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Abstract

This master thesis presents different approaches that aim to give a so-
lution to the search of out of vocabulary queries in Keyword Spotting
applications based on Word Graphs.

Keyword Spotting refers to the problem of determining whether a
given keyword is present in a collection of images. Typically, a score
is computed for each keyword and line of each image, and pairs with a
score surpassing a predetermined threshold are retrieved. This provides
the user the ability to fine-tune the results of his/her searches.

Keyword Spotting systems based on Word Graph provide very fast
lookup speeds and accurate results, in comparison to other alternatives
which operate at a character level. The improvement in the accuracy is
achieved by using lexical information that can be extracted from many
sources freely available, and not only the given training data in images
and their transcripts. However, they suffer from the problem that a null
score is assigned to any word that was not part of the training data (out
of vocabulary keyword).

Out of vocabulary words are an intrinsic problem of word-level lan-
guage models and are present in many applications like Automatic Speech
Recognition (ASR), Handwriting Text Recognition (HTR) and also in
Keyword Spotting (KWS), which is studied here applied to handwritten
line images.

This work contributes to the KWS field with different alternatives
that enable a reasonable estimation of out of vocabulary keyword scores
in Word Graph-based systems, providing the versatility that character-
level models offer (being able to spot any keyword), without giving up on
the benefits of using language models and the speed that Word Graphs
provide.

Alternatives are presented at different abstraction levels, which go
from very fast searches with moderate accuracy, to a very accurate ap-
proach at the expense of slower search speeds.
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Chapter 1

Introduction

The usage of computers to preserve information from the passage of time
and organize it to facilitate its access, has been one of their main appli-
cations since their very first days. Thanks to the evolution and improve-
ment of technology, now we are able to store more digital information
and access to it in a faster way and from almost everywhere around the
world. However, for many centuries, handwriting has been the only way
to preserve the human knowledge, besides oral communication. Precisely,
storing information in books, manuscripts and other written forms, first
handwritten and printed later, has been one of the main basis of all the
human development around the world.

Unfortunately, books have not always been successful in their task
of preserving the human knowledge. One only needs to remember the
dramatic incidents that devastated the old Library of Alexandria and
caused the irreparable loss of thousands of ancient works. Handwriting
Text Recognition (HTR) was developed, among other reasons, to preserve
the information contained in handwritten documents using computers, a
support which has proven to be more reliable than analog supports. And
event more importantly, to allow an easier and faster access to that in-
formation (since information is only useful if it can be accessed). Despite
all the progress achieved in the recent years by the HTR community, this
field has still many problems and shortcomings, basically in terms of final
accuracy of the transcribed text. These limitations affect the spreading
of HTR and prevent it to be used for many useful applications. The
dominant approach to the state-of-the-art HTR and its limitations will

1



Chapter 1. Introduction

be explained in Chapter 2.
Keyword Spotting (KWS) applied on handwritten documents is one of

the applications which is affected by the shortcomings of HTR. The aim of
KWS is to locate a certain keyword within a collection of documents. In
our scenario, we restrict to handwritten documents such as ancient books,
logbooks, registries, etc. There are two main approaches to KWS: Query-
by-Example and Query-by-String. In the first approach, the user provides
an example of the keyword to search for, in the case of handwritten
Keyword Spotting, that is an image containing the keyword to spot. The
latter approach, however, does not require the user to have an existing
example of the keyword to spot. Instead, the user only provides a string,
which is the keyword to spot in the collection of documents. In Chapter
3, two models that try to solve Query-by-String KWS will be presented
and compared in order to highlight their advantages and deficiencies.

One of these models uses lexical information about the language to
boost the performance in Keyword Spotting tasks, however, it performs
badly with keywords that were not observed during the training of the
system (since no lexical information is known about them). This problem
is referred to as the out of vocabulary query problem in this thesis, and
will be more formally stated in Chapter 4. This chapter will also intro-
duce several alternatives that try to provide a solution for this problem,
which are the main contributions of this thesis.

The alternatives presented in Chapter 4 to solve the problem of out
of vocabulary queries are tested experimentally in Chapter 5 using two
different databases of handwritten text, with different properties and
origins, which demonstrate the effectiveness of each of the proposed so-
lutions.

The final chapter will present the conclusions of this work, together
with some suggestions of future lines of research in the field of Keyword
Spotting.
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Chapter 2

Handwriting Text
Recognition

2.1 Pattern Recognition

Pattern Recognition (PR) is a branch of Machine Learning (ML) which
aims to give computers the ability to discern among different objects
in their environment. PR systems are able to perceive the environment
from different sensors, such as photo or video cameras, microphones, laser
sensors, temperature sensors, etc. Once the signals have been acquired,
a PR system attempts to discover and to give a meaning to the different
represented objects by those signals (the most typical task is to assign
each of them to a category, i. e. classify them) [8].

PR systems are built using supervised learning, which tries to ap-
proximate the function f : X → Y mapping the signal space X to the
set of labels Y . Supervised learning approximates the true and unknown
function f by fitting an hypothesis function h : X → Y with a set of
labeled examples D = {(x(1), y(1)), . . . , (x(N), y(N))|(x, y) ∈ X × Y}.

The signals from X and the labels Y are usually, and surely for all
interesting applications, subject to noise. The types of noise depend on
the application and may come from a huge set of sources. For instance, in
a handwriting recognition application, many physical devices and infor-
mation representation limitations introduce noise in X , like artifacts due
to the scanning resolution, lighting changes, color quantification, image
compression, etc. Moreover, there are some changes in the representation
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Chapter 2. Handwriting Text Recognition

of a certain object that can be considered noise: the changes in the scrip-
ture among different writers, in the writing tools, or even in the mood of
a single writer. This leads to the fact that a single abstract object may
be represented by different elements of X .

In addition, as mentioned before, Y is also subject to some form of
noise. In the first place, the labeling of an input signal may be wrong
due to human error. But also, by the limitations of what context is cap-
tured and represented in X , some elements of this set may have multiple
instances with different associated categories, depending on the context.

In the presence of these kinds of noises, the mapping from X to Y
that PR tries to infer is not strictly a function, according to the math-
ematical definition of function. Thus, PR usually adopts a probabilistic
approach, where it tries to infer the unknown probability distribution
Pr(Y |X), where Y ∈ Y and X ∈ X . This true conditional distribution
is approximated by some distribution p(Y |X,D). The form of p(Y |X,D)
is given by the used model (Gaussian distribution, Bernoulli distribution,
Mixture Model, Neural Network, etc) and usually has associated some
parameters which are fitted using the labeled training examples in D.

If the real distribution Pr(Y |X) is known, the label ŷ ∈ Y of an
unseen example x ∈ X that minimizes the expected error is known as
the Minimum Error Rate Classification [8], and it is given by:

ŷ = argmax
∀y∈Y

Pr(Y = y|X = x) (2.1)

Substituting the real distribution by the fitted hypothesis given by
the PR approach described before, results in:

ŷ ≈ argmax
∀y∈Y

p(Y = y|X = x,D) (2.2)

Of course, depending on the modeling and the fitting of p(Y |X,D),
and the training data used, the final performance of the system may
change dramatically.

4 PRHLT-DSIC-UPV



2.2. Pattern Recognition for Handwriting Text Recognition

2.2 Pattern Recognition for Handwriting Text
Recognition

There are different HTR scenarios and all of them can be modeled as
PR problems. In this work, we focus on a line-level HTR scenario. That
is, we have an input image from a handwritten text line representing a
sequence of words, which should be the output of the recognition step.

In this scenario, input images have usually different dimensions, both
height and width. In order to deal with the different dimensions and to
reduce the amount of noise present in the scanned images (e.g. color,
rotation, skew, handwriting styles, etc), a sequence of d-dimensional vec-
tors is extracted from each input image, known as the feature vectors of
the image. Thus, the input signal space X is in fact a space of variable-
length sequences of d-dimensional vectors. An element in X is denoted
by x = ~x1, ~x2, . . . , ~xl, where l is the length of the sequence x.

There are many different approaches to extract a reasonable set of
relevant features from an image: from heuristic approaches, like the gray
and horizontal and vertical derivatives, to learning-based approaches, like
PCA or Neural Network auto-encoders. A comprehensive set of feature
extraction approaches can be found in [4, 36].

The same applies to the labels space Y , since the output can be an
arbitrary sequence of words. An output element in Y is denoted by
y = y1, y2, . . . , ym, where m is the length of the sequence y.

The output sequence of words ŷ given by the HTR system, for an
input image represented by x, is given by the application of Equation
(2.2) to this scenario, which results in:

ŷ = argmax
∀y∈Y

P (Y = y|X = x,D) = argmax
y

P (y|x) (2.3)

Observe that argmax∀y∈Y P (Y = y|X = x,D) has been rewritten as
argmaxy P (y|x), for sake of simplification. This widely used notation,
will be used from now on, as long as it does not cause any confusion.

A priori, Equation (2.3) is a simple equation. However, in reality
some problems arise which prevent to use it to directly solve the HTR
problem and many related problems like Automatic Speech Recognition
(ASR) and Machine Translation (MT).

PRHLT-DSIC-UPV 5



Chapter 2. Handwriting Text Recognition

First of all, modeling the conditional distribution P (y|x) is not trivial
and the most predominant approaches in HTR and ASR do not model it
directly, but apply the Bayes theorem to rewrite the previous equation
as:

ŷ = argmax
y

P (y|x) = argmax
y

p(x|y)P (y)

p(x)
= argmax

y
p(x|y)P (y) (2.4)

In the previous equation, p(x|y) is modeled as a concatenation of
Hidden Markov Models (HMMs) which captures the likelihood that some
signal x is the representation of some sequence y. On the other hand,
P (y) is modeled through a Language Model (LM), which measures how
likely is the sequence y to be a valid sentence of the language. In the
following sections, the basics of these two models will be explained, since
they are fundamental for the understanding of the KWS approach fol-
lowed in this thesis.

Figure 2.1 shows an overview of the stages of a regular HTR system:
feature extraction, training and recognition modules, together with the
information that each of these modules use and the information that they
provide. Observe that, in the figure, the sequence of labels y has been
substituted by the sequence w: this is just a matter of notation. Since we
are addressing from now a concrete application of Pattern Recognition
to recognize sequences of words, we denote such sequences as w. This
notation will be used the rest of this work.

2.3 Hidden Markov Models

A HMM is defined by a finite set of states, each of which has associated
a continuous probability distribution of observations. Transitions among
the states of the HMM are controlled by transition probabilities. These
models are called hidden because only the sequence of emitted obser-
vations is known, but not the sequence of states that produced those
observations. Depending on the nature of the observations, HMMs can
be divided into three different groups:

Discrete: observations are vectors of symbols of a finite alphabet.

6 PRHLT-DSIC-UPV



2.3. Hidden Markov Models

Figure 2.1: Overview of the stages of a HTR system.

Continuous: observations are vectors of elements in a continuous space,
like R.

Semi-continuous: observations are also vectors of symbols of a finite
alphabet, but they are modeled using continuous probability den-
sity functions.

A continuous HMM, M , is a stochastic finite state machine (FSM)
where each state from the HMM is said to emit a real-valued vector of
observations at a certain discrete time point t. The emission of a vector
is done following a certain probability distribution function. A sequence
of observation vectors is emitted by a sequence of states of the HMM
that are visited at different time points 1 ≤ t ≤ T . The transition
among states from time t to t+1 is ruled by a probability mass function.
The sequence of observed vectors is denoted by x = ~x1, . . . , ~xT , and the
sequence of visited states by z = z1, . . . , zT , where state zt emitted the
observation vector ~xt. Figure 2.2 shows an example of a HMM modeling
a character from a handwritten text image.

PRHLT-DSIC-UPV 7



Chapter 2. Handwriting Text Recognition

0.4 0.3 0.7

0.6 0.7 0.3

Figure 2.2: Illustration of a HMM modeling the character “t”
of a handwritten text image where the text “text” is found.
The boxed image regions are mapped to the state that emitted
them.

Formally, a continuous HMM is defined by the tuple (Q, q0, q|Q|−1, X, a, b).

• Q is the finite set of states. In order to refer to a particular state
qi ∈ Q, we will assume that Q is an enumerated set {q0, . . . , q|Q|−1}.

• q0 is the initial state, q0 ∈ Q.

• q|Q|−1 is the final state, q|Q|−1 ∈ Q.

• X is the real d-dimensional space of observation, X ⊆ Rd.

• a is the state-transition probability distribution. In theory, a tran-
sition into a state qi at time t (i.e zt = qi), may depend upon
all the previous sequence of states z1, . . . , zt−1. However, for sake
of simplicity and computational tractability, usually the Markov
assumption is taken, which assumes that zt is only conditionally
dependent of zt−1, that is:

8 PRHLT-DSIC-UPV



2.3. Hidden Markov Models

P (zt|z1, . . . , zt−1) = P (zt|zt−1) (2.5)

Additionally, it is also assumed that this distribution does not de-
pend on the actual time when the transitions take place. This is
know as the stationary assumption, and is formalized as:

P (zt = qj|zt−1 = qi) = P (zt+k = qj|zt+k−1 = qi), k ≥ 0 (2.6)

Finally, for sake of the notation simplification and without any loss
of generalization, it is assumed that q0 is only visited in the first
place, and q|Q|−1 at the end. Thus, the actual sequence of visited
states is assumed to be q0, z1, . . . , zT , q|Q|−1 with zi ∈ Q.

