
Universitat Politècnica de València

PhD Thesis

A Model-Driven Approach for the
Design, Implementation, and Execution

of Software Development Methods

Author:

Mario Cervera Úbeda

Supervisors:

Vicente Pelechano Ferragud

Manuela Albert Albiol

A thesis submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy in Computer Science

July 2015

A Model-Driven Approach for the Design, Implementation, and Execution of Soft-

ware Development Methods

This report was prepared by

Mario Cervera Úbeda

Supervisors

Dr. Vicente Pelechano Ferragud

Dra. Manuela Albert Albiol

Members of the Thesis Committee

Dr. Joan Josep Fons Cors, Universitat Politècnica de València

Dr. Xavier Franch Gutiérrez, Universitat Politècnica de Catalunya

Dr. Juan Carlos Trujillo Mondéjar, Universitat d’Alacant

Centro de Investigación en Métodos de Producción de Software

Universitat Politècnica de València

Camı́ de Vera s/n, Edif. 1F

46022 - València, Spain

Tel: (+34) 963 877 007 (Ext. 83533)

Fax: (+34) 963 877 359

Web: http://www.pros.upv.es

Release date: 16-07-2015

Comments: A thesis submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science.

Rights: c©Mario Cervera, 2015

i

Acknowledgements

I can think of many people without whom this thesis would not have been written.

To all of these people, I am greatly indebted. Here, I take the opportunity to

extend my sincere thanks to all of them.

First of all, I would like to thank my supervisors, Dr. Vicente Pelechano and

Dra. Manuela Albert, for giving me the opportunity to undertake this fascinating

work. I have learned many valuable lessons during the long journey that the PhD

represents. Your advice, reviews, and discussions, together with the help of Dra.

Victoria Torres, have contributed to improve the work that is presented in this

thesis. I am grateful to the three of you.

A big gratitude is also due to my current and former colleagues from the PROS

research center for the many good moments that we have shared together. Thank

you so much, Clara and Maŕıa. Your encouragement has always been the main

source of my strength and determination to finish my PhD. Without your sup-

port, this thesis would not have been possible. I also want to give special thanks

to Marce, Vero, Sergio, Diego, Ignacio, Mariajo, Paco, and all my friends from

laboratory 1L04. All of you gave me the best experiences of my last years as

a PhD student. Due to these experiences, I have always been able to keep my

mind clear and focused. I am also very grateful to Caro. Your stay in Valencia

was the happiest time of my PhD. I will never forget that, and I will always miss

you. Thanks also to Salva, for the great padel matches that we played together.

Thanks Pau for being my friend, and, at the same time, my greatest inspiration.

I am also thankful to my “labmates” (and “groupmates”) Maŕıa O., Pablo, Isma,

Nacho, Miriam, Pedro, and Joan. All of you helped me grow as a researcher.

Thanks Óscar for your great direction of our research center, and Ana for the

valuable time that you saved me with your administrative work.

In the work environment, not only people from university have contributed to

bring this thesis to fruition. Thanks Begoña Bonet for trusting in my work from

the beginning. Your professional support and your deep expertise have been a

great source of inspiration for me. I am also in debt to the MOSKitt team –

Marc, Miguel, Héctor, Javi, and Gabi – and, especially, to the project leader,

Javier Muñoz. The years that I spent with all of you are the origin of this thesis.

I sincerely thank you for that.

iii

iv

Outside the workplace, I can mention many people that have made the PhD a

more pleasant journey. Foremost, my family; especially, my parents Fernando and

Ma Carmen, my brothers Óscar and Fer, and my sister Norma. I will be forever

thankful for the love and motivation that you have given me all these years, and

all my life. Thanks Fer also for your useful reviews and comments on the last

versions of the thesis. I also want to express my gratitude to my friends, from

Valencia and Navajas, for always being there when I needed you. Among these

friends, I cannot forget to mention my turkish friend Gamze. Thanks for your

unlimited patience with me, for always being so cheerful and happy, and, above

all, for your friendship. Your departure saddens me deeply, but I am very grateful

to you for making my last year of PhD a more enjoyable experience.

Finally, I want to thank the Universitat Politècnica de València and the Conselle-

ria de Infraestructuras, Territorio y Medio Ambiente for the research fellowships

that provided the economic resources needed to make possible the development

of this thesis.

Abstract

Software development projects are diverse in nature. For this reason, software

companies are often forced to define their methods in-house. In order to define

methods efficiently and effectively, software companies require systematic solu-

tions that are built upon sound methodical foundations. Providing these solutions

is the main goal of the Method Engineering discipline.

Method Engineering is the discipline to design, construct, and adapt methods,

techniques, and tools for the development of information systems. Over the last

two decades, a lot of research work has been performed in this area. However,

despite its potential benefits, Method Engineering is not widely used in industrial

settings. Some of the causes of this reality are the high theoretical complexity of

Method Engineering and the lack of adequate software support.

In this thesis, we aim to mitigate some of the problems that affect Method Engi-

neering by providing a novel methodological approach that is built upon Model-

Driven Engineering (MDE) foundations. The use of MDE enables a rise in ab-

straction, automation, and reuse that allows us to alleviate the complexity of our

Method Engineering approach. Furthermore, by leveraging MDE techniques (such

as metamodeling, model transformations, and models at runtime), our approach

supports three phases of the Method Engineering lifecycle: design, implementa-

tion, and execution. This is unlike traditional Method Engineering approaches,

which, in general, only support one of these phases.

In order to provide software support for our proposal, we developed a Computer-

Aided Method Engineering (CAME) environment that is called MOSKitt4ME. To

ensure that MOSKitt4ME offered the necessary functionality, we identified a set

of functional requirements prior to developing the tool. Then, after these require-

ments were identified, we defined the architecture of our CAME environment,

and, finally, we implemented the architecture in the context of Eclipse.

The thesis work was evaluated by means of a study that involved the participation

of end users. In this study, MOSKitt4ME was assessed by means of the Technology

Acceptance Model (TAM) and the Think Aloud method. While the TAM allowed

us to measure usefulness and ease of use in a subjective manner, the Think Aloud

v

vi

method allowed us to analyze these measures objectively. Overall, the results were

favorable. MOSKitt4ME was highly rated in perceived usefulness and ease of use;

we also obtained positive results with respect to the users’ actual performance

and the difficulty experienced.

Resumen

Los proyectos de desarrollo de software son diversos por naturaleza. Por este

motivo, las compañ́ıas de software se ven forzadas frecuentemente a definir sus

métodos de manera interna. Para poder definir métodos de forma efectiva y efi-

ciente, las compañ́ıas necesitan soluciones sistemáticas que estén definidas sobre

unos fundamentos metodológicos sólidos. Proporcionar estas soluciones es el prin-

cipal objetivo de la Ingenieŕıa de Métodos.

La Ingenieŕıa de Métodos es la disciplina que aborda el diseño, la construcción y

la adaptación de métodos, técnicas y herramientas para el desarrollo de sistemas

de información. Durante las dos últimas décadas, se ha llevado a cabo mucho

trabajo de investigación en esta área. Sin embargo, pese a sus potenciales benefi-

cios, la Ingenieŕıa de Métodos no se aplica ampliamente en contextos industriales.

Algunas de las principales causas de esta situación son la alta complejidad teórica

de la Ingenieŕıa de Métodos y la falta de un apropiado soporte software.

En esta tesis, pretendemos mitigar algunos de los problemas que afectan a la

Ingenieŕıa de Métodos proporcionando una propuesta metodológica innovadora

que está basada en la Ingenieŕıa Dirigida por Modelos (MDE). El uso de MDE

permite elevar el nivel de abstracción, automatización y reuso, lo que posibilita

una reducción de la complejidad de nuestra propuesta. Además, aprovechando

técnicas de MDE (como por ejemplo el metamodelado, las transformaciones de

modelos y los modelos en tiempo de ejecución), nuestra aproximación da soporte

a tres fases del ciclo de vida de la Ingenieŕıa de Métodos: diseño, implementación

y ejecución. Esto es a diferencia de las propuestas existentes, las cuales, por lo

general, sólo dan soporte a una de estas fases.

Con el objetivo de proporcionar soporte software para nuestra propuesta, imple-

mentamos una herramienta CAME (Computer-Aided Method Engineering) lla-

mada MOSKitt4ME. Para garantizar que MOSKitt4ME proporcionaba la fun-

cionalidad necesaria, definimos un conjunto de requisitos funcionales como paso

previo al desarrollo de la herramienta. Tras la definción de estos requisitos, defin-

imos la arquitectura de la herramienta CAME y, finalmente, implementamos la

arquitectura en el contexto de Eclipse.

vii

viii

El trabajo desarrollado en esta tesis se evaluó por medio de un estudio donde

participaron usuarios finales. En este estudio, MOSKitt4ME se evaluó por medio

del Technology Acceptance Model (TAM) y del método Think Aloud. Mientras

que el TAM permitió medir utilidad y facilidad de uso de forma subjetiva, el

método Think Aloud permitió analizar estas medidas objetivamente. En general,

los resultados obtenidos fueron favorables. MOSKitt4ME fue valorado de forma

positiva en cuanto a utilidad y facilidad de uso percibida; además, obtuvimos re-

sultados positivos en cuanto al rendimiento objetivo de los usuarios y la dificultad

experimentada.

Resum

Els projectes de desenvolupament de programari són diversos per naturalesa. Per

aquest motiu, les companyies es veuen forçades freqüenment a definir els seus

mètodes de manera interna. Per poder definir mètodes de forma efectiva i eficient,

les companyies necessiten solucions sistemàtiques que estiguin definides sobre uns

fundaments metodològics sòlids. Proporcionar aquestes solucions és el principal

objectiu de l’Enginyeria de Mètodes.

L’Enginyeria de Mètodes és la disciplina que aborda el diseny, la construcció

i l’adaptació de mètodes, tècniques i eines per al desenvolupament de sistemes

d’informació. Durant les dues últimes dècades, s’ha dut a terme molt de treball

de recerca en aquesta àrea. No obstant, malgrat els seus potencials beneficis,

l’Enginyeria de Mètodes no s’aplica àmpliament en contextes industrials. Al-

gunes de les principals causes d’aquesta situació són l’alta complexitat teòrica de

l’Enginyeria de Mètodes i la falta d’un apropiat suport de programari.

En aquesta tesi, pretenem mitigar alguns dels problemes que afecten a l’Enginyeria

de Mètodes proporcionant una proposta metodològica innovadora que està basada

en l’Enginyeria Dirigida per Models (MDE). L’ús de MDE ens permet elevar el

nivell d’abstracció, automatització i reutilització, possibilitant una reducció de la

complexitat de la nostra proposta. A més a més, aprofitant tècniques de MDE

(com per exemple el metamodelat, les transformacions de models i els models en

temps d’execució), la nostra aproximació suporta tres fases del cicle de vida de

l’Enginyeria de Mètodes: diseny, implementació i execució. Açò és a diferència

de les propostes existents, les quals, en general, només suporten una d’aquestes

fases.

Amb l’objectiu de proporcionar suport de programari per a la nostra proposta, im-

plementàrem una eina CAME (Computer-Aided Method Engineering) anomenada

MOSKitt4ME. Per garantir que MOSKitt4ME oferia la funcionalitat necessària,

defińırem un conjunt de requisits funcionals com a pas previ al desenvolupament

de l’eina. Després de la definició d’aquests requisits, defińırem la arquitectura de

l’eina CAME i, finalment, implementàrem l’arquitectura en el contexte d’Eclipse.

El treball desenvolupat en aquesta tesi es va avaluar per mitjà d’un estudi on

van participar usuaris finals. En aquest estudi, MOSKitt4ME es va avaluar per

ix

x

mitjà del Technology Acceptance Model (TAM) i el mètode Think Aloud. Mentre

que el TAM va permetre mesurar utilitat i facilitat d’ús de manera subjectiva, el

mètode Think Aloud va permetre analitzar aquestes mesures objectivament. En

general, els resultats obtinguts van ser favorables. MOSKitt4ME va ser valorat

de forma positiva pel que fa a utilitat i facilitat d’ús percebuda; a més a més,

vam obtenir resultats positius pel que fa al rendiment objectiu dels usuaris i a la

dificultat experimentada.

