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bUniversitat Politécnica de Valéncia, Cami de Vera S/N, 46022 Valencia,Spain, Tel: 00
34 963877000 (Ext.:76065)

Abstract

Background:

Epileptic seizures evolve through several states, and in the process the brain

signals may change dramatically. Signals from different states share similar

features, making it difficult to distinguish them from a time series; the goal

of this work is to build a classifier capable of identifying seizure states based

on time-frequency features taken from short signal segments.

Methods:

There are different amounts of frequency components within each Time-

-Frequency window for each seizure state, referred to as the Gabor atom

density. Taking short signal segments from the different states and decom-

posing them into their atoms, the present paper suggests that is possible

to identify each seizure state based on the Gabor atom density. The brain
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signals used in this work were taken form a database of intracranial recorded

seizures from the Kindling model.

Results:

The findings suggest that short signal segments have enough information to

be used to derive a classifier able to identify the seizure states with reason-

able confidence, particularly when used with seizures from the same subject.

Achieving average sensitivity values between 0.82 and 0.97, and area under

the curve values between 0.5 and 0.9.

Conclusions:

The experimental results suggest that seizure states can be revealed by the

Gabor atom density; and combining this feature with the epoch’s energy pro-

duces an improved classifier. These results are comparable with the recently

published on state identification. In addition, considering that the order of

seizure states is unlikely to change, these results are promising for automatic

seizure state classification.

Keywords: Epilepsy, Seizure states, ECoG, Kindling model, Matching

Pursuit, Gabor atoms density.

1. Introduction

There are several neurological disorders that affect the human brain, one

of the most serious and common is epilepsy (Witee et al., 2003). According

to different studies, the number of persons with epilepsy varies depending on

the region and the considered population. In studies from The World Health
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Organization (WHO, 2005), the estimated mean of people with epilepsy per

1000 is 8.93. An epileptic seizure may affect the brain partially or completely,

producing partial or generalized seizures respectively (Morimoto et al., 2004).

Seizures will manifest in the electrical activity produced by the brain. Plac-

ing electrodes directly inside the brain or over the cerebral cortex allows the

recording free from artifacts (Zaveri et al., 1992), that are called Electrocor-

ticograms (ECoG).

Epileptic seizures are dynamic processes evolving throughout four main

states (Franaszczuk et al., 1998; Iasemidis et al., 2003); those states are:

(1) the Basal state (2) the Pre-Ictal state, (3) the Ictal state; and (4) the Post-

-Ictal state. Within the time-domain the ECoG shows amplitude changes

while an epileptic seizure episode is in progress, and the signal’s morphology is

different at each state (Cockerell, 2003). In general, ECoG could be affected

by the state of awareness of the subject. When the brain functions are normal

it is considered the Basal state, the ECoG is characterized by a low amplitude

and relative high frequency. In the Pre-Ictal state, the corresponding ECoG

shows an amplitude increase with respect to the Basal state. There are

spikes and transitory activity but no definitive evolution, known as recruiting

rhythms (Kohsaka et al., 2002; Roso and Figliola, 2004). Though, during this

state the individual may not exhibit clinical manifestations. The Ictal state

is precisely when the individual exhibits more evident clinical manifestations

of the seizure; in cases when these discharges become widespread enough

it might resulting in a convulsive response (Morimoto et al., 2004). The

ECoG during this state is characterized by high amplitude discharges, a

low frequency and a predominant rhythmicity. The last state is the Post-
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-Ictal, where the ECoG shows general amplitude depression and frequency

increases, in this state it is possible to find spike-and-wave complexes; the

amplitude keeps decreasing as the ECoG gradually returns to the Basal state.

Epileptic seizures are spontaneous and sometimes are triggered by an

external phenomena, mostly happening without any warning, making it hard

to study them in humans (Curtis and Avanzini, 2001). Therefore, elicited

seizures are used for research purposes by means of animal models, mainly

rodents. The epilepsy conditions are achieved in previously healthy (non-

epileptic) animals as a result of applying short duration electrical stimulus to

the brain, known as the Kindling model(Goddard, 1983; McIntyre and Gilby,

2009); which can produce seizures with precise focal activation (Morimoto

et al., 2004).