According to the previous restrictions, a is defined for each pair of
states (qi, qj) ∈ Q− {q|Q|−1} ×Q− {q0} as:

a(qi, qj) = P (zt = qj|zt−1 = qi) (2.7)

As a probability mass function, a must guarantee that:∑
qj∈Q−{q0}

a(qi, qj) = 1,∀qi ∈ Q− {q|Q|−1} (2.8)

• b is the emission probability distribution. First of all, for sake of
simplification, the initial and final states, q0 and q|Q|−1, are assumed
not to emit any observation vector. Thus the sequence of observed
states q0, z1, . . . , zT , q|Q|−1 of T + 2 elements, emits the observed
sequence ~x1, . . . , ~xT of T elements.

Additionally, an independence assumption is made for this condi-
tional probability distribution. The observed feature vector ~xt at
time t may depend upon all previously visited states z1, . . . , zt and
observed vectors ~x1, . . . , ~xt−1. The output independence assumption
assumes that ~xt only depends on the state at time t, that is, zt.

p(~xt|z1, . . . , zt, ~x1, . . . , ~xt−1) = p(~xt|zt) (2.9)

PRHLT-DSIC-UPV 9



Chapter 2. Handwriting Text Recognition

Hence, b is defined for each pair (qi, ~x) ∈ Q− {q0, q|Q|−1} ×X as:

b(qi, ~x) = p(~xt = ~x|zt = qi) (2.10)

As a probability distribution function, b must guarantee:∫
~x∈X

b(qi, ~x)d~x = 1, ∀qi ∈ Q− {q0, q|Q|−1} (2.11)

In ASR and HTR applications, the emission distribution function
is usually modeled as a Gaussian Mixture Model (GMM), which is a
weighted sum of K Gaussian distributions.

b(qi, ~x) =
K∑
k=1

λi,kbk(qi, ~x) (2.12)

where,

bk(qi, ~x) =
1√

(2π)d|Σi,k|
exp

(
−1

2
(~x− ~µi,k)

′Σ−1
i,k (~x− ~µi,k)

)
(2.13)

• µi,k is the mean vector of the component k of state qi.

• Σi,k is the covariance matrix of the component k of state qi.

• λi,k is the weight of the component k of state qi, and must satisfy:

λi,k ≥ 0
K∑
k=1

λi,k = 1

Other distributions used in HTR or ASR applications are mixtures
of Bernoulli distributions [18] or distributions estimated using Neural
Networks [48, 10].

There are three main problems regarding the use of HMM for Pattern
Recognition applications.

10 PRHLT-DSIC-UPV



2.3. Hidden Markov Models

• Evaluation: To compute the probability of a sequence of obser-
vations x, given the model M , i.e. p(x|M). This is simply known
as the emission probability of a sequence. A naive computation of
this probability entails an exponential cost with the length of the
sequences, since the probability that each sequence of states gives
to x must be summed up to obtain the total probability, that is:

p(x|M) =
∑
z∈QT

p(x, z|M) (2.14)

The previous can be efficiently computed by using two central al-
gorithms for HMM, both based on Dynamic Programming: the
forward and backward algorithms. Any of these two algorithms
can be used to compute the emission probability of x and both
have the same time and space computational costs. This reduces
the computation of p(x|M) from a worst-case time complexity of
O(T ·|Q|T ) to simply O(T ·|Q|2), which can even be further reduced
to O(T · |Q|), if certain topologies are assumed for the HMMs.

• Decoding: An other central problem related to HMMs is to com-
pute the most likely sequence of states ẑ that emitted a sequence
of observations x, that is:

ẑ = argmax
z∈QT

p(x, z|M) (2.15)

Viterbi algorithm is used to compute the previous probability ef-
ficiently. It is very similar to the forward algorithm and has the
same time complexity O(T · |Q|2), which can also be reduced to
O(T · |Q|), under the same assumptions than forward and back-
ward algorithms.

Viterbi algorithm is the most used algorithm in HMM-based recog-
nition systems, since it is the one used each time an input sequence
x needs to be recognized into some text sequence ŵ.

• Learning: The previous problems and algorithms assume that a
HMM M is given, but when a HTR or ASR task is considered, the
only data available at the beginning is a training data set D, as

PRHLT-DSIC-UPV 11



Chapter 2. Handwriting Text Recognition

described in Section 2.2. The remaining problem is to optimize the
transition and emission parameters of a HMM to optimize a certain
criterion, based on the training data set D.
The criterion used to optimize the HMMs parameters is the Maxi-
mum Likelihood, which maximizes the emission probability of the
training data in D. Baum-Welch algorithm, a form of Expectation-
Maximization (EM) algorithm, is used to improve iteratively the
parameters of a HMM until no improvements are observed. The
algorithm reaches a local optimum typically with very few itera-
tions, and the cost of each iteration is O(N ·T · |Q|2), which is also
reduced to O(N · T · |Q|) under the same assumptions than the
forward, backward and Viterbi algorithms.

In HTR and ASR applications, it is usually necessary to use a
concatenation of C HMMs to model a whole word, since charac-
ter HMMs (or phoneme HMMs, in the case of ASR) are used to
model a whole word, which is the basic input unit. In this case, the
“embedded training Baum-Welch” algorithm is used, which re- esti-
mates the parameters of the composition of the C HMMs together.
This algorithm allows to train the character models without any
prior segmentation of the input sequences.

The details of the previous algorithms are omitted from this thesis,
since they are not required to understand the fundamental contributions
of this work. More detailed information about HMMs can be found in
[20, 28, 43].

2.4 Language Models
A Language Models (LM) is used to model the prior probability of a
sequence of words in a certain language. LMs are used in a wide variety
of natural language processing applications such as MT, ASR, HTR or
text analysis. These models attempt to capture the properties of a given
language and are able to predict the next word in a word sequence, given
the previous words. For a sequence of l words w = w1, w2, . . . , wl, the
probability of such sequence Pr(w) can be decomposed by using the
Bayes Rule, which gives the next equation:

12 PRHLT-DSIC-UPV



2.4. Language Models

Pr(w) = Pr(w1, . . . , wl) = Pr(w1)
l∏

i=2

Pr(wi|w1, . . . , wi−1) (2.16)

Usually, the estimation of the probability of arbitrary sequences be-
comes intractable since the length of these sequences is unrestricted and
many of them are not observed during the training of the LM. For any
sequence not seen during training, the model will assign a null probability
to it. Observe that, if |V | is the number of words in a given vocabulary
V , the number of different sentences that can be composed with l words
is |V |l. Thus, if one needs to accurately estimate the probability of se-
quences of length l, the number of training sequences grows exponentially
with that length, which clearly becomes a problem when the length of the
sequences is unrestricted, which is the case of HTR. In fact, this problem
is one of the manifestations of the well-known curse of dimensionality
phenomenon [3, 35], which is usually one of the main handicaps of many
ML models.

In order to face the curse of dimensionality in Language Models, n-
gram models are used. These models assume that only the n − 1 most
recent words in a sequence are the ones that determine the probability
distribution of the next word. That is, the probability of the word wi
is only conditionally dependent of wi−n+1, . . . , wi−1, which is called the
context of wi. Hence, Pr(w) is approximated by:

Pr(w) ≈ Pr(w1)
n−1∏
i=2

Pr(wi|w1, . . . , wi−1)
l∏

i=n

Pr(wi|wi−n+1, . . . , wi−1)

(2.17)
The Maximum Likelihood estimation of the conditional probability

Pr(w|v), given a set of sentences, is computed by:

P (w|v) =
C(vw)

C(v)
(2.18)

where C(v) is the number of times that the sequence v has appeared
in any of the sentences in the training data set.

PRHLT-DSIC-UPV 13



Chapter 2. Handwriting Text Recognition

However, n-gram models are still sensible to the curse of dimensional-
ity when a large context is considered, and thus, many of the sequences
encountered on test data may be unseen during training, causing that
P (w|v) = 0 in these cases. In aim to improve the estimation of such
sequences, smoothing techniques are used to give some probability mass
to these sequences. The two main smoothing methods are interpolation
[20] and back-off [23].

In the experiments conducted in this work, the chosen smoothing
method was the Kneser-Ney back-off, presented in [26], which is one of
the most used techniques for n-grams smoothing. In the Kneser-Ney
smoothing, a constant D is discounted from the n-gram count. The
main idea is to use a modified probability estimate for lower order n-
grams. Specifically, the probability for a lower order n-gram is taken to be
proportional to the number of unique words that precede it in the training
data. Further details of the Kneser-Ney algorithm are omitted, since they
are not relevant for the understanding of the central contributions of this
work. Nevertheless, more details about this method and others can be
found in [6].

Language Models and HMMs can be both interpreted as Stochastic
Finite State Machines (SFSM), which provide an easy integration into a
single SFSM. A version of the Viterbi algorithm, described on section 2.3,
can be used on the top SFSM to obtain the best recognition hypothesis.
Figure 2.3 shows an scheme of this integration. Additional details can be
found in [44, 50, 51].

2.5 Word Graphs

Viterbi decoding algorithm described in section 2.3 can be adapted to
provided multiple decoding hypotheses with their associated probability,
instead of the single best hypothesis. Furthermore, as it will be explained
further, these multiple hypotheses can be represented in form of a graph,
that, when normalized appropriately provides certain features very useful
for the task of general handwriting recognition and particularly, keyword
spotting for handwritten image lines.

A word graph (WG) is a labeled weighted directed acyclic graph
(WDAG) whose edges are labeled with words and weighted with scores
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m y

this
number

house

my thesis

Language Model

Lexical Model

HMM

Figure 2.3: A hierarchical FSM constructed by integrating
Character HMMs, Lexical Models and LMs.

derived from the HMM (likelihood) and N-gram (prior) probabilities com-
puted during the line image decoding process. Formally, a word graph,
G, is a tuple (Q, V,E, q1, F, τ, ω, ρ).

• Q is a finite set of nodes. Given that word graphs are DAG, a topo-
logical order on the nodes may be assumed. Each node q is labeled
with its corresponding index in this order: Q = {1, 2, . . . , |Q|}.

• V is a vocabulary, a non-empty set of words.

• E ⊂ Q × Q is a finite set of edges connecting pairs of nodes in
Q. Each edge is denoted by its starting and ending nodes: e =
(i, j), i, j ∈ Q, i < j.

• qI ∈ Q is the initial node. For most cases, qI = 1.

• F ⊂ Q is the set of final nodes.
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• τ : Q→ {1, . . . , T} is a function that associates each node with the
index of a vector from the input sequence. In handwritten images,
that is the horizontal position in the image. Usually, τ(qI) = 1 and
τ(q) = T,∀q ∈ F .

• ω : E → V is a function associating each edge with a word from
the vocabulary. Given the edge e = (i, j), ω(e) is a word hypoth-
esis represented between the positions τ(i) and τ(j) of the input
sequence. An alternative notation for ω will sometimes be used to
use pair of nodes Q × Q as the domain, instead of edges E. That
is, ω(i, j) = ω(e), such that e = (i, j).

• ρ : E → [0, 1] is a probability function for each edge. The meaning
of this probability depends on the normalization of the word graph,
but ρ(e) typically refers to the probability of the hypothesis that
ω(e) appears between the positions τ(i) and τ(j) of the decoded
sequence. An alternative notation for ρ will sometimes be used to
use pair of nodes Q × Q as the domain, instead of edges E. That
is, ρ(i, j) = ρ(e), such that e = (i, j).

As mentioned before, word graphs encode multiple word sequences
hypotheses of an image line. A word sequence is represented by the words
given by the ω function across a complete path in the word graph: a path
from the initial node to any of the final nodes. More formally, given a
path φ = (e1, e2, . . . , el), where ei ∈ E, e1 = (1, j1), el = (il, jl) and jl ∈ F ,
the word sequence associated to this path is w = ω(e1) · ω(e2) · · ·ω(el).

As a matter of fact, each complete path in the word graph encodes a
different alignment between a sequence hypothesis and different positions
of the input sequence of feature vectors. In principle, since the same word
sequence can be aligned in different ways to an input sequence, different
paths on the word graph can actually represent the same word sequence,
but with a different alignment to the input image.

Word graphs can be restricted so that they contain only a single
alignment for each word sequence (typically, the one with the highest
likelihood), and thus, only a complete path exists for each sequence of
wordsw. This class of word graphs are called unambiguous and from now
on, we will assume that the considered word graphs are unambiguous in
order to simplify the following expressions. The complete path encoding
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the sentence w will be denoted by φw and the edges composing this path,
will be denoted as e ∈ φw.

The joint probability of a word sequence w and the input image x
can be approximated using the scores on the edges of a word graph.

p(w,x) ≈
∏
e∈φw

ρ(e) (2.19)

A naive computation of the previous equation can be prohibitively
expensive in terms of computation time, due to the large number of
sequence hypotheses encoded in word graphs. However, it can be very
efficiently computed using Dynamic Programming by means of a forward
(α) and backward-like (β) functions.

p(x) ≈ β(qI) =
∑
q∈F

α(q) (2.20)

where:

α(q) =

{
1 q = qI∑
∀i∈Q:(i,n)∈E α(i)ρ(i, n) q 6= qI

(2.21)

β(q) =

{
1 q ∈ F∑
∀j∈Q:(q,j)∈E ρ(n, j)β(j) n /∈ F

(2.22)

Finally, the word sequence posterior probabilities P (w|x) can be ap-
proximately computed as:

P (w|x) =
p(w,x)

p(x)
(2.23)

Usually, algorithms used for extracting the word graph introduce a
parameter to specify the maximum input degree of each word graph
node, which limits the amount of information retained in the word graph.
Additionally, beam-search and other pruning techniques can be applied
to accelerate the Viterbi search through the word graph.

