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Chapter 1

Introduction

1.1 Motivation

Online lecture repositories are rapidly growing nowadays. Hundreds of platforms host
hundreds of thousands of educational videos on practically every subject we may want
to learn of. This huge e�ort, made by universities and innovative educational compa-
nies, allows people around the world to acquire from basic to pro�ciency skills on a
wide array of disciplines. Furthermore, many of the multimedia content is being of-
fered to the public free of charge, providing access to education to people on a limited
income.

While the idea of a global educational multimedia repository is exciting, there are
however some barriers that call to be overcome. The one that inspired this thesis is
the language barrier. As it stands, most of the multimedia content readily available
is monolingual, driving away potential users. The problem becomes larger when we
consider audible content, as in video lectures, which is harder to understand by non-
�uent speakers than written content. As a temporal solution, repositories such as
Coursera [2] or Khan Academy [5] provide tools to their users in order to allow them
to transcribe and translate the content, in a huge collaborative e�ort. This approach
is working for the most popular talks and topics, but it is obviously unsustainable in
the long run.

In the last years, the machine learning scienti�c community has begun to tackle the
problem of transcribing and translating these lectures automatically, by using com-
plex Automatic Speech Recognition (ASR) and Machine Translation (MT) systems
speci�cally adapted for this task. These systems can produce subtitle �les in a variety
of languages, and then the users can select whichever suits their needs. The limited
number of speakers (usually one, the lecturer), the relatively good audio conditions
and the fact that the topic of the talk is known beforehand have helped the systems
to achieve very low error rates, shrinking the gap between machine and human speech
recognition.

1
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Chapter 1. Introduction

Regardless of the accuracy, there are two main drawbacks inherent to the subtitle
approach. The �rst one is that the user is forced to split their focus between the
video, which usually features either a slide presentation or a video, and the subtitles
themselves. The second one is that visually impaired users cannot bene�t from the
subtitles at all. The aim of this work is to solve both problems by performing the
next logical step in this language-adaptation process: to automatically synthesize the
speech in the user's native language, by the means of machine learning techniques.

1.2 Scienti�c and technical goals

The goal of this work is to investigate the current state-of-the-art machine learning
techniques, applied to the synthesis of human speech in Spanish and English lan-
guages. We aim to produce a system which will receive a subtitle �le and will output
an audio track, containing the speech signal corresponding to the input text. This
audio track can then be presented alongside or embedded in the lecture �le as a side
track. A modi�cation of the video player will then allow the user to choose what
language does he want to listen the talk in.

We aim to produce synthesized speech that is:

Intelligible This is our main goal, as an incomprehensible synthetic voice is a useless
one.

Time-aligned We aim to align the synthetic voice with the lecturer's movements. As
the user's focus is usually on the lecture slides, this alignment can be performed
loosely. Nevertheless, some studies show that big discrepancies between the
voice and the speaker's gestures are easily noticed and may distract the viewer
[38].

Natural We pursue a natural sounding voice in order to seamlessly integrate the
audio track into the video. We pretend to make the user forget they are listening
to a synthetic voice, which will help them concentrate on the lecture content.

To help us reach this goals, we have explored novel alternatives to the conven-
tional acoustic modeling approach followed by text-to-speech (TTS) systems. These
alternatives are be based on deep neural networks (DNN, Section 3.3). We have car-
ried out a comparison between HMM-based and DNN-based acoustic models for both
English and Spanish languages, in order to �nd out which approach draws us closer
to our objective.

Finally, we aim to produce a system that can be applied massively to a repository
of video lectures in an automated manner. Such a system needs to be robust and
e�cient, avoiding audible glitches and large distortions.

2 MLLP-DSIC-UPV
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1.3 Document structure

This document is divided in seven chapters. Chapter 2 introduces us to the speech
synthesis systems basics, with a focus on statistical parametric text-to-speech, as well
as open tools to train and use those systems and evaluation measures. Chapter 3
starts with a brief description of the machine learning framework, before detailing
two widespread machine learning models (Hidden Markov Models and Deep Neural
Networks) and their role in speech synthesis. Then, Chapter 4 details the corpora used
in the experiments. Chapter 5 describes the Spanish and English synthesis systems
developed in this work. In Chapter 6 we can �nd the experimentation performed.
Finally, Chapter 7 wraps up with the conclusions, future work and contributions
derived from this thesis.

MLLP-DSIC-UPV 3
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Chapter 2

Speech Synthesis

In this chapter the basics of a TTS system are introduced, focusing on statistical
parametric speech synthesis. We present the open tools available to train the systems
and the problem of performing an objective evaluation of the quality of the synthesized
voice.

2.1 The text-to-speech synthesis process

Speech synthesis can be de�ned as the process of producing an arti�cial human voice.
A text-to-speech (TTS) synthesizer is a system capable of transforming an input text
into a voice signal. TTS systems are nowadays used in a wide array of situations,
such as in GPS navigation devices, internet services (e.g. RSS feeds or e-mail), as a
part of voice response applications, etc.

Usually, the TTS process is divided into two subprocesses, commonly referred as
the front-end and the back-end. The front-end deals with the text processing and
analysis. This step involves text normalization, such as removing or substituting non-
alphabetic graphemes by their alphabetic counterparts (e.g. α → alpha), phonetic
mapping (assigning phoneme transcriptions to words) and linguistic analysis. Com-
mercial TTS systems often use a combination of expert and data-driven systems to
implement the front-end.

The back-end is responsible for transforming the output of the front-end into a
speech signal, involving a process often known as acoustic mapping. This mapping
can be performed at di�erent levels, such as frame (with or without �xed length),
phoneme, diphone, syllable or even word level. After the mapping, the results are
concatenated to form the speech signal. Nowadays, there are two main approaches
to the back-end of TTS systems, unit selection synthesis and statistical parametric
synthesis, both of which are data-driven. Unit selection divides the training data
into small units, usually diphones. In order to perform the synthesis, the units are
selected from a database based on some suitability score and then concatenated with

5



i
i

�memoria� � 2014/9/15 � 11:53 � page 6 � #12 i
i

i
i

i
i

Chapter 2. Speech Synthesis

the adjacent units.

While US methods are known to produce the most natural sounding speech, sta-
tistical approaches have surpassed unit selection in terms of intelligibility [22]. We
prefer an intelligible lecture than a natural sounding lecture. This is main reason why
we have decided to investigate the statistical approach rather than the unit selection
approach. In the next section parametric statistical speech synthesis is described in
detail.

2.2 Statistical Parametric Speech Synthesis

Statistical parametric speech synthesis [55] assumes that the voice recordings can be
reconstructed with a limited number of acoustic parameters (or features), and those
parameters follow a stochastic distribution. The goal of the system is to accurately
model these distributions and later make use of them to generate new speech seg-
ments. In order to train the models, a wide array of well-known techniques from the
machine learning �eld can be applied, such as the ones presented in Chapter 3.

