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Abstract 

The adsorption of As(III) from aqueous solutions using naturally occurring and 

modified Algerian montmorillonites has been investigated as a function of contact time, pH 

and temperature. Kinetic studies reveal that uptake of As(III) ions is rapid within the first 3 

hours and it slows down thereafter. Equilibrium studies show that As(III) shows the highest 

affinity towards Acidic-montmorillonite even at very low concentration of arsenic. The 

kinetics of As(III) adsorption on all montmorillonites used is well described by a pseudo-

second-order chemical reaction model, which indicates that the adsorption process of these 

species is likely to be chemisorption. Adsorption isotherms of As(III) fitted the Langmuir and 

Freundlich isotherm models well. The adsorption of As(III) is pH-dependent obtaining an 

optimal adsorption at pH 5. From the thermodynamic parameters, it is concluded that the 

process is exothermic, spontaneous and favorable. The results suggest that M1, M2 and 

Acidic-M2 could be used as low cost and effective filtering materials for removal of arsenic 

from water. 
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INTRODUCTION 

Arsenic (As) is a notoriously toxic element which is ubiquitous in the environment 

(Zandsalimini et al., 2011; Akter et al. 2011). Arsenic has been classified as a carcinogen 

agent who poses a high risk to human health if it is released to the environment (Zandsalimini 

et al., 2011). The main source for people’s exposure to As is the contact with water, especially 

groundwater, which contains As. Arsenicosis is a serious disease mainly caused by drinking 

As-contaminated groundwater. Many studies have shown that As can also be accumulated in 

seafood (Lin et al., 2004). Chronic exposure of humans to high concentrations of arsenic is 

associated with skin lesions, peripheral vascular disease, hypertension, blackfoot disease, and 

high risk of cancers (Hughes et al., 2002). 

A wide range of physical and chemical treatment technologies have been applied for 

the removal of As from contaminated water, such as coagulation, ultrafiltration, ion exchange, 

lime softening, adsorption on iron oxides or activated alumina, and reverse osmosis (Akter et 

al., 2011; Onnby et al., 2012; Daniel et al. 2012; Morallón et al. 2009). One of the 

disadvantage of these treatments is that the operational costs are high. Consequently there is 

growing interest in using low-cost materials to remove As from water (Kushwaha et al., 2013; 

Ali et al., 2013). Among many other kinds of identified low-cost natural sorbents, clay, 

kaolinite, bentonite, montmorillonite, goethite, spodic, and aquifer materials have high 

adsorption capacities for As (Elizalde-González et al., 2001; Malakootian et al., 2009). Clays 

and their modified forms have received attention for use as adsorbents because their easy 

availability and low cost. Moreover, clays are good adsorbents because of existence of 

different types of active sites on the surface, which include acid sites and ion exchange sites. 

Montmorillonite has a net negative charge which is responsible for giving superior activity in 

comparison with other clays like kaolinite (Bhattacharyya et al., 2008). The adsorption 
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capability of clays is usually determined by their chemical composition and pore structure, but 

also by the pH of the aqueous medium. (Tang et al., 2009).  

The aim of this work is to investigate the adsorption capacity of two Algerian natural 

montmorillonites and an acid-modified montmorillonite for As(III) ions from aqueous media 

solutions. The optimum conditions, equilibrium data and adsorption kinetics for As(III) were 

obtained. The effects of different variables, like As(III) concentration, pH and temperature 

have been analyzed. Equilibrium experimental data were fitted to Langmuir and Freundlich 

isotherm models and a kinetic study has also been performed. 

This research has been performed in the University of Alicante (Spain) and Mascara 

University (Argelia) during the years 2011 and 2012. 

MATERIALS AND METHODS 

Reagents 

Arsenic(III)-containing solutions with concentration  ranging from 1 to 2500 (mg.L–

1)were prepared from analytical grade As2O3 (Merck) dissolved in 0.1 M NaOH solution 

prepared with double-distilled water. The pH was adjusted to the required value by adding 

appropriate amounts of 0.1 M HCl solution. 