Figure 2.4 shows an example of a word graph for a text line image.
The word graph represents a set of possible transcription hypotheses for
the Spanish sentence “antiguos ciudadanos que en Castilla se llamaban”.

PRHLT-DSIC-UPV 17



Chapter 2. Handwriting Text Recognition

Figure 2.4: An example of a word graph for an image of the
sentence “antiguos ciudadanos que en Castilla se llamaban”.

In the example figure, the word over an edge e is the value of ω(e)
and the number that is draw together the word is the value of ρ(e). The
ti values that are written in the bottom of the image are the values of
the function τ for different nodes (the nodes which are crossed by the
vertical lines over each of the ti values), that is: τ(1) = t1, τ(2) = τ(3) =
t2, . . . , τ(t16) = t9.

Observe that each word sequence is represented by a single complete
path in the word graph. There are 14 different sequences encoded in the
previous word graph. Some of these sequences are listed bellow, together
with their joint and conditional probabilities.

• w1 = “antiguos cuidadores que en el Castillo sus llamadas”
p(w,x) = 0.6 · 0.4 · 0.1 · 0.7 · 0.2 · 0.5 · 0.3 · 0.3 = 0.0001512
P (w|x) = 0.0153771

• w2 = “antiguos cuidadores que en el Castillo se llamaban”
p(w,x) = 0.6 · 0.4 · 0.1 · 0.7 · 0.2 · 0.5 · 0.2 · 0.4 = 0.0001344
P (w|x) = 0.0136685

• w3 = “antiguos cuidadores que en Castilla se llamaban”
p(w,x) = 0.6 · 0.4 · 0.1 · 0.7 · 0.5 · 0.2 · 0.4 = 0.000672
P (w|x) = 0.0683427
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• w4 = “antiguos cuidadores que en Castilla su llamada”
p(w,x) = 0.6 · 0.4 · 0.1 · 0.7 · 0.5 · 0.3 · 0.3 = 0.000756
p(w|x) = 0.0768855

• w5 = “antiguos cuidadores quien el Castillo sus llamadas”
p(w,x) = 0.6 · 0.4 · 0.4 · 0.3 · 0.5 · 0.3 · 0.3 = 0.000972
p(w|x) = 0.0988528

Once the word graph has been constructed, the Recursive Enumera-
tion Algorithm (REA) [21] can be used to compute the n-best sequence
hypotheses, according to the word graph.
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Chapter 3

Keyword Spotting

3.1 Keyword Spotting for Handwritten Text
Images

In Chapter 1, we already introduced the concept of Keyword Spotting
(KWS) and what it tries to answer: to determine in which set of doc-
uments a keyword, given by the user, is present. Optionally, it may be
also interesting to detect in which position of the document the keyword
is represented.

While Keyword Spotting can be applied to many forms of input sig-
nals, like speech or optical text, in this work we restrict the domain to
handwritten text images and from now, this scenario will be assumed.

Keyword Spotting systems are organized according to the type of
query the user introduces to the system, which constitutes a first high-
level taxonomy of such systems.

Query-by-Example: The query is given as an example image (or a
few example images) that is matched with different regions from
the collection of documents. The system will return the list of
regions which it believes represent the same keyword as the given
examples.
This approach can be implemented in such a way that it does
not need any text block extraction or segmentation technique [39].
First, at a processing step a set of overlapping patches (represented
by a bag-of-visual words) is extracted from the documents in the
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database. In the spotting step, the example keyword is considered
as a single patch, from which the previous bag-of-visual words is
extracted. Then, using a similarity measure a list of patches from
the database is retrieved and sorted according to this similarity. Fi-
nally, a voting scheme is used to find the regions of the document
image having more accumulation of evidences that the user query
is more probable to be present.

If the text is segmented into individual lines, it is better to extract
a sequence of features from the handwritten text, using a small slid-
ing window procedure. This allows to apply techniques designed
to compare sequences. The first proposed method for handwritten
KWS, which is one of the most used, follows this procedure [31]. It
uses dynamic time warping (DTW) to define a distance measure be-
tween two sequences. However, DTW typically requires segmented
word images, although some works avoid the word-segmenting re-
quirement using DTW with line images [27]. Anyhow, DTW is not
a learning-based approach, which limits its ability to generalize and
results in one of its main shortcomings, considering the huge vari-
ability encountered in handwritten text. The other drawback of
DTW-based methods is their computational cost. Recently, it has
been proposed to combine a fast selection of template candidates
with a learning-based version of DTW, which learns variations of
the training sequences to improve generalization [40].

Query-by-String: The keyword is given as a string of symbols (charac-
ters). The previous approach requires a query example (or a set of
queries) in order to find similar image regions in the database. In
contrast, Query-by-String allows to search for any arbitrary word.
Thus, the handwritten text has to be modeled using pattern recog-
nition approaches like the ones described in Chapter 2.

Previous works use character-based HMMs and a Gaussian Mixture
Model to test how well the queries can be explained with the emis-
sions of the HMMs in the database [37]. Both models are trained
on the same training data and the likelihood ratio of the keyword-
HMM to the GMM filler model acts as the matching score.

An alternative model [12, 13], also based on HMMs, proposes to
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train character-HMMs and use these models to assemble keyword
HMMs for spotting words. This method works on unsegmented
lines, and is one of the most popular methods. In Section 3.2,
further details of this method will be discussed.

Recently, an approach based on word graphs constructed from
HMMs and LMs has been presented [46]. This approach does not
require any word or character segmentation either and, by using
language models, permits to take into account the context of each
spotted word, which yields in a better KWS accuracy. Moreover,
this approach offers the possibility to build a hierarchical index to
speed up the lookup times. However, the use of a word LM re-
stricts the queries to a certain vocabulary. This approach is the
center of this thesis work, which tries to provide solutions for this
latter problem. The details of this method will be described in
Section 3.3.

Finally, recurrent neural networks trained to predict the occurrence
probability of each keyword character at each position in a text line,
have been applied to KWS [15, 16]. Given a keyword, the most
likely path that visits the corresponding characters in the correct
order is then computed using dynamic programming.

Query-by-String is usually preferred over Query-by-Example, since
users may not have an example of the keyword that they are looking for,
but they can usually typeset it. Hereafter, we will assume the Query-by-
String model when we refer to KWS, unless the opposite is specified.

As seen in the previous examples, the definition of “document” may
vary among different levels of abstraction. For instance, in the scenario
of KWS applied to HTR, a “document” can be anything from a single
image line, to a whole page or manuscript. In some applications, may
be enough to determine whether a certain keyword is present in a page,
if the pages do not contain much text, other may require to determine
in which exact line is the text written, and other may even require to
determine the exact region within the line. From now on, we will assume
the line-level KWS approach, from which all the theory of this work is
developed.

KWS systems usually compute a score S(x, v) for each line x in the
database and the keyword v. Then, all lines with a score greater than or
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equal to a certain confidence threshold T are retrieved. The threshold T
allows the user to control the precision-recall trade-off for each query. In
the Information Retrieval field, precision basically measures the portion
of retrieved lines that are relevant and recall measures the portion of
relevant lines that are retrieved.

For instance, suppose the user wants to find information about the
H.M.S. Beagle from a collection of logbooks. It may look for the keyword
“beagle” with a medium confidence threshold. The KWS system will then
retrieve several lines: some of them relevant (“hits” or “true positives”),
where the keyword “beagle” actually is present in the line, and some
other will be misidentified lines, where the system spotted the “beagle”
keyword but it does not actually appears (“false positives”). On the other
hand, the system will probably miss also some lines where the keyword
is written but a lower score is assigned (“false negatives”).

By decreasing the confidence threshold T , the user will start getting
some of the missing true lines where “beagle” is present but also other
lines where the system thought that “beagle” was present (i.e. recall
increases). Increasing the confidence threshold has the opposite effect:
some “false positives” will be discarded, but it is also likely that some
“hits” are lost, since their score is not high enough (i.e. precision in-
creases). When T → −∞, all lines are retrieved achieving the highest
recall, but also, the lowest precision. When T → +∞, no line score
exceeds the threshold and no results are retrieved for the query.

More details about the precision and recall measures will be intro-
duced in Section 5.2. For now, the important factor is that by providing
the score S(x, v), the system is able to provide the user a tool for cus-
tomization, which enables to personalize for each query the minimum
degree of accuracy that the user expects.

3.2 Filler approach

One of the most successful techniques to model the score S(x, v), for
a given handwritten line image x and a given keyword v, is known as
the Filler approach. It was first used in the field of Automatic Speech
Recognition [30, 24, 25]. The approach uses character-HMMs to build a
query-specific model Kv for the keyword v and a filler or garbage model

24 PRHLT-DSIC-UPV



3.2. Filler approach

F . It has been recently applied to handwritten KWS with considerable
success [12, 13].

The filler HMM allows to recognize any sequence of characters. This
is done using a composed HMM with an initial state linked to all the
trained character HMMs in parallel and connecting each of them to a
final state which has a loop-back to the initial state, in order to allow
multiple strings with any arbitrary length to be decoded. The resulting
HMM is depicted in Figure 3.1a.

The keyword HMM, shown in Figure 3.1b, allows the recognition of
the particular queried keyword. It is constructed by the concatenation
of the character HMMs forming the keyword surrounded by the space
HMM and embedding the filler HMM at the beginning and the end of
the combined HMM. The initial state is linked to the filler and the first
character HMM of the keyword and the edges to the final state come from
the second filler HMM and the last character HMM of the keyword. This
allows to recognize the query at any position of the line, no matter if the
line is formed by multiple words or if it is formed only by the keyword.

a

· · ·

b

sp

(a) Filler HMM: F

d

sp sp

o rw

FILLER FILLER

(b) Keyword HMM: Kv

Figure 3.1: Compositions of HMMs used by the Filler ap-
proach.

The states of the character HMMs usually use GMMs emission dis-
tributions, as explained in Section 2.3.
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In the spotting phase, a score SF (x, v) is computed as described in
Equation (3.1), where p(x|Kv) is the probability of the whole image x
given by the keyword HMM Kv, p(x|F ) is the probability given by the
filler HMM and Lv is the number of frames from the start to the end of
the keyword v, according to the alignment given by Kv.

SF (x, v) :=
log p(x|Kv)− log p(x|F )

Lv
(3.1)

Intuitively, the probability given by the filler HMM will be greater
than the one given by the keyword HMM, since the latter is a more
restrictive modeling than the former. On the other hand, the probability
computed by the keyword-specific model, Kv, will be greater on image
lines that contain the modeled keyword than on image lines which contain
other text, since the restrictions imposed in the keyword-specific model
will dampen the probability given by the HMM. Thus, in the best case,
the probability given by Kv would be similar to the given by F , if the
keyword is present in line x. If the keyword is not in the line image,
p(x|Kv) will be typically much smaller than p(x|F ). The difference of
the logarithm of these two probabilities is used as the score, as shown in
Equation (3.1). A formal justification of this score can be found in [13].

The main advantage of this model is that it does not require a word
LM. This implies that any keyword can be spotted, even if that keyword
was not part of the original training set. This provides the system with
a huge versatility. However, LMs have been shown to be useful to boost
the KWS accuracy and character LMs have been used together with the
Filler approach [11]. Nevertheless, the main issue with the Filler-based
approaches is that the lookup times are usually huge, since one Viterbi
run has to be done for each keyword and for each line in the collection
of documents.

This yields in a O(|D| · |q| · γ) running time for a single query v,
where |D| is the number of lines in the collection of documents, |q| is the
number of characters of the query and γ is a constant that depends on
the total number of states in all character HMMs in F and Kv and on
the square of the number of character HMMs in F .
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3.3 Word Graph approach
An alternative to diminish the computational cost of the search phase
introduced by the Filler approach is the, so called, Word Graph approach.
This approach uses the concept of word graphs introduced in Section 2.5.
For each line in the collection, a word graph is computed and stored after
the training phase. With the proper normalization, a score is obtained
directly from the WG for each word in the training vocabulary. This score
is stored during indexing. On the search phase, the only task to be done
is to find in which WG the query keyword has a score that surpasses the
confidence thresholds set by the user. The main publications presenting
this method for handwritten KWS are [46, 47].

3.3.1 Frame-level word posterior

The first step to fully explain how this approach works is to introduce
the word posterior probability at frame level, which accounts for the de-
gree of uncertainty about a given keyword v being present in a specific
horizontal position i within the line image, represented by the sequence
of feature vectors x = ~x1, ~x2, . . . , ~xn, where each vector ~xi corresponds
to a frame of the image. This probability distribution can be marginal-
ized considering all possible non-nested intervals containing the frame i,
which gives Equation (3.2).

P (v|x, i) =
i∑

k=1

n∑
l=i

P (v, k, l|x, i) (3.2)

Applying Bayes rule to the previous result gives:

P (v|x, i) =
i∑

k=1

n∑
l=i

P (k, l|x, i)P (v|x, k, l, i) (3.3)

Finally, assuming that the probability P (k, l|x, i) is distributed uni-
formly among all [k, l] intervals containing i, and that P (v|x, k, l, i) is
independent of i (since i ∈ [k, l]), gives the next equation:

P (v|x, i) ≈ λ

i∑
k=1

n∑
l=i

P (v|x, k, l); λ =
1

i · (n− i+ 1)
(3.4)
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Observe that P (v|x, k, l) can be approximated by any state-of-the-art
HTR engine, since it is the probability of the alignment of the word v to
the image x within the frames [k, l]. Obviously, the better the accuracy
of the HTR engine is, the better frame-level word posterior estimation is
achieved.