In order to perform an accurate synthesis, statistical parametric TTS systems com-
bine phoneme information with contextual information from the syllable, word and
utterance that surround the phoneme, creating what is known as context-dependent
phonemes (CD-phonemes). This contextual information is provided by the front-end
module. CD-phonemes often have high dimensionality, which complicates the estima-
tion. Furthermore, many of the CD-phonemes we found at test stage will have not
been seen in the training corpora. Our acoustic models will need to deal with this
issue.

The parametrization and reconstruction of the audio signal is performed in a pro-
cess known as vocoding. The simplest model used assumes a source-�lter division: a
sequence of �lter coe�cients that represent the vocal tract, and a residual signal that
corresponds to the glottal �ow [26]. This model is based in human speech production
and assumes that the sounds can be classi�ed as voiced or unvoiced. A voiced sound
is produced when the vibration of the vocal cords is periodic, such as in the produc-
tion of vowels. The voiced segments carry a certain fundamental frequency which
determines the pitch. Conversely, an unvoiced sound is produced when this vibration
is chaotic and turbulent. A diagram summarizing a simple source-�lter model-based
decoder can be found in Figure 2.1.

Unfortunately, the separation between voiced and unvoiced does not accurately
match reality. Many phonemes are produced by a combination of voiced, quasi-voiced
and unvoiced. Performing hard classi�cation results in a metallic, buzzy voice, which
sounds far from natural. As way of solution, more advanced vocoders have been pro-
posed in the last years, such as STRAIGHT [21], that include additional parameters
to diminish this issue. However, the problem of determining which parameters will

6 MLLP-DSIC-UPV



i
i

�memoria� � 2014/9/15 � 11:53 � page 7 � #13 i
i

i
i

i
i
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Figure 2.1: A simple source-�lter decoder

reconstruct the human voice with high intelligibility and naturalness, while maintain-
ing a set of statistical properties that allow us to learn the acoustic models is still an
open one. A comparison of state-of-the-art vocoders can be found in [18].

In order to deal with the discontinuity problems that often arise from a frame
to frame generation, dynamic information such as �rst and second time derivatives
are introduced and later used by algorithms that smooth the acoustic parameter
sequence. An example of one of those algorithms is the Maximum Likelihood Param-
eter Algorithm (MLPG) [41]. This algorithm receives a Gaussian distribution (means
and variables) of the acoustic features and their time derivatives and outputs the
maximum likelihood feature sequence. This procedure improves the naturalness and
reduces the noise. On the other hand, it results in a reduction of the high frequencies,
causing a mu�ed voice e�ect.

2.3 Open tools

There are many open tools available to process and transform the audio signal, extract
the acoustic features and train the acoustic models. We present here a list of the tools
that have been used at some point or another in this project.

2.3.1 HTS

The HMM-based Speech Synthesis System (HTS) is a patch for the Hidden Markov
Model Toolkit (HTK) that allows users to train Hidden Markov Models (see Sec-
tion 3.2) to perform the acoustic mapping in TTS systems [4]. Over the years, it
has seen the inclusion of state-of-the-art methods, such as the estimation of Hidden
semi-Markov Models [56], speaker adaptation based on the Constrained Structural
Maximum a posteriori Linear Regression (CSMAPLR) algorithm [28], cross-lingual
speaker adaptation based on state mapping [47], and many more. HTS uses a modi-
�ed BSD license, which allows its use for both research and commercial applications.
It is widely used by many successful research groups, as evidenced by the results of

MLLP-DSIC-UPV 7
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Chapter 2. Speech Synthesis

the speech synthesis Blizzard Challenge, organized yearly by the University of Edin-
burgh [23].

In this work, we have used HTS in its last stable version (2.2, released July 7
2011) to train HMM acoustic models and Gaussian duration models to use with both
HSMM and DNN models. The training demos provided by the HTS team have been
used as a base to develop the English and Spanish back-ends.

2.3.2 SPTK

The Speech Signal Processing Toolkit is "a suite of speech signal processing tools for
UNIX environments" [37]. It is developed by the Nagoya Institute of Technology and
distributed under the a modi�ed BSD license which, just like HTS, allows unlimited
personal and commercial use. It comprises a set of tools to perform all kinds of
acoustic parameter sequence transformations, vector manipulation and other useful
data manipulation programs. SPTK has been widely used in this work.

2.3.3 Flite+hts_engine

�Flite+hts_engine" is a free TTS English synthesis system developed by HTS working
group and Nagoya Institute of Technology students [3]. It can perform speech syn-
thesis with HTS trained models. In this work, we have used the front-end linguistic
analysis of �Flite+hts_engine" for our English system.

2.3.4 SOX

SoX is a general purpose digital audio editor, licensed under LGPL 2.0. It provides
the tools to create, modify and play digital audio �les; spectrogram analysis and
transforming between audio �le formats [39]. We make an extensive use of SoX
features in this thesis: concatenate the synthesized segments, perform noise reduction,
apply high/low-pass �lters, etc.

2.3.5 AHOcoder

AHOcoder is a free, high quality vocoder developed by the Aholab Signal Process-
ing Laboratory of the Euskal Herriko Unibertsitatea, Spain [1]. We have chosen
AHOcoder as our vocoder in the TTS systems, based on its permissive license, eas-
iness of use and promising results [13], which prove it can match and even improve
the results of other state-of-the-art vocoders.

AHOcoder is based on a Harmonics plus Noise model, instead of an harmonics-
or-noise approach that is featured in Figure 2.1. It makes use 3 kinds of acoustic
features: Mel-cepstral coe�cients (mfc), which carry the spectral information; the
logarithm of the fundamental frequency (log F0), which determines the pitch; and the
maximum voiced frequency (mvf ), which provide a separation point for the voiced

8 MLLP-DSIC-UPV
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2.4. Evaluation

segments, where the higher frequencies are considered to be noise. log F0 and mvf
features will be referred later as excitation features.

2.4 Evaluation

The evaluation of a speech synthesis system is a complex problem. Concepts as in-
telligibility and naturalness are hard to measure objectively. This motivates many
research problems to perform both objective and subjective evaluation of the results.
The voices are listened by experts and non-expert users alike and then scored between
1 and 5 in what is known as a Mean Opinion Score tests [33]. Subjective tests are
often expensive and require the collaboration of users not a�liated to the project,
and as such, they cannot always be performed. There are many works that deal with
the use of objective error measures for TTS evaluation and their relation with the
subjective scores [11]. In this thesis, we performed objective evaluation to compare
di�erent approaches to the acoustic mapping problem.

We have used 3 di�erent measures to objectively evaluate the quality of the syn-
thesized voices. This measures cannot be considered standard, but they are widely
used in other works.