Contents

1 Introduction 1

1.1 Research Motivation . 4

1.2 Problem Statement . 6

1.3 Thesis Contributions . 8

1.4 Research Method . 12

1.5 Context of the Thesis . 13

1.6 Outline . 13

2 Background and Technological Context 17

2.1 Method Engineering . 18

2.1.1 Defining Method Engineering 18

2.1.1.1 Terminology . 21

2.1.2 Method Design . 22

2.1.2.1 The SPEM 2.0 Standard 23

2.1.2.2 The BPMN 2.0 Standard 26

2.1.3 Method Implementation . 29

2.1.3.1 Computer-Aided Software Engineering 30

2.1.3.2 MetaCASE Environments 31

2.1.4 Method Execution . 33

2.1.4.1 Operational Aspects of BPMN 2.0 33

2.2 Model-Driven Engineering . 34

2.2.1 Defining Model-Driven Engineering 35

xi

Contents xii

2.2.2 Metamodeling . 36

2.2.2.1 Domain-Specific Languages 37

2.2.3 Model Transformations . 38

2.2.4 Models at Runtime . 41

2.3 Eclipse-based Technologies . 44

2.3.1 The Eclipse Platform . 44

2.3.2 Eclipse Modeling . 47

2.3.3 Eclipse Process Framework 49

2.3.4 Activiti . 50

2.3.5 MOSKitt . 51

2.4 Conclusions . 53

3 State of the Art 55

3.1 Properties to Analyze Method Engineering Approaches 56

3.2 Method Engineering Approaches 58

3.2.1 Assembly-based . 60

3.2.1.1 Brinkkemper et al. Approach 61

3.2.1.2 Prakash Approach 65

3.2.1.3 Ralyté et al. Approach 69

3.2.1.4 OPEN Process Framework 74

3.2.1.5 Method Editor . 77

3.2.2 Paradigm-based . 80

3.2.2.1 Rolland et al. Approach 80

3.2.2.2 MetaEdit+ . 84

3.2.2.3 Ralyté et al. Approach 88

3.2.2.4 Work Product Pool Approach 91

3.2.3 Configuration-based . 94

3.2.3.1 Deneckère et al. Approach 95

3.2.3.2 Method for Method Configuration 99

3.2.3.3 Process Configuration Approach 106

Contents xiii

3.3 Conclusions . 109

4 A Model-Driven Approach for Method Engineering 115

4.1 Overview . 117

4.1.1 Origins: The MOSKitt Project 117

4.1.2 Developing the Methodological Approach 118

4.1.3 Phases of the Methodological Approach 119

4.2 Method Design . 121

4.2.1 A DSL for the Conceptual Modeling of Methods 123

4.2.1.1 Supporting the Method Product and Process Parts 124

4.2.2 Promoting Reuse: A Method Fragment Taxonomy 126

4.2.2.1 Fragment Types 127

4.2.2.2 Fragment Structure 130

4.2.3 A Process for Method Design 131

4.2.3.1 Method Definition 133

4.2.3.2 Method Configuration 134

4.2.3.3 Executable Process Generation 137

4.3 Method Implementation . 140

4.3.1 An Automatic Process for CASE Environment Construction 142

4.3.1.1 Identification of Software Tools 143

4.3.1.2 Resolution of Dependencies 146

4.3.1.3 Deployment of Software Tools 147

4.4 Method Execution . 149

4.4.1 The Project Manager Component 149

4.4.2 Method Process Support . 152

4.4.3 Method Product Support 154

4.5 Conclusions . 156

5 MOSKitt4ME: A Software Infrastructure 159

5.1 Functional Requirements . 160

5.2 Developing MOSKitt4ME . 162

Contents xiv

5.2.1 The Architecture of MOSKitt4ME 162

5.2.2 Implementation of the Architecture 165

5.3 The MOSKitt4ME Environment 167

5.3.1 The CAME Part of MOSKitt4ME 168

5.3.1.1 Specifying Methods: the Method Editor 168

5.3.1.2 Connecting to Repositories: the Repository Client 172

5.3.1.3 Building Eclipse Plug-ins: the Metatools 185

5.3.1.4 Obtaining Software Support: the CASE Generator 188

5.3.2 The CASE Part of MOSKitt4ME 191

5.3.2.1 Bringing Methods into Enactment: the Project
Manager . 191

5.4 Conclusions . 200

6 Evaluation of the Proposal 201

6.1 Background on Method Engineering Evaluation 202

6.2 Overview of the Evaluation Study 204

6.2.1 Measures of Usefulness and Ease of Use 204

6.2.2 Experimental Process . 206

6.3 Definition and Planning . 206

6.3.1 Goal . 206

6.3.2 Research Questions . 207

6.3.3 Subjects . 207

6.3.4 Object . 208

6.3.5 Factors and Treatments . 209

6.3.6 Tasks . 209

6.3.7 Context . 211

6.3.8 Instrumentation . 211

6.3.9 Experimental Setup . 212

6.3.10 Validity Evaluation . 213

6.3.10.1 Conclusion Validity 213

6.3.10.2 Internal Validity 214

Contents xv

6.3.10.3 Construct Validity 214

6.3.10.4 External Validity 215

6.4 Execution . 215

6.4.1 Preparation . 215

6.4.2 Operation . 217

6.4.3 Data Validation . 217

6.5 Data Analysis . 218

6.5.1 Analysis of the Subjective Data 218

6.5.1.1 Quantitative Feedback 219

6.5.1.2 Qualitative Feedback 219

6.5.1.3 Mental Effort . 219

6.5.2 Analysis of the Objective Data 220

6.5.2.1 Session Transcription 221

6.5.2.2 Coding Scheme Definition 221

6.5.2.3 Protocol Construction 223

6.5.2.4 Protocol Analysis 224

6.6 Results . 225

6.6.1 Research Question 1 . 225

6.6.2 Research Question 2 . 227

6.6.3 Research Question 3 . 230

6.6.3.1 Efficiency . 230

6.6.3.2 Effectiveness . 232

6.6.4 Research Question 4 . 232

6.6.4.1 Difficulty Using SPEM 2.0 233

6.6.4.2 Difficulty Defining Technical Data 233

6.6.5 Discussion . 234

6.7 Conclusions . 236

7 Conclusions and Future Work 237

7.1 Summary of Contributions of the Thesis 238

Contents xvi

7.2 Publications . 241

7.2.1 Conferences and Workshops 241

7.2.2 International Journals . 242

7.2.3 Relevance of the Publications 243

7.3 Co-directed Projects . 244

7.4 Future Work . 245

7.4.1 Automated Production of Situational Methods 245

7.4.2 Method as a Service (MaaS) 248

7.4.3 Megamodeling in Method Engineering 249

7.4.4 Method Analysis and Monitoring 251

Appendices 252

A Comparative Analysis of SPEM 2.0 and BPMN 2.0 253

A.1 Method Modeling Criteria . 254

A.2 Process Support Criteria . 256

A.3 Conclusions . 257

B A Case Study: the gvMétrica Method 259

B.1 The gvMétrica Method . 260

B.1.1 Design of Information Systems in gvMétrica 261

B.2 Applying the Methodological Approach 263

B.2.1 Method Design . 264

B.2.1.1 Method Definition 264

B.2.1.2 Method Configuration 266

B.2.1.3 Executable Process Generation 268

B.2.2 Method Implementation . 269

B.2.3 Method Execution . 270

B.3 Conclusions . 272

C Supplementary Material on the Evaluation Study 273

Contents xvii

C.1 Characterization Form . 273

C.2 User Acceptance Form . 277

C.3 Interview Questions . 277

C.4 Statistical Tests . 280

C.4.1 Normality Tests . 281

C.4.2 Non-parametric Tests . 283

C.5 Coding Scheme . 285

Bibliography 291

List of Figures

1.1 Research method followed in this thesis 12

2.1 Method Engineering and Software Engineering 19

2.2 Lifecycle of a software system . 20

2.3 Lifecycle of a software development method 20

2.4 Core elements of SPEM 2.0 . 24

2.5 Method content versus process [18] 25

2.6 Activity types defined by BPMN 2.0 27

2.7 Event types defined by BPMN 2.0 27

2.8 Sequence flow types defined by BPMN 2.0 27

2.9 Gateway types defined by BPMN 2.0 28

2.10 Swimlane types defined by BPMN 2.0 28

2.11 General architecture of a CASE environment 30

2.12 CASE construction using metaCASE (adapted from [83]) 32

2.13 Relationships between model-driven acronyms [98] 35

2.14 Eclipse architecture (from http://www.eclipse.org/) 45

3.1 Assembly of product fragments [123] 62

3.2 Example of product fragment in MEL [126] 63

3.3 The generic view of methods [7] . 66

3.4 Screenshot of MERU [38] . 68

3.5 Example of method chunk [131] . 70

3.6 Process model for chunk assembly [23] 71

xix

List of Figures xx

3.7 Reuse frame [134] . 72

3.8 Method construction in OPF [31] 75

3.9 An example of deontic matrix [3] 76

3.10 Overview of Method Editor [140] 78

3.11 The NATURE metamodel [143] . 81

3.12 Architecture of MENTOR [145] . 82

3.13 The GOPRR metamodel [149] . 85

3.14 MetaEdit+ architecture [40] . 86

3.15 Process model of the paradigm-based approach [151] 89

3.16 Example of product-oriented method [22] 91

3.17 Screenshot of Method Composer [22] 92

3.18 Structure of an extension pattern [154] 96

3.19 Interface of an extension pattern [154] 96

3.20 Body of an extension pattern [154] 96

3.21 Process model for method extension [9] 97

3.22 The method component concept (external view) [158] 99

3.23 The method component concept (internal view) [158] 100

3.24 Main concepts of MMC [39] . 101

3.25 The Method for Method Configuration [4] 103

3.26 Screenshot of MC Sandbox [39] . 104

3.27 Overview of the PCA [6] . 106

3.28 Generic data structure of the PCA [6] 107

3.29 High level architecture of the AMT toolset [37] 108

4.1 Overview of the methodological approach 120

4.2 Abstract syntax of a DSL for method design 123

4.3 Method fragment taxonomy . 128

4.4 The method design process . 132

4.5 Excerpt of the M2M transformation 139

4.6 The method implementation phase 141

List of Figures xxi

4.7 General structure of the configuration model 142

4.8 CASE environment construction process 143

4.9 Generation of a product configuration file 144

4.10 Example of generation of Eclipse features 145

4.11 Resolution of software dependencies 147

4.12 Automatic production of the the generation report 148

4.13 The method execution phase . 150

4.14 Example of Java method using the Activiti Engine API 154

4.15 Excerpt of code implementing the method product support 155

5.1 A software architecture for Method Engineering 163

5.2 Technologies used to implement our software architecture 166

5.3 Parts of the method design perspective 169

5.4 The library view . 170

5.5 The process editor of MOSKitt4ME 171

5.6 The BPMN 2.0 view . 172

5.7 Adding a repository location in MOSKitt4ME 173

5.8 Dialog for creating conceptual fragments 174

5.9 Conceptual fragment properties in the Repositories view 175

5.10 Wizard for process fragment integration 176

5.11 Dialog for technical fragment creation 177

5.12 Dialog for the edition of technical fragments 178

5.13 Technical fragments errors . 179

5.14 An example of dependency tree . 180

5.15 Technical fragment properties in the Repositories view 181

5.16 Dialog for establishing conceptual-technical linkage 182

5.17 Dialog for the definition of external tools 183

5.18 Dialog for the definition of internal tools 184

5.19 Generation of CASE environments in MOSKitt4ME 189

5.20 An example of generation report 190

List of Figures xxii

5.21 Parts of the method execution perspective 192

5.22 Wizard to create new projects in MOSKitt4ME 193

5.23 Task filtering in the process view 194

5.24 Executing a task in the process view 195

5.25 Selection of roles in the process view 196

5.26 Product explorer view in MOSKitt4ME 198

5.27 Guides view in MOSKitt4ME . 199

5.28 Help view in MOSKitt4ME . 199

6.1 Measures used in the evaluation study 205

6.2 Phases of the experimental process (adapted from [189]) 206

6.3 The object of the study . 208

6.4 Experimental setup . 213

6.5 One of the subjects during a Think Aloud session 218

6.6 Data analysis process (adapted from [48]) 221

6.7 Frequencies of responses for perceived usefulness 226

6.8 Frequencies of responses for perceived ease of use 228

6.9 Mental effort (box plot) . 229

6.10 Efficiency (box plot) . 231

7.1 Basic concepts of a method family 246

7.2 Example of project specification in MOSKitt4ME 247

7.3 Megamodeling in our methodological approach 250

B.1 Overall process of the CDSI phase of gvMétrica 261

B.2 Definition in EPF Composer of the CDSI phase of gvMétrica . . . 265

B.3 Technical fragments in the EPF Composer 267

B.4 Example of generated BPMN 2.0 processes 268

B.5 Generation report obtained in the case study 270

B.6 Process and Product Explorer views 271

C.1 Characterization form: Demographic data 274

List of Figures xxiii

C.2 Characterization form: Experience (1) 275

C.3 Characterization form: Experience (2) 276

C.4 User acceptance form: Perceived usefulness 278

C.5 User acceptance form: Perceived ease of use 279

C.6 An example of Q-Q plot . 282

C.7 Results of the first Wilcoxon test 283

C.8 Results of the second Wilcoxon test 284

C.9 Results of the third Wilcoxon test 284

C.10 Results of the fourth Wilcoxon test 285

List of Tables

3.1 Template for approach classification 59

3.2 Classification of Brinkkemper et al. approach 65

3.3 Classification of Prakash approach 69

3.4 Classification of Ralyté et al. approach (assembly-based) 73

3.5 Classification of the OPEN Process Framework 77

3.6 Classification of Method Editor . 79

3.7 Classification of Rolland et al. approach 83

3.8 Classification of MetaEdit+ . 87

3.9 Classification of Ralyté et al. approach (paradigm-based) 90

3.10 Classification of the Work Product Pool approach 94

3.11 Classification of Deneckère et al. approach 98

3.12 Classification schema for method components [157] 102

3.13 Classification of the Method for Method Configuration 105

3.14 Classification of the Process Configuration Approach 109

3.15 Summary of lifecycle coverage . 111

3.16 Summary of perspectives . 112

4.1 Mappings between concepts of our DSL and SPEM 2.0 125

4.2 Mappings between concepts of our DSL and BPMN 2.0 125

4.3 Relationships between method elements and conceptual fragments 133

4.4 Relationships between method elements and technical fragments . 135

4.5 Mappings between SPEM 2.0 concepts of our DSL and BPMN 2.0 138

xxv

List of Tables xxvi

6.1 Method details . 208

6.2 Subjects of the study . 216

6.3 Distribution of the subjects . 216

6.4 Excerpt of a Think Aloud protocol 223

6.5 Results for perceived usefulness . 225

6.6 Results for perceived ease of use 228

A.1 Summary of the analysis of SPEM 2.0 and BPMN 2.0 258

A.2 Evaluation criteria that are covered by this thesis 258

B.1 Elements of the CDSI phase of gvMétrica 261

B.2 Associations between technical fragments and method elements . . 266

C.1 Data obtained for task completion time and mental effort 281

C.2 Results of the tests of normality 282

Chapter 1

Introduction

Software development projects are diverse in nature. They differ, for example,

in size, application domain, or expertise of the development team. Due to these

differences, it is now generally recognized that software companies must define

their methods in-house [1, 2, 3, 4]; thus, methods can be adapted to the needs of

specific projects. To define methods efficiently and effectively, software companies

require systematic solutions that are built upon sound methodical foundations.

Providing these solutions is the main goal of the Method Engineering discipline.

Method Engineering is defined as “the engineering discipline to design, construct,

and adapt methods, techniques, and tools for the development of information sys-

tems” [5]. Over the last two decades, a lot of research work has been performed

in the Method Engineering field (see e.g. [6, 7, 8, 9]). However, even though

all of this work has established a solid theoretical basis, Method Engineering is

not widely used in industrial settings [3, 6, 10, 11]. This is because the costs of

applying Method Engineering are usually perceived as being larger than those of

using out-of-the-box methods, which are delivered by large vendors and consult-

ing companies [3]. Examples of these methods are those for agile development

(e.g., eXtreme Programming [12], Scrum [13], and Crystal Clear [14]), iterative

approaches (such as the Rational Unified Process [15] and the Spiral model [16]) or

generic frameworks (such as the Microsoft Solutions Framework [17]). Some of the

reasons why companies tend toward these “pre-packaged” methods (rather than

1

Chapter 1. Introduction 2

building project-specific methods via Method Engineering) are the high theoreti-

cal complexity of Method Engineering and the lack of adequate software support.

In this thesis, we aim to alleviate some of the problems that affect Method En-

gineering by providing a novel methodological approach (as well as a supporting

software infrastructure) that is built upon Model-Driven Engineering (MDE) foun-

dations. By leveraging MDE in the context of Method Engineering, we aim to

facilitate the application of our proposal, and, hence, foster its adoption in indus-

trial settings. Specifically, the proposal makes intensive use of MDE techniques

(such as metamodeling, model transformations, and models at runtime) to sup-

port three phases of the Method Engineering lifecycle: design, implementation,

and execution. Other phases, such as the specification of method requirements,

are out of the scope of this thesis.

Method Design. The design of a software development method involves the

conceptual definition of all the elements that comprise the method, such as

the tasks to be carried out by software engineers, the roles that participate

in these tasks, and the products to be developed to reach the final system.

The method definition is built according to a method specification language,

for instance the SPEM 2.0 standard [18].

Method Implementation. The method implementation involves the construc-

tion of a software system that provides complete support for the method.

This system allows developers to perform Software Engineering activities; for

this reason, we use the term Computer-Aided Software Engineering (CASE)

to denote the system that is built in the method implementation phase. Ac-

cording to Fuggetta’s classification of CASE technology [19], this thesis deals

with environments (more specifically, integrated and process-centered envi-

ronments); thus, we use as synonyms terms such as CASE environment,

integrated environment, or simply software environment.

Method Execution. The method execution involves the enactment of method

instances in specific software development projects. This enactment is tool-

assisted; that is, the integrated environment that is obtained in the imple-

mentation phase makes use of the method specification to guide software

engineers during the entire process of software development.

Chapter 1. Introduction 3

In addition to these three phases, the Method Engineering approach that is pro-

posed in this thesis also supports the two main parts that generally comprise

methods: product and process.

Product. The product part of a software development method defines the ar-

tifacts to be produced and/or consumed during the method execution as

well as the tools (e.g., textual/graphical editors and code generators) that

enable the creation and manipulation of these artifacts. The products of a

method can be internally oriented (i.e., they are only used by people directly

involved in the development process), but they can also be delivered to the

customer. Examples of method products are models, code, and technical

reports [20].

Process. The process part of methods is understood in two slightly different

ways. Some authors consider the process part as the overall development

process of the method, which encompasses all the task-related issues that

are needed for software development (e.g., the tasks to be carried out until

the final software system is delivered, the participants that are involved in

these tasks, and the workflow that establishes the task execution order)

[21, 22]. In contrast, other authors use the term process at a smaller scale,

considering a process as a “product-producer” (i.e., as the description of

how a single method product must be built) [4, 7, 20, 23]. In this thesis,

we consider processes at the greater scale, and, hence, we denote hereafter

the overall process of methods as the method process part. We use the term

guidance to denote the micro-processes that specify how to develop single

method products.