A naive computation of the previous equation, that could be done
using a HTR engine for isolated words and all possible segmentation
hypothesis of the image line, would entail a tremendous cost: at least
Ω(|x|4). Nonetheless, this cost can be dramatically reduced if word
graphs are used, as it will be explained in the next section.

The previous equation could be used to address KWS in a naive
way: Given a keyword v to be spotted, the frame-level word posterior
probabilities P (v|x, i) can be computed to make the frame i a spotting
candidate, that would be filtered according to the given threshold T .

Nevertheless, the previous score gives a frame-level measure and lines
have usually thousands of frames and such approach will be too fine-
graded, since hundreds of spots would be given for each line. Thus, we
aim to give a line-level global measure, without considering the specific
position of the queried keyword v within the line image. In order to fulfill
this requirement, the confidence score S(x, v) is defined as:

SG(x, v) := max
1≤i≤n

P (v|x, i) (3.5)

Similar scores to the one described in the previous equation have
been proposed in the past as good heuristics to obtain word and sen-
tence recognition confidence measures in Machine Translation [49], Au-
tomatic Speech Recognition [52, 41] and Handwriting Text Recognition
[42]. Once the line-level score SG(x, v) is computed, lines with a score
surpassing the threshold T , given by the user, are retrieved.

3.3.2 Fast computation of Frame-level Word Poste-
riors

It was pointed in the previous section that a naive computation of Equa-
tion (3.4) results in a huge cost. Here we summarize the main ideas
presented in [46] that allow a fast computation of the previous equation
by using word graphs.
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In Equation (3.4), the frame-level word posterior probability P (v|x, i)
is approximated using the alignment probability of the word v between
frames k and l, i.e. P (v|x, k, l). Observe that this probability distribution
can be approximated from the word graphs, using the fact that each
edge (q, q′) in the word graph has associated a start and end frames,
corresponding to the values of the τ function for nodes q and q′, as
explained in Section 2.5.

Using the fact that the sequence of character w has a single complete
path in the word graph G, we can compute the edge posterior, ϕ(q, q′),
efficiently using a the forward and backward algorithms:

ϕ(q, q′) =
∑

w:(q,q′)∈φw

P (w|x) =
α(q) · ρ(q, q′) · β(q′)

β(qI)
(3.6)

Observe that this defines a new normalized weight for each edge in
the word graph. This weight function has the following properties, as it
has been proved in [46]:

• Flow-preserving nodes:∑
q′∈Q

ϕ(q′, q) =
∑
q′′∈Q

ϕ(q, q′′), ∀q ∈ Q (3.7)

• Edge-posteriors are frame-level conditional distributions:∑
(q,q′)∈E:τ(q)<i≤τ(q′)

ϕ(q, q′) = 1, 1 ≤ i ≤ n (3.8)

Given the previous normalization of the word graphs, then the frame-
level word posterior probability P (v|x, i) can be approximated as:

P (v|x, i) ≈
∑

(q,q′)∈E:ω(q,q′)=v,τ(q)<i≤τ(q′)

ϕ(q, q′) (3.9)

According to Equation (3.8), the previous Equation correctly defines
a probability distribution with:

∑
v∈Σ∗ P (v|x, i) = 1.

The computation of P (v|x, i) can be performed efficiently by sequen-
tially visiting the WG edges and updating, for edge (q, q′) the value of
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P (v|x, i). Let be ω(q, q′) = v, τ(q) = i, τ(q′) = k, then the counter of
frames i < j ≤ k for the keyword v are updated. When all edges have
been visited, the absolute frequencies are normalized per frame.

The computing time is then proportional to the number of edges and
the average length of an edge, i.e. τ(q′) − τ(q). As the authors of the
previous computation explain, this is, in fact, Θ(κ · |x|), where κ is a
relatively small constant that depends on the WG input degree.

The cost of the following steps determine the overall cost of computing
SG(x, v):

• word graph generation and normalization, O(Γ · |x|).

• word graph-based computation of the frame-level word posterior
probabilities P (v|x, i), Θ(κ · |x|).

• maximization step for the final calculation of SG(x, v), Θ(|x|).

Given that, the final cost of SG(x, v) is O((Γ + κ) · |x|), where both
Γ and κ depend on the input degree of the word graph. This may be-
come too expensive for large collections of documents and/or dense word
graphs. Nevertheless, this cost is incurred only during the document col-
lection processing needed to create the indexes. Once the indexes have
been created, the lookup time is extremely fast.
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As mentioned in Section 3.3, one of the main benefits of using word
graphs for KWS is that, by using contextual information, a better accu-
racy is achieved in front of the Filler model, which is a lexicon-agnostic
approach. Word graphs assume that a vocabulary of words is given,
which can be used to create an index that allows for fast searches. How-
ever, the use of word Language Models has a non-trivial implication: all
words out of that vocabulary are not part of the modeled language, and
thus, their prior probability is zero. The words which are not part of a
Language Model are called out of vocabulary (OOV) words.

For any query consisting in an OOV keyword, the word graph ap-
proach presented in the previous chapter will assign a null score to any
line in the database. Only when the user sets the threshold to the mini-
mum value, the system will report some line. Unfortunately, all lines will
be reported in this scenario (since all of them have the same null score),
which clearly limits the usability of the system for such queries, since it
may be inadmissible to the user to review all the image lines, specially if
he or she is working with a huge collection of documents.

In further sections we will present different alternatives that try to
give a reasonable score for every possible keyword, in aim to make the
WG-based Keyword Spotting system more robust and flexible.

Most approaches presented here are based in the same idea: When
an OOV keyword is presented to the system to be spotted, its score will
be based on the score of similar in-vocabulary keywords, indexed by the
system. We will refer to this procedure as the score smoothing of an
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OOV keyword.
First, two alternative similarity measures are presented. The first

one is the well-known Levenshtein edit distance. The second one, is a
probability distribution based on Stochastic Error Correcting, that we
call confusion probability. These alternative measures are presented in
4.1.

Then, we propose different smoothing techniques at different stages
of the spotting step. In Section 4.2, two line-level smoothing approaches
will be presented that try to use the line-level score SG(x, v) computed
for the indexed keywords using the word graph approach.

Section 4.3 will present a method which is done at each frame by
smoothing P (v|x, i) (see Section 3.3.1), using more available information
than the previous methods, but requiring more computation.

The last smoothing technique uses the line score SF (x, v), computed
by the Filler model, to estimate the score of OOV keywords, given that
this model is able to give a reasonable score for any keyword.

Finally, an heuristic approach to combine the smoothed score for out
of vocabulary queries and in-vocabulary queries will be presented (Sec-
tion 4.5) and the different time and space requirements of the presented
smoothing techniques will be commented in Section 4.6.

4.1 Similarity measures among strings

4.1.1 Levenshtein Edit Distance

The Levenshtein edit distance is defined as the minimum number of in-
sertion, deletion and substitution (edition) operations that are required
to transform a string u into v [29]. For instance, in order to transform
the string “handwriting” into “handwritten”, at least, three of these edit
operations are required:

1. Replace the second “i” by “t”:
handwriting → handwrittng

2. Replace the second “n” by “e”:
handwrittng → handwritteg
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3. Replace the last “g” by “n”:
handwritteg → handwritten

The Levenshtein distance is a well-known distance measure among
strings which can be computed using the following recursive equation,
for strings u = u1,m = u1, . . . , um and v = v1,n = v1, . . . , vn:

d(u1,m, v1,n) =



0 n = m = 0

n n > 0 ∧m = 0

m n = 0 ∧m > 0

min


d(u1,m−1, v1,n) + 1

d(u1,m, v1,n−1) + 1

d(u1,m−1, v1,n−1) + δ(um, vn)

n > 0 ∧m > 0

(4.1)
where the δ function is defined as:

δ(a, b) =

{
1 a 6= b

0 a = b
(4.2)

The previous equation a allows for an efficient implementation using
dynamic programming with a time complexity of O(|u| · |v|).

The problem that presents the use of the Levenshtein distance for
the particular problem of KWS, is that it is blind to the morphological
structure of the symbols that compose both string u and v. Thus, the
Levenshtein distance between “hello” and “halo” is the same as “hello” and
“hZlXo” (2 edit operations are required), but the latter transformation
is very unlikely to happen in regular applications using natural English
language.

4.1.2 Stochastic Error Correcting Probability

In order to cope with the problem presented by the Levenshtein distance,
we define an alternative similarity measure, based on the Stochastic Er-
ror Correcting approach [1]. The key idea is to compute a confusion
probability P (u|v) which measures how likely is the HTR system to de-
tect v instead of u, where u ∈ Σ∗ and v ∈ V , the vocabulary used for
training. Following the ideas proposed by the previously cited paper,
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we model the conditional distribution P (u|v) using a Stochastic Finite-
State Machine (SFSM) for each keyword v ∈ V . Given the keyword
v = v1,n = v1, . . . , vn, a SFSM G = (Q,Σ, ε, q0, qn, E, ρ) is defined:

• Q = {q0, . . . , qn} is the set of n+ 1 states of the SFSM.

• Σ is the alphabet of the string u and v, that is, the set of characters
from which all possible strings u and v are constructed.

• ε is the null symbol. A string composed only by the null symbol is
called empty string.

• q0 is the initial state of G.

• qn is the final state of G.

• E ⊂ Q×Q× (Σ ∪ {ε}) is the set of edges connecting the states of
the SFSM with a symbol in Σ ∪ {ε}. There are edges connecting
consecutive states for each symbol b ∈ Σ∪{ε}, which represent the
substitution and deletion operations of symbols in v. Moreover,
there are edges forming loops for each state qi ∈ Q and each symbol
b ∈ Σ, which represents the insertion of a new symbol in u.

• ρ : Σ × Σ → R is the weight function, which represent the prob-
ability of transforming a symbol a into a symbol b. Suppose that
vi+1 = a, then the edge from node qi to qi+1 and labeled with
symbol b, has associated the weight ρ(vi+1, b) = ρ(a, b).

Observe that a SFSM defined in such way can accept any string in
Σ∗. Figure 4.1 shows the SFSM defined for the string “aab”.

q3q2q1q0

Σ− {b}

b

ε

ΣΣ
Σ− {a}

a

ε

ΣΣ
Σ− {a}

a

ε

Figure 4.1: SFSM used to compute P (u|aab),∀u ∈ Σ∗. Erro-
neous edit operations are represented by dashed lines.
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The ρ function is estimated from a set of pairs of strings using the
Levenshtein distance alignment among those pairs. Since the final objec-
tive is to account for the confusion probability of the HTR engine used
by the KWS system, a validation dataset is recognized using the trained
HTR engine, and the frequencies of each edit operations are computed
between the best decoding of the HTR system and the ground truth of
the validation set, that is, how many times the symbol a was transformed
into b. We will refer to this frequency as C(a, b). The absolute frequency
C(a, b) can be divided by the number of times that the symbol a was
transformed, i.e. C(a). This is the Maximum Likelihood Estimation of
the conditional distribution P (b|a),∀a, b ∈ Σ ∪ {ε}:

P (b|a) =
C(a, b)

C(a)
(4.3)

Once these conditional probabilities have been estimated for each pair
of symbols a and b, the function ρ of the SFSM is defined as follows:

ρ(a, b) =


0 a = b = ε

PIns · P (b|a) a = ε

(1− PIns) · P (b|a) a 6= ε

(4.4)

where PIns is the probability of the insertion operation, that is:

PIns =

∑
b∈Σ C(ε, b)∑

a′,b′∈Σ∪{ε}C(a′, b′)
(4.5)

The weights defined in such way, allow us to use the defined SFSM in
order to estimate the conditional distribution P (u|v), for a given keyword
v, using a recursive function α(i, j), based on the Forward algorithm. The
function α(i, j) defines the probability of being at state qi and having
observed the sequence u1, . . . , uj. It is defined as follows:

α(i, j) =



1 i = j = 0

α(i− 1, j) · ρ(vi, ε) i > 0 ∧ j = 0

α(i, j − 1) · ρ(ε, uj) i = 0 ∧ j > 0

α(i− 1, j) · ρ(vi, ε)+

α(i, j − 1) · ρ(ε, uj)+

α(i, j) · ρ(vj, uj) i > 0 ∧ j > 0

(4.6)
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The, the confusion probability, P (u|v) is given by:

P (u|v) = (1− PIns) · α(|v|, |u|) (4.7)

The previous equation can be computed efficiently using a dynamic
programming approach, which results in a O(|u| · |v|) time complexity,
the same as the Levenshtein distance algorithm described above.

4.2 Line-level smoothing
The approaches presented here smooth the score of an out of vocabulary
keyword u directly, based on the scores of similar keywords in the vocab-
ulary. Hence, the smoothing is done for each OOV query u and each line
x in the database.

4.2.1 Levenshtein Distance-based smoothing

The first heuristic algorithm is based on the Levenshtein distance, pre-
sented in Section 4.1.1 to model the similarity between two keywords
u and v. Using this distance metric d, the following smoothed score is
defined for any keyword u:

S̃L(x, u) := max
v∈V

SG(x, v)1−α · e−αd(u,v) (4.8)

The α parameter is used to adjust the weight of the score of the
in-vocabulary keyword v and the similarity measure between the two
keywords u and v. In this definition, α must be in the range [0, 1].
Observe that the minimum distance between two strings is zero, when
both strings are identical. Thus, by using the negative exponential we
ensure that the factor multiplying SG(x, v) has a maximum value equal
to 1. On the other hand, when the Levenshtein distance tends to infinity,
the exponential value tends to zero. The score of a keyword u is then
restricted to the range [0, 1].