Mean mel cepstral distortion (MMCD). This measure evaluates the quality of
the cepstrum reconstruction and has been linked to higher subjective scores [24].
The MMCD between two waveforms is computed as:

MMCD(vtar, vsyn) =
α

T

T−1∑
t=0

ph(t)6∈SIL

√√√√ D∑
d=s∈{0,1}

(vtard (t)− vrefd (t))2 (2.1)

where

α =
10
√
(2)

ln10
(2.2)

and vtar is the target waveform, vsyn is the synthesized waveform, vd(t) is the
value of the d cepstral coe�cient in the frame t. The cepstral distortion is not
computed for the silence frames. Notice also the parameter s, which can be 0
or 1 depending on whether the energy of the audio signal is included or not. In
this work, we have not included the energy, as the audio recordings were not
speci�cally recorded for the training of a synthesizer. Finally, we assume that
the number of frames of the target and synthesized waveforms are the same.

Root Mean Squared Error (RMSE). The RMSE is a standard error used in
many �elds to compute the di�erence between the target values of a sequence
and the predicted values. We use the RMSE to assess the di�erence between
the pitch (logf0) of the synthesized and original voices.

MLLP-DSIC-UPV 9
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Chapter 2. Speech Synthesis

Classi�cation error %. It is computed as the number of wrongly classi�ed samples
divided by the total of observations. We make use of this measure to evaluate
the performance of the systems when it comes to Voiced/Unvoiced frame clas-
si�cation.

2.5 Conclusions

We have discussed the problem of synthesizing a voice signal from a given text. We
have described the most interesting approach for our purposes, known as statistical
parametric speech synthesis. Lastly, we have also reviewed the open tools for speech
synthesis and detailed the objective evaluation measures that have been used in this
project. It can be seen that speech synthesis is a complex problem, where many
decisions will involve trade-o�s between intelligibility, naturalness and computational
costs. At the same time, the evaluation of the results is not a straightforward issue.
These challenges have contributed to motivate this research.

10 MLLP-DSIC-UPV
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Chapter 3

Machine learning

techniques

In this Chapter, we brie�y review machine learning theory and techniques particu-
larly relevant to this work. Then we describe two models that are widely used in
state-of-the-art TTS systems, Hidden Markov Models (Section 3.2) and Deep Neu-
ral Networks (Section 3.3), as well as how they can be integrated into the Speech
Synthesis framework to perform acoustic mapping.

3.1 Introduction to machine learning

Machine learning (ML) is a branch of computer science that deals with the problem
of learning from the data. The goal of ML is to produce computer programs to solve
tasks where human expertise does not exist, or where humans are unable to explain
their expertise [7]. A machine learning system makes uses of mathematical models
to reach its goal. In this work, we are going to focus on supervised learning, where
the system is presented with labeled data (that is, that contains the inputs and the
corresponding desired outputs) and the goal is to learn the general rule to map inputs
to outputs. Typical problems dealt in supervised learning include:

Classi�cation A certain object or group of objects needs to be assigned a label
between a set of potential classes. Classi�cation might be binary (2 classes) or
multiclass (more than 2 classes).

Structured prediction In this problem, which is closely related to classi�cation,
the input object needs to be assigned a certain structured output, such a tree
or a string.

Regression Involves the learning of a certain unknown real-valued function f(X).

We are going to focus on the problem of regression, as it is the one that TTS
acoustic models need to deal with. A generic machine learning system for a regression

11
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Chapter 3. Machine learning techniques

problem can be found in Figure 3.1. As we can see, it is divided into 2 stages. The
training stage involves the learning of the model parameters with the help of labeled
data. The test stage allows for the obtention of the model's prediction f'(X), given
an arbitrary unlabeled input object X. There are three main steps involved in this
process:

1. Preprocess The signal is acquired from the object, then �ltered to remove
noise and prepared for the feature extraction.

2. Feature extraction From the processed signal, the relevant information is
acquired and a feature vector is computed. It is considered relevant information
anything that allows us to predict f(X) more accurately.

3. Regression With the feature vector and the trained models, we compute an
output prediction f'(X).

Preprocess
Feature

extraction

Preprocess
Feature

extraction

Training

Test

Regression

System’s

prediction

Models

Labeled

data

New

data

Figure 3.1: A generic machine learning system for regression

3.2 Hidden Markov Models

A Hidden Markov Model (HMM) is a generative model used to model the probability
(density, when the variables are continuous) of an observation sequence [19]. It is as-
sumed that the sequence is generated by a known (topology-wise) �nite state machine
where each state generates an observation with a certain probability distribution. It
is called Hidden when the states associated to an observation are not visible. An
HMM can be characterized with:

Number of states. The usual approach is to include M states, plus 2 special states
I and F, that correspond to the initial and �nal states respectively.

State transition probability matrix. This matrix holds the probability of tran-
siting from a state i to a state j.

12 MLLP-DSIC-UPV
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Emission probability (density) function. This function is parametrized by a state
i and a certain given observation o, and de�nes the probability (density) of em-
miting o given the current state i.

Figure 3.2: A simple HMM with 3 states (not counting I and F) and 2
possible emission values �a� and �b�

We are going to focus on the HMM where the observations variables are contin-
uous, as in the case of acoustic features in TTS. In this case, the usual approach is
to employ Gaussian distributions to characterize the emission density function. As
the acoustic features are not single valued but vectors, the HMM will feature a mean
vector and a covariance matrix for each state. In order to speed up the training, it
is common to restrict the covariance matrices to diagonal variance vectors. Finally,
instead of a single Gaussian distribution, emission function can be characterized by a
Gaussian mixture distribution, which has been applied successfully to other speech-
related machine learning tasks [32].

3.2.1 Acoustic modelling with HMM

Over the years, there has been many research and development in statistical para-
metric TTS that involves the use of HMM to perform acoustic mapping [48, 55]. To
perform this mapping, an HMM is trained for each CD-phoneme where the obser-
vations correspond to the acoustic features which will later be used by vocoder to
reconstruct the voice. As outlined in Section 2.2, training a CD-HMM for each pos-
sible combination of text analysis features is unrealistic and would result into poorly
estimated HMMs. By way of solution, context clustering techniques at a state-level
are used. Clustering is performed by means of binary decision trees. In the training
phase, the Minimum Description Length (MDL) criterion is used to construct these
decision trees [35]. As the spectral and excitation features have di�erent context de-
pendency, separate trees are built for each one. This approach allows our model to
handle unseen contexts, and it is also for the Gaussian duration model. We can see
an example of part of a real decision tree of the Spanish system in Figure 3.3.