In addition to the product and process parts, some authors highlight other aspects

that must be taken into consideration: the method tools [24, 25] and the method

participants, which are also referred to as producers, actors, roles, or people [3, 26].

Our approach supports these two aspects but we consider them to be conceptually

related to the method product and process parts; specifically, we consider the

method tools to be part of the product aspects and the method participants to

be part of the process aspects.

The rest of this chapter is organized as follows. First, Section 1.1 explains the

motivations for this work. Then, Section 1.2 states the problem that the thesis

Chapter 1. Introduction 4

addresses and Section 1.3 summarizes how the thesis contributes to solve this

problem. Section 1.4 introduces the research method that has been followed.

Finally, Section 1.5 explains the thesis context and Section 1.6 outlines the thesis

structure.

1.1 Research Motivation

Software development methods are systematic approaches for building software,

based on a particular way of thinking, which can govern the disciplined execution

of software development projects (adapted from [3]). Thus, methods define what

to do, how, and when, contributing to a better understanding of the problem, and,

therefore, to an improvement in quality of the developed software [27].

Even though various attempts have been made to develop methods that are ade-

quate for all situations (e.g., eXtreme Programming [12], Scrum [13], and the Ra-

tional Unified Process [15]), industrial projects have demonstrated that methods

must be adapted to context needs [2, 3, 28]. In order to properly obtain project-

specific methods, solutions that enable the efficient construction and adaptation

of methods need to be sought. The Method Engineering discipline emerged as the

most promising alternative to meet this need.

Method Engineering is concerned with the design of methods and the construc-

tion of the software tools that support their execution. Thus, method engineers

are in charge of producing method specifications and customizing CASE envi-

ronments so that software engineers can make use of these methods and tools

to produce software systems [29]. In other words, method engineers facilitate the

task of software engineers by providing customized methods and tools for software

development.

In the literature, we can find Method Engineering approaches of different nature.

Most of these approaches are assembly-based; that is, they promote the creation

of reusable method parts [30], which are later assembled to obtain methods that

are adapted to the context of use [7, 8, 23]. The main benefits of assembly-based

Method Engineering are increased reuse, modular methods, systematized method

construction, and the possibility to build repositories of method knowledge.

Chapter 1. Introduction 5

Regardless of its potential benefits, Method Engineering has never been widely

practiced in industrial settings [6, 10]. Kuhrmann et al. concluded in a recent

mapping study [11] that there are hardly any reports on the practical application

of Method Engineering available in the literature. Henderson-Sellers et al. argue

in [3, 31] that practitioners often fail to see the usefulness of Method Engineering

mainly due to its complexity and cost in terms of time, money, and people. The

complexity of Method Engineering was also noted by Ter Hofstede et al. [28], who

identified several complexity issues related to the selection, storage, retrieval, and

assembly of method fragments.

Due to the complexity of Method Engineering, practitioners often advocate the

use of out-of-the-box methods since they are presented as ready for immediate

use. However, using an out-of-the-box method has one important drawback: the

method will most likely be an inappropriate description of the company’s actual

way of working. This drawback has two mayor consequences. First, it brings

extra costs to the company since the method has to be adapted to the company’s

needs [2, 3, 32, 33]. Second, it decreases method use: developers will tend to

avoid the method due to their lack of familiarity with the prescribed activities

and workflows [6, 34, 35].

Software companies can alleviate these problems by adopting Method Engineering;

thus, companies gain flexibility to build project-specific methods, and, since these

methods are defined in-house, developers are motivated to use them due to the

feeling of method ownership [36]. Nonetheless, to reap these benefits, companies

need automated software support that facilitates Method Engineering activities.

The software tools that support Method Engineering are called Computer-Aided

Method Engineering (CAME) environments [37, 38, 39, 40]. In their ideal form,

these tools support the entire lifecycle of Method Engineering (from the initial

design of the method, through its implementation, to the final method execution)

as well as the two parts that generally comprise methods (product and process).

However, despite the great achievements of existing CAME environments (e.g.,

the design of the product part of methods is fully supported by a wide variety of

metamodeling notations [41]), these tools still present important deficiencies: in-

complete support to the Method Engineering lifecycle, weak process support, and

high complexity; furthermore, these tools are affected by the negative perception

of practitioners with respect to the usefulness of Method Engineering. We argue

Chapter 1. Introduction 6

that all of these problems are the key determinants of the little use of Method

Engineering in industrial contexts.

In view of the above problems, we argue that new methodological approaches

and software tools for Method Engineering must be provided. In this thesis,

we face this challenge. Specifically, we contribute to the Method Engineering

field by providing a new methodological approach that systematizes the design,

implementation, and execution of software development methods. Our approach

differs from traditional Method Engineering in that it is lightweight: it is built

upon reusability principles and it is also model-driven, which enables a high level

of automation. We have also developed a software environment that implements

the proposal and avoids the main deficiencies of current CAME technology. Even

though the development of this kind of tools is far from trivial, the use of MDE

techniques has been a good means to properly handle the inherent complexity of

Method Engineering.

1.2 Problem Statement

Method Engineering is an open research area. The above discussion indicates that

a large number of approaches have been proposed to deal with software develop-

ment methods in different ways; nonetheless, there are still important issues that

need to be improved so that Method Engineering techniques can be efficiently

applied in practice. The most significant problems that we have identified are the

following:

High complexity. Existing Method Engineering theory is perceived as being

highly complex, and, hence, most software companies advocate the use of

out-of-the-box methods and CASE environments. The major problem is

that these methods and tools are not adapted to the context of use, and,

usually, they do not meet all software engineers needs. Thus, development

teams may end up modifying their way of working according to the selected

methods and tools (or just ignoring them), instead of adapting the method

and tools to their needs.

Chapter 1. Introduction 7

Incomplete support to the lifecycle of methods. In the literature, we can

find Method Engineering approaches that define precise engineering solu-

tions to carry out the design of methods; however, it is not yet clear how

the method specifications can be leveraged for the systematic construction

of the supporting software environments, and also how the method specifi-

cations can be executed by these tools.

Weak process support. While the product part of methods is fully consid-

ered by most Method Engineering approaches, the process part is less well-

supported. The main cause of this reality is that the ultimate goal of soft-

ware development methods is the construction of a software product. Thus,

the Method Engineering community has mainly concentrated on the inter-

mediate products that are necessary to reach such final products, and also

on the guidelines that assist in the creation of these intermediate products.

Limited software support. None of the existing proposals has been success-

ful in providing a software infrastructure that allows method engineers to

carry out the design, implementation, and execution of software develop-

ment methods. This reality is shown in a recent study on CAME technology

[41], which concludes that existing CAME (and metaCASE) environments

are incomplete prototypes that only cover part of the Method Engineer-

ing lifecycle. This is one of the reasons why these tools have not achieved

the expected industrial success and only MetaEdit+ [40, 42] has traversed

academic boundaries.

The objective of this work is to address all of these problems. To this end, we

defined four research questions that guided the research that was performed in

this thesis. Each of these questions is related to one of the identified problems.

Research Question 1 (RQ1). What techniques can help alleviate the inherent

complexity of Method Engineering?

Research Question 2 (RQ2). How to bridge the gap between the conceptual

design of methods and the technical details of the method implementation

and execution?

Research Question 3 (RQ3). How to provide process support in a Method

Engineering context?

Chapter 1. Introduction 8

Research Question 4 (RQ4). What are the requirements of a software infras-

tructure that supports the design, implementation, and execution of meth-

ods?

These research questions are analyzed and answered in Section 1.3 in order to

illustrate the contributions of this thesis.

1.3 Thesis Contributions

The major contribution of this thesis is a methodological approach that allows

method engineers to design methods and also to build integrated software en-

vironments that support the method execution. The proposed methodological

approach has been designed to answer the research questions that are formulated

in Section 1.2.

RQ1. What techniques can help alleviate the inherent complexity of

Method Engineering?

The answer to this question lies in the many successful techniques that are ap-

plied in MDE, such as raising the abstraction level by hiding platform-specific

details, taking advantage of models to improve communication, and taking ad-

vantage of model transformations to automate repetitive work, improve software

quality, and promote reuse [43]. Of all the techniques that are applied in MDE,

the rise in abstraction, automation, and reuse plays the most important role in

reducing Method Engineering complexity. In Software Engineering, abstraction

represents one of the fundamental principles for reducing complexity by means of

the removal of unnecessary details [44]; automation frees software engineers from

having to perform potentially complex and error-prone tasks; and reusability min-

imizes workload by enabling rapid software development through the composition

of reusable assets. We apply all of these ideas in the context of Method Engineer-

ing; thus, our methodological approach makes intensive use of MDE techniques

to support the design, implementation, and execution of methods. Specifically,

in our approach, methods are designed as models and method implementations

are automatically generated from these models via model transformations. We

Chapter 1. Introduction 9

also leverage models at runtime to reduce the complexity of the method execu-

tion; thus, the modeling effort that is made at design time is not only useful for

producing CASE environments, but it also assists software engineers during the

entire process of Software Engineering.

In order to assess the actual reduction in Method Engineering complexity, we

performed an evaluation study that put our methodological approach to practi-

cal use (by means of the software environment that implements the proposal).

To measure the subjective perception of the subjects of the study, we used the

Technology Acceptance Model (TAM) [45], which allowed us to assess perceived

usefulness and ease of use1. To reinforce the subjective results of the TAM, we

also evaluated usefulness and ease of use in an objective manner. To do this,

we analyzed the subjects’ actual improvement in performance and the difficulties

that they experienced during the study2. Performance was assessed by measuring

efficiency and effectiveness. Difficulty was assessed by analyzing the subjects’ rea-

soning processes, which reveal (among other data) the errors made by the subjects

and the doubts that they experienced. To analyze this data at the highest possible

level of detail, we applied the Think Aloud method [48]. Overall, the results of

the study were favorable. Our positive results contrast with traditional Method

Engineering, whose usefulness is often negatively perceived by practitioners and

whose complexity remains an unsolved issue.

RQ2. How to bridge the gap between the conceptual design of methods

and the technical details of the method implementation and execution?

In this thesis, we study the linkage between the design, implementation, and exe-

cution of software development methods. Current Method Engineering approaches

provide advanced engineering techniques to carry out the design of methods; how-

ever, most of these approaches do not take advantage of method models to obtain

the supporting software environments in a systematic manner. To overcome this

limitation, in this thesis we use method models as input of model transformations

that automate the construction of CASE environments that support the methods;

we also illustrate the feasibility of using method models (which are created at de-

sign time) during runtime for driving the behavior of these CASE environments.

By using method models during the method implementation and execution phases

1We consider ease of use to be the opposite of complexity [46, 47].
2According to Davis [45], perceived usefulness and perceived ease of use are the people’s

subjective appraisal of performance and effort/difficulty, respectively.

Chapter 1. Introduction 10

(and not only during method design), we leverage method models going one step

further than state-of-the-art Method Engineering.

In order to enable the automatic construction of software environments directly

from method models, we need to bridge the gap between the high-level concepts

that are used at method design and the technical details of the method implemen-

tation and execution. To this end, we encapsulate in reusable assets the tools to

be integrated in the software environments. Then, method engineers can associate

these assets to conceptual elements of the method models. A reusable asset that

is associated to a method element indicates the tool that will support the element

during the method execution; for instance, a UML editor that is associated to a

product called “Class model” will support the creation of specific instances of this

product (i.e., specific UML class models).

RQ3. How to provide process support in a Method Engineering con-

text?

We show how Process Modeling Languages can be used in the context of Method

Engineering to achieve two major goals: (1) supporting the specification of the

process part of methods during the method design phase of the Method Engineer-

ing lifecycle, and (2) enabling the execution of this process using the integrated

environment that is obtained in the method implementation phase. In order to

achieve the first goal without neglecting product support, our approach defines

a Domain-Specific Language (DSL) that combines concepts from two standard

Process Modeling Languages: SPEM 2.0 [18] and BPMN 2.0 [49]. We advocate

the combination of these languages because SPEM 2.0 provides suitable primitives

for method modeling, while the concepts of BPMN 2.0 enable the specification

of more complex processes (e.g., processes that define branching conditions and

synchronizations, which are not supported by SPEM 2.0). To meet the second

goal, it is necessary that the process part of the methods that are defined using

our DSL is executable. To satisfy this requirement, we implemented a model

transformation that takes a method model as input and automatically obtains an

executable representation of the method process part. The process model that is

obtained as output of the transformation is compliant with BPMN 2.0; thus, we

ensure that the model can be executed by process engines that fully support and

interpret the operational semantics of BPMN 2.0 [49].

Chapter 1. Introduction 11

In order to evaluate the extent to which SPEM 2.0 and BPMN 2.0 are suitable

languages for providing process support in the context of Method Engineering, we

performed an in-depth analysis of these two languages. To this end, we applied

the evaluation framework that Niknafs et al. present in [21]. This framework

consists of a set of quality criteria for evaluating Process Modeling Languages

with respect to their suitability for Method Engineering. We obtained positive

results in our analysis of SPEM 2.0 and BPMN 2.0. These results are detailed in

Appendix A.

RQ4. What are the requirements of a software infrastructure that

supports the design, implementation, and execution of methods?

With the aim of providing software support for our proposal, in this thesis we

identify a set of functional requirements to be met by a CAME environment

that supports the three phases of our methodological approach. Based on these

requirements, we define a technology-independent architecture and provide imple-

mentation details of this architecture in the context of Eclipse3, more specifically

in the context of the MOSKitt platform4. The implementation of the architec-

ture resulted in a CAME environment that is called MOSKitt4ME. This CAME

environment is ready for download at http://users.dsic.upv.es/~mcervera/

moskitt4me.

It is important to note that the development of a CAME environment that sup-

ports our methodological approach demonstrates the feasibility of the approach.

This is in accordance with one of the principles of design science, which states

that the instantiation of a design artifact demonstrates its feasibility [50] (e.g.,

implementing a system that automates a process demonstrates that the process

can, in fact, be automated). This is called “proof by construction”. In the con-

text of this thesis, the implementation of our approach as a CAME environment

demonstrates that it is possible to systematize (and partially automate) the de-

sign, implementation, and execution of methods. Furthermore, the fact that our

CAME environment supports these three phases validates the requirements that

were identified to develop the architecture of the tool.

3 http://www.eclipse.org/
4 http://www.moskitt.org/

http://users.dsic.upv.es/~mcervera/moskitt4me
http://users.dsic.upv.es/~mcervera/moskitt4me

Chapter 1. Introduction 12

Figure 1.1: Research method followed in this thesis

1.4 Research Method

In order to perform the work of this thesis, we carried out a research project

following the method for performing design research in information systems that

is described in [51, 52]. Design research involves the analysis of the use and

performance of designed artifacts to understand, explain, and, very frequently, to

improve the behavior of information systems.

As Figure 1.1 shows, the design cycle consists of five steps: (1) awareness of the

problem, (2) solution suggestion, (3) development, (4) evaluation, and (5) conclu-

sion. This cycle is an iterative process: the knowledge produced by constructing

and evaluating new artifacts can be used as input for a better awareness of the

problem. Following the process shown in Figure 1.1, we started with the awareness

of the problem; specifically, we identified the problem to be solved and we stated

it clearly. Next, we performed the second step; this step involved the suggestion of

a solution to the problem and the analysis of the improvements that this solution

introduces with respect to already existing solutions. To do this, we studied in

detail the most relevant approaches from similar domains. Once the solution to

the problem was described, we developed it (step 3). This step involved two tasks.