Preparation of adsorbents 

Two clays were obtained from Algeria: a non sodium montmorillonite from Mostaganem 

(M1) and a sodium montmorillonite from Telemecem (M2). By non sodium montmorillonite 

we refer to a natural montmorillonite which does not contain sodium cations but calcium and 

others in less concentration.  Before its use the adsorbent, the raw-montmorillonites 20g was 

thoroughly washed with tap water to remove unwanted materials such as decomposed organic 
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matter, worm, sand, dust particles, etc. and iron containing fine particles, and dried in the Sun 

for 2-3 days. Then it was crushed to make the particle size of the adsorbent around 1.5 mm. 

These were then sieved, washed thoroughly (15-20 times) with large volume of tap water to 

remove the red color of iron, and finally washed with distilled water. Lastly, the material was 

dried overnight in hot air oven at 378K for 4h and stored in tightly stoppered glass bottles for 

later use (samples M1 and M2). The M2 sample was activated in acid H2SO4 is described 

elsewhere (Zehhaf et al. 2011). Briefly. Acid activation was conducted by heating the 

mixtures in an oven at 97ºC for 6 h. acidic-M2 sample was suspended in water, and 

centrifuged. Obtained precipitate was washed with distilled water until it was free from SO4
2- 

against 5% BaCl2 solution and the pH of the washing was 6.8. Finally the sample was dried at 

378K in air until constant weight. This acid activation also removes sodium from its 

composition (Zehhaf et al., 2011).  

Characterization of the clay adsorbents 

The porous texture of all samples was determined by physical adsorption of gases (N2 

at 77K and CO2 at 273K) using an automatic adsorption system (Autosorb-6, Quantrachrome 

Corporation) after sample out-gassing at 383K under vacuum for 4h. The experimental details 

are reported elsewhere (Zehhaf et al., 2011).  

Nitrogen adsorption at 77K was used for determining the total volume of micropores 

(VDR(N2)) (pore size smaller than 2nm) by applying the Dubinin–Radushkevich (DR) 

equation and for determining the specific surface area by the BET equation (SBET), whereas 

the adsorption of CO2 at 273K was used to assess the narrowest micropores (VDR(CO2)) 

(pore size smaller than around 0.7 nm) were realized for all three adsorbent materials (Lozano 

et al., 2009). Porous texture characterization data are summareized in Table 1. These data 

indicate that the clays are basically mesoporous materials with some amount of micropores. 
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The acidic modification of M2-type montmorillonite gives rise to a significant increase in 

SBET and in the volume of both mesopores and total micropores, whereas the number of 

narrowest micropores remains unchanged. This result has been attributed to a change from the 

laminar structure of the pristine clay to a delaminated structure, as revealed by transmission 

electron microscopy images (Zehhaf et al., 2011). Also, the increase in the volume of meso- 

and micro-pores was associated with the dissolution of exchangeable cations like Na+ and the 

partial dissolution of structural cations, like Fe3+ and Mg2+, in accordance with X-Ray 

fluorescence measurements (Zehhaf et al., 2011). 

Adsorption experiments 

The clay samples were dried at 80°C under vacuum for 24h before adsorption. Then, 

0.5g of adsorbent was put in contact with 50mL of an aqueous solution of As(III) with metal 

concentration ranging from 1 to 2500 (mg.L–1) at 25°C for 24h. Each adsorption experiment 

was replicated two times and at three different temperatures (298, 308 and 318K). The pH of 

the As(III) initial solution ranged from 3 to 12. The concentration of As(III) in the solution 

was determined by inductively-coupled plasma atomic absorption spectroscopy (ICP-AAS, 

Perkin-Elmer 7300-DV). As(III) concentration was also determined at different contact times 

for adsorption kinetics studies. 

The amount of adsorbed As(III) at any time, qt (mg.g−1) was calculated according to 

the expression: 

m
V)cc(q t

t
−

= 0                                (1) 

Where qt (mg.g-1) is the amount of As(III) adsorbed at time t, c0 and ct are the initial 

concentration and concentration at time t (mg.L−1), V the volume of solution (L), and m the 
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weight of the montmorillonite (g). When sufficient time has elapsed to reach equilibrium the 

measured concentration is the equilibrium concentration, ce, and Equation (1) yields the 

amount of As(III) adsorbed at equilibrium, qe. 

RESULTS AND DISCUSSION 

Effect of contact time on the adsorption of As(III) 

Fig. 1. shows the adsorption kinetics of a 2500 (mg.L–1) As(III) solution on M1, M2 

and Acidic-M2 at pH = 5. The adsorption rates (the slope of the plot) of As(III) were fairly 

high at the beginning of these experiments, and declined throughout the time investigated. 