If we want to use HMM as a generative model, one of the problems that need
to be solved is that state occupancy probability decreases exponentially with time,
which means that the highest probability state sequence is the one where every state
is only visited once. To overcome this limitation, a modi�cation of the HMM model,

MLLP-DSIC-UPV 13
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Chapter 3. Machine learning techniques

Figure 3.3: A sample of part of a binary decision tree for the �rst state
of the cepstral coe�cients of the Spanish HMM system. Notice that most of
the decisions depend on the left phoneme (L-*), which reveals strong temporal
dependency between adjacent phonemes.

known as Hidden semi-Markov Model (HSMM) [9] is preferred. When using a
HSMM approach for speech synthesis, state occupancies are estimated with Gaussian
probability distributions. This model has been shown to achieve highest scores in
subjective tests [56].

In the generation step, �rst the state durations for each state of each phoneme
are predicted by a Gaussian distribution model. Then, we make use of the binary
decision trees to select the states and concatenate them into a segment HMM. Fi-
nally, the means and variances of the output acoustic feature vector are generated
by the segment HMM. However, maximizing the probability of the output sequence
would involve emitting the mean value of the current state at every frame, resulting
into a segmented feature vector that does not accurately match reality. The MLPG
algorithm is used to alleviate this issue. As the MLPG algorithm needs the �rst and
second time derivatives of the acoustic features, the HMM output vector will need to
contain them, multiplying the length of the emission vector by 3.

14 MLLP-DSIC-UPV
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3.3. Deep Neural Networks

An extra problem emerges from the modelization of the non-continuous features
log F0 and mvf. These features are de�ned in the regions known as �voiced�, and
unde�ned in the regions known as �unvoiced�. In this thesis, log F0 has been modeled
with a multi-space probability distribution [42], while the mvf feature was added as
an extra stream and modeled with a continuous distribution, as suggested in [13].
The mvf values were interpolated in the unvoiced frames.

3.3 Deep Neural Networks

A neural network (NN) is a discriminative machine learning model composed of neu-
rons that receives an input real-valued vector and returns another real-valued vector.
The nodes of a NN are known as neurons. A neuron is composed of one or more
weighted input connections and performs a (often nonlinear) transformation into a
single output value. NN organize neurons in layers. Every layer is composed by a
group of neurons that receive the output of the lower layers. There are no connections
between neurons of the same layer.

In Figure 3.4 we can see a diagram of a typical feedforward (i.e. without cycles)
network. The input neurons are connected to a hidden layer, which is connected to
the output layer. NN with a single hidden layer are considered �shallow�, while NN
with more than one hidden layer are usually referred as �deep� (DNN). Although it
has been known for a while that NN and DNN are capable of approximating any
measurable function to any degree of accuracy given enough units on the hidden layer
[17], DNN were not widely used until recent years because of the prohibitive com-
putational cost of the training. However, thanks to the advances in their training
procedures (such as unsupervised pretraining [12, 16]) and the use of GPUs instead
of CPUs [31], which can perform costly matrix operations much faster thanks to their
massive parallelism capabilities, DNN and their variants have seen a big resurgence
and have been successfully applied to many machine learning tasks [8, 15, 25].

The transformation performed by a single neuron j is described in Equation 3.1.

yj = f(bj +
∑
i

yiwij) (3.1)

where yj is the output of neuron j, bj is the bias, wij is the weight of the connection
between neuron i and j, and f is a non-linear function1. Common non-linear functions
used in NN are the sigmoid function, the hyperbolic tangent function, the softmax
function (for classi�cation problems) and, more recently, the recti�ed linear function
[27]. In this work, will be using the sigmoid function:

S(x) =
1

1 + e−t
(3.2)

1Linear functions are sometimes used on the output layer
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Input

layer

Hidden

layer

Output

layer

Figure 3.4: A shallow neural network

Please note that the sigmoid function restricts its output to be bounded between 0
and 1, something that must be considered when performing regression of unbounded
real values.

3.3.1 Acoustic modelling with DNN

We can perform acoustic modelling with feed-forward DNN, by generating the acous-
tic parameters frame by frame [54]. While this approach is not new [20], the recent
advances presented in the previous section have motivated researchers to take a sec-
ond look. A diagram detailing the process can be found in Figure 3.5.

Acoustic DNN models receive as an input the information of the CD-phonemes as
numeric values, which is then augmented with temporal information of which frame
we want to generate, and emit the acoustic features and their time derivatives for
the given frame. One of the biggest advantages over the HMM-based approach is
that no context clustering is performed, and a single network can model all of the
acoustic features at once, using all of the training data available. This results into
better generalization.

DNN-based acoustic mapping does not result into the step-wise sequence that
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3.4. Conclusions

Figure 3.5: A deep feed-forward neural network for speech synthesis.

a maximum likelihood approach for HMM su�er, and so dynamic features are not
strictly needed. However, in order to enforce smoothness over time and avoid audible
glitches, the DNN will also model the �rst and second derivatives. By setting the
DNN output as the mean vector and computing a global variance from all the train-
ing data, we will be able to apply the MLPG algorithm.

The discontinuity problem of the log F0 and mvf features can be avoided by
introducing a V/UV classi�cation bit to the output, and performing interpolation of
these acoustic features in the unvoiced frames, an approach known as explicit voicing
modelling [52]. When the V/UV bit output is higher than 0.5, the frame is classi�ed
as voiced and the value of the features is the same as the network output. When the
V/UV bit is lower than this threshold, the frame is considered unvoiced and a special
value indicating that the feature is unde�ned is used instead.

3.4 Conclusions

We have reviewed two approaches to the acoustic mapping problem of statistical
parametric speech synthesis systems, and described how they deal with some of the
common problems. Chapter 5 will give a detailed explanation of the implementation,
while Chapter 6 will provide an objective comparison between both approaches.

MLLP-DSIC-UPV 17
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Chapter 4

Corpora description

In this Chapter, we describe the corpora used in the development of this thesis.
Section 4.1 describes the poliMedia platform and the corpus derived from it, which
contains Spanish lectures. Meanwhile, Section 4.2 describes our English corpus, which
comes from Videolectures.NET platform. Finally, Section 4.3 brie�y describes the
format of the transcriptions available.

4.1 The poliMedia platform

The poliMedia (pM) platform is a service created by the Polytechnic University of
Valencia for the distribution of multimedia educational content [30]. It allows teachers
and students to use a centralized platform in order to create, distribute and access
to a wide variety of educational lectures. The platform was created in 2007 and it
currently contains more than 2400 hours of video. Furthermore, many of those videos
are openly accessible to the public. poliMedia statistics are summarized in Table 4.1.