4.2.2 Stochastic Error Correcting-based smoothing

The second smoothing approach focused on the line-level uses a more
refined similarity measure between a OOV keyword u and a in-vocabulary
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keyword v, which takes into account the morphological structure of both
u and v, using the confusion probability, previously defined in Section
4.1.2.

Given the distribution P (u|v), defined for each keyword v in the train-
ing vocabulary V , the following smoothed score is computed for any out
of vocabulary keyword u ∈ Σ∗:

S̃C(x, u) := max
v∈V

SG(x, v) · P (u|v)α (4.9)

Same as before, the parameter α is used to adjust the weight of the
scores of the in-vocabulary keywords v and the similarity measure be-
tween the keywords u and v. Here, α must be in the range [0,∞) in
order to ensure that the smoothed score is in the range [0, 1].

This smoothing approach suffers from a well-known problem when
modeling P (u|v) with a SFSM: when the length of v is increased, the
maximum of the distribution P (u|v) decreases. This behavior is not
desirable, since the score S̃C(x, u) happens to be highly dependent of the
length of both u and v, no matter which line is considered. We observed
that long keywords tended to have much lower scores systematically, and
thus, we decided to change the way of smoothing S̃C(x, u), so that the
length of the keyword does not affect this score that much. We define
the similarity factor f(u, v) as:

f(u, v) =
P (u|v)

maxu′∈Σ∗ P (u′|v)β
(4.10)

The parameter β is used to tune the effect of the length-correction and
it is determined experimentally using a validation set. This parameter
can take any value in the range [0,∞), in order to keep consistent the
following score.

Then, the score definition in Equation (4.9) is redefined as:

S̃ ′C(x, u) := max
v∈V

SG(x, v) · f(u, v)α (4.11)

Observe that the factor f(u, v) is in the range [0, 1]. Hence, the rules
applied to the parameter α for Equation (4.9) are also applied here, in
order to make sure that S̃ ′C(x, u) is in the range [0, 1].
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4.3 Frame-level smoothing

A lower-level approximation to the score smoothing of out of vocabulary
queries is adopted here. The word graph frame-level word posterior dis-
tribution, defined in Equation (3.9), will be smoothed in order to give
a probability to any keyword u ∈ Σ∗, based on the frame-level word
posterior of the keywords present in the word graph, v ∈ VG(x), and the
confusion probability P (u|v). From now on, we will refer to the word
graph frame-level word posterior distribution as P (v|x, i).

Now, the conditional distribution P̃ (u|x, i) is defined, for any keyword
u ∈ Σ∗. This can be marginalized among all keywords v ∈ VG(x), which
results in the following equation:

P̃ (u|x, i) =
∑

v∈VG(x)

P (u, v|x, i) =
∑

v∈VG(x)

P (v|x, i) · P (u|x, i, v) (4.12)

By assuming that u is conditionally independent of x and i, given v,
then Equation (4.12) is approximated as:

P̃ (u|x, i) ≈
∑

v∈VG(x)

P (v|x, i) · P (u|v) (4.13)

It has been proved in the original literature that P (v|x, i) and P (u|v)
are well-defined distributions with the following properties:

P (v|x, i) = 0, ∀v ∈ Σ∗ − VG(x) (4.14)
0 ≤ P (v|x, i) ≤ 1,∀v ∈ VG(x) (4.15)∑

v∈Σ∗

P (v|x, i) = 1 (4.16)

0 ≤ P (u|v) ≤ 1,∀u ∈ Σ∗ (4.17)∑
u∈Σ∗

P (u|v) = 1 (4.18)

Trivially, it can be proven that P̃ (u|x, i) is in the range [0,1]. More-
over, we prove that P̃ (u|x, i) is also a well-defined and normalized con-
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ditional distribution:

∑
u∈Σ∗

P̃ (u|x, i) =∑
u∈Σ∗

∑
v∈VG(x)

P (v|x, i) · P (u|v) =

∑
v∈VG(x)

∑
u∈Σ∗

P (v|x, i) · P (u|v) =

∑
v∈VG(x)

P (v|x, i)
∑
u∈Σ∗

P (u|v) =

∑
v∈VG(x)

P (v|x, i) = 1

(4.19)

Finally, following the definition of the line score in Equation (3.5),
the smoothed score for a keyword u in a image line x is given by:

S̃I(x, u) := max
1≤i≤|x|

P̃ (u|x, i) (4.20)

This smoothing technique is also affected by the problem presented
in Section 4.2.2, caused when modeling P (u|v) using a SFSM. In order
to face this issue, a similar heuristic to the one described in Section 4.2.2
has been introduced into Equation (4.13), resulting in the definition of
FS(u|x, i):

FS(u|x, i) =
∑

v∈VG(x)

P (v|x, i) · P (u|v)

maxu′∈Σ∗ P (u′|v)β
(4.21)

If one takes into account the properties of P (u|v), it can be proven
than the summation

∑
u∈Σ∗ FS(u|x, i) only depends on the words in-
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cluded in the word graph of the given image line x:∑
u∈Σ∗

FS(u|x, i) =

∑
u∈Σ∗

∑
v∈VG(x)

P (v|x, i) · P (u|v)

maxu′∈Σ∗ P (u′|v)β
=

∑
v∈VG(x)

P (v|x, i)
maxu′∈Σ∗ P (u′|v)β

∑
u∈Σ∗

P (u|v) =

∑
v∈VG(x)

P (v|x, i)
maxu′∈Σ∗ P (u′|v)β

= Zx,i

(4.22)

Then, the posterior distribution P̃ ′(u|x, i) is defined as:

P̃ ′(u|x, i) =
1

Zx,i

· FS(u|x, i) (4.23)

Finally, this smoothed frame-level word posterior probability is used
to compute the finale line score for image x and keyword u, as usual:

S̃ ′I(x, u) := max
1≤i≤|x|

P̃ ′(u|x, i) (4.24)

The parameter β is used to tune the length-correction heuristic. Ob-
serve that if β = 0, then Equation (4.23) reduces to Equation (4.13).

4.4 Filler-based scores
Here we propose to take advantage of the capability of the Filler model
to deal with out of vocabulary queries, and we propose a very simple
smoothing approach based on using the line scores computed by the
Filler model, SF (x, u) in order to estimate the score of such queries.

Since the scores produced by the Filler model are usually in a loga-
rithmic scale in the range (−∞, 0], they are converted to the same range
than the ones given by the word graph method using the following equa-
tion:

S ′F (x, u) = exp(SF (x, u)) (4.25)
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assuming that natural logarithms were used in the computation of
SF (x, u).

In fact, this approach is not an actual smoothing, since we are just
using the Filler model to compute the scores of any event (in and out of
vocabulary) and, thus, we are not taking advantage of the benefits that
the WG-based KWS provides (lexicon-awareness and much faster time
responses).

However, in the following section, we will present a combination
heuristic for taking advantage of the lexicon knowledge of word graphs for
in-vocabulary keywords, and the capability of the Filler model to serve
out of vocabulary queries.

4.5 Combining scores with a Back-off heuris-
tic

In previous sections, we have seen many approaches in order to smooth
the score of out of vocabulary queries. The previous smoothing tech-
niques are defined for any keyword u ∈ Σ∗, including the in-vocabulary
keywords whose score is already well-modeled by the WG-based KWS
approach.

We observed that using directly the smoothed scores for any keyword,
no matter if it is a in or out of vocabulary keyword, does not result in
the best performance.

For instance, the score assigned to relevant events by some of the
presented methods (Sections 4.2.2, 4.3 and 4.4) have very different dis-
tributions depending on the length of the keyword, which affects the
performance. We tried to provide an heuristic solution for this issue, as
explained in the respective sections, however, the problem is not com-
pletely solved and better results can be achieved, if the scores given by
the word graph and the presented smoothed scores are combined in a
more elaborated way.

During experimentation, we observed that the following heuristic
works very well for combining in-vocabulary and out of vocabulary scores:

S(x, u) :=

{
SG(x, u) u ∈ VG(x)

S̃(x, u)η otherwise
(4.26)
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where η, that we call score scaling factor, is a parameter that controls
the weight of the out of vocabulary scores. It is adjusted experimentally
using a validation set, as usual.

Additionally, S̃(x, v) can be any of the of the presented smoothing
approaches:

• Levenshtein Distance-based smoothing, S̃L(x, u), presented in Sec-
tion 4.2.1.

• Stochastic Error Correcting-based smoothing, S̃C(x, u) and S̃ ′C(x, u),
presented in Section 4.2.2.

• Frame-level smoothing, S̃I(x, u) and S̃ ′I(x, u), introduced in Section
4.3.

• Filler-based smoothing, S ′F (x, u), presented in Section 4.4.

This heuristic is similar to the back-off smoothing technique used in
N -gram language models, where lower-order N -grams are used to esti-
mate the probabilities of unseen events during training [23].

This similarity suggests that perhaps other combination techniques
based on interpolation could also work well in this scenario. However,
we have not explored this path.

Finally, observe that the smoothed frame-level word posterior prob-
ability P̃ (v|x, i), presented in Section 4.3, could also be combined (by
means of back-off or interpolation) with the word posterior given by the
word graph model (Section 3.3.1), instead of directly combining the scores
at line-level. It remains to be explored also if this is a better alternative.

4.6 Computational issues
Three different levels of smoothing have been presented in the previous
sections, each of them entailing very different costs. While high-level
smoothing techniques, proposed in Section 4.2, are relatively fast, low-
level methods are much more slow, like the Filler-based score.

Regarding the first level smoothing (line level), both presented ap-
proaches have the same time complexity. A naive implementation of the
line-level smoothing methods would have a time complexity of O(|u| ·
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L · |V | · |D|), where |u| is the length of the query, L = maxv∈V |v| is
the length of the longest indexed keyword, V is the number of indexed
keywords, and |D| is the number of indexed documents.

Even if the information of frequent non-indexed keywords is cached,
computing the distance or confusion probability between a new query u
and all the indexed keywords would be prohibitive, for large data sets.
However, different methods have been presented in the literature in order
to reduce such operations based on common prefixes of the indexed key-
words [5, 2], which dramatically reduce the time needed for computing
these similarity measures.

The frame-level smoothing presents an additional problem, which is
that it adds an additional linear dependency on the number of frames of
the indexed documents. Then, if F = maxx∈D |x| is the maximum length
of the indexed image lines, a trivial implementation of this smoothing
method would require about O(|u| · L · |V | · |D| · F ) time steps.

Of course, the same time reductions explained before could be used to
reduce the cost of computing the confusion probability among the query
and all indexed keywords.

Moreover, the maximization operation stated in Equation (4.13) which
results in the linear dependence of F does not actually need to involve
all frames of the line image, since for many of them, the frame-level word
posterior will be identical. Observe that two frames that cut the same set
of edges will have the same frame-level word posterior distribution. Since
the set of cutting edges can only change when a new node is introduced
in the word-graph, then the frame-level word posterior distribution will
only change between two frames i and j, if and only if, a node q has a
time-stamp τ(q) in the range i < τ(q) < j.

For instance, it can be easily seen in Figure 4.2a that any frame i
between t1 and t2 fill have the same word posterior, i.e. P (antiguos|x, i) =
0.6 and P (antiguas|x, i) = 0.6, t1 < i < t2.

Figure 4.2b shows an example of a posteriorgram, where it is clearly
shown that many columns of the histogram have exactly the same dis-
tribution, and thus, can be compressed into a single column in order to
compute the maximization operation explained before.

Even for dense word graphs, the number of frames required to perform
the maximization operation is small: It typically decreases from 1000-
2000 frames, which is the typical length of the feature sequences, to 20-40
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(a) Example of a word graph. Frames between ti and ti+1 have
the same posterior.

(b) Example showing a posteriorgram distribution. Columns of
the histogram with the same distribution can be compressed.

Figure 4.2: Examples showing that the compression of poste-
riorgrams is possible.

frames. This gives not only a huge speed-up in the lookup times, but also
in the space requirements of this smoothing methods, since it needs to
store not only the scores associated to each indexed keyword and image
line, but the whole (compressed) posteriorgram of each line.

Finally, Filler-based scores are the ones that require most time-expensive
computations. For one million images, for instance, a single keyword
query could require days or weeks of intensive computing. However, as
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shown experimentally, using the back-off heuristic with this method, re-
sults in the best performance for out of vocabulary queries.
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Chapter 5

Experiments

5.1 Corpora

5.1.1 Cristo Salvador

The Cristo Salvador corpus (CS) is a XIX century Spanish manuscript
provided by the the Biblioteca Valenciana Digital (BIVALDI)1.

The manuscript contains handwritten text of a single writer and was
scanned at 300dpi. The corpus suffers the typical degradation problems
present in legacy documents [7], such as smear, significant background
variations, drastic illumination changes, spots caused by the humidity,
ink spots, etc. Moreover, this manuscript includes words with different
sizes and style, underlined words, etc. All these degradation problems
make the accurate recognition of this document difficult to achieve.

The CS corpus is relatively small collection composed of 50 text page
images in color. Figure 5.1 show some examples of the page images.
Figure 5.2 contains a detailed view of a page image region.

The page images were preprocessed and lines were automatically seg-
mented as described in [38]. The results of this automatic processing
were visually inspected and the segmentation errors were manually cor-
rected, resulting in 1,172 text line images. The transcriptions of the
corresponding lines contain 10,860 running words with a vocabulary of
3,287 different words.

1 http://bv2.gva.es
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Figure 5.1: Some page examples of the “Cristo-Salvador” cor-
pus.