After 120 min the amount of adsorbed As(III) remains nearly unchanged, thus indicating that 

adsorption approaches equilibrium. 

In order to determine the adsorption kinetics of As(III) ions, first-order and second-

order kinetics models were checked. The first-order rate expression (Kul et al., 2010) is 

expressed as follows: 

)(1 te
t qqk

d t
d q

−=      (2) 

Where qe and qt are the amounts of As(III) adsorbed onto the montmorillonite (mg.g-

1), at equilibrium and at time t, respectively, and k1 is the first-order rate constant (min−1). 

After integration from t = 0 to t and from qt = 0 to qe, it becomes the Lagergren’s rate 

equation: 

tkqqq ete 3 0.2
l o g)l o g ( 1−=−    (3) 
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A pseudo-second-order rate law expression was also used; the kinetic rate equation is 

expressed as (Shah et al., 2009; Urik et al., 2009): 

2
2 )( te

i qqk
d t
d q

−=                      (4) 

Where k2 is the second-order rate constant (g.mg-1.min-1). At boundary conditions 

from t = 0 to t and from qt = 0 to qe (Na et al., 2010), the rate law becomes: 

eet q
t

qkq
t

+= 2
2.
1

                        (5) 

Table 2 includes the relevant kinetic parameters, together with the correlation factor R2 

from the adsorption kinetics for a 2500 (mg.L-1) As(III) solution, obtained after applying the 

two models mentioned above.  

It can be observed that the pseudo-second-order model provides a better correlation to 

the kinetic data, with correlation coefficients of 0.99. A pseudo-second-order model for 

arsenic adsorption process has also been reported previously (Pena et al., 2005; Maity et al., 

2005; Na et al., 2010). 

Effect of pH on the adsorption of As(III) 

The pH of the aqueous solution is an important controlling parameter in the adsorption 

process (Shah et al., 2009). Thus, the effect of pH of the solution ranging from 3 to 12 was 

examined. The effect of pH on the adsorption of As(III) is summarized in Fig. 2. It seems that 

pH has little effect on the adsorption of As(III) under acidic conditions. This is probably 

because arsenic ions exist in the form of H3AsO3 in the pH range 0–9 (Na et al., 2010), and 

therefore there is a lack of electrostatic interaction between As(III) and the adsorbent surface. 
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At pH > 9, the anionic form of As(III), dihydrogen arsenite, prevails, an this may explain the 

additional small drop in the adsorption observed at high pHs. Similar phenomena have been 

observed in previous studies of the removal of arsenic from water (Pena et al., 2005). Thus, it 

can be postulated that at least within the range 0<pH<9, As(III) is adsorbed through pH-

independent complexation reactions on surface hydroxyl sites (Na et al., 2010). To obtain the 

optimal removal rates, a pH of 5 for As(III) was used in subsequent experiments. 

Adsorption isotherms 

Fig. 3. presents the adsorption isotherms of As(III) for the three montmorillonites at 

25ºC. Langmuir and Freundlich isotherms were used to analyze the adsorption data. The 

Langmuir isotherm is based on monolayer adsorption at the active sites of the adsorbent, with 

no interaction between adsorbate molecules. The linear form of the isotherm is given by: 

00

1
q
c

K.qq
c e

le

e +=                                            (6) 

Where ce is the equilibrium concentration of As(III) (mg.L−1), qe is the amount of 

As(III) adsorbed on the adsorbent (mg.g−1), and qo is the adsorption capacity (mg.g−1) and Kl 

is  a parameter related to the energy of adsorption (L.mg−1). Plots of ce/qe versus ce values 

can be used to determine qo and Kl (Shah et al., 2009). 

The linear form of the Freundlich isotherm is given by: 

efe cl n
n

Kl nql n 1
+=                                      (7) 
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Where Kf and n are constants related to adsorption capacity and adsorption strenght, 

respectively, and ce and qe have the same meaning as in the Langmuir model. A linear plot of 

(ln qe) versus (ln ce) yields Kf and n.  