Tables 4.1: Statistics of the poliMedia repository

Videos 11662
Speakers 1443
Hours 2422

poliMedia video lectures feature a high signal to noise ratio, thanks to the special
studio they are recorded on. They also feature a single lecturer, speaking about a
certain known topic. These circumstances motivated the use of the repository as a
case study in the transLectures project [36]. This project, starting in October 2011,
has been providing the pM platform with automatically generated accurate transcrip-
tions and translations for all the videos. These transcriptions are available to the users
through the paella video player, and can be edited by them using the transLectures
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Chapter 4. Corpora description

Figure 4.1: A video lecture with subtitles in the paella player

platform [40]. We can see an example in Figure 4.1.

Additionally, the transLectures project has created a training corpus in Spanish
composed of over a hundred hours of manually transcribed and revised lectures from
the pM repository. The corpus statistics are detailed in Table 4.2.

Tables 4.2: Statistics of the poliMedia corpus

Videos 704
Speakers 83
Hours 114
Sentences 41.6K
Words 1M

We will use this corpus in order to train a TTS system, as the transcriptions are
accurate and the acoustic conditions are good enough. However, it is not optimal,
as lectures are often noisy (e.g. with coughs and speaker hesitations such as �mmm�
or �eee�). It is expected that the high volume of data available will minimize the
problems that arise from these circumstances.

4.2 The VideoLectures.NET platform

Videolectures.NET (VL.NET) is an free and open educational repository created by
the Joºef Stefan Institute, which hosts a huge number of lectures of many di�erent
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4.2. The VideoLectures.NET platform

Figure 4.2: A video lecture from VL.NET with subtitles

scienti�c topics [46]. They aim to promote scienti�c content, not just to the scien-
ti�c community but also to the general public. As of September 2014, they provide
more than 16000 lectures, 15174 of which are in English. Around a 55% of those
talks belong to the topic of computer science, showing that CS is one of the faster
�elds to embrace the educational revolution today's technologies provide. Many of
the videos also provide time-aligned slides, as seen in Figure 4.2. Statistics of the
Videolectures.NET platform are summarized in Table 4.3.

Tables 4.3: Statistics of the Videolectures.NET repository

Videos 19106
Speakers 12425
Hours 9545

Unfortunately, Videolectures.NET talks do not share the same acoustic conditions
as poliMedia lectures. While pM lectures are recorded in a special studio, lectures
from VL.NET are recordings of conferences, workshops, summer camps and other sci-
enti�c promotional events. As such, more often than not they feature a live audience,
which may participate in the talk (e.g. asking questions) and add noise to the audio
(e.g. claps, laughs, murmurs). The quality of the microphone(s) used greatly varies
between lecturer and it has also a big impact on the �nal recording.

Videolectures.NET is the other main case study of the transLectures project. Most
of the older talks have been transcribed and translated with the best transLectures
systems, while newer lectures are expected to be transcribed soon. It is then a good
candidate for us to train our systems and to test them in a real setting. In this work,
we have used one of the subcorpus derived from the VL.NET repository, which derives
from the manually subtitles talks created by video lectures users. This subtitles are
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Chapter 4. Corpora description

not literal transcriptions, as repetitions, and hesitations are not included, and many
lecturer mistakes have been �xed. In order to create a corpus suitable for the training
of ASR and TTS systems, the re�nement process described in [45] was applied. The
�nal corpus statistics can be found in Table 4.4.

Tables 4.4: Statistics of the VL.NET corpus

Videos 224
Speakers 16
Hours 112h
Sentences 98.7K
Words 1.2M

While the number of hours is similar to the pM corpus, the number of hours per
speaker is much higher. As the TTS systems are usually trained for a single speaker,
the English will make use of more hours than the Spanish one. This will account for
the fact that the acoustic conditions of this corpus are worse than the pM Spanish
corpus.

4.3 Transcription format

In this thesis, the corpora used for both Spanish and English systems consisted of
video �les with their corresponding transcriptions (subtitles). The format of this
transcriptions is TTML-DFXP, with the extensions proposed for the transLectures
project [44]. We can see below a real example of the start of a DFXP �le.

<?xml version="1.0" encoding="utf-8"?>

<tt xml:lang="en" xmlns="http://www.w3.org/2006/04/ttaf1"

xmlns:tts="http://www.w3.org/2006/10/ttaf1#style"

xmlns:tl="translectures.eu">

<head>

<tl:d aT="human" aI="UPV" aC="1.00" cM="1.0000" b="0.00" e="657.75"

st="fully_human"/>

</head>

<body>

<tl:s sI="1" cM="1.0000" b="3.06" e="10.72">

Hello, my name is Mónica Martínez, and I am a lecturer at Universidad

Politécnica de Valencia&apos;s Department of Applied Statistics,

Operational Research and Quality.

</tl:s>

<tl:s sI="2" cM="1.0000" b="11.20" e="17.92">

In this lecture, I intend to show you how to build and read
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4.4. Conclusions

one-dimensional frequency tables.

</tl:s>

...

As we can appreciate, the DFXP holds a variety of information at document level
regarding to who made the transcription, the mean con�dence measure cM, which will
be 1 for human transcriptions and cM∈]0, 1] when the transcription is automatic, the
beginning and end times. The rest of the transcription is divided in segments, with
a segment id cM, a con�dence measure cM, and the beginning and end times (b and
e, in seconds). While the DFXP �le may contain other information (e.g. alternative
transcriptions, con�dence measures at word level, etc.) our system does not make
any use whatsoever of that info. We assume that the latest alternative available is
the best alternative, and synthesize that one.

4.4 Conclusions

We have described the corpora used in the development of this thesis, outlined the
corpora characteristics and how they will a�ect the training of our synthesis systems.
We have also detailed the transcription format. A comprehensive report of the use
that has been made of the corpora is provided in Chapter 5.
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Chapter 5

Systems

In this chapter we describe the systems developed and implemented for this thesis. We
begin by giving an overview of the shared parts of the Spanish and English systems
in Section 5.1. A detailed explanation of the Spanish system speci�cs is given in
Section 5.2, while the English system is detailed in Section 5.3.

5.1 Overview

5.1.1 Training

In Figure 5.1(a) we can see an scheme of the training process. We describe now the
steps carried out in order to train our TTS systems.

Filtering and preprocess We start by extracting the audio from the video �le and
performing segmentation of the audio according to the temporal marks of the
segments in the transcription �le. The audio is then resampled to 16Khz and
left and right audio channels are mixed to a single one. We also perform a
�ltering process, where some of the audio segments were regarded as unhelpful
and subsequently removed. More details are provided in the language speci�c
Sections 6.1.1 and 5.3.1.

Linguistic analysis In this step, the text is analyzed and a grapheme-to-phoneme
conversion is carried out. The objective is to transform the text segment to
a list of context-dependent phonemes. We used di�erent tools to perform the
analysis in English and Spanish. Please refer to Sections 5.2.2 and 5.3.2 to see
the details.