Figure 5.2: Detailed view of a “Cristo-Salvador” page image.

Two different partitions are defined for this dataset. The first one,
called the “page” partition, consists of 491 test line images, corresponding
to the last ten lines of each document page, and 681 training line images
(the rest of lines). The second one, the “book” partition, consists of
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497 line images belonging to the last 21 pages of the collection, and the
remaining 675 lines are used for training (corresponding to the first 29
pages). In the experiments conducted in this work, we use the “book”
partition. Additional details of the training and test sets are depicted in
Table 5.1. This table shows the statistics of the data used for the HMM
and LM training.

This database does not provide a default validation set and this is
needed to tune some of the parameters of the different algorithms needed
to perform HTR and KWS. In order to do so, the training set have
been divided into 10 sub-partitions to perform 10-fold cross-validation
to adjust the required parameters. As usually done in cross-validation,
each of these sub-partitions is used for testing while the remaining 9 are
used for training. Table 5.2 shows the averaged statistics among the 10
cross-validation partitions.

Training Test
Lines 675 491
Running chars 35,176 25,189
Char set size 53 52
Running words 6,227 4,691
Word set size 2,474 1,879

Table 5.1: Basic statistics of the “Cristo-Salvador” used par-
tition.

CV Train CV Test
Avg. Lines 607.5 67.5
Avg. Running Characters 31,366.8 3,485.2
Avg. Running Words 5,603.3 621.7
Avg. Character Lexicon 78 78
Avg. Word Lexicon 2,072.6 354.3

Table 5.2: Basic averaged statistics of the “Cristo-Salvadors”
cross-validation partitions.

It is important to remark that this corpus has quite a small training
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ratio of words (roughly 2.5 training running words per lexicon-entry).
Hence, it is expected that the n-gram language models suffer from over-
fitting, which will increase the errors in the recognition task.

5.1.2 IAM Database

The IAM database (IAMDB) was compiled by the Research Group on
Computer Vision and Artificial Intelligence (FKI) at the Institute of
Computer Science an Applied Mathematics (IAM) in Bern (Switzerland).
The database as of October 2002 is described in [34]. It is publicly ac-
cessible and freely available upon request for non-commercial research
purposes.

The IAMDB images correspond to handwritten texts copied from
the Lancaster- Oslo/Bergen (LOB) corpus [17, 22], which is formed ap-
proximately by 500 printed electronic British English texts of abut 2,000
words each and about one million total running words. The LOB corpus
contains text from diverse categories: editorial, reportage, religion, skill,
etc.

In order to create the IAMDB corpus, text from the LOB corpus
was split into fragments of 3-6 sentences, with at least 50 words each.
Different persons were asked to write several sentences by hand. No
restrictions were imposed on the writing style or the type of pen and
thus, very different styles and sizes are present. Handwritten texts were
scanned at 300dpi, quantized to 256 gray levels and lossless compressed
with PNG.

The latest version of IAMDB (version 3.0) is composed of 1,539
scanned text pages, handwritten by 657 different authors. Each author
only participates in one of the partition sets: training (283 writers), val-
idation (56 writers) or test (161 writers). We use a line-level partition of
the IAMDB (there are sentence, line and isolated words versions of the
IAMDB). Some examples of the IAMDB lines are shown in Figure 5.3.

Line detection and extraction, as well as (manually) detecting sen-
tences boundaries, was carried out by the IAM institute [33]. We use a
version of this latest IAMDB release frequently used in previous KWS
publications [45, 15, 16]. The information summarizing the used version
can be found in Table 5.3.

Instead of using only the IAMDB training partition to build the n-
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Figure 5.3: Line examples of the IAM database.

Train Validation Test
Running chars 269,270 39,318 39,130
Char set size 72 69 65
Running words 47,615 7,291 7,197
Lexicon size 7,778 2,442 2,488
Lines 6161 920 929

Table 5.3: Basic statistics of the IAMDB corpus.

gram language model, three text corpora have been used: the LOB corpus
(except the sentences included in the IAMDB test set), the Brown corpus
and the Wellington corpus. The Brown [14] and Wellington [19] are
both comparable to the LOB corpus in size and content, but the former
is written in American English and the latter in New Zealand English.
Table 5.4 shows the basic information of these corpora. In order to reduce
the huge vocabulary present in those text corpora, only 20K words were
used to build the final vocabulary and train the language models.

LOB Brown Wellington
Lines 52,676 49,362 56,745
Running Characters 5,803,916 5,582,023 6,055,820
Running Words 1,119,904 1,045,213 1,144,401
Lexicon 52,724 53,115 58,919

Table 5.4: Basic statistics of the LOB, Brown and Wellington
corpora.
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5.1.3 Query keywords selection

In order to carry out the experiments for this thesis we used the validation
lexicon when performing (cross-)validation of the models and the test test
lexicon for the final evaluation.

Some previous publications used the training lexicon instead [46].
However, by using the training lexicon one is excluding the effect of out
of vocabulary keywords.

An argument against using the validation and test lexicon is that all
query keywords are relevant, since all of them will appear in some of the
documents to be spotted, while using the training lexicon provides some
non-relevant keywords.

Then, one may think that by testing only on relevant keywords, one
might get good results by automatically assigning high scores to any
keyword, while this would not work if both relevant and non-relevant
keywords have to be spotted.

However, the previous will only be true if most of keywords are rel-
evant in most of the documents, i.e. we have plenty of relevant events.
But that is very unlikely in real scenarios (with tens of thousands of doc-
uments and just a few thousands of keywords) and is not true either for
the databases used in this thesis.

Observe that many keywords are only relevant for a couple of lines,
so assigning a high score, no matter which line is considered will hurt the
performance of the keyword spotting system.

Table 5.5 summarizes the selected query set used in each corpus. This
table clearly shows that out of vocabulary keywords are an important
issue for keyword spotting. In the Cristo-Salvador database, more than
30% of the relevant events involve out of vocabulary keywords. Even
when a huge external text corpus is used to build the language models, as
is the case of IAM database, the out of vocabulary keywords are involved
in more than 14% of the relevant events.

It is important to remark that, in order to carry out the KWS ex-
periments, punctuation marks and diacritics were ignored from both
databases. Additionally, the LM of the CS database ignores the text
capitalization. Table 5.5 takes into account these facts.
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CS IAMDB
Validation Test Validation Test

Lines 67.5 491 920 929
Queries 354.3 1,671 2,134 2,209
OOV Queries 163.6 1,051 435 437
Events 23,915.3 820,461 1,963,280 2,052,161
OOV Events 11,043 516,041 400,200 405,973
Relevant Events 590.8 4,346 3,384 3,446
Relevant OOV Events 167.1 1,341 497 496

Table 5.5: Basic statistics of the selected query keywords for
CS and IAMDB. Data from the validation CS set is averaged
across the 10 partitions.

5.2 Assessment metrics

In order to assess the performance of the proposed smoothing approaches
for keywords spotting, we use the Average Precision (AP) and Mean
Average Precision (MAP), based on the concepts of Precision and Recall.

These metrics are widely used in the Keyword Spotting community
and others like Information Retrieval, Classification, etc.

5.2.1 Precision and Recall

In the field of Information Retrieval, when a set of documents is retrieved
for a query, precision measures the fraction of the retrieved documents
that were relevant for the given query (that is, the given keyword was
actually present in the retrieved documents).

On the other hand, recall measures the fraction of relevant documents
that were retrieved.

Relevance may be a subjective concept in many fields of Information
Retrieval, like search engines. However, in the field of KWS, relevance is
a well defined concept: a document is relevant for a given query, if the
queried keyword is present (written) in the given document.

For a particular KWS system, suppose that Dv is the complete set of
relevant indexed documents, for a query keyword v, and Rv is the set of
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retrieved documents for the query v. The set of retrieved and relevant
documents, also referred as “hits”, is denoted by Hv = Dv ∩ Rv. These
sets define the precision πv and recall ρv, for the keyword v, as:

πv =
|Hv|
|Rv|

(5.1)

ρv =
|Hv|
|Dv|

(5.2)

When a threshold τ is used to filter the results of the KWS system
based on a confidence measure, the precision and recall metrics are de-
fined for a particular threshold value. If the set of retrieved documents
for a query v and threshold τ is denoted by Rv(τ), and the set of “hits” is
represented by Hv(τ) = Dv ∩Rv(τ) then precision and recall are defined
as functions of the threshold τ .

πv(τ) =
|Hv(τ)|
|Rv(τ)|

(5.3)

ρv(τ) =
|Hv(τ)|
|Dv|

(5.4)

Figure 5.4 shows an example of the sets that define the precision and
recall metrics. In the figure, D refers to the total collection of indexed
documents.

Typically, when a low threshold is used, a high recall and low precision
are achieved. In the extreme case, when all documents are retrieved the
recall achieves its maximum value ρv = 1, and the precision its minimum
πv = |Dv |

|D| .
On the other hand, when a high threshold is used, a low recall and

high precision are achieved. Observe that the extreme case in which
no documents are retrieved, the recall is ρ = 0 but the precision is not
well-defined, since |Rv(τ)| is zero.

The previous definitions assumed a single query v. When a set of
queries Q is used, precision and recall measures are defined as:

π(τ) =

∑
v∈Q |Hv(τ)|∑
v∈Q |Rv(τ)|

(5.5)

ρ(τ) =

∑
v∈Q |Hv(τ)|∑
v∈Q |Dv(τ)|

(5.6)
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Figure 5.4: Venn diagram showing the sets that define Preci-
sion and Recall.

5.2.2 Average Precision

By changing the threshold value τ one gets different pairs of recall and
precision values, which allow to plot the recall-precision curve. In this
curve, the recall is plotted on the x-axis and the precision in the y-axis.

The area under the recall-precision curve is known as the Average
Precision (AP), and is a widely used assessment metric that combines
both Precision and Recall. It is commonly accepted that the larger the
AP, the better the KWS system performs.

As mentioned before, precision is ill-defined in some extreme cases,
the recall-precision curve does not always present a monotonically de-
creasing curve for increasing recall values [9]. To surpass these problems,
the interpolated precision is usually used in the literature, instead.

The interpolated precision π′ at a certain recall level ρ, denoted as
π′(ρ), is defined as the highest precision found for any recall value greater
or equal to ρ:

π′(ρ) = max
ρ′≥ρ

π(ρ′) (5.7)

Figure 5.5 shows an example of a recall-precision curve (dashed line)
and the recall-precision curve using interpolated precision (solid line).
From now on, we will assume that the interpolated precision is used,
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when referring to Average Precision.
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Figure 5.5: An example of a Recall-Precision curve (dashed)
and the RP curve with interpolated precision (solid).

5.2.3 Mean Average Precision

The recall-precision curve and the Average Precision are usually com-
puted for a set of queries, as explained before. However, in the literature
there is also an alternative metric that consists in computing the area
under the recall-precision curves for each keyword separately and then
averaging all of them. This is metric is known as the Mean Average
Precision (MAP) [32].

For both AP and MAP the value of the score which is assigned to
each event is not important, the only important factor that determines
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the area under the PR curve is the relative ordering between relevant and
non-relevant results. As long as most of the relevant results have higher
scores than the non-relevant results, both metrics will be similar.

However, there is an important difference between MAP and AP.
The latter computes the area under the recall-precision curve when all
queries are considered simultaneously, while the former only considers
queries one at a time. Then, when the score assigned to an event highly
depends on the keyword, very different values for the AP and MAP may
be obtained.

Table 5.6 shows an example of this phenomenon. Observe that the
scores of the keyword “K1” are systematically higher than the scores of
the keyword “K2”. If the MAP metric is considered, which computes the
area under the PR curve for each keyword separately, the performance is
perfect since the relevant events have greater scores for both keywords,
thus a MAP of 1.0 is achieved.

On the other hand, if all events are considered together, as the AP
metric does, the performance is considered worse, since the relevant event
of keyword “K2” has a lower score than the non-relevant events of keyword
“K1”. Then, the achieved AP has a value of 0.75.

Document Keyword Relevant Score
D1 K1 1 1
D2 K1 0 0.1
D3 K1 0 0.1
D1 K2 1 0.05
D2 K2 0 0
D3 K2 0 0
AP = 0.75 MAP = 1.0

Table 5.6: Example showing the difference between AP and
MAP.

There is some controversy in the Information Retrieval community
regarding this phenomenon. Some authors defend that the AP metric
should be used, since it demands a consistent and robust threshold which
assigns high scores for relevant events and low scores for non-relevant
ones, no matter which keyword or document is considered. Additionally,
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the MAP metric is not well-defined when the considered queries include
non-relevant keywords (those which are not present in any document).

On the other hand, other authors defend that the MAP metric should
be used since it is more similar to the user point-of-view, because users do
not search for all keywords at the same time, but they perform individual
queries. Moreover, very few search engines let the user to adjust the
threshold, but provide a sorted list of retrieved documents, where the
events with the highest score are situated in the top positions of the
results list.

During the development of this thesis, we decided to measure both
AP and MAP in order to have a broader view of the performance of the
proposed algorithms.

5.3 Description of the underlying HTR sys-
tem

As mentioned in Chapter 3, KWS systems are built on top of a HTR
engine. In this section we discuss the underlying HTR systems used for
keyword spotting. We use the standard HMM-based approach for HTR.

Once the text document images have been segmented into lines, sev-
eral preprocessing steps are carried out to normalize the image (slope,
slant and size normalization) and a sequence of feature vectors for each
line image. In the case of the CS database, the images are processed
using a sliding window approach were each original image line is seg-
mented into r = 16 rows and a number of columns, c, is chosen so that
the number of rows r

c
is three times the original line image aspect ratio.