The fitted constants for the Langmuir and Freundlich models are shown in Table 3. R2 

in the table is the regression coefficient. Notably, the experimental data fit both models well 

(0.93 > R2 > 0.98 for Langmuir and 0.88 > R2 > 0.93 for Freundlich). Also, the Langmuir 

adsorption capacity increases in the order M2 < M1 < acidic-M2, in complete agreement with 

the observed BET surface areas and porosity of the clays. The values of adsorption capacity 

are similar to that obtained with Ti-pillared montmorillonite (Na et al., 2010) and higher than 

the reported with other low-cost material like sawdust of spruce (Urik et al., 2009). The value 

of the n parameter in the Freundlich isotherm lies between 1 and 10, as it corresponds for a 

favorable adsorption process (Zehhaf et al., 2011). 

Effect of temperature 

Adsorption experiments were carried out in the temperature range 298K to 328K at an 

initial arsenic concentration of 2500 (mg.L–1) and a fixed clay dose of 0.5g. The adsorption 

time was long enough to ensure that the adsorption of As(III) reached equilibrium. It was 

observed that the removal efficiency for As(III) falls with the rise in temperature (Fig. 4) as it 

is expected for an exothermic adsorption process (see below). 

Thermodynamic parameters such as standard free energy ΔG, standard enthalpy ΔH, 

and standard entropy changes ΔS can be determined using the equilibrium constant 
e

e
C c

qK = , 

which depends on temperature (Shah et al., 2009; Sari et al., 2007): 

CKR TG l n−=∆                                           (8) 
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R T
H

R
SKC

∆
−

∆
=l n                                          (9) 

where R is the universal gas constant (8.314 J.mol−1.K−1) and T is the temperature (K). 

According to Equation (9), ΔH and ΔS can be obtained from the slope and intercept, 

respectively, of the Van´t Hoff plot of (ln K) versus (1/T). 

In Table 4. The negative values of ΔG indicate that the adsorption of As(III) onto M1, 

M2 and acidic-M2 is a spontaneous process. When the temperature decreases, the magnitude 

of free energy change shifts to high negative value for As(III), suggesting that the process is 

more spontaneous at lower temperature (Kundu et al., 2007). The negative value of the 

standard enthalpy change ∆H for As(III) indicates that the adsorption is exothermic, thereby 

demonstrating that the process is stable energetically (Kundu et al., 2007). The negative 

standard entropy change ∆S value for As(III) correspond to a decrease in the degree of 

freedom of the adsorbed species. 

Analysis of montmorillonites after adsorption by XRD. 

XRD patterns of Acidic-M2 with adsorbed arsenite and raw montmorillonite are 

shown in Fig. 5, the same patterns have been obtained with the other two clays. Table 5 shows 

the  d(001) spacing before and after adsorption for the three clays. For Acidic-M2 this value is 

20.05 (Å), while for of Acidic-M2-As after the adsorption of As(III) are increased to 23.25 

(Å) (Table 5). 

The  d(001) pattern has been increased after the adsorption of As(III), suggesting that 

arsenic species enters into the interlayer of montmorillonite during the adsorption process 

(Salavagione et al., 2008). Because of the introduction of polyhydroxy cations into the 

interlayer space, many active hydroxyl groups are formed. The increase of the interlayer space 



 

 
 

13  

of montmorillonite could be due to the complexation of arsenic with these active hydroxyl 

groups. 

CONCLUSIONS  

Results are presented showing that acidic-M2 is an efficient  low-cost material for the 

removal of As(III) from aqueous solutions. Experimental parameters such as contact time, 

solution pH and temperature have been investigated and optimized. 

The kinetics of As(III) adsorption on all montmorillonites used is well described by a 

pseudo-second-order chemical reaction model, which indicates that the adsorption process of 

these species is likely to be chemisorption. The adsorption isotherms are indicative of 

monolayer adsorption because the experimental data fit better to Langmuir isotherm. 

The removal of As(III) is pH-dependent. Optimal adsorption of arsenite is obtained at 

pH = 5, is indict the adsorption of As(III) is less favorable under acidic conditions. 

Although none of the montmorillonites used is highly effective in the adsorption of 

As(III) over a wide range of pH, it still can be economically feasible to be used for the 

removal of arsenic from waste-waters due to their large specific surface area and low cost. 

Furthermore, the adsorption capacity is significantly increased by acidic treatment and 

compared with other low-cost adsorbents similar or higher for adsorption of As(III).  