First, we defined a methodological approach that covers the design, implementa-

tion, and execution of methods. Second, we defined and implemented a software

infrastructure that supports the proposed approach. When the approach and its

supporting software infrastructure were completely developed, we evaluated them

(step 4). Finally, we analyzed the results of our research work in order to draw

several conclusions as well as to delimit areas for further research (step 5).

Chapter 1. Introduction 13

1.5 Context of the Thesis

This thesis has been developed in the research center Centro de Investigación

en Métodos de Producción de Software (PROS) of the Universitat Politècnica de

València. More specifically, the solutions proposed in this work have been defined

and implemented within the context of the MOSKitt project.

The MOSKitt project constitutes a jointly work between the PROS and the Valen-

cian Regional Ministry of Infrastructure, Territory, and Environment (also known

as CITMA). This project started in 2007 and its main goal was to develop an

Eclipse-based CASE environment that, making intensive use of MDE principles,

provides software support to gvMétrica5: the software development method used

at the CITMA. There is a big community involved in the MOSKitt project, rang-

ing from analysts (software and business analysts) to end users, which are in

charge of validating each new release of the tool. This setting has constituted an

adequate environment to validate the approach proposed in this thesis since we

successfully applied it to design, implement, and execute the gvMétrica method.

Additionally, this thesis has been developed with the support of the MICINN and

the ITEA2 programme under the following research projects:

EVERYWARE. Construcción de software adaptativo para la integración de

personas, servicios y cosas usando modelos en tiempo de ejecución. CICYT

project referenced as TIN2010-18011.

OPEES. Open Platform for the Engineering of Embedded Systems6. ITEA2

project referenced as TSI-020400-2010-36.

1.6 Outline

This thesis is structured in seven chapters (including the present chapter) and

three appendices. As a guide for the reader, below we briefly describe each of

these chapters and appendices:

5 http://www.gvpontis.gva.es/cast/proyectos-integra/
6 http://www.opees.org/

Chapter 1. Introduction 14

• Chapter 2 provides the reader with the knowledge that is required for

understanding the overall thesis work. This chapter is divided into two

main parts. The first part presents the background information that is

required for understanding the methodological approach that is proposed in

this thesis; the second part introduces the technological context in which

the supporting software infrastructure was developed.

• Chapter 3 summarizes the main research efforts that have been carried out

in Method Engineering – the domain that is the focus of the present work.

From this summary, we extract common limitations of existing Method En-

gineering approaches. These limitations allow us to disclose the main con-

tributions of this thesis.

• Chapter 4 thoroughly details the methodological approach that is proposed

in this thesis. This methodological approach aims to mitigate the problems

that are identified in Chapter 3.

• Chapter 5 presents MOSKitt4ME, the software infrastructure that has

been developed to support the methodological approach that is detailed in

Chapter 4. Chapter 5 presents the architecture of MOSKitt4ME first; then,

it details the MOSKitt4ME functionality.

• Chapter 6 presents an evaluation study that evaluates MOSKitt4ME in

terms of complexity, one of the major handicaps of existing Method En-

gineering approaches. The main goal of this study is to illustrate that

MOSKitt4ME can be positively rated in terms of perceived usefulness and

perceived ease of use, and that it can also improve the users’ performance

while posing little difficulty of use.

• Chapter 7 draws some conclusions about the present thesis and it also sum-

marizes the main results and publications that we obtained. This chapter

also discusses future research directions, which are in line with the limita-

tions of our work.

• Appendix A presents a comparative analysis between the SPEM 2.0 and

BPMN 2.0 standards. This analysis represents the rationale behind some

of the decisions that were made when we developed the methodological

approach that is presented in this thesis.

Chapter 1. Introduction 15

• Appendix B presents a case study, which aims to exemplify our model-

driven Method Engineering approach. To this end, the appendix applies the

approach to an example method. This method represents an excerpt of the

software development method that was defined by the Valencian Regional

Ministry of Infrastructure, Territory, and Environment: gvMétrica.

• Appendix C includes material that was used during the evaluation study

that is presented in Chapter 6.

Chapter 2

Background and

Technological Context

This chapter provides the knowledge that is required for understanding the overall

thesis work. In line with the objective of the thesis – to provide (1) a methodolog-

ical approach and (2) a software infrastructure to support model-driven Method

Engineering – this chapter is divided into two main parts. First, the chap-

ter presents the background information that is required for understanding the

methodological approach. Second, the chapter introduces the technological con-

text in which the software infrastructure was developed.

The first two sections (2.1 and 2.2) focus on the thesis background. Specifically,

Section 2.1 describes the particular domain that is the focus of our methodological

approach: the Method Engineering field. In this section, we explain the basic

concepts of the discipline as well as the different phases that comprise the Method

Engineering lifecycle. Then, Section 2.2 introduces the development paradigm

that lays the foundations of our approach: Model-Driven Engineering (MDE).

The next section (2.3) focuses on the technological context. Specifically, this

section describes the eclipse-based technologies involved in the development of

the software infrastructure that is provided in this thesis. These technologies

17

Chapter 2. Background and Technological Context 18

comprise, among others, Eclipse modeling tools1 (such as EMF, GMF, and XText)

and MOSKitt, which is the platform that establishes the basis of our software

infrastructure. Finally, Section 2.4 concludes the chapter.

2.1 Method Engineering

The term Method Engineering was first introduced during the mid-eighties by

Bergstra et al. in [53]. After that, Kumar et al. [54] named it Methodology

Engineering, but Brinkkemper et al. [5, 55] recommended changing it to Method

Engineering, a term that has been generally accepted since. From the inception

of the Method Engineering discipline, many research efforts have attempted to

provide solutions to the challenges that Method Engineering entails. A state-of-

the-art review of the most relevant contributions has been published in [3].

2.1.1 Defining Method Engineering

Method Engineering is defined as “the engineering discipline to design, construct,

and adapt methods, techniques, and tools for the development of information

systems” [5]. The main goal of method engineers is therefore to facilitate the

work of software engineers by providing customized methods and tools for software

development. To achieve this goal, method engineers perform Method Engineering

activities assisted by formalized meta-methods.

A meta-method is a method for defining software development methods [56]. Ex-

amples of meta-methods are the Method for Method Configuration (MMC) [4],

the assembly-based process proposed by Ralyté et al. in [23], and also the method-

ological approach defined in this thesis. The notions of meta-method (for Method

Engineering) and method (for Software Engineering) suggest the existence of some

sort of layering or “instance-of” relationship between Method Engineering and

Software Engineering. The relationship between these two disciplines is graphi-

cally depicted in Figure 2.1.

As Figure 2.1 shows, at the Method Engineering level, method engineers make use

of meta-methods and CAME environments to produce (or instantiate) customized

1 http://www.eclipse.org/modeling/

Chapter 2. Background and Technological Context 19

Figure 2.1: Method Engineering and Software Engineering

methods and CASE environments for software development. These methods and

CASE environments are used by software engineers at the Software Engineering

level to produce software system specifications and the final software systems.

According to this multi-layer vision, method engineers can be seen as software en-

gineers since they ultimately produce software systems (specifically, software sys-

tems for software development). For this reason, method engineers often embody

the same group of people as those carrying out Software Engineering. However,

in an ideal situation, these two groups will be separate since Method Engineering

and Software Engineering involve activities that require different expertise. While

method engineers must be proficient in aspects related to software development

methods (e.g., maturity appraisal, method specification standards, and method

tailoring), software engineers deal with knowledge areas such as software design,

configuration management, and software quality [57]. Additionally, software en-

gineers must be knowledgeable about their particular application domain (e.g.,

avionics software engineers need a great deal of knowledge of aerodynamics).

Despite the differences between Method Engineering and Software Engineering,

these two disciplines also have commonalities. One important aspect that the

Chapter 2. Background and Technological Context 20

Figure 2.2: Lifecycle of a software system

Figure 2.3: Lifecycle of a software development method

two disciplines have in common relates to the phases of their respective lifecycles.

On the one hand, the Software Engineering community considers the lifecycle of

a software system to be composed of, among others, the following core phases:

analysis, design, implementation, testing, deployment, and maintenance [58] (see

Figure 2.2). On the other hand, in the Method Engineering literature, we can

find lifecycle models of different nature [41, 59, 60]; nonetheless, all these mod-

els comprise generic phases that are similar to those proposed by the Software

Engineering community. These phases are graphically depicted in Figure 2.3.

As Figure 2.3 shows, the first phase of the Method Engineering lifecycle is the

analysis of the method requirements. When the requirements of the method are

fully analyzed, the method is designed and implemented. Subsequent executions

of the method can be monitored to obtain feedback that is fed to the first phase

in order to start another Method Engineering cycle.

Note that the lifecycle of a software system (Figure 2.2) and the lifecycle of a devel-

opment method (Figure 2.3) differ in the last phases. These differences are mainly

due to the fact that, whereas software systems are typically delivered to a cus-

tomer, development methods are executed in-house (by practitioners of the same

company that implements the method). This allows method engineers to perform

monitoring activities during the execution of methods in development projects.

Chapter 2. Background and Technological Context 21

In contrast, software engineers test software systems in controlled environments,

and, then, the systems are deployed in third-party contexts and maintained based

on the feedback provided by users.

In this thesis, we focus on three of the phases that are shown in Figure 2.3.

Specifically, we focus on the design, implementation, and execution of software

development methods; the other phases are out of the scope of this thesis but

they will be addressed in future work (see Section 7.4). The three phases that are

covered in this thesis are explained in Sections 2.1.2, 2.1.3, and 2.1.4, respectively.

Prior to the description of these phases, a brief note on terminology is given in

Section 2.1.1.1.

2.1.1.1 Terminology

In a similar way to most research areas, Software Engineering and Method En-

gineering present discrepancies in terminology between different authors. One of

the most lively debates that is currently active within these fields revolves around

the concepts of “method”, “methodology”, and “process”. To differentiate these

concepts, in this thesis we adopt the vision that Henderson-Sellers et al. share

in [3]. According to these authors, the concepts of method, methodology, and

process should be interpreted as follows:

Method. A software development method is an approach to perform a soft-

ware/systems development project, based on a specific way of thinking,

consisting, inter alia, of guidelines, rules, and heuristics, structured system-

atically in terms of development activities, with corresponding development

work products, and developer roles (played by humans or automated tools)

[3]. Cockburn [1] calls this a Big-M methodology, which means that a method

encompasses absolutely everything that is needed to specify how to develop

software: roles, skills, teams, tools, processes, activities, milestones, work

products, standards, quality measures, etc.

Methodology. The term methodology can be considered a synonym of method.

For the sake of clarity, in this thesis we only use the term methodology

when it is part of the name of an existing metamodel, technique, ontology,

or tool (e.g., the Agile Methodology Toolset [37] or the Methodology Data

Chapter 2. Background and Technological Context 22

Model [20, 61]). Otherwise, we simply use the term (software development)

method.

Process. A process is a way of acting, of doing something. Thus, the way you

relocate yourself from home to the work environment follows some prede-

fined – or at least practised and often repeated – process [3]. A process can

be seen as a set of actions aimed at accomplishing some result; processes

are intangible and may be used in different situations and at different gran-

ularity levels. However, to complement a process, there are other things

that software engineers must be cognizant of (e.g., the work products to be

produced and consumed, and the people and tools that are involved in this

production and consumption). As stated above, the overall combination of

all the elements that are needed for software development is called method

(or methodology). According to this vision, processes can be considered to

be part of methods but not vice versa.

The term process is also a source of confusion when it is compared to the

term lifecycle. In Software Engineering, the term lifecycle is generally used

to describe the process that a software system goes through during its life

[62]. This process comprises, among others, the phases of analysis, design,

implementation, testing, deployment, and maintenance. By analogy, we use

the term lifecycle in the context of Method Engineering to denote the phases

that a method goes through during its life. In this thesis, we consider the

phases of design, implementation, and execution.

2.1.2 Method Design

The design of a software development method involves the conceptual definition of

all the elements that comprise the method, such as the participants involved, the

work products to be developed, and the sequence of tasks. Up to now, software

development methods have frequently been described purely in a textual man-

ner. However, more recently, various authors have defined a number of method

specification languages (see e.g. [63, 64, 65, 66]). Additionally, several standard-

ization efforts have been performed. These efforts can be seen in the ISO/IEC

24744 [67, 68] and SPEM 2.0 [18] standard initiatives. Another standards from

the field of Business Process Management can also be mentioned. An example of

Chapter 2. Background and Technological Context 23

these standards is BPMN 2.0 [49]. Nonetheless, these standards are more oriented

towards the specification of the process-related aspects of Method Engineering.

Below, Section 2.1.2.1 provides an overview of SPEM 2.0 since this standard is the

main method specification language that is used in this thesis. We selected SPEM

2.0 because it is the most widely acknowledged standard in both academic circles

and software industry [69]. However, this language has some process support

limitations, which we resolve using BPMN 2.0. For this reason, we introduce the

BPMN 2.0 standard in Section 2.1.2.2.

2.1.2.1 The SPEM 2.0 Standard

The Software and Systems Process Engineering Metamodel (SPEM) [18] is a stan-

dard language that was initially published by the Object Management Group

(OMG) in 2002. Six years later, in 2008, the OMG released the second version,

which aimed to fix defects that were found in the first version of the standard.

Unlike the first version, the second version of SPEM is widely accepted by practi-

tioners; they use SPEM 2.0 for developing methods in different domains, especially

multi-agent systems, software product lines, and embedded real-time systems [69].

The OMG defines SPEM 2.0 as a “process engineering metamodel as well as

a conceptual framework, which can provide the necessary concepts for model-

ing, documenting, presenting, managing, interchanging, and enacting develop-

ment methods and processes”. The scope of SPEM 2.0 is limited to the minimal

set of elements necessary to define methods that are independent of parameters

such as development paradigm (e.g., agile, code-centric, or model-driven), degree

of formalization, and cultural backgrounds. Nonetheless, the primary focus of

SPEM is software development projects.

The core of the SPEM 2.0 metamodel comprises three basic elements:

task, role, and work product. The relationships between these elements are

illustrated in Figure 2.4. Specifically, tasks – which represent basic units of work

(e.g., “specify business logic”) – are performed by roles. The roles of the method

– which define sets of related skills, competencies, and responsibilities (e.g., “an-

alyst”) – are used by tasks to define who performs them as well as to define a

set of work products that the roles are responsible for. These work products –

which represent artifacts that are consumed, produced, or modified during the

Chapter 2. Background and Technological Context 24

Figure 2.4: Core elements of SPEM 2.0

method (e.g., “business logic model”) – are in turn related to the tasks to specify

the inputs and outputs of these tasks.

One important characteristic of SPEM 2.0 is that it separates method content

and development processes. The content of a method defined in SPEM 2.0

provides generic and reusable definitions of tasks, roles, and work products; these

definitions are independent of any development context. On the other hand, de-

velopment processes take content elements and relate them into partially-ordered

sequences that are customized to specific types of projects. To illustrate this

idea, let us consider a software development project that develops an application

from scratch. In this project, software engineers will perform development tasks

in a similar way to a project that extends an existing software system; however,

these tasks will be performed at different points in time and with different em-

phasis (e.g., software engineers will perform the steps of these tasks differently, or

assume different inputs).

Figure 2.5 provides an overview of how the key concepts of SPEM 2.0 are posi-

tioned to represent either method content or development process. Method con-

tent is primarily expressed using work product definitions, role definitions, task

definitions, and guidance; categories (e.g., domains, disciplines, and role sets) can

also be defined to categorize method content as well as to define tree-structures

of nested categories (allowing the user to navigate and browse method content

based on these categories). The elements of type guidance (e.g., whitepapers,

checklists, and examples) are defined in the intersection of method content and

process because they can provide information with respect to the elements of both

sets. On the other hand, processes are defined in SPEM 2.0 by using activities.