For each cell, the average gray-level and the horizontal and vertical gra-
dients of the gray-level are used as features, thus each line is represented
by a sequence of c 48-dimensional vectors (frames). More details of this
feature extraction process can be found in [44, 38].

On the other hand, for the IAM database, the carried image normal-
ization preprocessing and the used features are presented in [33]. Same
as before, a sliding window scheme is used here, but nine features are ex-
tracted from each frame: the number of black pixels in the window, the
center of gravity, the second order moment of the window, the position
of the upper and lower contour, the gradient of this contour, the number
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of black-white transitions in vertical direction and the number of black
pixels contained between the upper and lower contour.

Once the the image features have been extracted, 78 character-HMMs
were trained for the CS database. The number of states for each character-
HMM was determined experimentally using force-alignment, as described
in [43]. The average number of states per character was 14, with 16
Gaussian components for each state. These parameters were tuned for
the cross-validation sets.

A bi-gram language model was trained from the transcriptions and
smoothed using the standard Kneser-Ney back-off technique [26]. The
LM was estimated only using the transcriptions of the training set.

Finally, the word insertion penalty and the grammar scale factor pa-
rameters were set to 80 and -160, respectively. They were also tuned
using the cross- validation sets.

Regarding the IAM database, 72 character-HMMs were trained. The
number of states was also variable and was adjusted using the validation
set. The number of states per character-HMM varies from 2 to 28 states,
with 12 Gaussian components per state.

The bi-gram language model was trained on the LOB-Brown-Wellington
corpora described in Section 5.1.2. The resulting language model was
smoothed using also the standard Kneser-Ney back-off.

In this case, the word insertion penalty and the grammar scale factor
parameters were set to 28 and -17, respectively. Both adjusted on the
validation set of the IAMDB.

The software used to train the underlying handwriting text recogni-
tion system is the widely used Hidden Markov Model Toolkit (HTK)2
[53].

5.4 Baseline results
In this section we describe the baseline results achieved by the Filler-
based and the WG-based KWS systems described in Section 3.2 and
Section 3.3, respectively.

The baseline results for the CS database are shown in Table 5.7. Table
5.8 shows the baseline results for IAMDB. For the word graph-based

2 http://htk.eng.cam.ac.uk/
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KWS approach, different WG input degrees were tried. The results are
given for each tried density, d. In the case of the CS database, the results
on the Validation columns are the average of the AP and MAP achieved
by the 10 partitions defined in Section 5.1.1. The confidence interval is
computed at 95% of significance.

AP MAP
Validation Test Validation Test

Filler 0.784± 0.015 0.642 0.859± 0.016 0.739
WG, d = 1 0.495± 0.016 0.389 0.389± 0.007 0.198
WG, d = 3 0.617± 0.010 0.536 0.458± 0.004 0.275
WG, d = 5 0.630± 0.010 0.550 0.464± 0.004 0.281
WG, d = 10 0.632± 0.010 0.554 0.473± 0.005 0.287
WG, d = 20 0.634± 0.010 0.556 0.477± 0.005 0.290
WG, d = 40 0.634± 0.010 0.556 0.480± 0.006 0.290

Table 5.7: Baseline AP and MAP for CS.

AP MAP
Validation Test Validation Test

Filler 0.548 0.467 0.737 0.665
WG, d = 1 0.555 0.510 0.567 0.524
WG, d = 3 0.705 0.659 0.677 0.639
WG, d = 5 0.717 0.674 0.687 0.661
WG, d = 10 0.728 0.683 0.700 0.675
WG, d = 20 0.731 0.689 0.707 0.684
WG, d = 40 0.733 0.691 0.712 0.688

Table 5.8: Baseline AP and MAP for IAMDB.

The previous tables show the role of the WG input degree in the per-
formance of the WG-based method. While the AP and MAP increase
with the input degree of the WG, the differences are not significant for
d = 10, 20, 40, as the confidence intervals of the validation AP and MAP
show for the CS database. For the IAM database, no confidence inter-
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vals could be computed, but it is also seen that the improvement in the
assessment metrics saturates for high-dense word graphs.

Also, the importance of the out of vocabulary keywords and the lan-
guage model can be observed. In the CS database, the Filler model
outperforms the WG-based approach with a high margin, specially in
the MAP metric. On the other hand, the WG-based model is much
better than the Filler model in the IAM database.

This is due to the fact that the CS language model was trained using
very few data (only the transcriptions from the training set), whereas the
IAMDB language model was trained using a huge external corpus. Also,
many of the queries in the CS database were out of vocabulary (Table
5.5), while in the IAMDB scenario this percentage was not so elevated
(see Figure 5.6, which shows the distribution of the AP among the test
keywords in each database). This explains why AP and MAP are much
better in the IAMDB for the WG, in comparison to the CS database.

On the other hand, the reason that explains why the Filler behaves
poorly in the IAMDB, in comparison to the CS, is that the latter case
was written only by a single writer, and thus the variability that has to be
modeled by the GMMs and HMMs is much lower in the second case, in
comparison to the first. The WG-based approach is capable of handle this
variability by using the information provided by the well-estimated LM.
Moreover, the Filler approach suffers from a problem similar to the one
present in the introduced smoothing techniques that used the stochastic
error correcting approach: the score assigned to an event highly depends
on the length of the keyword. These two effects explain why the AP
of WG-based model outperforms the Filler approach, while the MAP is
similar. Figure 5.7, which shows the distribution of the scores for relevant
events, can help to understand these issues.

5.5 Smoothing methods

In this section we explain the experiments performed to assess the im-
provements achieved by using the different smoothing methods presented
in Chapter 4. The section is divided in four subsections: the first one
describes the results of the line-level smoothing methods, the second one
comprises the results of the frame-level methods, the third one explains
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Figure 5.6: Histogram of the AP of test keywords for CS and
IAMDB using the baseline Filler and WG models.

the experiments and performance of the previous methods combined with
the baseline WG scores, using the Back-off approach described in Sec-
tion 4.5, including the results of the Back-off method based on the Filler
scores. Lastly, all results are summarized in the final subsection.

Since most of the proposed methods involve different hyper-parameters
that need to be tuned in order to achieve a proper performance, we re-
strict the further experiments to word graphs with a maximum input
degree of 40. Thus, the following results must be compared to the last
rows of Table 5.7 and Table 5.8, which show the results of the baseline
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Figure 5.7: Histogram of the score of test relevant events for
CS and IAMDB using the baseline Filler and WG models.

WG method with a density of 40.

5.5.1 Line-level smoothing

In this subsection we report the results achieved by all smoothing meth-
ods described in Section 4.2. These results are shown in Table 5.9 and
Table 5.10, which correspond to the results on the CS and IAM databases,
respectively.

In order to adjust the hyper-parameters in each of the smoothing
equations, the validation partitions of each database were used and a
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grid search was performed. The hyper-parameters were adjusted for each
method and databse independently.

For the Levenshtein Distance-based smoothing method (see Section
4.2.1), the optimal value of α was found exploring values in the range
[0, 1] with 0.1 steps. The results of this method are tagged with the
keyword “Levenshtein” in the tables.

For the Stochastic Error Correcting-based (SEC) smoothing tech-
nique (see Section 4.2.2), which involves two parameters, α and β, a
similar grid search was performed. The value of α was optimized for
values in the range [2−3, 24] with exponential increments (2−3, 2−2, . . .).
On the other hand, the value of β was determined in the range [0, 2.5]
with 0.1 increments. Observe that if β is zero, the SEC method with
length correction (SEC-LC) is equivalent to the basic SEC method, with
no length correction.

AP MAP
Validation Test Validation Test

Levenshtein (α = 0.8) 0.659± 0.011 0.567 0.700± 0.006 0.443
SEC (α = 0.5) 0.617± 0.014 0.544 0.684± 0.008 0.450
SEC-LC (α = 1, β = 1) 0.660± 0.012 0.573 0.711± 0.007 0.462

Table 5.9: Best AP and MAP achieved using the three pro-
posed line-level smoothing methods on the CS database.

AP MAP
Validation Test Validation Test

Levenshtein (α = 0.9) 0.735 0.694 0.798 0.761
SEC (α = 1) 0.710 0.665 0.795 0.760
SEC-LC (α = 2, β = 1.2) 0.735 0.691 0.794 0.761

Table 5.10: Best AP and MAP achieved using the three pro-
posed line-level smoothing methods on the IAM database.

Table 5.9 and Table 5.10 show that the method that usually outper-
forms the others across all configurations is the Stochastic Error Correcting-
based method, with length correction. However, the differences between
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this method and the Levenshtein Distance-based smoothing are not sig-
nificant in the CS validation sets (with 95% confidence) and they are
probably not significant either for the other scenarios (CS test set, and
IAM validation and test sets).

5.5.2 Frame-level smoothing

In this section we present the performance achieved by the frame-level
smoothing methods described in Section 4.3. Validation and test results
for each database are shown in Table 5.11 and Table 5.12, for CS and
IAMDB respectively.

In order to adjust the hyper-parameter β in the frame-level smoothing
with length correction, the validation partitions of each dataset were used
and a grid search was performed. The value of β was adjusted for each
dataset independently. The range of explored values for β was [0, 2.5]
with 0.1 increments. Observe that if β is zero, the length correction
factor is ignored, and then Eq. 4.23 is the same as Eq. 4.13. This means
that the frame-level smoothing with length correction is a more general
smoothing than the version without length correction.

AP MAP
Validation Test Validation Test

Pstgram 0.605± 0.015 0.532 0.718± 0.008 0.471
Pstgram-LC (β = 1.5) 0.612± 0.016 0.532 0.713± 0.008 0.463

Table 5.11: Best AP and MAP achieved using the two pro-
posed frame-level smoothing methods on the CS database.

AP MAP
Validation Test Validation Test

Pstgram 0.709 0.663 0.795 0.761
Pstgram-LC (β = 2.1) 0.719 0.672 0.794 0.754

Table 5.12: Best AP and MAP achieved using the two pro-
posed frame-level smoothing methods on the IAM database.
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Here, the differences in AP between the version with length correction
and the version without length correction are subtle. Moreover, they are
slightly worse than the line-level smoothing approaches presented before.
However, the MAP of the frame-level methods is generally better than
the MAP of the line-level approaches.
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(b) SEC-LC
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(c) Pstgram-LC

Figure 5.8: Histogram of the distribution of the AP among
the CS test keywords achieved using the baseline scores and
the line-level and frame-level smoothed scores.
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(b) SEC-LC
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(c) Pstgram-LC

Figure 5.9: Histogram of the distribution of the scores among
the CS test events given by the baseline WG, the line-level
and frame-level smoothing methods.

Figure 5.8 shows the distribution of the AP among the CS test key-
words for the baseline WG method, the “SEC-LC” line-level method (see
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Table 5.9) and the “Pstgram-LC” frame- level method (see Table 5.11).
As Fig. 5.8 shows, the smoothing methods assign higher scores for rele-
vant events than non-relevant events, and that is why the MAP increases
significantly for both smoothing methods, respect the baseline.

On the other hand, Figure 5.9 explains the results on the AP. For
the line-level smoothing with length correction, the score assigned to
an in-vocabulary keyword will not usually change. Observe that, if the
confusion probability is well modelled, the value maxu′∈Σ P (u′|u) will
typically correspond to P (u|u). Thus, the score given by the word graph
of a in-vocabulary keyword will be multiplied by 1, in Eq. 4.11, and,
thus, it typically won’t change. For the out of vocabulary methods, the
scores will be typically very low, since the confusion probability will have
a small value, give any in- vocabulary keyword. This explains why the
distributions of the scores of the baseline system and the smoothed scores
with Eq. 4.11 are so similar.

However, for the frame-level smoothing, the frame-level word poste-
rior of a in-vocabulary keyword is also interpolated across the frame-level
word posterior and confusion probabilities of all keywords in the word
graph, and thus, even for in-vocabulary keywords, the smoothed frame-
level word posterior probabilities will be smaller (since they have to sum
up up to 1 for any string in Σ∗), and this translates to a smaller score,
since the score is just the maximum of the frame-level word posterior of
a given keyword, across all frames. This effect can be seen in Figure 5.9,
where the “Pstgram-LC” figure shows that no event has a score higher
than 0.8. This ultimately can cause a drop in the AP, when the scores of
non-relative events have a higher score than other relative events, even
if the events are due to different keywords.

The previous fact suggests that it is probably better to smooth only
the scores of out of vocabulary keywords, and use the scores for in-
vocabulary keywords as provided by the word graph. This combination
scheme is what we refer as the Back-off heuristic, which is experimented
in the following section.

5.5.3 Back-off combination

In this section we present the results of using the Back-off combina-
tion heuristic, introduced in Section 4.5, with all the previous smoothing
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methods and the Filler score, provided by the baseline Filler model.
The value of the score scaling factor η, for the out of vocabulary

scores, is determined using the validation partition of each corpus. All
values in the range [0, 3] with increments of 0.1 points were explored for
each smoothing method, database and partition independently. It was
assumed that the optimal value of this hyper-parameter is independent
of the values of the parameters intrinsic in each smoothing method. This
may not be true, but the number of combinations of parameters that
would be required to explore, if this independence assumption is not
taken, would be too high in some cases (observe that the number of
experiments that have to be done with grid search grows exponentially
with the number of hyper-parameters to tune). Thus, the best values of
the intrinsic parameters of each method were determined by the results
of the previous section, and then the previous exploration was performed
to tune η.