The seizures elicited by the kindling model are rated according to the sub-

ject’s clinical manifestation into a five level-scale, known as Racine scale (Racine,

1972). The less severe seizures are considered as focal and they are rated as

stage one, as the abnormal discharges become widespread over the brain the

clinical manifestations change. When the afterdischarge is capable of stimu-

lating the nearby neurons reaching the cortex, it produces a generalize motor

seizure, or stage five, the highest in the Racine scale.

The brain, like most physiological systems, produces signals which posses

statistics that vary with time; i.e, they are non-stationary signals (Williams

et al., 1995). Fortunately, the rate at which such systems can change is

bounded; this allows breaking signals into segments of short fixed dura-

tion over which the statistics of interest may be assumed stationary. How-

ever, the signal may change within the duration of the window (Rangayyan,
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2002). Therefore a method able to analyze signals with no apparent station-

arity is required, in this paper we use the adaptive decomposition algorithm

developed by Mallat and Zhang (1993) called Matching-Pursuit algorithm

(MZMP ). This algorithm decompose signals in terms of a function dictio-

nary, primitive components called atoms that can provides information about

the rhythmic and transient brain activity (Jouny et al., 2003).

The study of the seizure states is motivated by the interest in evaluating

experimental epilepsy treatments. However, as a first step, this work focuses

on identifying three of the main seizure states: Pre-Ictal, Ictal, and Post-Ictal

as it is done in (Sotelo et al., 2007, 2012, 2013). For instance, this makes it

possible to estimate when the Ictal state develops. Our approach is to com-

pute the dynamics of short ECoG segments, acquired from elicited seizures

using the Kindling model on Wistar rats. The signal dynamics are estimated

by the number of frequency components found in the ECoG segment, using

a derived measured from the MZMP designated as Gabor Atom Density

(GAD) (Jouny et al., 2003). This numerical feature can be used to monitor

changes in ECoG complexity (Jouny et al., 2004), which allows us to perform

classification of the seizure states.

Over the past years, many researchers have attempted to develop algo-

rithms for automatic analysis of the EEG with the purpose of identifying

or predicting epileptic seizure activity. Using different approaches to ana-

lyze features, such as the short-term maximum Lyapunov exponent to reveal

the dynamic characteristics of the ECoG during the seizure evolution (Nair

et al., 2009). Niknazar et al. (2013) propose a unified thresholding approach

using several features from time domain, frequency domain and non-linear
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properties, able to discriminate during seizure and after seizure states. López-

Cuevas et al. (2013) propose an algorithm based on artificial neural networks

for automatic detection of high frequency oscillations related to epilepsy.

Some other uses a technique based on reservoir computing; for instance,

Buteneers et al. (2013) propose real-time seizure detection from ECoG and

trigger the treatment on a rat model, achieving an average error rate of

2.8%; and Fu et al. (2014) propose to identify seizure non-seizure activity in

humans, reaching a classification accuracy of 99.125%.

2. Materials and Methods

The signals data-sets were obtained from a database of the Centro de

investigación del Hospital General Universitario de Valencia, working in con-

junction with the Universidad Politécnica de Valencia, with the purpose of

studding states in elicited seizures. The kindling procedure was carried out

in compliance with current European directives for animal experimentation

(86/609/ECC) and with those set by the Valencian Community Government,

in accordance with the corresponding institutional animal care committee.

The procedure was performed as described in (Gallego et al., 2010), using

adult subjects weighing 270-310g stereotactically implanted with a bipolar

electrode made of twisted pair of Teflon-coated 0.25mm diameter stainless

steel wires separated by 0.5mm at the tip and 8mm in length, implanted at

the left piriform cortex for the stimulation and recording purpose. These

were placed at the coordinates: 0.8mm posterior, 4.9mm left, and 8.8mm

ventral from the bregma. With the purpose of signal recording and fixing

the connector to the skull, three more electrodes were implanted, two of them
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1mm anterior to the coronal suture, 3mm from the mid-line on both sides