Chapter 2. Background and Technological Context 25

Figure 2.5: Method content versus process [18]

The elements of type activity can be nested to define breakdown structures as well

as related to each other to define a flow of work (i.e., a process); activities also

contain task uses, role uses, and work product uses, which represent references to

method content elements.

Another important characteristic of SPEM 2.0 is that it enables the defini-

tion of process patterns for rapid process assembly. Process patterns are

reusable building blocks for creating new development processes. Selecting and

applying process patterns can be done in two different ways: “copy and modify”

and “activity use”. The former allows method engineers to individually modify

the pattern’s content when the pattern is applied in a process (since the pattern’s

content is copied into the process, not referenced). The latter represents a way of

reusing commonly recurring activities. To reuse an activity, it must be factored

out into a pattern so that the pattern can be applied repeatedly in a process by

simply creating references to the pattern. Unlike the “copy and modify” opera-

tion, all changes in a pattern are automatically reflected in all the processes that

apply the pattern.

Chapter 2. Background and Technological Context 26

2.1.2.2 The BPMN 2.0 Standard

The Business Process Model and Notation (BPMN) [49] is a process modeling

language that was initially developed by the Business Process Management Ini-

tiative (BPMI), a consortium that consisted mainly of software companies. The

first version of BPMN was published in 2004 and officially accepted as an OMG

standard in 2006. Five years later, in 2011, the OMG released the second version

of the standard, which aimed to fix defects that were found in the first version.

Some changes were the adoption of XML and the formalization of the execution

semantics.

An important characteristic of BPMN 2.0 is that it provides an intuitive graphical

notation that can be readily understandable by all process stakeholders. In this

section, we provide an overview of the most relevant building blocks of this nota-

tion. These elements are organized in five categories: activities, events, sequence

flows, gateways, and swimlanes.

Activities. An activity is a generic term for work performed within a process.

Activities can be atomic (tasks) or decomposable (sub-processes and call

activities); also, activities are executed by either a system (automatic) or

humans. The tasks that are automatic can be either service tasks or script

tasks; the tasks that are executed by humans can be user tasks (if they

require the use of a software application) or manual tasks (if they must be

performed without any software support). The graphical object that repre-

sents activities is a rounded rectangle, as Figure 2.6 shows. The different

types of tasks are specified using markers that are positioned in the upper

left corner of the rectangle.

Events. An event is something that “happens” during the course of a process.

They are used to start or end a process, and also to manage specific actions

during a workflow (e.g., receiving and sending messages between partici-

pants). Events are depicted as circles with open centre to allow internal

markers to differentiate various types of events. There are three main types

of events, based on when they affect the workflow: start, intermediate, and

end. Figure 2.7 shows the complete set of events that are defined by BPMN

2.0.

Chapter 2. Background and Technological Context 27

Figure 2.6: Activity types defined by BPMN 2.0

Figure 2.7: Event types defined by BPMN 2.0

Figure 2.8: Sequence flow types defined by BPMN 2.0

Sequence flows. Sequence flows are used to connect the activities that are de-

fined within a process. The connection between two activities establishes

the order in which the activities are executed. There are three types of se-

quence flows: normal, default, and conditional. The graphical object that

represents sequence flows is a line with a solid arrowhead (as Figure 2.8

graphically illustrates).

Gateways. Gateways are used to control how the process progresses through the

sequence flows as these flows converge and diverge. If the flow does not need

to be controlled, then a gateway is not needed. The term “gateway” implies

Chapter 2. Background and Technological Context 28

Figure 2.9: Gateway types defined by BPMN 2.0

Figure 2.10: Swimlane types defined by BPMN 2.0

that there is a gating mechanism that either allows or disallows passage

through the gateway. Internal markers indicate the type of behavior control.

Figure 2.9 depicts the different types of gateways provided by the BPMN

2.0 notation.

Swimlanes. Swimlanes enable the grouping of activities based on a particular

criterion. There are two types of swimlanes: pools and lanes (see Figure

2.10). Pools (also called participants) represent responsibilities for activities

in a process. A pool can be, for instance, an organization, a role, or a

system. Lanes subdivide pools or other lanes hierarchically.

Summary and Discussion

The use of SPEM 2.0 and BPMN 2.0 brings important benefits to the work that

has been developed in this thesis. Some of these benefits are summarized in the

analysis of SPEM 2.0 and BPMN 2.0 that is presented in Appendix A. The most

relevant benefits are the following:

Chapter 2. Background and Technological Context 29

• Standardization: the use of SPEM 2.0 and BPMN 2.0 allowed us to define a

Method Engineering approach (as well as to implement a supporting CAME

environment) that allows method engineers to carry out the design of meth-

ods using standardized concepts. This is in line with one of the research

initiatives that was foreseen by Henderson-Sellers et al. in a state-of-the-art

review that was elaborated in 2010 [3]. In this review, the authors stated

that one of the likely topics for research initiatives over the next few years

would be the creation of a new generation of CAME environments built

upon internationally standardized metamodels.

• Suitable primitives for method modeling : by combining the SPEM 2.0 and

BPMN 2.0 standards, our Method Engineering approach enables the spec-

ification of the product and process parts of methods, including also the

method producers and the method tools (see Appendix A).

• High reusability : the SPEM 2.0 standard promotes reusability by means

of the separation of method content and processes. This separation allows

method engineers to design and manage libraries/repositories of reusable

method content. Thus, SPEM 2.0 can be used as a framework for the con-

struction of software development knowledge bases, where reusable method

content can be stored in a standardized manner.

2.1.3 Method Implementation

The implementation of a software development method involves the construction

of an integrated software environment that contains all the tools necessary to sup-

port the method. The emergence of the first environments of this kind dates back

to the early seventies, when Teichroew et al. introduced PSL/PSA [70, 71]. One

decade later, in 1982, the term “Computer-Aided Software Engineering” (CASE)

was coined by the software company Nastec Corporation, which developed an inte-

grated graphical and textual editor called “GraphiText” [72]. After that, software

companies began to borrow ideas from hardware manufacturing in order to apply

them for software development. The ultimate goal was to obtain CASE environ-

ments that allowed them to develop software at lower cost while maintaining high

quality and meeting customer demands.

Chapter 2. Background and Technological Context 30

Figure 2.11: General architecture of a CASE environment

2.1.3.1 Computer-Aided Software Engineering

A CASE environment is a macro-system that, in its ideal form, provides soft-

ware support for all aspects of software engineering. Rather than being a loosely

coupled collection of tools, CASE environments are designed to optimize the com-

plimentary benefits of different tool types (from simple textual editors to more

sophisticated tools such as graphical editors, code generators, and process engines)

[73].

Figure 2.11 graphically depicts the general architecture of a CASE environment.

To provide complete method support, CASE environments must meet two major

requirements. First, they must incorporate a process engine to support the ex-

ecution of the method process part. Process engines provide a set of enactment

facilities (e.g., task orchestration, task automation, and constraint enforcement)

that guide software engineers throughout the development process and also par-

tially automate the process performance. Second, CASE environments must also

support the management of the products that are consumed/produced during the

process execution. To this end, the process engine must be able to invoke the

software tools that enable the creation and manipulation of the method products.

Due to the potential of CASE technology, many scholars claimed that CASE envi-

ronments would substantially reduce the costs of developing software, standardize

Chapter 2. Background and Technological Context 31

system specifications, and improve the quality of information systems [74, 75].

However, evidence from actual use of CASE environments showed a rather differ-

ent picture [76]: software development projects continued to run over-time and

over-budget, and software products were of low quality and inefficient. The fail-

ure of CASE technology was due to several reasons. First, CASE environments

failed to automate important software development tasks, such as those related to

project management. Second, adopters of CASE technology underestimated the

training costs. Third, CASE environments offered very limited flexibility; that is,

they contained fixed hard-coded tools that lacked the capability to be adapted to

context needs.

2.1.3.2 MetaCASE Environments

The inflexibility of traditional CASE tools led to the emergence of new technol-

ogy: metaCASE environments [76, 77, 78] (also known as customizable CASE

environments [20, 79] or CASE shells [80, 81]). The main goal of metaCASE en-

vironments was to provide metatools that made the construction and adaptation

of CASE environments quicker and easier. In general, metaCASE environments

work on the philosophy that all CASE environments have common standard char-

acteristics (such as the need for a technological infrastructure and a graphical user

interface), but individual CASE environments differ in the functionality that they

provide (i.e., in the method that they support). Therefore, metaCASE envi-

ronments provide mechanisms to configure this functionality while maintaining

common standard characteristics.

Figure 2.12 illustrates the most frequent approach to CASE environment construc-

tion using metaCASE technology. This approach is called “specify and generate”

[40, 42, 82, 83]. In particular, the metaCASE environment provides a common

framework (i.e., a common graphical user interface and technological infrastruc-

ture) for all the CASE environments that can be generated using the metaCASE

system. In order to leverage this common framework, the user must specify the

details of the software tools that meet his/her situational needs. To this end,

the user can employ a description language that is provided by the metaCASE

environment. The specification of the software tools is then “plugged” into the

common framework so that the final CASE environment can be automatically

generated.

Chapter 2. Background and Technological Context 32

Figure 2.12: CASE construction using metaCASE (adapted from [83])

Summary and Discussion

One of the major benefits of metaCASE systems is the drastic reduction of the

cost (in terms of time, people, and money) that is required to develop CASE

environments, since these environments can be developed without writing a single

line of code.

In this thesis, we do not directly use metaCASE technology; nonetheless, we ap-

ply some of its principles in order to support the method implementation phase

of the Method Engineering lifecycle. Similarly to the CASE environments that

are obtained using metaCASE systems, the software environments that are ob-

tained using our CAME environment are divided into two main parts. One of

these parts is static; that is, it comprises components that are included in all

the software environments that are generated using our CAME environment (re-

gardless of the method that is defined by method engineers). The other part is

dynamic; that is, it comprises components that depend on the specified method.

During the generation of a software environment, our CAME environment “plugs”

these dynamic components into the static part (which corresponds to the common

framework of metaCASE systems). The dynamic components are tools such as

textual/graphical editors, which are built using metatools that are provided by

our CAME environment. These tools are encapsulated in reusable assets and as-

sociated to conceptual method elements. Thus, we establish the linkage between

the conceptual and technical aspects of methods.

Chapter 2. Background and Technological Context 33

2.1.4 Method Execution

The method execution involves the enactment of method instances in specific

software development projects. This enactment is tool-assisted; that is, the inte-

grated environment that is obtained in the implementation phase must provide

guidance for software engineers during the entire process of software development.

Up to now, most CASE environments supporting development methods contain

the method logic scattered through the system. This results in monolithic ap-

plications that are difficult to evolve and expensive to maintain. To resolve this

problem, an executable definition of the method is needed. With an executable

definition, the method knowledge is centralized and the method can be modified

easily, resulting in the immediate update of the corresponding CASE environment.

Recently, various languages have been proposed to enable the definition of ex-

ecutable methods and processes. Some examples of these languages are the

XML Process Defition Language (XPDL) [84], Yet Another Workflow Language

(YAWL) [85], Web Service Business Process Execution Language (WS-BPEL)

[86], and the Business Process Model and Notation (BPMN) [49, 87]. In subsec-

tion 2.1.4.1, we describe the operational aspects of BPMN 2.0 since this standard

is the language that is used in this thesis to overcome the lack of executability

of SPEM 2.0 [88, 89]. An extensive review of process modeling languages can be

found in [90].

2.1.4.1 Operational Aspects of BPMN 2.0

The execution semantics of BPMN have been fully formalized in the second ver-

sion of the specification [49]; thus, BPMN 2.0 offers the possibility to define models

that can be executed in process engines that support the operational semantics

of the standard. Thanks to this feature of BPMN 2.0 (and also to its intuitive

graphical notation), both the business and technical sides of an organization can

share a common language that meets their respective needs for ease of use and ex-

ecutability. This is unlike other languages, such as WS-BPEL, which are generally

optimized for the operation and interoperation of Business Process Management

systems, but this capability renders them less suited for direct use by humans to

design, manage, and monitor business processes. Despite this limitation, BPMN

Chapter 2. Background and Technological Context 34

2.0 provides a mapping to WS-BPEL so that BPMN 2.0 process models can also

be executed by process engines that support this language.

The execution semantics of BPMN 2.0 describe a clear and precise understanding

of the operation of some of the elements that are proposed by the standard. The

elements that do not specify the details needed to execute them are called non-

operational. An example of non-operational element is Manual Task [49]. For the

BPMN 2.0 elements that are operational, the standard describes their execution

semantics informally. Specifically, for each element, a textual description of its

execution semantics is given first; then, where relevant, this textual description is

followed by a list of exception issues and supported workflow patterns.

Summary and Discussion

Among the many benefits of BPMN 2.0 (e.g., support not only for simple processes

but also for collaborations and choreographies; a detailed mapping from BPMN

2.0 to WS-BPEL; and an interchange format that can be used to exchange BPMN

2.0 definitions between tools of different vendors), one of them is particularly

noteworthy: BPMN 2.0 is the first standard that combines (within the same

process model) a user-friendly graphical notation and the technical details of an

executable model. In this thesis, we leverage this major capability of BPMN 2.0

to overcome the limitation of SPEM 2.0 with respect to process executability (see

Appendix A).

2.2 Model-Driven Engineering

In the Software Engineering literature, several terms have been proposed to de-

scribe approaches that foster the use of models as primary artifacts for soft-

ware development (see Figure 2.13). The first of these terms was introduced

in 2001, when the OMG launched the Model-Driven Architecture (MDA) [91].

MDA is a framework that makes intensive use of OMG’s standards to support

the creation of machine-processable and technology-independent models; once

these models are defined, the MDA enables their automatic transformation into

platform-dependent code [92]. One year later, in 2002, Kent [93] proposed the

broader term Model-Driven Engineering (MDE). This term is widely used in the

literature for referring to a more general approach than the one proposed by MDA

Chapter 2. Background and Technological Context 35

Figure 2.13: Relationships between model-driven acronyms [98]

[94, 95, 96]: MDE is not restricted to the standards of the OMG. Another term

that has been used is Model-Driven Development (MDD). This term is narrower

than MDE since MDD focuses on the use of models for the generation of system

implementations, while MDE encompasses other uses, such as model-driven re-

verse engineering and model-driven evolution [97]. Finally, the term Model-Based

Engineering (MBE) has also been used as a softer version of MDE. In contrast to

MDE, in MBE models do not drive the process of software development [98].

Due to the nature of the Method Engineering approach that is presented in this

thesis (i.e., it is neither restricted to the standards of the OMG nor to code

generation, but it heavily relies on models), we use the term MDE.

2.2.1 Defining Model-Driven Engineering

From the inception of computer science, researchers have strived to raise the

abstraction level at which software engineers write programs. The first compiler

was a major achievement because, for the first time, it let software engineers

specify what the system should do rather than how it should do it. Since then,

researchers have always attempted to raise the level of abstraction even more.

MDE is the result of this effort. Instead of requiring software engineers to code

every detail of the system (using a programming language), MDE allows them

to model the functionality of the system and also its overall architecture using

high-level primitives. The resulting models can then be used to automate many

Chapter 2. Background and Technological Context 36

of the complex and routine tasks that are involved in the process of software

development (e.g., providing support for the system’s persistence, interoperability,

and distribution) [99].

MDE is therefore a development paradigm where models represent first-class cit-

izens for the construction of software systems. Some of the potential benefits of

MDE are the following: simplification of the design process, improvement in soft-

ware quality, increase in productivity, shorter development time, and enhanced

communication between the individuals and teams working on the system [43].