Acoustic features extraction We used AHOcoder ahocoder tool to extract the
acoustic features from the waveforms. After the extraction, we computed the
�rst and second derivatives with the scripts provided in HTS demo. Finally,
for the DNN systems only, we performed linear interpolation of the lf0 and mvf
features inbetween the frames they are not de�ned (unvoiced frames).

25



i
i

�memoria� � 2014/9/15 � 11:53 � page 26 � #32 i
i

i
i

i
i

Chapter 5. Systems

Training This step involves the learning of the model parameters from the acoustic
and linguistic features. Depending on the model we want to train (HMM or
DNN), the procedure greatly varies.

HMM We trained the HMM system with HTS, adapting the HTS' English
STRAIGHT demo to our needs. In the case of Spanish, this step in-
volved modifying the clustering questions �le to Spanish phonology. We
also needed to modify the training script, as the bap stream will now model
the maximum voiced frequency feature instead. The system's output in-
clude 3 di�erent models for both duration and acoustic feature models:

• 1mix Single Gaussian distribution, with diagonal covariance matrices.

• stc Single Gaussian distribution, with semi-tied covariance matrices.

• 2mix Gaussian mixture (2) distribution, with diagonal covariance ma-
trices.

In this work we have used the 2 mixtures Gaussian for the HTS tests, as
we found out the quality of the resulting voice was higher.

DNN The training of the DNN involved processing the linguistic analysis out-
put to adapt it to the DNN input format. There are three type of linguistic
features: binary, numeric and categorical. Binary and numeric features are
provided as is, whereas categorical features are encoded as 1-of-many. All
inputs are normalized to have zero mean and unit variance. Meanwhile,
the outputs have been normalized to lie between [0.01,0.99] values. The
maximum and minimum were extracted from all the training data.

The training was performed with a toolkit developed for the transLectures
project, which utilizes the CUDA toolkit [29] to parallelize the training in
the GPU. This toolkit was modi�ed to perform regression (as ASR DNN
models are used for senone classi�cation) with MSE as the error criterion
for backpropagation. Neural networks with more than one hidden layer
where pretrained using a discriminative approach [34], and then �ne-tuned
with a stochastic minibatch backpropagation algorithm [10].

5.1.2 Synthesis

In Figure 5.1(b) we provide an overview of the modules that compose our TTS syn-
thesis system. We describe the modules involved in our system from the moment the
subtitle �le is received to the point the speech output is ready to be embedded.

Linguistic analysis The linguistic analysis performed is the same as the one in-
volved in the training of the system.

Duration prediction The duration of the phonemes (DNN) or the HMM states
(HMM) are predicted by the Gaussian duration model. This procedure involves
traversing the binary clustering tree of the model until a leaf is selected. Al-
though the duration with the highest probability would be equal to the mean of
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(a) System training (b) Synthesis overview

Figure 5.1: Overview of the training and synthesis processes

the Gaussian, in order to keep temporal alignment between the audio and the
video, we want to be able to modify the duration of the synthesized segment to
match the duration of the corresponding original audio segment. As a solution,
to determine the �nal duration of each state/phoneme we have implemented the
algorithm presented in [50].

Acoustic mapping The acoustic mapping process has been thoroughly described in
Sections 3.2.1 and 3.3.1. We mention now the tools that our system makes use
of.

HMM The HMM mapping is performed with HTS' HHEd (make unseen mod-
els) and HMGenS (feature generation) tools, with Case 1 of the Speech
Parameter Generation Algorithm [43].

DNN The DNN mapping is performed with transLectures DNN toolkit.

Feature generation With the acoustic features, their time derivatives, and the vari-
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ances (which are generated by the HMM in the case of HMM-based model, and
precomputed from all the training data in the case of DNN acoustic model),
we apply the Maximum Likelihood Parameter Generation (MLPG) with algo-
rithm [41] to enforce temporal smoothness. We use SPTK's mlpg tool for this
purpose.

Waveform synthesis We further improve the naturalness of the speech by applying
an spectral enhancement based on post-�ltering in the cepstral domain [51].
Then we make use of AHOcoder's ahodecoder tool to generate waveforms from
the acoustic features predicted by the model. The result is the individual audio
segments that compose the talk.

Track montage We make use of the timestamps of the subtitle �le to compose the
audio track of the talk, by alternating silences and voice segments. As some of
the voices sometimes carry out a residual noise, which can be easily detected
by users wearing headphones, we found out that applying sox's noisered tool
for noise removal to the full track can help getting rid of the noise at the cost
of voice naturalness. The synthesized track is now complete and ready to be
embedded.

5.2 Spanish system

5.2.1 Data usage and preprocess

We have extracted a subcorpus from the poliMedia corpus (Section 4.1) to train our
TTS Spanish system. This subcorpus features 39 videos with 2273 utterances by
a single male native Castillian Spanish speaker. We performed automatic phoneme
alignment with the best acoustic model deployed in the transLectures project at
month 24 [6]. After the alignment, two segments were removed because of their low
probability1. The �nal subcorpus statistics are collected in Table 5.1.

Tables 5.1: Statistics of the corpus for the Spanish TTS system

Videos 39
Speakers 1
Hours 6 (w/o silences)
Segments 2271
Phonemes 305767

5.2.2 Linguistic analysis

We have developed our linguistic analyzer derived from the grapheme-to-phoneme
converter used in transLectures project (syllables.perl). As Spanish is a highly pho-

1We later found out that while transcription was correct, but the temporal alignment of the
segments were not.
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5.2. Spanish system

netic language, the gtp conversion can be performed without much loss. The complete
list of features the CD-phonemes include is provided in Table 5.2. This information
is augmented for the DNN acoustic models with four temporal features of the frame
to be synthesized (Table 5.3).

Tables 5.2: Linguistic features of Spanish system.

Level Feature Type*

Phoneme

Left-left phoneme identity C
Left (previous) phoneme identity C
Current phoneme identity C
Right (next) phoneme identity C
Right-right phoneme identity C
Position of the phoneme in the syllable (forward) N
Position of the phoneme in the syllable (backward) N

Syllable

Is left syllable stressed? B
No. of phonemes in left syllable N
Is current syllable stressed? B
No. of phonemes in current syllable N
Pos. of current syllable in word (forward) N
Pos. of current syllable in word (backwards) N
Pos. of current syllable in segment (forwards) N
Pos. of current syllable in segment (backwards) N
No. of syllables from previous stressed syllable N
No. of syllables to next stressed syllable N
Vowel in current syllable C
Is right syllable stressed? B
No. of phonemes in right syllable N

Word

No. of syllables in left word N
No. of syllables in current word N
Pos. of current word in segment (forward) N
Pos. of current word in segment (backwards) N
No. of syllables in right word N

Segment
No. of syllables in current segment N
No. of words in current segment N

* C=Categorical, B=Binary, N=Numeric

We use 23 phonemes and 2 special symbols to perform the grapheme-to-phoneme
conversion. The special symbols are SP, to denote silence, and NIL, which is added
at the start and the end of the segments. The complete list can be found in Table
5.4.
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Tables 5.3: Temporal features.