and one occipital and the third 1mm posterior to the lambdoid suture, 3mm

right from the midline, allowing deep and frontal right signal recording. The

standard kindling procedure started 10 days after the surgical procedure, the

stimuli was applied on a daily basis consisting of a 1s train from a 50Hz rect-

angular signal with a 5% duty-cycle and 500µA intensity, until more than

three consecutive seizures of stage 5 were provoked. At this point, the subject

was considered fully kindled. Then the seizure threshold (ST) is determined,

this is achieved using a stepwise ascent method (Freeman and Jarvis, 1981),

consisting on a 50 Hz rectangular signal with a 5% duty-cycle by 1ms, sepa-

rated by 1 minute intervals. The current intensity starts at 7µA, increasing

gradually by 20% at each step until a behavioral seizure occurred or up to

the maximum intensity of 500µA. The intensity reached when a seizure is

produced is considered to be the seizure threshold. After ST is determined,

the recording process starts; the ECoG from elicited seizures were recorded

from the stimulation and frontal left electrodes, using the frontal right elec-

trode as reference. Eliciting one seizure a day for 9 continuous days. For

the recording process, the intensity of the stimulation starts 4% below the

ST intensity, rounding to the nearest integer, increasing 2% (rounding to the

nearest integer) leaving one minute apart among stimulations until a seizure

stage 5 is achieved. Before achieving the desired seizure stage, and after

every new stimulation the presence of high amplitude wave-spike complexes

in ECoG increase. In this work, we consider that this ECoG’s morphology

and behavior coincide with the Pre-Ictal state. Therefore, ECoG previous

to the ictal state were classified and used as the Pre-Ictal state.
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up at different times with diverse durations. Therefore, it is convenient to

analyze the signals with a method that provides a description of the signal’s

frequency evolution over time, which allow us to identify the seizure states

in a rapidly changing signal, as ECoG does (Lorenzo and Biey, 2000).

To find the frequency components from a signal it is possible to perform a

successive approximation through a set of candidate functions. The MZMP

decomposes any signal into a linear expansion of waveforms which are se-

lected from a redundant set of functions, called a dictionary (Mallat and

Zhang, 1993). Taking this into account, spikes and sharp waves could be de-

composed over functions well concentrated in time and with high bandwidth,

while rhythmic waves could be better represented by waveforms which have

a narrow frequency bandwidth. According to Franaszczuk et al. (1998), the

MZMP allows a time-frequency (T − F ) analysis of a signal’s components

whose localization in time and frequency vary widely. Therefore, using the

MZMP on ECoG may result on a detailed description that can be used to

classify and identify the dynamics of epileptic seizure states.

The MZMP algorithm decompose a signal through m approximations

to the signal f(t) using waveforms from a dictionary of functions D =

{g1, g2, ..., gr} where each gn(t) ∈ L2(R). The number of waveforms r in

D must be initialized prior to the start of the decomposition process. The

algorithm performs a scaling, translation and modulation of a single window

function g(t) from the dictionary. This generates a family of components

called atoms, which are well located in time and frequency; the signal de-

composition is approximated by

9



f =
m∑

n=1

⟨Rnf, gn⟩gn +Rmf, (1)

where ⟨Rnf, gn⟩ is the inner product of the residue Rnf with atom gn, and

Rmf is the residual vector after m iterations. This expansion minimizes the

error ε after M approximations,

ε =

∥∥∥∥∥f(t)−
M∑
i=1

ωigγi(t)

∥∥∥∥∥ , (2)

where ωi are the weights of the chosen functions gγi . The approximation

process can be stopped by implementing any of four different criteria: a)

the Mallat and Zhang (1993) criterion that is related to the first m atoms

that have a higher than average correlation with the residue Rmf ; b) the

ratio of the total explained energy by the signal’s components already found;

c) predefined number of iterations neglecting the explained energy; and d)

the energy of the last atom added, the energy resolution criterion (Jouny

et al., 2003). Considering that the seizure states are identified based on signal

amplitude, here we decided to use the explained energy as the stop criterion.

According to Mallat and Zhang (1993), the MZMP computes the signal’s

energy by a derived energy distribution, consisting in adding the Wigner

distribution of the selected atoms (Wgn(t, ω)); therefore, the epoch’s energy

(EE) is approximated by

EE(t, ω) =
m∑

n=1

|⟨Rnf, gn⟩|2Wgn(t, ω). (3)

The MZMP algorithm has been considered by Jouny et al. (2003) as

a robust algorithm, which provides information about the rhythmic and
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transient activity of brain signals, and has been recommended as an ap-

proach specially suitable for analysis of non-stationary signals (Niedemeyer

and Lopes da Silava, 1993). According to Blinowska (2001), MZMP is ca-

pable of providing a high resolution and parametric description of all kinds

of data structures, making it possible to describe brain signals in terms of

standard parameters; such as amplitude and T − F location (Durka, 2004).