Despite the potential benefits of MDE, some scholars claim that the industrial

application of MDE is currently minimal [97]. However, a recent study that

surveyed 450 MDE practitioners and performed in-depth interviews with 22 more

suggests otherwise: MDE is more widespread than commonly believed. The study

illustrates that MDE is used in many different ways, ranging from industry-wide

efforts to define models for an entire application domain to restricted uses of MDE

in the generation of code for a single application in a single company [97].

Of all the successful techniques applied in MDE, three are the most relevant

for this thesis since they lay the foundations of the overall thesis work. These

techniques are metamodeling, model transformations, and models at runtime.

We explain these three techniques in Sections 2.2.2, 2.2.3, and 2.2.4, respectively.

2.2.2 Metamodeling

A model is a coherent set of formal elements describing something (e.g., the ar-

chitecture of a system or the schema of a database) at a high level of abstraction

and is built for some purpose (e.g., completeness checking or code generation)

[100]. Models are expressed in a modeling language whose syntax must be defined

somehow. Since modeling is an appropriate technique to formalize knowledge, we

can define this syntax by building a model of the modeling language – a so-called

metamodel.

Metamodeling plays a key role in MDE. Atkinson et al. investigate in [99] the

technical foundations of MDE and discuss the role of metamodeling in a support-

ing infrastructure. To define metamodels, metamodeling languages such as Ecore

can be used. These languages let us define metamodels using object-oriented

Chapter 2. Background and Technological Context 37

constructs such as classes, associations, and generalization [101]. With the po-

tential of metamodeling languages, software engineers can easily define modeling

languages that are adapted to their specific application domain. This type of

language is called Domain-Specific Language (DSL).

2.2.2.1 Domain-Specific Languages

A DSL is a language (e.g., a modeling language or a programming language) that

offers, through appropriate notations and abstractions, expressive power focused

on, and usually restricted to, a particular problem domain [102].

DSLs are not a new topic, but the current emphasis on MDE has focused the

interest of both academia and industry on this kind of languages. Examples

of DSLs abound, including well-known and widely-used languages such as LATEX,

SQL, HTML, SPEM, and BPMN. We can also consider as DSLs old programming

languages such as Cobol, Fortran, and Lisp since they came into existence as

dedicated languages for solving problems in a certain area (in this case, business

processing, numeric computation, and symbolic processing, respectively) [102].

Summary and Discussion

In order to support the conceptual definition of methods, in this thesis we define

a DSL that integrates concepts from two standard DSLs: SPEM 2.0 and BPMN

2.0. Defining and using a DSL always involves both risks and opportunities. In

our proposal, it brings two general benefits:

• DSLs allow methods to be expressed in the idiom and at the level of ab-

straction of the software development domain; consequently, domain experts

themselves can understand, validate, modify, and even develop methods us-

ing the DSLs.

• Methods that are developed using DSLs are concise, self-documenting to a

large extent, and can be reused for different purposes.

In addition of these general benefits, we can mention other benefits that relate

to the fact that DSLs allow methods to be represented as machine-processable

models. These benefits are the following:

Chapter 2. Background and Technological Context 38

• Method models enable the automatic generation of documentation of the

methods in different formats, such as HTML or plain text.

• Methods become easier to maintain and easier to navigate (compared to

methods that are formalized in textual documents).

• A method model facilitates the communication between the people that is

involved in a project (who typically have different levels of expertise and

different roles) since modeling helps with getting a better overview of the

method by providing higher levels of abstraction.

• CASE environments can execute method models at runtime to assist soft-

ware engineers during the course of the projects.

In contrast to all of the above benefits, some drawbacks can also be emphasized.

These drawbacks mostly relate to the costs of designing, implementing, and learn-

ing the DSL.

2.2.3 Model Transformations

In the context of MDE, models are the main development artifacts and model

transformations are among the most important operations applied to models [103].

A model transformation can be defined as a set of rules that together describe how

a model in a source language can be transformed into a model in a target language.

A single transformation rule is a description of how one or more constructs in the

source language can be transformed into one or more constructs in the target

language [92].

The practical application of MDE may imply the use of several kinds of model

transformations. In the following, we present a list of four criteria for classifying

model transformations; these criteria have been extracted from the taxonomy

presented by Mens et al. in [104]. Based on this taxonomy, model transformations

can be classified according to:

Source and target languages. According to this criterion, a distinction can be

made between endogenous and exogenous transformations. The former are

transformations between models that are expressed in the same language;

Chapter 2. Background and Technological Context 39

the latter are transformations between models that are expressed using dif-

ferent languages. Refactoring is an example of endogenous transformation,

while reverse engineering is an example of exogenous transformation.

Abstraction level. A horizontal transformation is a transformation where the

source and target models reside at the same abstraction level. Typical ex-

amples are refactoring and migration. A vertical transformation is a trans-

formation where the source and target models reside at different abstraction

levels. A typical example is refinement, where a specification is gradually

refined into a full-fledged implementation by means of successive refinement

steps that add more concrete details.

Source and target models. Based on this criterion, a distinction can be made

between model-to-text (M2T) and model-to-model (M2M) transformations.

M2T transformations take a model as input and produce plain text as output

(e.g., source code, documentation, or configuration files). On the other hand,

M2M transformations take a model as input and produce another model as

output. Code generation is an example of M2T transformation, while model

refinement is an example of M2M transformation.

Model semantics. A final distinction can be made between model transforma-

tions that merely transform syntax, and more sophisticated transformations

that also take the semantics of the models into account. As an example of

syntactical transformation, consider a parser that transforms the concrete

syntax of a model into an abstract syntax. The abstract syntax is then used

as the internal representation of the model on which more complex semantic

transformations (e.g., optimisation) can be applied.

In addition to the above transformation kinds, we can also find in the literature

different types of approaches for implementing model transformations [104, 105,

106, 107]. These approaches can be classified as follows:

Direct model manipulation. Following this approach, models are accessed by

means of a general-purpose language (such as Java, Python, or C#), gener-

ally using an API that has been specifically designed to manipulate machine-

processable models. The main advantage of this approach is that developers

Chapter 2. Background and Technological Context 40

need little or no extra training to implement the transformations. An impor-

tant disadvantage is that the API usually restricts the transformations that

can be implemented. Additionally, since the language is general-purpose

and not domain-specific, it lacks suitable abstractions for specifying model

transformations.

XSLT. In this approach, models are serialized to XML. Then, model transfor-

mations are implemented using the XSLT language, which is a standard

technology for transforming XML. This approach is discouraged due to

severe scalability limitations: XSLT transformations quickly become non-

maintainable implementations because of the verbosity and poor readability

of XSLT [107].

Graphs. Following this approach, input models are represented as attributed

typed graphs and model transformations are specified as sets of graph rewrit-

ing rules. A rule consists of a graph to match – commonly referred to as

left-hand side (LHS) graph – and a replacement graph – commonly referred

to as right-hand side (RHS) graph. If a match is found for the LHS graph,

then the rule is triggered. The execution of the rule causes the RHS graph

to replace the matched sub-graph.

Model transformation languages. In this approach, a DSL for implement-

ing model transformations is used. These languages provide constructs for

e.g. specifying source and target metamodels, navigating models, and im-

plementing transformation mappings. Some examples of DSLs for model

transformations are ATL [103], RubyTL [101], and MOFScript [108]. These

languages can in turn be classified as declarative or operational. Declarative

languages focus on the what aspect (i.e., they focus on what needs to be

transformed into what by defining a relation between the source and target

models). Operational approaches focus on the how aspect (i.e., they focus

on how the transformation itself needs to be performed by specifying the

steps that are required to derive the target models from the source models)

[104].

Templates. This approach only applies to M2T transformations. Specifically,

a template engine (e.g., Velocity2) is used to generate text files taking as

input data-like representations of models.

2 http://velocity.apache.org/engine/devel/

Chapter 2. Background and Technological Context 41

Summary and Discussion

In this thesis, we take full advantage of the technology that is provided by model

transformations, since it allows us to support the method implementation phase

of the Method Engineering lifecycle. By means of model transformations, we

leverage method models using them for the construction of the supporting software

environments. Thanks to the use of model transformation technology, we reap the

following benefits:

• Bridging conceptual and technical spaces: by means of M2T transforma-

tions, we bridge the gap between the conceptual design of methods and the

technical details of their implementations. This is equivalent to one of the

most common uses of M2T transformations in Software Engineering: the

automatic generation of source code (which resides at the technical space)

from high-level models (which reside at the conceptual space).

• Automation: the CASE environment generation process is automatic in our

approach. This is a major benefit since obtaining a tool automatically, in

general, increases the quality of this tool [43]. Because the tool is specified in

high-level models, the quality of the tool depends on the generator (i.e., the

M2T transformation). Therefore, the quality can greatly increase because

we can let our best people work on the M2T transformation. Furthermore,

all of the best practices that we eventually learn can be included in the

transformation, and, thus, they will be automatically applied in all of the

tools that are subsequently created.

• Model merging : by means of M2M transformations, we allow method models

to be automatically extended with reusable method parts. These parts are

instances of one or more concepts of the DSL for method design that we

define in this thesis; therefore, all of the models that are involved in the

M2M transformations (i.e., the input and output models) are instances of

the same metamodel.

2.2.4 Models at Runtime

A prominent approach to extend the applicability of MDE is to bring development

models to the runtime environment [109]. In this way, the modeling effort made

Chapter 2. Background and Technological Context 42

at design time is not only useful for producing the system but it can also drive the

system’s behavior during execution [110]. This approach is referred to as models

at runtime (sometimes called models@run.time).

A model at runtime can be defined as a causally connected self-representation

of the associated system that emphasizes the structure, behavior, or goals of the

system from a problem space perspective [109]. One of the major benefits of

models at runtime is that they enable controlled ongoing design [109]; that is,

they allow software engineers to incorporate new design decisions into a running

system by simply updating the models.

For the sake of comprehension, it is important to describe the differences among

development models, executable models, and runtime models3. When the models

are produced in a MDE process, they are named development models. These

models are in an abstraction level above the code level [111]. Examples of de-

velopment models are use cases and architectural models. If development models

are expressive enough to be automatically executed, they are considered as ex-

ecutable models. Executable models can be executed by translating them into

executable code [112] or by using an interpreter/engine that directly executes the

model [113]. When the models are used at runtime, they are considered runtime

models. In contrast to development models, runtime models are used to reason

about the operating environment and runtime behavior for some purpose (e.g.,

determining an appropriate form of adaptation) [114].

Another source of confusion is the contrast of models at runtime with historic

efforts in the field of reflection. In [109], the authors state the similarities and

differences between these two concepts: reflection and models at runtime. These

concepts are similar in the sense that both are concerned with defining represen-

tations of the underlying system that are causally connected. Causal connection

means that if the system changes, the representations of the system (i.e., the mod-

els) should also change, and vice versa. On the other hand, runtime models and

reflection differ in that reflection seeks models that are intrinsically related to the

computation model; hence, these models are based on the solution space and tend

to be rather low-level. In contrast, runtime models reside at a much higher level

of abstraction since they are based on the problem space. In summary, the idea

3In this thesis, we consider the term “runtime model” as a synonym of “model at runtime”.

Chapter 2. Background and Technological Context 43

of models at runtime is built on reflection but seeks to move from the solution

space up to the problem space.

Summary and Discussion

In this thesis, we bring method models to the runtime environment in order to

support the method execution phase of the Method Engineering lifecycle. By

using models at runtime, we leverage the modeling effort that is made at design

time to provide assistance for software engineers during the course of development

projects.

In addition to the above benefit, models at runtime also play a significant role in

reducing the internal complexity of software systems. Note that, in Software

Engineering, when models at runtime are used, the component that executes the

models (i.e., the model interpreter) replaces a large amount of the source code

of the final software system; for instance, it replaces the code that implements

the concepts, attributes, and relationships that are contained in the models. This

code, when models at runtime are not used, is typically scattered throughout the

system and has to be generated (or at least partially generated) from the models.

This increases the internal complexity of the system, and, in turn, the complexity

of the M2T transformations that are in charge of its generation. In the context of

our Method Engineering approach, the use of method models at runtime simplifies

the internal structure of the CASE environments: we only have to include a model

interpreter, rather than scattering through the system all the information that is

contained in the method models. Thus, the complexity of the M2T transformation

that is in charge of the CASE environment generation is reduced to a large extent.

Models at runtime, besides reducing internal complexity, also facilitate model

changes. This is because these changes can be performed without stopping the

running software system and also without requiring an explicit system regener-

ation. In the context of Method Engineering, this capability of models at run-

time can contribute to turn method evolution into reality. Changes in project

characteristics, which cause unexpected changes in the method models, can be

automatically translated into changes in the supporting software environments

(without having to stop and regenerate these tools), thereby keeping methods

and tools always synchronized. Providing support for method evolution is outside

of the scope of this thesis.

Chapter 2. Background and Technological Context 44

2.3 Eclipse-based Technologies

Software engineers need a variety of tools to properly perform the full development

process; additionally, these tools must be integrated and work well together. For

this reason, the community of software engineers must develop tools in ways that

increase the likelihood of their interoperation with other tools. In 2001, IBM ad-

dressed this issue by providing a common platform that facilitated the integration

of diverse software products [115]. This platform was called Eclipse.

The term “Eclipse” was a wordplay of IBM, who wanted to “eclipse” Microsoft

Visual Studio, the primary competition at the time. After more than a decade

of existence, Eclipse has had a lasting influence, which is reflected in its high

commercial acceptance as well as in its many contributions to different Software

Engineering areas, such as MDE, ambient intelligence, process engineering, and

software testing.

2.3.1 The Eclipse Platform

In words of the Eclipse foundation4, Eclipse is a community for individuals and

organizations who wish to collaborate on commercially-friendly open source soft-

ware. Its projects are focused on building an open development platform com-

prised of extensible frameworks, tools, and runtimes for building, deploying, and

managing software across the lifecycle.

Figure 2.14 shows the general architecture of the Eclipse development platform.

At the heart of Eclipse is a mechanism for dynamically discovering, loading, and

running software components (which, in the context of Eclipse, are called plug-

ins). An Eclipse plug-in is the smallest unit of functionality that can be developed

and delivered separately; thus, plug-ins determine the platform functionality and

whether it operates as an Integrated Development Environment (IDE) or as a

general-purpose application [116]. General-purpose applications that are built

upon the Eclipse platform are collectively known as Rich Client Platform (RCP)

products.

4http://www.eclipse.org/

Chapter 2. Background and Technological Context 45

Figure 2.14: Eclipse architecture (from http://www.eclipse.org/)

In addition to the plug-ins that can be loaded and run in Eclipse, the platform

itself also holds much built-in functionality. The main constituents of the Eclipse

platform are the following:

Platform runtime. The platform runtime dynamically discovers plug-ins and

maintains information about the plug-ins and their services in a platform

registry. Plug-ins are loaded and launched when required, according to the

user’s actions [116]. The platform runtime is implemented using the OSGi

framework.

Workspace. The Eclipse workspace allows the user to manage resources (i.e.,

projects, files, and folders) that are stored in the file system.

Workbench and User Interface toolkits. Eclipse is built upon a workbench

that provides the overall structure of the platform and presents an extensible

User Interface to the user. The workbench is built from two toolkits: the

Standard Widget Toolkit (SWT) and JFace. The former is a widget set and

graphics library that integrates with the native window system. The latter

Chapter 2. Background and Technological Context 46

is a toolkit that is implemented using SWT and simplifies common User

Interface programming tasks.

Help system. The help system provides the user with building blocks to struc-

ture and contribute documentation to the platform.