The negative values of ΔG and ΔH indicate that the adsorption of As(III) onto M1, M2 

and acidic-M2 is a spontaneous and exothermic process. 
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Table 1. Textural characteristics of non-sodium montmorillonite (M1), sodium 

montmorillonite (M2) and acid activated montmorillonite (acidic-M2). 

 
 
 
 

 

 

Sample SBET 
(m2.g-1) 

VDR(N2) 
(cm3.g-1) 

VDR(CO2) 
(cm3.g-1) 

Vmeso 
(cm3.g-1) 

M1 
M2 

Acidic-M2 

32 
25 
140 

0.09 
0.09 
0.19 

0.01 
0.01 
0.01 

 
0.16 
0.16 
0.68 
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Table 2. Comparison of the first- and second-order adsorption rate constants, for calculated 

(qe,cal) and experimental (qe,exp) values at 2500 mg.L−1 As(III) concentration and pH = 5. 

 

 

Adsorbent 

qe.Exp 

(mg.g-1) 

First-order kinetic model Second-order kinetic model 

k1 

(min-1) 

qe.Cal 

(mg.g-1) 

R2 k2.ads 

(g.mg-1.min-1) 

qe.Cal 

(mg.g-1) 

R2 

M1 
 

M2 
 

Acidic-M2 

10.34 
 

9.71 
 

14.84 

0.0196 
 

0.0188 
 

0.0225 

4.33 
 

5.60 
 

10.07 

0.77 
 

0.94 
 

0.93 

0.0115 
 

0.0098 
 

0.0045 

10.77 
 

10.08 
 

15.17 

0.99 
 

0.99 
 

0.99 

 

 

 

 

Table 3.  Freundlich and Langmuir coefficients obtained from the adsorption isotherms of 

As(III) on the montmorillonite samples at 298K and pH = 5. 

 
 
Adsorbents 

Freundlichcoefficients Langmuir coefficients 

Kf  
(mg1-1/n.L1/n.g-1) 

n R2 q0 
(mg.g-1) 

Kl 
(L.mg-1) 

R2 

M1 

M2 

Acidic-M2 

1.12 
0.28 
2.60 

3.45 
3.04 
4.43 

0.93 
0.88 
0.93 

10.6 
10.21 
15.03 

0.008 
0.005 
0.01 

0.96 
0.93 
0.98 
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Table 4. Thermodynamic constants for the adsorption of As(III) on M1, M2 and acidic-M2 

montmorillonites at various temperatures.  

 

Adsorbent T (K) ∆G (kJ.mol-1) ∆H (kJ.mol-1) ∆S (J.mol-1.K-1) 

 
M1 

 
 
 

M2 
 
 
 

Acidic-M2 

298 
308 
318 

 
298 
308 
318 

 
298 
308 
318 

-8.47 
-8.07 
-7.66 

 
-7.03 
-6.64 
-6.26 

 
-10.12 
-9.63 
-9.14 

 
-20.55 

 
 
 

-18.53 
 
 
 

-24.82 

 
-40.53 

 
 
 

-38.58 
 
 
 

-49.31 

 

 

 

Table 5. Peak maximum and d-spacing of M1, M2 and acidic-M2 montmorillonites before 

and after loading with arsenic. 

 
 

 
Adsorbent 

Peak maximum, 
2θmax (deg) 

Basal spacing,  
d(001) (Ǻ) 

Before     After Before     After 
M1 

 
M2 

 
Acidic-M2 

5.61       5.14 
 

6.15       5.79 
 

5.43       4.92 

15.83      17.28 
 
14.45      15.34 

 
16.36      18.05 
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Fig. 1. The adsorption of As(III) by M1,M2 and Acidic-M2 as a function of contact time at 

2500 mg.L−1 As(III) concentration and pH = 5. 
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Fig. 2. Effect of pH value on As(III) adsorption on M1, M2 and Acidic-M2 at 2500 mg.L−1 

As(III) concentration and pH = 5. 
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Fig. 3. As(III) adsorption isotherm on M1, M2 and Acidic-M2 at pH = 5. 
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Fig. 4. The effect of temperature on the removal rate of As(III) on M1, M2 and Acidic-M2 at 

2500 mg.L−1 As(III) concentration and pH = 5. 
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Fig. 5. Powder XRD patterns of Acidic-M2 after and before adsorbed As(III) concentration 

and pH = 5. 

 

 