The set of functions used to initialize the dictionary are Fourier functions,

Delta functions and Gabor functions (Mallat and Zhang, 1993; Durka, 2004;

Jouny et al., 2010).These functions are presumed to be more adaptable to the

ECoG rhythmic behavior, spike, and spike-wave complex, respectively. Us-

ing an adapted version based on the source code of the Piotr Durka MZMP

software implementation1, Figure 2 shows the time-frequency distribution (T -

− FD) of a test signal composed of sinusoids from four different frequencies

with different duration and time location, with four high amplitude spikes.

It is possible to see that rhythmic signals, as the sinusoids are, have an en-

ergy T − F representation depicted as narrow ellipses stretched along the

time axis whose longitude is proportional to the components’ duration. The

rhythmic components’ energy is distributed through narrow bands around

the central frequency; this example is at 5Hz, 10Hz, 20Hz and 40Hz. The

transitory behavior characterized by spikes is represented by lines or narrow

ellipses parallel to the frequency axis, meaning that each spikes’ energy is

distributed through a wide frequency band in a very short period of time; as

depicted at seconds 0.3, 0.7, 1.3, 1.8 and 1.1, respectively.

1The source code can be downloaded from http://eeg.pl/mp
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deviation. Our approach to identify the seizure states is to use a function

that assigns an unknown sample to a class label, in this case we use the prob-

abilistic Naive Bayes classifier which is considered an efficient classification

algorithm (Zhang, 2005; Zhang and Jiang, 2008). Considering Theodoridis

and Koutroumbas (2009), the classifier is constructed from a given set of

training attributes, which assign an unknown sample x = [x1, x2, ...xl]
T , to

the class

ωm = argmax
ωi

l∏
j=1

p(xj|ωi), i = 1, 2, ...,M. (5)

Where l is the number of features and M the number of classes.

2.2. Implementation

In order to compute the GAD and the T − F distribution, we used our

adapted version of the Piotr Durka MZMP software. The modifications

consist on redirecting the output results to our analysis software, which does

not compromise the signal approximation.

The GAD computations were performed over the deep recording ECoG

from three subjects. Before processing, the ECoG were digitally filtered in

a bandwidth from 0.5Hz to 60Hz. The ECoG were analyzed taking short

segments of 2 seconds in length (Blanco et al., 1995; Stastny et al., 2001;

Harikumar and Narayanan, 2003; Sotelo et al., 2007), called epochs. It is

desirable that an online EES classification system has to come to a deci-

sion in a time interval less than the epoch’s duration. These lead us to the

need to identify the seizure states evaluating a small difference in the amount

of information between nearby epochs. In view of that we propose to take
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the epochs with no overlap, and an overlap of 50% and 90%. This means

that an online system has to wait for a decision 100%, 50% and 10% of the

duration of the epoch respectively. In order to find out the the best GAD

definition among seizure states with the less computing time, one experiment

was setup for a decomposition level of 90% and the dictionary of functions

was set to 70K, 80K, 90K and 100K atoms2. On a second experiment, de-

composition level was set to 50% and 70% and dictionary set to 80K atoms.

The ECoG were decomposed into their atoms, then the GAD was computed

using Equation (4).

Figure 3(a) shows a T−F distribution of the Pre-Ictal state from subject 1

where signal decomposition was achieved using 80K atoms, explaining 50% of

the energy using ECoG segments of 28 seconds, the data for the GAD plot

was computed under the same conditions, over 2 second epochs every 0.1

seconds. Looking at seconds 7, 13.9 and 25.8 it is possible to see three wave-

complexes and their components. The lobes stretched over the time axis are

narrow-band components that explain the rhythmic nature of the wave, and

those stretched over the frequency axis and of short duration are wide-band

components that describe the transitory behavior of the spike. Average signal

amplitude is very low, and atoms are concentrated below 10 Hz. Figure 3(b)

shows a T − FD for the Ictal state from the same seizure, it is represented

by Gabor functions describing the rhythmic nature of the Ictal state. It

is evident that the ECoG’ amplitude is increasing as the state progresses.

In Figure 3(c) the Post-Ictal state from the same seizure is depicted, the

2Suffix K denotes thousands.
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ECoG amplitude is actually decreasing; however, the atoms show a mainly

long lasting rhythmic behavior. The continuous plot represents the GAD’s

evolution along the seizure states.