Team support. The Team component provides repository tooling integration

into Eclipse and a universal compare facility. The compare facility im-

plements compare/merge components; differencing engines; integration and

creation of patch files; and comparison and merging with the local history.

Other utilities. Other utility plug-ins supply functions such as searching re-

sources. Two of the most important utilities that are provided as part

of the Eclipse Software Development Kit (SDK) are the Java Development

Tools (JDT) and the Plug-in Development Environment (PDE). While JDT

implements an IDE supporting the development of any Java application, the

PDE allows the user to build and deploy Eclipse plug-ins and RCP prod-

ucts. One noteworthy aspect of the PDE is the functionality that is provided

by the product configuration files. A product configuration file is an XML

document that defines the characteristics of an Eclipse RCP product (e.g.,

the icons, splash screen, and plug-ins/features5 that comprise the product).

This XML document can be used by the PDE to automatically generate

a fully functional RCP product (which only incorporates the elements that

are specified in the product configuration file). The file extension of the

product configuration files is .product.

In addition to all of the above functionality and capabilities of Eclipse, it is also

important to highlight that, behind Eclipse, there is an extensive community of

users, researchers, and developers. This community has created a wide variety of

tools and frameworks for the Eclipse marketplace6, which nowadays contains more

than a thousand tools, including business process management tools, modeling

frameworks, and automated software quality tools. Additionally, Eclipse hosts

projects7 that cover runtimes; static and dynamic languages; thick-client, thin-

client, and server-side frameworks; and modeling and business reporting tools.

Due to the wealth of the entire Eclipse ecosystem, we selected Eclipse as the

5A feature is a group of Eclipse plug-ins.
6 http://marketplace.eclipse.org/
7 http://projects.eclipse.org/

Chapter 2. Background and Technological Context 47

implementation technology of this thesis. Below, in Sections 2.3.2, 2.3.3, 2.3.4,

and 2.3.5 we describe the specific frameworks and tools that we used.

2.3.2 Eclipse Modeling

The Eclipse Modeling project8 focuses on the evolution and promotion of model-

based development technologies within the Eclipse community by providing a

unified set of modeling frameworks, tooling, and standard implementations. Inside

this project, we can find, among others, the following tools:

Eclipse Modeling Framework (EMF). EMF is a modeling framework and

code generation facility for building tools based on a structured data model.

From a metamodel specification, EMF produces a set of Java classes that

implement the metamodel, along with a set of adapter classes that enable

viewing and command-based editing of models; EMF also produces a tree-

based editor. For the specification of metamodels, EMF provides the Ecore

language, which claims to be a subset of the MOF standard.

Graphical Modeling Framework (GMF). GMF implements a model-driven

approach for the generation of graphical editors in Eclipse. By defining a

tooling, graphical, and mapping model, GMF can generate a fully functional

graphical editor for creating models based on EMF.

Graphiti. Graphiti shares the same objective as GMF. It is an Eclipse-based

graphics framework that enables rapid development of graphical editors.

One important difference between Graphiti and GMF is that Graphiti can

deal with any Java-based object on the domain side, not only EMF-based

domain models. Another difference is that GMF follows a model-driven

generative approach, while Graphiti provides a Java API for the manual

programming of graphical editors.

Textual Modeling Framework (XText). Xtext is a framework for the devel-

opment of textual DSLs. In XText, DSLs are specified using a grammar

language. From a grammar specification, XText creates a parser, a meta-

model (implemented in EMF) as well as a full-featured textual editor.

8http://www.eclipse.org/modeling/

Chapter 2. Background and Technological Context 48

Xpand. Xpand is a statically-typed template language for implementing M2T

transformations. For the development of Xpand templates, Eclipse provides

an editor with features like syntax coloring, error highlighting, navigation,

refactoring, and code completion. Xpand was originally developed as part

of the openArchitectureWare project9 before it became a component under

Eclipse.

Atlas Transformation Language (ATL). ATL is a hybrid M2M transforma-

tion language that allows both declarative and imperative constructs to be

used in transformation definitions [117]. ATL is supported by a set of de-

velopment tools such as an editor, a compiler, a virtual machine, and a

debugger.

Summary and Discussion

The CAME environment that has been developed in this thesis (MOSKitt4ME)

makes intensive use of the technologies that are described above. Specifically,

EMF, GMF, and Graphiti lay the foundations of the tools that allow method

engineers to create method models. Furthermore, Xpand is the language that

we used to implement the M2T transformation that enables the generation of

integrated software environments from the method models.

In addition to all of this functionality, the above modeling frameworks also allow

MOSKitt4ME to support the construction of tools for software development (in a

similar way to the metatools that are provided by metaCASE environments). For

instance, GMF and Graphiti support the construction of graphical editors, while

EMF and XText allow users to develop tree-based editors and textual editors,

respectively. On the other hand, ATL enables the development of M2M transfor-

mations, while Xpand supports the implementation of code generators (i.e., M2T

transformations). All of these types of tools (i.e., textual/tree-based/graphical ed-

itors, code generators, and M2M transformations) can be integrated in software

environments that are adapted to particular methods. Thereby, MOSKitt4ME

supports the method implementation phase of the Method Engineering lifecycle.

9http://www.openarchitectureware.org/

Chapter 2. Background and Technological Context 49

2.3.3 Eclipse Process Framework

The Eclipse Process Framework (EPF) project10 provides tools for software pro-

cess engineering as well as extensible process content for a wide range of processes

supporting different approaches for software development (such as iterative, agile,

and incremental). The major tool that is distributed as part of the EPF project

is called EPF Composer.

The EPF Composer is an open-source SPEM 2.0 editor for process engineers

and project managers to implement, deploy, and maintain software processes for

organizations or individual projects. The most relevant capabilities provided by

the EPF Composer are the following:

Method Authoring. The EPF Composer allows users to capture best practices

as a set of reusable method building blocks that are defined in SPEM 2.0

(e.g., roles, work products, tasks, and guidance). The properties and re-

lationships of these elements can be defined through forms and rich-text

editors.

Process Authoring. Reusable method building blocks can be organized into

processes by defining Work Breakdown Structures. The EPF Composer

also supports the construction of reusable process chunks through capability

patterns. Structural information can be edited with graphical and non-

graphical editors.

Library Management. Method libraries enable persistency and flexible config-

uration management as well as content interchange for distributed client-

server implementations. Method and process content can be packaged into

plug-ins allowing simple distribution, management, and extensibility of con-

tent.

Configuring and Publishing. The EPF Composer allows users to publish pro-

cess configurations, which are subsets of process elements. During the pub-

lishing process, the EPF Composer resolves the relationships between the

process elements; then, it generates a set of HTML pages that contain links

representing these relationships to make the resulting website easy to navi-

gate.

10 http://www.eclipse.org/epf/

Chapter 2. Background and Technological Context 50

Summary and Discussion

The EPF Composer has been integrated in MOSKitt4ME to support the con-

struction of SPEM 2.0 models. This endows MOSKitt4ME with the capabilities

that are mentioned above: method and process authoring, library management,

and method configuration/publishing, among others. Additionally, we have ex-

tended the EPF Composer with a repository client that allows users to connect to

FTP repositories in order to store, retrieve, and integrate reusable method parts

(which are instances of one or more classes of the SPEM 2.0 metamodel).

2.3.4 Activiti

Activiti11 is a light-weight open-source workflow and Business Process Manage-

ment platform that is targeted at business people, developers, and system admin-

istrators. Its core is a super-fast and rock-solid BPMN 2.0 process engine for Java.

Activiti is not an Eclipse project, but it provides an eclipse-based component for

the creation of BPMN 2.0 models that can be directly executed in the process

engine.

Specifically, in this thesis we have used two of the components that are distributed

as part of the Activiti project:

Activiti Engine. This component is the heart of the Activiti platform. It is a

Java process engine that runs BPMN 2.0 processes natively. The Activ-

iti Engine has several positive features. Some features that deserve extra

highlighting are the following: it runs on any Java environment; it is easy

to get up and run; it is rock-solid and extremely fast; and it supports the

execution of pieces of custom Java code or scripts upon the occurrence of

certain process events.

Activiti Designer. The Activiti Designer is an Eclipse-based component that

implements a graphical editor that supports modeling, testing, and deploy-

ment of BPMN 2.0 processes. It also has built-in support for the Activiti-

specific extensions that enable the use of the full potential of the Activiti

engine. Additionally, the Activiti Designer offers the possibility to extend

11 http://activiti.org/

Chapter 2. Background and Technological Context 51

its default functionality, allowing an easy adaptation to specific business

domains or use cases.

Summary and Discussion

One noteworthy capability of Activiti is that it supports all aspects of Business

Process Management, including non-technical aspects (such as the analysis and

modeling of business processes) as well as technical aspects (such as the creation of

software support for business process execution). In MOSKitt4ME, we leverage

this capability of Activiti to achieve a twofold objective. The first goal is to

provide modeling support for BPMN 2.0; to achieve this goal, we integrated the

Activiti Designer into MOSKitt4ME. The second goal is to support the method

execution phase of the Method Engineering lifecycle; to this end, we extended the

M2T transformation that supports the generation of CASE environments so that

it can integrate the Activiti Engine into these tools.

2.3.5 MOSKitt

As Section 1.5 describes, the MOSKitt project12 started in 2007 as a jointly work

between the PROS research center and the CITMA and its main goal was to

develop a RCP product that supports the gvMétrica method. The result was an

open-source CASE environment called MOSKitt.

One important characteristic of MOSKitt is that, since it is built on Eclipse, it

implements the Eclipse plug-in architecture, and, therefore, MOSKitt can be easily

reconfigured and/or extended with new tools. Nonetheless, MOSKitt already

incorporates much built-in functionality that supports different aspects of the

software development lifecycle. The frameworks and tools that are included in

MOSKitt can be categorized as follows:

Software Development. MOSKitt incorporates a wide range of tools that en-

able the analysis, design, and implementation of software systems. Some ex-

amples of these tools are graphical editors (e.g., for defining UML 2.0 models,

graphical user interfaces, and database schemas) and M2T transformations

12 http://www.moskitt.org/

Chapter 2. Background and Technological Context 52

for the automatic generation of documentation and source code (in different

languages such as Java and PHP). MOSKitt also includes M2M transforma-

tions (e.g., for transforming UML 2.0 models into database schemas) and

form-based editors for creating different types of models (e.g., glossaries,

configuration models, and data dictionaries).

Method Support. To support the gvMétrica method, MOSKitt includes the

Dashboard component. This component provides (1) a graphical editor for

the specification of software development processes, and (2) an interpreter

that allows users to monitor the state of process instances. The specifica-

tion language that is implemented in the Dashboard editor supports the

definition of the following elements: tasks; their input and output resources;

actions that are associated to the tasks; and dependencies between tasks.

This is inspired by the dashboard provided as part of GMF, which provides

assistance during the creation of graphical editors.

Metatools. MOSKitt incorporates metatools that allow users to develop tools

for software development. One example of these so-called metatools is the

FEFEM framework. This framework enables the rapid development of form-

based editors that manipulate EMF models. Specifically, FEFEM imple-

ments a series of patterns that usually occur when developing this kind of

editors (e.g., a textbox for editing properties of type String); thus, editors

are built via pattern composition. In addition to FEFEM, MOSKitt also

benefits from similar frameworks that are provided by the Eclipse commu-

nity; for instance, XText and GMF, which allow users to develop textual

and graphical editors, respectively (see Section 2.3.2).

Technological Infrastructure. The MOSKitt technological infrastructure pro-

vides four main components. First, a transformation manager, which offers

an intuitive Graphical User Interface that facilitates the definition and ex-

ecution of model transformations. Second, a model synchronization mech-

anism, which automatically updates the models that are output of model

transformations when the input models are manually modified by the user.

Third, a tree-based model navigator, which extends the functionality pro-

vided by the Eclipse Common Navigator Framework (e.g., the MOSKitt

navigator customizes the element labels based on the user’s selection). Fi-

nally, MOSKitt provides the MDT Common component, which implements

Chapter 2. Background and Technological Context 53

functionality that is shared by all of the MOSKitt graphical editors (e.g.,

drag and drop; filtering of model elements; copy and paste; and storage of

multiple diagrams in a single file).

Summary and Discussion

All of the tools that are summarized above turn MOSKitt not only into a CASE

environment (that supports a single development method), but also into an ex-

tensible platform for building CAME and CASE environments. For this reason,

we used MOSKitt as the base platform for implementing the CAME environment

that is presented in this thesis: MOSKitt4ME.

2.4 Conclusions

This chapter provides a general overview of various concepts, domains, techniques,

frameworks, and tools that are related to the work presented in this thesis. First,

the chapter provides a detailed definition of Method Engineering, which is the

domain that is the focus of our research work. Method Engineering is a challeng-

ing research field. One of its major goals is to facilitate the process of software

development, and, therefore, it may contribute to significantly improve the qual-

ity of software systems in a near future. In this context, MDE seems to embody

a suitable technological background to efficiently face the inherent complexity of

Method Engineering. Due to the potential relevance of MDE in the context of

Method Engineering, this chapter also summarizes some of the most significant

MDE techniques: metamodeling, model transformations, and models at runtime.

Finally, the chapter surveys some eclipse-based technologies that are of special

significance in this thesis. These technologies, together with the use of MDE,

allowed us to design a model-driven Method Engineering approach as well as to

implement a supporting CAME environment, both of which are presented in this

document. Before we present our work, Chapter 3 provides a state-of-the-art

review of the more relevant contributions in the field of Method Engineering.

Chapter 3

State of the Art

Method Engineering has an extensive and disparate history. During the last

decades, the Method Engineering community has performed a lot of research

work, aiming to overcome the challenges that Method Engineering poses. In

this chapter, we review this research work, a task that was last undertaken by

Henderson-Sellers et al. in [3] and later by Kuhrmann et al. in [11].

Specifically, the present chapter focuses on the Method Engineering approaches

that are closely related to the thesis work. As Chapter 2 describes, this thesis

focuses on three phases of the Method Engineering lifecycle: design, implemen-

tation, and execution. For this reason, the present chapter reviews the most

relevant approaches that support at least one of these phases. By analyzing these

approaches, we aim to illustrate their main limitations, and, thus, disclose the

potential contributions of this thesis.

Prior to the state-of-the-art review, this chapter defines a set of distinctive prop-

erties that allow us to characterize the selected approaches. These properties are

described in Section 3.1. Then, in Section 3.2, we use the properties to analyze

the approaches individually. Finally, in Section 3.3, we analyze the approaches in

conjunction in order to draw the conclusions of the review.

55

Chapter 3. State of the Art 56

3.1 Properties to Analyze Method Engineering

Approaches

In this section, we define four properties that allow us to characterize the ap-

proaches that are reviewed in this chapter. The main goal of these properties is to

facilitate the evaluation of the approaches with respect to the problems identified

in this thesis: high complexity, incomplete support to the lifecycle of methods,

weak process support, and limited software support (see Section 1.2). To this

end, each property offers information that relates to one of these problems. For

instance, the “lifecycle coverage” property, when applied to a specific approach,

offers information about the Method Engineering phases that are supported by

the approach. Thus, this property allows us to determine the extent to which the

approach experiences the second problem (i.e., incomplete support to the lifecycle

of methods). The four properties that we define in this section are the following:

Specification language(s). This property refers to the DSLs that are defined

and/or applied in a Method Engineering approach. As Niknafs et al. em-

phasize in their evaluation framework for Process Modeling Languages [21],

this property involves a trade-off between automation and complexity. On

the one hand, the more formal rigor is applied in a language, the more

automated support is possible (e.g., for method execution). On the other

hand, the more formalism is added, languages get less understandable (i.e.,

they become more complex). In order to strike a perfect balance between

automation and complexity, formal specification languages can be used as

long as their complexity is reduced through usable and easy-to-use graphical

notations.