Level Feature Type

Frame
Pos. of frame in current segment (forwards) N
Pos. of frame in current segment (backwards) N

Phoneme No. of frames in current phoneme N
Segment No. of frames in current segment N

Tables 5.4: Phonemes used in the Spanish system.

IPA ASCII transcription
/a/ a
/b/,/B/ b
/tS/ C
/d/,/Dfl/ d
/e/ e
/f/ f
/g/ g
/ñ/ h
/i/ i
/k/ k
/l/,/lj/,/l”/ l
/m/ m
/n/,/nj/,/n”/ n

IPA ASCII transcription
/o/ o
/p/ p
/r/ R
/R/ r
/S/,/Z/,/ù/,/ü/ s
/t/ t
/u/ u
/x/ x
/J
fl
/ y

/T/ z
- SP
- NIL

5.2.3 Acoustic models

Both acoustic models feature a 5ms frame step, with an audio frequency of 16000Hz.
The number of cepstral coe�cients used is 40. The linguistic information is the same
for both models.

The HMM system is composed of 5-state, no-skip models with diagonal covari-
ance matrices. A total of 1017 di�erent grouping questions were used for the con-
struction of the decision trees. The α parameter, which controls the number of nodes
of those trees, was set to 1.0, while the number of EM iterations in each reestimation
was set to 5. The training was performed with a modi�ed version of the English demo
training script featured in HTS website.

The bestDNN system features 169 input neurons, four of which correspond to the
temporal features described in Table 5.3, and the rest are linguistic features; 3 hidden
layers with 512 neurons each and 127 output neurons (40 mel-cepstral coe�cients, 1
lf0, 1 mvf, their time derivatives and the V/UV bit). The pretraining was performed
for an epoch each time a layer was added, with a learning rate of 0.08, a batch size
of 20 and no weight decay. The �ne-tuning process lasted 5 epochs, with a learning
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rate of 4e− 05, a batch size of 1600 and 0.003 weight decay.

5.3 English system

5.3.1 Data usage and preprocess

From the VL.NET corpus (Section 4.2), we extracted a subset of 25 videos where
the lecturer is a single female native American English speaker. We applied the tech-
nique described in Section 4.2 to transform subtitles into transcriptions and then
removed the segments with more than 35 points of Word Error Rate. Additionally,
any segments with hesitation marks were removed. The rest of the segments where
automatically aligned with the phonemes with the best English acoustic model de-
ployed in the transLectures project at month 24 [6]. The �nal subcorpus statistics
are collected in Table 5.5.

Tables 5.5: Statistics of the corpus for the English TTS system

Videos 25
Speakers 1
Hours 13 (w/o silences)
Segments 12791
Phonemes 586844

5.3.2 Linguistic analysis

We use the front-end module of Flite+hts_engine to perform linguistic analysis for
the English system. The list of linguistic features given by this system can be seen in
Table 5.6. The DNN CD-phonemes are augmented with the same temporal informa-
tion as in the case of Spanish (see Table 5.3). The 40 phonemes used in the system
and their IPA counterparts can be seen in Table 5.4. The pau and x phonemes are
used to mark a silence and the beginning and end of a sentence, respectively.

5.3.3 Acoustic models

The acoustic models trained for English are similar to the ones for Spanish. In partic-
ular, theHTS system features 5-state, no-skip HMMmodels with diagonal covariance
matrices. The 1483 grouping questions used are the same as the English demo of HTS.
The α parameter was set to 1.0 and the number of EM iterations in each reestimation
was set to 5.

The DNN system consists of 289 input neurons, 2 hidden layers of 1024 neurons
and 127 neurons in the output layer. The pretraining was performed for an epoch
each time a new layer was added, with a learning rate of 0.08, a batch size of 20
and no weight decay. The �ne-tuning process lasted 5 epochs, with a learning rate of
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4e− 05, a batch size of 800 and 0.003 weight decay. The acoustic features generated
by the model are the same as in Spanish.

5.4 Conclusions

In this chapter we have described extensively the inner workings of our TTS systems.
We have explained the training and test stages, and detailed the di�erences between
the Spanish and English systems. Although the English TTS task is considerably more
complex than the Spanish, we also dispose of a higher volume of data and expand
the CD-phonemes with additional linguistic information. The complete systems are
fully functional and testing and evaluation studies are already being carried out (see
Chapter 6).
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Tables 5.6: Linguistic features of English system.

Level Feature Type*

Phoneme

Left-left phoneme identity C
Left (previous) phoneme identity C
Current phoneme identity C
Right (next) phoneme identity C
Right-right phoneme identity C
Position of the phoneme in the syllable (forward) N
Position of the phoneme in the syllable (backward) N

Syllable

Is left syllable stressed? B
Is left syllable accented? B
No. of phonemes in left syllable N
Is current syllable stressed? B
Is current syllable accented? B
No. of phonemes in current syllable N
Pos. of current syllable in word (forward) N
Pos. of current syllable in word (backwards) N
Pos. of current syllable in segment (forwards) N
Pos. of current syllable in segment (backwards) N
No. of stressed syllables before current syllable N
No. of stressed syllables after current syllable N
No. of accented syllables before current syllable N
No. of accented syllables after current syllable N
No. of syllables from previous stressed syllable N
No. of syllables to next stressed syllable N
No. of syllables from previous accented syllable N
No. of syllables to next accented syllable N
Vowel in current syllable C
Is right syllable stressed? B
Is right syllable accented? B
No. of phonemes in right syllable N

Word

Part-Of-Speech classi�cation of left word C
No. of syllables in left word N
Part-Of-Speech classi�cation of current word C
No. of syllables in current word N
Pos. of current word in segment (forward) N
Pos. of current word in segment (backwards) N
No. of content words before current word N
No. of content words after current word N
Pos. of current word in segment (forward) N
Pos. of current word in segment (backwards) N
No. of syllables from previous content word N
No. of syllables to next content word N
Part-Of-Speech classi�cation of right word C
No. of syllables in right word N

Segment
No. of syllables in current segment N
No. of words in current segment N

* C=Categorical, B=Binary, N=Numeric
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Tables 5.7: Phonemes used in the English system.