Since the MZMP is a greedy algorithm, it matches the coarser signal’s

structures with high energy atoms in the first iterations, the remaining finer

structures are fitted with atoms with smaller influence in overall energy and

T − F distribution than the first atoms found. At a higher decomposition

level for the same signal the very first atoms will be the same; however,

more small energy atoms may be found, consequently the GAD’s value may

increase. From the same seizure of subject 1, Figure 4 (a - c) show the T -

−FDs with a decomposition level of 90% and a 100K atoms dictionary. It is

possible to observe that the GAD’s magnitude increases, and the difference

among the seizure states become more evident. Bringing to attention that

the GAD values are smaller than those reported by Jouny et al. (2003), which

might be attributed to fact that the analyzed signals are from the seizure foci,

where the detected potential is attributed to the influence of the nearby cells

only, generating a less complex signal.

Figure 5 shows superimposed plots of the GAD from four non-consecutive

seizure episodes taken on different days from subject 1. In Figure 5(a) the

energy level decomposition was set to 50% with a dictionary of 80K atoms.

The Pre-Ictal state begins from the first sample up to sample 160, where the

Ictal state starts, the Post-Ictal state starts near sample 490. Though the

seizures are not fully synchronized it is possible to observe that their respec-

tive GAD changes its magnitude approximately the same way the seizures

evolve. As the decomposition level and number of atoms in the dictionary are
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increased, the GAD tendency is more evident, as is depicted in Figure 5(b)

where the same seizure samples were decomposed at 90% of the energy using

a dictionary of 100K atoms.

Seizures from the same type of epilepsy share symptoms and the ECoG

from different individuals share a similar morphology but exhibit different

signal patterns (Franaszczuk et al., 1998), this is evident in the ECoG plots

in Figure 6(a - b) belonging to subject 2 and subject 3 during a stage five

elicited seizure. Further, in Figure 6(c - d) the respective GAD from seizures

episodes of non-consecutive days are plotted, and it is also possible to observe

that the GAD behaves differently between each subject.

3. Results and discussion

Jouny et al. (2004) suggest that the GAD reflects the ECoG dynamics

and it changes as the seizure evolves; such a behavior can be observed clearly

in Figure 6. Taking this into account, we use the GAD as an indicator for

the seizure state using small ECoG segments. The training data selection is

based in the assumption that an online classifier must be trained efficiently,

using the least amount of data as possible. Hence, in our tested scenario

the training process only uses information from a single recording day. Fur-

thermore, for a more realistic testing scenario, the classifier is tested on sig-

nals from non-consecutive days, to reduce any possible correlation between

the training and testing signals. Therefore, three training data-sets were ar-

ranged using seizures from one, two and three different non-consecutive days.

As the epoch length is already fixed, the amount of epochs in each state de-

pends on the overlap and state duration. The total number of epochs in the
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Overlap Epochs

Non 48

50% 93

90% 453

(a)

Overlap Epochs

Non 96

50% 186

90% 906

(b)

Overlap Epochs

Non 144

50% 279

90% 1359

(c)

Table 1: Number of epochs included as training-data, using seizures from:

(a) one day, (b) two non-consecutive days, and (c) three non-consecutive

days.

training data-sets are shown in Table 1. GAD was computed using a 100K

atoms dictionary and energy explanation of 90%, considering that the best

GAD tendency was obtained within these values.

In order to build the Naive Bayes classifier we use the three different pro-

posed classes, Pre-Ictal, Ictal and Post-Ictal, and two observed attributes:

GAD and EE, which are assume to be normally distributed (John and Lan-

gley, 1995). The normalized GAD member functions of the proposed classes

are shown in Figure 7, from left to right the columns show plots using epochs

from one, two and three days. Figure 7(a - c) depicts distributions using

non-overlapped epochs, Figure 7(d - f) using epochs with a 50% overlap, and

Figure 7(g - i) using epochs with a 90% overlap. It is possible to observe that

GAD from the Ictal state are clearly separated from the other two states,

while Pre-Ictal and Post-Ictal are overlapped. The GAD from the Post-Ictal

state is concentrated in a narrow band, making it difficult to discriminate

among both states. This overlap is attributable to the fact that the ECoG
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from these two states share a similar transitory behavior. However, as the

epoch overlap increases as well as the number of seizures used as training

data, the overlap between the Pre-Ictal and Post-Ictal states decreases a

bit, but it is still not a significant difference which could allow to clearly

discriminating between them. Therefore, a second attribute is required in

conjunction with GAD to avoid this ambiguity, we proposed the EE.