Table 5.13 and Table 5.14 show the results of the Back-off heuristic
on CS and IAM, respectively, using the different techniques of obtaining
scores for out of vocabulary queries, presented in this thesis.

AP MAP
Validation Test Validation Test

Levenshtein (η = 2.6) 0.689± 0.012 0.574 0.707± 0.006 0.450
SEC (η = 0.4) 0.688± 0.011 0.568 0.695± 0.008 0.455
SEC-LC (η = 0.4) 0.696± 0.012 0.585 0.713± 0.008 0.464
Pstgram (η = 0.4) 0.689± 0.012 0.581 0.719± 0.008 0.472
Pstgram-LC (η = 0.4) 0.690± 0.012 0.581 0.718± 0.008 0.466
Filler (η = 0.05) 0.838± 0.009 0.725 0.872± 0.008 0.766

Table 5.13: Best AP and MAP achieved with the Back-off
combination heuristic for different smoothing methods, CS
database.

If Table 5.13 and Table 5.14 are compared with the results from the
previous section, it is clearly shown that smoothing the scores of all
events, including in-vocabulary, which are already well-modelled by the
WG-approach, is not the best thing to do. Those smoothing methods
should be used only for out of vocabulary keywords, instead, and then
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AP MAP
Validation Test Validation Test

Levenshtein (η = 4) 0.743 0.698 0.797 0.760
SEC (η = 0.4) 0.745 0.702 0.794 0.760
SEC-LC (η = 0.3) 0.745 0.700 0.793 0.760
Pstgram (η = 0.4) 0.745 0.702 0.795 0.762
Posteriogram-LC (η = 0.4) 0.746 0.702 0.795 0.761
Filler (η = 0.5) 0.820 0.769 0.863 0.822

Table 5.14: Best AP and MAP achieved with the Back-off
combination heuristic for different smoothing methods, IAM
database.

combined with the in-vocabulary scores, provided by the WG baseline
with the Back-off heuristic. As we commented in Section 5.5.2, this is
due to the fact that the proposed smoothing methods tend to produce
scores for relevant and non-relevant events closer to zero, which can hurt
the AP. Figure 5.10 shows that the Back-off heuristic is not affected by
this issue.

Observe that the distribution of the scores of in-vocabulary events is
the same as the baseline method, which is well distributed close to the
ideal distribution where most of the relevant events have a score near
to zero. On the other hand, the score of the out of vocabulary events
is distributed in a different way depending on the smoothing method,
being the “Filler Back-off” combination, the one that provides a closer
distribution to the ideal one.

Figure 5.11 shows the importance of scaling the scores in the Back-
off heuristic to improve the AP. It shows the distribution of the relevant
scores for the baseline methods, the scaled Filler scores and the scores
provided by the Back-off heuristic, using the scaled Filler scores. Observe
that the Back-off heuristic distributes the in- vocabulary scores as the
“WG Baseline” and the OOV scores as the “Filler Scaled”. In terms of
MAP, the scaling has obviously no effect since the relative ordering of
relevant and non-relevant events due to the same keyword is not altered.

The previous tables and figures show that best thing to do, in order
to achieve the highest AP and MAP scores, is to use the Filler scores for
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(b) SEC-LC Back-off
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(c) Pstgram-LC Back-off
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(d) Filler Back-off

Figure 5.10: Histogram of the scores distribution for relevant
events in the CS test partition, using different Back-off heuris-
tics.

out of vocabulary keywords combined with the pure WG-based scores for
in-vocabulary keywords. These excellent results prove that the proposed
Back-off heuristic successfully combines the benefits of the WG-based
and Filler-based KWS systems.

5.5.4 Summary results

Here we summarize the AP and MAP in the test set of each database
for all the previous smoothing methods and the baseline results for the
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(b) Filler Baseline
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(c) Filler Scaled
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(d) Filler Back-off

Figure 5.11: Histogram of the scores distribution for rele-
vant events in the CS test partition, using different KWS
approaches. Observe that the Back-off heuristic distributes
the in-vocabulary scores as the “WG Baseline” and the OOV
scores as the “Filler Scaled”.

WG and the Filler models. The rows in Table 5.15 are divided in four
blocks. The first block corresponds to the baseline methods, the second
block refers to the line-level methods (including their back-off versions),
the frame-level smoothing methods are situated in the fourth block and,
finally, the filler back-off model is situated on the final group.

For each group and each column (metric and database), the winning
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method is emphasized. In the cases where two methods achieved the
same performance for a particular dataset-metric pair, both methods are
emphasized. Finally, the global best method for each dataset-metric pair
is marked in bold (the “best” for each group have been determined using
the validation partition).

CS IAMDB
AP MAP AP MAP

Baseline Filler 0.642 0.739 0.467 0.665
Baseline WG 0.556 0.290 0.691 0.688
Levenshtein 0.567 0.443 0.694 0.761
SEC 0.544 0.450 0.665 0.760
SEC-LC 0.573 0.462 0.691 0.761
Levenshtein Back-off 0.574 0.450 0.698 0.760
SEC Back-off 0.568 0.455 0.702 0.760
SEC-LC Back-off 0.585 0.464 0.700 0.760
Pstgram 0.532 0.471 0.663 0.761
Pstgram-LC 0.532 0.463 0.672 0.754
Pstgram Back-off 0.581 0.472 0.702 0.762
Pstgram-LC Back-off 0.581 0.466 0.702 0.761
Filler Back-off 0.725 0.766 0.769 0.822

Table 5.15: Summary table showing the test AP and MAP
on the CS and IAM databases for all the presented methods
and the original baselines.

If one takes into consideration that, most of the line-level and frame-
level methods had a confidence interval around 0.015 (95% confidence)
in the validation set of the CS database, one realizes that the differences
between these two approaches are subtle. Anyhow, the absolute winner
above any method is the Filler back-off combination (where the WG
scores are used for in-vocabulary keywords and a scaled version of the
Filler scores are used for out of vocabulary keywords). However, one
must realize that this comes with the price of running the expensive
computation needed by the Filler model.

Finally, comparing the best smoothing model in each group and
dataset-metric pair with the baseline WGmodel, which is the one sensible
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CS IAMDB
AP MAP AP MAP

Baseline WG 0.556 0.290 0.691 0.688

Line-Level 0.585 0.464 0.702 0.761
(5.2%) (60.0%) (1.6%) (10.6%)

Frame-Level 0.581 0.472 0.702 0.762
(4.5%) (62.8%) (1.6%) (10.7%)

Filler Back-off 0.725 0.766 0.769 0.822
(30.3%) (164.1%) (11.3%) (19.5%)

Table 5.16: Summary table showing the best AP and MAP
achieved for each smoothing level and the relative improve-
ment respect the baseline WG method.

to out of vocabulary words, results in Table 5.16. The relative increase
of each metric is shown in parentheses. This table is useful to show how
much is expected the system to improve using the best method of each
smoothing level.

Table 5.16 shows that the smoothing methods are specially useful
when the number of expected out of vocabulary events is high (as is the
case of CS). But even when the numbers of out of vocabulary events is
not so high (IAMDB), the proposed line-level and frame-level smoothing
methods provide moderate improvements on AP, and very good improve-
ments on MAP. And the Filler Back-off combination provides even more
excellent results for MAP and significant improvements in AP.

The recall-precision curves of the best method for each level on each
dataset, summarized in Table 5.16 are shown in Figure 5.12. This figure
summarizes all the previous discussion and clearly shows that any type
of smoothing helps the WG-based KWS to improve. The best results are
achieved in both datasets with the Filler Back-off combination, which
clearly outperforms any of the other methods.

PRHLT-DSIC-UPV 73



Chapter 5. Experiments

(a)
(b)
(c)
(d)
(e)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

P
re

c
is

io
n

Recall

(a) CS

(a)
(b)
(c)
(d)
(e)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

P
re

c
is

io
n

Recall

(b) IAMDB

Figure 5.12: Recall-Precision curves of the best methods on
the CS and IAMDB test partitions. Curves: (a) Baseline
Filler (b) Baseline WG (c) SEC-LC Back-off (d) Pstgram-
LC Back-off (e) Filler Back-off.

5.6 Posteriogram compression

Finally, we measured how much the posteriorgrams are compressed by
taking into account the fact that many frames will have exactly the same
word-posterior distribution, and thus, not all of them are required in
order to perform the frame-level smoothing (recall Section 4.6). Differ-
ent word graph input degrees were considered. The results for the test
partitions of CS and IAMDB are shown in Table 5.17.

The previous table shows that the compression achieved depends on
the word graph density, as explained in Section 4.6. For the smallest word
graphs, posteriograms are reduced to 1.5% (CS) and 0.8% (IAMDB)
of their original size. For the largest explored input degree, they are
reduced to 20.6% (CS) and 2.4% (IAMDB), repect the uncompressed
posteriorgrams.

We already pointed in Section 5.3 that the language models of the
CS dataset were underestimated, due to the lack of training data. This
directly affects the weights of the arcs in the word graph. Having a
lower quality system implies that the system is less confident about the
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CS IAMDB
# Frames 1659.0 1439.2
d = 3 24.2 11.0
d = 5 43.8 13.6
d = 10 97.2 18.9
d = 20 196.7 26.0
d = 40 342.3 34.1

Table 5.17: Average number of frames and resulting number
of frames after compression, for the test partition of the CS
and IAM databases.

decoding, resulting, at the end, in higher perplexities at frame level,
which prevents from a compression as effective as the one achieved in the
IAM database.
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Conclusions

In this work different methods are studied to handle out of vocabulary
queries when a word graph-based keyword spotting system is used. WG-
based KWS systems (presented in Section 3.3) have the shortcoming that
assign a null score to any keyword that was not part of the data from
which the language model was trained. The amount of out of vocabulary
words depends on the particular task, but for all the considered datasets
this was not negligible.

Other models based on the modeling of the scores at a character-level
have much better performance for the OOV keywords, as the Filler model
presented in Section 3.2. However, character-level models are usually
much more expensive in terms of computation time required to perform
a search.

Thus, we aimed to provide the WG-based approach with the versa-
tility of the character-level models but providing also reasonable lookup
times to the user.

In Chapter 4 we presented several smoothing techniques that estimate
the score of an out of vocabulary keyword based on its similarity among
the keywords present in a word graph, and the score assigned to each of
these present keywords. The proposed smoothing techniques are applied
at two levels, one is the line-level, where the scores of the in-vocabulary
keywords are directly used. The other proposed level, the frame-level,
goes one step below and tries to smooth the frame-level word posterior
probability at each frame, since this is directly used to compute the final
score of a keyword for a line image.
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Chapter 6. Conclusions

We have seen during experimentation that there is not a significant
difference, in terms of MAP, between the line-level and the frame-level
smoothing methods. However, a significant difference was observed for
AP (see Section 5.5.1 and Section 5.5.2). As we commented, this is due
to the fact that the proposed frame-level tends to decrease excessively
the score of in-vocabulary keywords.

We decided then to use an heuristic approach were the smoothing
is only applied to out of vocabulary keywords, while in-vocabulary key-
words use the score directly given by the baseline WG-based system. We
called this method “Back-off heuristic”, since it reminds to the Back-off
smoothing used for Language Modeling (see Section 4.5).

The Back-off method, once a certain parameter has been tuned, showed
to be the key to significant improvements over the baseline AP and MAP
(Section 5.5.3). Using this method, in combination to the smoothing
techniques presented before, we observed a relative improvement of about
4.8% in the AP of the baseline WG-based system, for a dataset where
the number of out of vocabulary events represents a big proportion of
the queries. It also improved the baseline results on 1.6% relative points
for a dataset where the number of out of vocabulary events is smaller.
On the other hand, the MAP increases 60.4% relative points in the first
task, and 10.6% in the second one (see Section 5.5.4).

Taking advantage of the ability of the Filler to give reasonable scores
for out of vocabulary queries, and the ability of the word graphs to pro-
vide very good scores for in-vocabulary scores, we applied the same Back-
off heuristic using the Filler scores for OOV keywords. This combination
scheme clearly outperformed all the previous proposed smoothing tech-
niques. The AP relatively improved 30.3% points for the first dataset,
and 11.3% for the second one, with less out of vocabulary events. More-
over, the MAP improved 164.1% relative points in the first task and
19.5% in the second one, respect the original WG-based baseline (see
Section 5.5.4).

Analyses of the computational cost of each proposed solution have
been proposed in Section 4.6, where it is shown that the deeper level of
smoothing we use, the more expensive results the lookup time (being the
line-level the shallowest, and the Filler the deepest one).

This suggests that a hierarchy of solutions for out of vocabulary
queries could be provided to the user, so he or she can decide if they
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need a very accurate response, that would require maybe several minutes
to be responded, or they prefer a fast search which will be completed in
just a few seconds, at the expense of the accuracy of the responses.

Several lines of future work can be devised from this master thesis.
First, better smoothing approaches at line-level or frame-level should be
explored, in order to try to make smaller the gap between these levels,
which provide a very fast lookup time, and the Filler Back-off model.
Although, it is clear that models that do not rely on a word vocabulary,
will always be less sensible to out of vocabulary events.

Finally, given that the Back-off heuristic gave such good results, other
combination schemes should be explored, like interpolation of scores.
For instance, the scores could be interpolated among different KWS ap-
proaches like WG, Filler and BLSTM. In the case of in-vocabulary key-
words, this will not present any problem: Filler and BLSTM approaches
are widely more expensive than the WG approach, but for in-vocabulary
keywords, the score can be computed during indexing time. In the case of
out of vocabulary keywords, the lookup speed would be obviously slower,
so new ways of speeding up these models should be explored.
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