IPA ASCII transcription
/6/ aa
/æ/ ae
/2/ ah
/A/ ao
/au/ aw
/@/ ax
/aI/ ay
/b/ b
/tS/ ch
/d/ d
/D/ dh
/E/ eh
/3~,/@~/ er
/eI/ ey
/f/ f
/g/ g
/h/ hh
/I/ ih
/i/ iy
/dZ/ jh
/k/ k

IPA ASCII transcription
/l/ l
/m/ m
/n/ n
/N/ ng
/o/ ow
/0I/ oy
/p/ p
/ô/ r
/s/ s
/S/ sh
/t/ t
/T/ th
/U/ uh
/u/ uw
/v/ v
/w/,/û/ w
/j/ y
/z/ z
/Z/ zh
- pau
- x
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Chapter 6

Evaluation and integration

In this Chapter we describe the objective evaluation that has been performed in order
to compare the HMM and DNN-based approaches to acoustic mapping. Then we show
the integration carried out in the transLectures player to allow a user to listen to the
synthesized voice.

6.1 Evaluation

We performed objective evaluation of the resulting voice for the HMM and DNN-based
TTS systems. We performed this comparison for Spanish, as the English system is
much more computationally expensive to train (specially in the case of HTS), which
limited the parameter tuning and prevented a fair comparison.

6.1.1 Experimental setup

The experimental setup parameters for the experimentation are very similar to the
ones reported in Section 5.2.3. In particular, the training was performed with the
data described in . For testing, 49 utterances from a video that was not contained
in the training corpus were extracted and synthesized. Phoneme durations were set
to match those from the natural speech, rather than being generated by a duration
model.

For training purposes, audio was extracted from the video and downsampled from
44100Hz to 16000Hz. Every 5 milliseconds, 40 Mel-cepstral coe�cients, log F0 and
maximum voiced frequency values were extracted using AhoCoder tools [1]. The mvf
feature was interpolated in the unvoiced regions for both models, while the log F0

was interpolated for the DNN explicit voicing. The acoustic feature vectors were
then augmented with the information of the �rst and second derivatives. The textual
analysis information was the same for both models.
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The HMM system was composed of 5-state, no-skip models with diagonal covari-
ance matrices. A total of 1017 di�erent questions were used for the construction of
the decision trees. For comparison purposes, we trained 6 HMM-based systems mod-
ifying the parameter α which controls the number of nodes of the decision trees (with
α = 0.5, 1.0 and 2.0), and the number of EM iterations in each reestimation step (3
or 5). The training was performed using the most recent stable version (2.2) of the
HTS system (See Section 2.3.1).

In the case of the DNN-based system, the number of neurons in the input layer
was 169, while the number of neurons in the output layer was 127, corresponding to
39 mfcc plus energy, log F0, mvf, �rst and second derivatives and the V/UV bit. In-
puts to the DNN were normalized to have zero mean and one variance, while outputs
were normalized between 0.01 and 0.99. Di�erent neural network sizes were tested by
changing the number of hidden layers (1, 2, 3 or 4) and the number of neurons per
layer (128, 256, 512 or 1024).

The sigmoid activation function was used in the hidden and output layers. Neu-
ral networks with more than one hidden layer were pretrained using a discriminative
approach [34], and then �ne-tuned with a stochastic minibatch backpropagation al-
gorithm [10]. The error criterion in both steps was the mean squared error (MSE).
The training was performed with a CUDA-based GPU implementation, part of a
development version of the transLecture stoolkit.

6.1.2 Results and Discussion

Table 6.1 shows the objective evaluation measures computed for each DNN con�g-
uration, together with the results of the best HMM model. Regarding to the DNN
con�gurations, the number of neurons per layer did not contribute as signi�cantly as
the number of layers, so only the best result is reported. We can see that DNN-based
systems systematically achieve better results in every measure than HMM-based sys-
tems. The optimal number of layers is unclear, since the evaluation measures exhibit
di�erent behaviour. The V/UV error rate performs better when using simpler archi-
tectures, while the spectral features bene�t more from a complex architecture.

Tables 6.1: Comparison between HMM-based and DNN-based acoustic mod-
els.

System # layers RMSE log F0 MMCD V/UV Error rate
HMM - 0.190 6.987 13.35

DNN

1 0.183 6.792 12.08
2 0.183 6.702 12.27
3 0.184 6.678 12.36
4 0.184 6.679 12.42
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6.2 Integration

We have successfully integrated a TTS track selector into the transLectures player/editor.
If available, the user is presented with a voice icon (see Figure 6.1) that switches
between the audio embedded into the video and an external track that contains a
synthesized voice. We have also started to synthesize a small subset of lectures from
poliMedia repository that have been automatically transcribed and later supervised
by an expert. The current implementation does not allow the user to select a track,
as only English → Spanish and Spanish → English lectures have been synthesized.

Figure 6.1: A screenshot of the current player with TTS playback capabil-
ities. TTS button being orange shows that the synthesized track is currently
being played.

6.3 Conclusions

We have performed an objective comparison of the acoustic models for Spanish. The
comparison shows that the DNN-based approach is able to reconstruct the audio wave
more accurately. We have also taken the �rst step towards a subjective evaluation, by
integrating the TTS synthesized voice into our video lecture player and synthesizing
a small set of lectures with supervised subtitles. Future work will include private and
public evaluations by experts and potential users alike.
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Chapter 7

Conclusions and Future

Work

7.1 Conclusions

In this thesis, we have tackled the problem of synthesizing subtitles of a video lecture.
We have reviewed the speech synthesis state-of-the-art and decided to develop a TTS
system which makes use of the statistical parametrical speech synthesis framework.
We have analysed the problem of mapping linguistic features to acoustic features
extensively, and presented two di�erent approaches, HMM-based and DNN-based.
We have developed 2 systems for Spanish and English which can use both HMM
and DNN acoustic models. We have performed objective comparison of the voices
generated with the Spanish acoustic models. Finally, we have modi�ed our lecture
player to include track selection capabilities, allowing users to listen to the synthesized
track.

7.2 Future work

Our next planned steps include starting subjective evaluation of the synthesized voices
for both English and Spanish, as well as integrating the synthesizer into the transLec-
tures platform. We will be working closely with poliMedia maintainers to study the
possibility of producing and providing TTS tracks for all or part of the repository. We
hope the results of this work can be used to increase accessibility to their excellent
educational multimedia content, opening up an array of exciting possibilities.

Additionally, the statistical parametrical synthesis framework opens up many op-
portunities for improvement. We intend to implement some of the latest advances in
TTS with NN, like Deep Mixture Netwoks [53], and carry over the �ndings in ASR to
the TTS systems, such as Recurrent NNs with bidirectional LSTM architecture [14]
and DNN adaptation to the speaker [49]. We look forward to continue improving the
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voice naturalness and intelligibility.

7.3 Contributions

The scienti�c publications related to this work are listed below.

• S. Piqueras, M. A. del-Agua, A. Giménez, J. Civera, and A. Juan Statisti-
cal text-to-speech synthesis of Spanish subtitles. IberSPEECH 2014.
Submitted.
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