For the second observed attribute, the normalized member functions are

shown in Figure 8, from left to right the columns show plots using epochs

from one, two and three days. Figure 8(a - c) depicts distribution using

non-overlapped epochs, Figure 8(d - f) using epochs with a 50% overlap, and

Figure 8(g - i) using epochs with a 90% overlap. It is possible to observe

that EE from the different states is clearly identifiable, making it easy to

discriminate among the three states. It is also possible to observe that the EE

from the Ictal state has the highest energy level and the widest distribution,

this energy distribution magnitude is followed by the Post-Ictal state.

Considering the energy decomposition of 90% and a 100K atom dictio-

nary, epochs with 90% and using seizures from 3 days gives the best GAD

and energy intervals to discriminates among the three seizure states. Fig-

ure 9 shows the GAD and the EE distributions for the other two subjects.

Figure 9(a - b) for subject 2; Figure 9(c - d) for subject 3. The figures confirm

that the ECoG from different subjects may exhibit different dynamics, the

GAD intervals from these subjects have different means and ranges, however

the GAD in general lies within similar boundaries. In addition, this makes

it difficult to classify seizure states from one subject with a classifier trained

with seizures from another.
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Taking in account that using both of the proposed attributes together

should be suitable to discriminate the seizure states; skipping the seizures

used to train, another set of epochs picked from different states were used to

test the learned models using both features. The classification was performed

over the corresponding trained classifier for each subject. After classification,

results were evaluated according with the diagnostic test method (Altman,

2000). Confusion matrixes are shown in Table 2, where each row shows the

classifications result for each state, the second column is the total number

of epochs from each state, the third column are the number of true positives

(TP ), the fourth column shows the number of false positives (FP ), the fifth

column the number of true negatives (TN), and in the sixth column the

number of false negatives (FN).

Typical classification results on epochs from a seizure of a single day are

shown in Table 2(a) for subject 1 using 453 epochs, Table 2(b) for subject

2 using 424 epochs; and Table 2(c) for subject 3 using 704 epochs. Table 3

shows the classification results in epochs from seizures from 8 days, in a

couple of those days there were only Pre-Ictal state, the classification result

are shown in Table 3(a) for subject 1 using 5047 epochs, Table 3(b) for

subject 2 using 5823 epochs, and Table 3(c) for subject 3 using 3786 epochs.

Table 4 shows the performance indexes computed for the classification

results from Table 3. Sensitivity (SE) is an indicator of how efficiently the

features of observed attributes can identify a particular state. On the other

hand, specificity (SP ) values characterize how efficiently the method rejects

the features which are not from a particular state. It is possible to observe

the Ictal state has a high SE score on the three subjects, attributed to
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state Total TP FP TN FN

Pre-Ictal 151 151 0 302 0

Ictal 171 168 0 282 3

Post-Ictal 131 131 3 319 0

(a)

state Total TP FP TN FN

Pre-Ictal 151 151 0 273 0

Ictal 142 142 131 151 0

Post-Ictal 131 0 0 293 131

(b)

state Total TP FP TN FN

Pre-Ictal 151 106 116 437 45

Ictal 422 394 7 275 28

Post-Ictal 131 18 63 510 113

(c)

Table 2: Classification results on a seizure from a single day for: (a) subject

1; (b) subject 2; and (c) subject 3.
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state Total TP FP TN FN

Pre-Ictal 2484 2432 491 2072 52

Ictal 1558 1283 33 3456 275

Post-Ictal 1005 614 194 3848 391

(a)

state Total TP FP TN FN

Pre-Ictal 2701 2381 409 2713 320

Ictal 1943 1874 1158 2722 69

Post-Ictal 1179 0 1 4643 1179

(b)

state Total TP FP TN FN

Pre-Ictal 1303 612 477 2006 691

Ictal 1590 1313 477 1719 277

Post-Ictal 893 239 668 2225 654

(c)

Table 3: Classification results using seizures from several days to test the

classifier, for: (a) subject 1. (b) subject 2. (c) subject 3.
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the fact that Ictal intervals show a significant difference compared with the

other two states. After the Ictal score, the Pre-Ictal, and the Post-Ictal show

a progressively lower performance, attributable to the fact that their GAD

intervals are inside the Pre-Ictal’s range, causing false negative classification.

For instance in the case of subject 2 the classification error is 100% for the

Post-Ictal state.

