02 ( 115) / 85)ρ ρ θ= ⋅ ⋅ −
c c c

 for 115ºC ≤ θc ≤ 200ºC 

 (20ºC) (0.98-0.03 ( 200) / 200)ρ ρ θ= ⋅ ⋅ −
c c c

 for 200ºC ≤ θc ≤ 400ºC 

 (20ºC) (0.95-0.07 ( 400) / 800)ρ ρ θ= ⋅ ⋅ −
c c c

 for 400ºC ≤ θc ≤ 1200ºC 

Where θc is the temperature of concrete, in ºC, and ρc (20ºC)=2300kg/m
3
. 
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Figure AIII.10. Density of concrete at elevated temperatures EC2 Part 1.2.  
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According EC4 Part 1.2 Section 3.4(2) the variation of ρc in function of the 

temperature may be approximated by: 

ρc =2354-23.47 (θc/100) (kg/m
3)

 

For unreinforced normal weight concrete EC4 Part 1.2 Section 3.4(3) 

indicates that the constant value 2300 kg/m
3
 may be taken. 

Thermal conductivity 

The thermal conductivity of concrete can adopt values comprised between 

the following lower and upper limits:  

Upper limit 

λc=2-0.2451(θc/100)+0.0107(θc/100)
2
(W/mK) for 20ºC ≤ θc ≤ 1200ºC 

Lower limit 

λc=1,36-0.136(θc/100)+0.0057(θc/100)
2
(W/mK) for 20ºC ≤ θc ≤ 1200ºC 

Where θc is the temperature of concrete, in ºC. 
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Figure AIII.11. Thermal conductivity of concrete at elevated temperatures EC2 Part 

1.2. 
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The upper limit for steel-concrete composite members is recommended by 

EC4 Part 1.2 Section 3.3.2(9). 

In simple calculation models, the thermal conductivity may be considered 

independent of the concrete temperature according EC4 Part 1.2 Section 3.3.2(12), 

taking the following value λc=1.6 W/mK . 

AIII.2.2. Mechanical properties of concrete at elevated temperatures from Eurocode 

2 

The mechanical properties of concrete at elevated temperatures are given in 

Section 3.2.2 of EC2 Part 1.2. 

The compressive strength of the concrete 

For uniaxially stressed concrete under compression, the general stress-strain 

curve in Figure AIII.12 is defined, which can be obtained from the following 

expressions:  

 

Strain range Stress 

εc≤ εc1,θ 

, ,

, 3

,

1,

1,

3

2

θ θ

θ

θ

θ

θ

ε
σ

ε
ε

ε

⋅ ⋅
=

  
 +      

c c

c

c

c

c

f
 

εc1,θ ≤ εc,θ ≤ εcu1,θ 

For numerical purposes, a descending 

branch should be adopted. Linear and 

non-linear models are permitted. 
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Figure AIII.12. Stress-strain relationship of concrete under compression at elevated 

temperatures EC2 Part 1.2.  

These mathematical expressions required the definition of two parameters: 

fc,θ the compressive strength for a given temperature, and εc1,θ the strain 

corresponding to the peak stress. The values of these parameters are specified in 

Table 3.1 of EC2 Part 1.2 Section 3.2.2.1 (Figure AIII.13), where the value of the 

ultimate strain εcu1,θ is also included. 
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Figure AIII.13. Thermal conductivity of concrete at elevated temperatures EC2 Part 

1.2.  
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The tensile strength of the concrete 

According EC2 Part 1.2 Section 3.2.2.2(1) the tensile strength of concrete 

may normally be ignored, which is a safe assumption. Nonetheless, it indicates that 

if it is necessary to take account of the tensile strength fck,t, it should be reduced by a 

coefficient kc,t, as follows: 

fck,t (θc)= kc,t (θc) fck,t 

kc,t (θc)=1 for 20ºC ≤ θc ≤ 200ºC 

kc,t (θc)=1-(θc-100)/500 for 100ºC ≤ θc ≤ 600ºC 

Where θc is the temperature of concrete, in ºC 
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Figure AIII.14. Reduction factor for tensile strength of concrete at elevated 

temperatures according to EC2 Part 1.2. 

 

 



 

 



 

 

 