Figure 10 shows the receiver operating characteristics curves (ROC) of

the seizure state classification for the three subjects. In most of the cases the

EE-ROCs are near to point (0,1), suggesting that EE is a strong evidence for

the presence of a seizure state (Fawcett, 2006), making positive identification.

On the other hand, GAD−ROC in some cases are near to the diagonal while

still having good classification performance. The closer to the left-upper

corner the better the classification performance (Metz, 1978).

The probability that a classifier correctly identifies a true positive case is

describe by the area under the curve (AUC) (Fawcett, 2006), Table 5 shows

the AUCs from the GAD-ROC and EE-ROCs for each of the subjects.

4. Conclusion

This paper presents a method to identify the three main states of a

seizure evolution. The proposal is based on the classification of attributes

extracted from short ECoG segments. The experimental results suggest that

the seizure states are actually revealed by the signal’s dynamic as the GAD

plots show, inferring that it is possible to classify seizure states using this

feature. However, their ranges are not separated enough to have a totally

clear classification, this overlapping can causes multiple false positive or false
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state SE SP %Error TPF FPF

Pre-Ictal 0.979 0.808 2.0 0.979 0.191

Ictal 0.823 0.990 17.6 0.823 0.009

Post-Ictal 0.610 0.952 38.9 0.610 0.047

(a)

state SE SP %Error TPF FPF

Pre-Ictal 0.881 0.868 11.8 0.881 0.131

Ictal 0.964 0.701 3.5 0.964 0.298

Post-Ictal 0 0.999 100 0 0.000

(b)

state SE SP %Error TPF FPF

Pre-Ictal 0.469 0.807 53.0 0.469 0.192

Ictal 0.825 0.782 17.4 0.825 0.217

Post-Ictal 0.267 0.769 73.2 0.267 0.230

(c)

Table 4: Performance indexes from the classification results shown in Table 3,

for: (a) subject 1; (b) subject 2; and (c) subject 3.
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state AUC-GAD AUC-Energy

Pre-Ictal 0.543 0.975

Ictal 0.900 0.881

Post-Ictal 0.631 0.717

(a)

state AUC-GAD AUC-Energy

Pre-Ictal 0.661 0.978

Ictal 0.999 0.999

Post-Ictal 0.895 0.836

(b)

state AUC-GAD AUC-Energy

Pre-Ictal 0.789 0.978

Ictal 0.907 0.673

Post-Ictal 0.581 0.870

(c)

Table 5: Area under the curve for the ROC curves from Figure 10 for: (a)

subject 1, (b) subject 2, and (c) subject 3.
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negative when only GAD is used. Nonetheless, the EE has clearer intervals,

and combining both features produces an improved classifier with accuracy

between 55% to 79% for the Pre-Ictal state and between 90% to 99% for

the Ictal state. These results shows considerable improvement when com-

pared with a previous classification method, where average specificity was

12% (Sotelo et al., 2007), and similar accuracy compared with respect to the

88.9% reported in (Sotelo et al., 2012) and the 99% reported in (Sotelo et al.,

2013) using similar data. These results are promising considering the perfor-

mance reported from similar works using different techniques, where Bute-

neers et al. (2013) reports 2.8% average error rate of seizure detection and

the 99.125% accuracy identifying seizure and non-seizure activity in humans

reported by Fu et al. (2014). If we consider that during the evolution of

an epileptic seizure the Pre-Ictal state always precede the Ictal state, and

the Post-Ictal state unlikely precedes the Pre-Ictal, then these numbers are

promising in the online classification of seizure states. Furthermore, it is

shown that small changes in the signal, overlap of 90%, allow to identify the

seizure state.

It is important to remark the fact that epileptic seizures share ECoG

morphology among individuals, nevertheless, they do not share ECoG’s dy-

namic characteristics. This is an important matter when the goal is to find an

automatic seizure state classification method, since a parameter which works

fine for one individual might not work properly for another. Suggesting that

the classification method must be tuned according to the particular seizure

characteristics from a particular individual, and probably to the particular

epilepsy type.
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Nevertheless, more work has to be done to get a refined classification

method based on ECoG dynamics estimated by means of GAD. Considering

that the GAD is computed on Fourier, Delta, and Gabor functions; and the

fact that the Pre-Ictal and Post-Ictal states are from a transitory nature.

Hence the atom density of each of these three components might be used as

observed attributes in the classifier to discriminate these two behaviorally

similar states.
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