We divide the specification language(s) property into four subproperties:

• Name: this property indicates the name(s) of the language(s).

• Type: this property indicates whether the language(s) are textual,

graphical, or both. The type of a language is generally determined

by the underpinning formalism of the language (e.g., attribute gram-

mars are used to define textual languages, while metamodels are typi-

cally used to define graphical languages). With respect to complexity,

Chapter 3. State of the Art 57

textual languages are commonly considered to be more complex than

graphical languages, mainly due to their lower level of abstraction.

• Formality level : it gives an approximate indication of the complexity

of the language(s). Textual languages with a high level of formality

(e.g., languages with a high number of formal rules and constraints) are

considered to be highly complex. In contrast, the languages that offer

high-level constructs and simple graphical notations are considered to

be easy to use and to have a low level of formality.

• Size: this property also gives an indication of the complexity of the lan-

guage(s). If a language is big (i.e., it has a high expressive power), then

it is more likely that the language yields large specifications, which are

usually complex and hard to understand. In contrast, small languages

typically produce simpler specifications, but this comes at the expense

of losing expresiveness.

Lifecycle coverage. This property indicates the phases of the Method Engi-

neering lifecycle that are covered by the Method Engineering approach. As

Figure 2.3 shows, the lifecycle of a software development method comprises

the following generic phases: analysis (MA), design (MD), implementation

(MI), execution (ME), and monitoring (MM). In summary, the first phase

is to analyze the requirements of the method. When these requirements

are fully analyzed, the method is designed and implemented. Subsequent

executions of the method can be monitored to obtain feedback that is fed

to the first phase in order to start another Method Engineering cycle. As

it is stated in chapter 1, our research focuses on three phases (i.e., design,

implementation, and execution); therefore, we do not consider the phases

of analysis and monitoring in the literature review that is presented in this

chapter.

Perspective. This property concerns the product and process parts of meth-

ods. If the Method Engineering approach emphasizes the specification of

the structure of products and deliverables as well as the specification of

how these products must be created and manipulated, then the approach is

product-oriented. In contrast, if the approach focuses on the specification

and enactment of processes, then the approach is process-oriented. Ideally,

Chapter 3. State of the Art 58

a Method Engineering approach should be able to represent methods from

both the product perspective and the process perspective.

Software support. This property indicates whether the Method Engineering

approach is supported by a software tool. In the Method Engineering liter-

ature, we can find two types of tools: CAME environments and metaCASE

environments. While CAME environments, in their ideal form, provide soft-

ware support for all the conceptual aspects of methods (such as the analysis

of the method requirements or the conceptual specification of the method

product and process parts), metaCASE environments focus on the technical

aspects; that is, metaCASE environments are oriented towards the construc-

tion of CASE environments that provide complete software support for the

methods (see Section 2.1.3). Ideally, a software tool that supports a Method

Engineering approach will share features from both CAME and metaCASE

technology; that is, the software tool will allow method engineers to fully

specify software development methods as well as to build the supporting

CASE environments.

We divide the software support property into the following four subproper-

ties:

• Name: this property indicates the name of the tool.

• Type: this property indicates whether the tool is a CAME environment,

a metaCASE environment, or it shares features from both types of

technologies.

• Use: this property indicates whether the tool is a research prototype

or rather it has traversed academic boundaries (i.e., it has been used

for commercial purposes).

• Automation level : this property gives an approximate indication of

the degree to which the software tool automates Method Engineering

activities.

3.2 Method Engineering Approaches

In this section, we analyze the Method Engineering approaches of our review using

the four properties that are defined in Section 3.1. Specifically, for each approach,

Chapter 3. State of the Art 59

Table 3.1: Template for approach classification

Approach name

Specification
language(s)

Name Name(s) of the language(s)

Type {Textual, Graphical}
Formality level [Low | Medium | High]

Size [Small | Medium | Big]

Lifecycle
coverage

{MD, MI, ME}

Perspective {Product, Process}

Software
support

Name Name of the tool

Type {CAME, MetaCASE}
Use {Research, Commercial}
Automation level [Low | Medium | High]

we present an in-depth description first; then, in a section that is called “Analysis

of the Proposal”, we present the main limitations of the approach together with a

summary that follows the template that is shown in Table 3.1. The left side of the

template contains the properties that we propose for analyzing Method Engineer-

ing approaches (see Section 3.1); the right side shows the possible values of these

properties. These values can be of three different types: string, enumeration, and

collection. String properties (i.e., name) can take as value any string of characters.

On the other hand, enumerations (i.e., formality level, size, and automation level)

can take as value any of the elements that are contained in the set denoted by

the [] symbols. Unlike strings and enumerations, collections (i.e., type, lifecycle

coverage, perspective, and use) can take multiple values; specifically, the possible

values of the properties of type collection are enclosed within { } symbols. When

one of the properties that are shown in Table 3.1 does not apply to the approach

under study (either because it is not supported or the required information is not

published), we set the value “x“ to the property.

The Method Engineering approaches that are analyzed in this section are divided

into three categories: assembly-based, paradigm-based, and configuration-based.

We determined these categories by examining the Method Engineering literature

[3, 6, 9, 118, 119], which generally classifies approaches in one of the follow-

ing five categories: assembly-based, paradigm-based, configuration-based, ad-hoc,

and extension-based. Note that we consider a reduced set of three categories.

This is because ad-hoc Method Engineering involves the construction of methods

Chapter 3. State of the Art 60

from scratch [3, 120, 121], and, for this reason, this category has been some-

what neglected in the literature; furthermore, extension-based approaches can

be considered to be a specific type of configuration-based Method Engineering

[4, 33]. For these reasons, the Method Engineering approaches of our review are

divided into three categories, which are presented in Sections 3.2.1, 3.2.2, and

3.2.3, respectively. Within these sections, the approaches are ordered chrono-

logically according to their year of introduction. Prior to the three sections, we

briefly describe below the process that we followed to select the papers that are

considered in our literature review.

The selection process

To perform the review that is presented in this chapter, we followed the guidelines

for performing literature reviews proposed by Webster et al. in [122]. As these

guidelines suggest, we performed three steps to determine the source material of

our review. First, we searched leading journals and also conference proceedings

with a high reputation for quality. Second, we went backwards in time by re-

viewing the citations of the identified articles; thus, we found additional articles,

which in general predated the articles that had been identified in the first step.

Finally, we went forward by using search engines (e.g., google scholar1) and sci-

entific databases (e.g., science direct2); these tools allowed us to identify articles

that cite the articles that had been identified in the previous two steps.

After these three steps were carried out, we applied various exclusion criteria.

Specifically, we excluded the papers that: (1) were not presented entirely in the

English language; (2) did not represent scientific papers but rather some type

of non-peer-reviewed publication, such as technical reports, book chapters, or

proceedings’ prefaces; and (3) presented some kind of review (e.g., surveys or

mapping studies) rather than outcomes of technical research work.

3.2.1 Assembly-based

Assembly-based Method Engineering fosters the construction of reusable method

parts, which are later assembled to obtain methods that are adapted to the context

1 http://scholar.google.es/
2 http://www.sciencedirect.com/

Chapter 3. State of the Art 61

of use. In the literature, different terms have been proposed to name these so-

called method parts; the most common terms are method fragments, method

chunks, method components, and method blocks. All of these types of method

parts are generally defined as “small reusable portions of methods, either methods

that already exist or methods-to-be” [26].

Typically, method parts are stored in a repository that is called method base. One

important requirement for the method parts that are stored in a method base is

that their format must be standardized; otherwise, the interoperability between

method parts will be restricted. One common way of facilitating interoperability

is to ensure that each method part conforms to the same higher-level definition;

for instance, the one given by a metamodel.

Some of the benefits that are provided by assembly-based Method Engineering

approaches are: increased reuse, modular methods, and the possibility to build

repositories of method knowledge. In the following subsections, we present some

of the most relevant assembly-based approaches.

3.2.1.1 Brinkkemper et al. Approach

The approach of Brinkkemper et al. [8, 123] relies on the notion of method

fragment, which was coined in 1994 [124] and later popularized in 1996 [5]. A

method fragment can be defined as “a description of a software development

method, or any coherent part thereof”. Method fragments are classified according

to three different dimensions: perspective, abstraction level, and granularity layer.

The perspective dimension comprises product and process. Product fragments

represent, e.g., deliverables, models, or diagrams; process fragments represent

stages, activities, and tasks to be carried out. On the other hand, the abstraction

dimension constitutes the conceptual level and the technical level. Conceptual

fragments are descriptions of methods or parts thereof; technical fragments are

implementable specifications of the operational part of methods (i.e., the software

tools). Finally, the granularity layer represents a level of decomposition within the

method. For instance, from a process perspective, methods can be decomposed

into stages, which are further partitioned into activities and individual steps.

From the product perspective, the final system would be at the top of the tree;

this system can be further decomposed into, e.g., deliverables, model components,

Chapter 3. State of the Art 62

Figure 3.1: Assembly of product fragments [123]

and concepts. As an example, Figure 3.1 shows the concepts of two (conceptual)

product fragments: the Object Model and the State Chart. These fragments have

been assembled to obtain the Object Chart product fragment.

In order to carry out the assembly of method fragments, Brinkkemper et al.

[8, 123] propose a set of assembly rules that are formalized by means of first

order logical formulas. These rules establish how to connect method fragments

through newly introduced associations and/or concepts. An example of assembly

rule is: “if we add new associations, the two method fragments to be assem-

bled should participate in them”. These rules impose constraints in the assembly

process, allowing method engineers to obtain meaningful methods. Most of the

constraints that Brinkkemper et al. define are syntactical, but they emphasize

the need for semantical constraints as well. Since semantical constraints require

the formalization of the fragment semantics, Brinkkemper et al. propose the use

of an anchoring system. Using an anchoring system, method fragments can be

Chapter 3. State of the Art 63

Figure 3.2: Example of product fragment in MEL [126]

anchored to unambiguous concepts that define them. In Brinkkemper’s proposal,

these concepts are defined by means of an ontology that is called Methodology

Data Model (MDM) [20, 61]. Some examples of the concepts that are proposed

by MDM are: Activity, Goal, Group, Problem, Requirement, Role, and System.

The proposal of Brinkkemper et al. is supported by Decamerone [20, 125], a

CAME environment that allows method engineers to define methods using a lan-

guage that is called “Method Engineering Language” (MEL) [126]. MEL is a

textual language that supports both the product and process aspects of methods

at varying granularity levels and is founded on first order predicate logic. It also

provides operations to insert and remove fragments in and out of the method

base. To support MEL, Decamerone provides dedicated editors and a MEL in-

terpreter. Additionally, Decamerone allows method engineers to obtain project-

specific CASE environments since it is built on top of a metaCASE system called

Maestro II. The project-specific environments that are obtained by Decamerone

contain a product repository, a process manager, and a set of editors that en-

able system specification. A simplified example of the description of a product

fragment using MEL is given in Figure 3.2. For a more in-depth summary of

Decamerone see [41].

Analysis of the Proposal

To our understanding, the approach of Brinkkemper et al. is one of the most

complete, especially in terms of lifecycle coverage and method perspectives. Fur-

thermore, it provided a high number of innovations and contributions at the time

it was presented. However, it still presents some limitations, being the following

the most relevant:

Chapter 3. State of the Art 64

• High complexity : MEL is a textual language that offers a high number of

primitives, which makes the language difficult to learn. Additionally, Mae-

stro II is an evolution of an environment that has its roots in the seventies.

This is reflected in the character-based user interface, which complies with

no standard whatsoever. The screens of Decamerone look clumsy and hard

to use when compared to current sophisticated graphical interfaces [20].

• Limited technical support : MEL is weak regarding the representation of the

technical side of methods [20]. For instance, the CASE environments that

are obtained using Decamerone can only contain editors; other tools such as

model transformations cannot be included.

• Limited process executability : MEL is less suitable in situations where pro-

cess execution should be possible . Only using the detour of process engine

generation, it is possible to execute a set of process managers [20]. Process

managers are technical fragments that guide the CASE user through the

development process. These managers connect products with tasks, and,

also, they are able to start the execution of the CASE editors as well as

other process managers.

• Limited workflows: MEL only supports the specification of two types of

relationships (i.e., precedence and conditional precedence) between process

fragments; more complex sequencing behavior (such as the behavior that

is supported by the gateways of BPMN 2.0) is neglected. Thus, the re-

sulting processes may be too limited for software engineers working on real

development projects.

• Lack of producer fragments: even though the method fragment notion ad-

dresses both the product and process aspects of methods, the human aspects

can only be specified by means of the “Producer” attribute of product frag-

ments. The lack of producer fragments restricts the reusability that can be

achieved with respect to these kind of method elements.

Table 3.2 summarizes the relevant information of Brinkkemper’s approach accord-

ing to the template that is presented in Table 3.1.

Chapter 3. State of the Art 65

Table 3.2: Classification of Brinkkemper et al. approach

Brinkkemper et al. approach

Specification
language(s)

Name MEL

Type Textual

Formality level High

Size Big

Lifecycle
coverage

MD, MI, and ME

Perspective Product and Process

Software
support

Name Decamerone

Type CAME and MetaCASE

Use Research

Automation level Medium

3.2.1.2 Prakash Approach

The approach of Prakash [7] is based on a three-level architecture where methods

are defined as collections of method blocks. The three levels of this architecture

are: the generic level, the method-independent level, and the method level. In the

generic level, the focus is the intrinsic notion of the method (i.e., what it can do,

what it is, etc.). This level is the representation of the method in its most abstract

form; thus, the generic level is metamodel-independent. On the other hand, the

method-independent level involves the instantiation of the generic view of the

method as a metamodel that provides a metamodel-specific view. This metamodel

provides concepts that are specific instantiations of the corresponding concepts of

the generic view. Finally, at the third level, the metamodel is instantiated to yield

specific methods.

Figure 3.3 graphically depics the generic view of methods. It is at this point impor-

tant to clarify that, in Prakash’s proposal, “methods” are not “software develop-

ment methods”, but rather specification languages (e.g., the Entity-Relationship

model [127]) that can be used to represent particular features of software systems

(e.g., database schemas). Having clarified this issue, one can observe in Figure

3.3 that methods are composed of method blocks. A method block represents a

decision that the software engineer can make (e.g., creating an entity or deleting

an attribute) and it is defined as a pair <objective, approach>. The objective

of a method block tells us what the block tries to achieve. For objectives to be

well-defined, it is necessary to know what can be done (the process type) on what

Chapter 3. State of the Art 66

Figure 3.3: The generic view of methods [7]

(the product type). Two examples of objectives in the Entity-Relationship (ER)

model are “create entity” and “delete attribute”. In these examples, “create” and

“delete” are the process types and “entity” and “attribute” are the product types,

which belong to one or more product models (in this case, specific ER models).

Since the objectives need to be realized (or, in other words, the method blocks/de-

cisions have to be executed), the approach identifies the manner in which this is

done (e.g., by means of a button of the toolbar of the CASE environment). When

an objective is executed, the execution of other objectives may be enabled/for-

bidden. These relationships between objectives are called dependencies.

There are two types of methods that can be built using method blocks: transfor-

mational and constructional. A transformational method is used for transforming

a product, expressed in one or more product models, into a product of other prod-

uct model(s); for instance, a transformational method can be used to transform

the entities/relationships of a ER model into classes/associations of a UML model.

On the other hand, a constructional method is used whenever a new product is

to be constructed.

Moreover, any method, whether transformational or constructional, can be atomic

or compound. An atomic method deals only with those products that are ex-

pressed in exactly one product model. In contrast, a compound method is com-

posed from other simpler methods.

Chapter 3. State of the Art 67

Finally, there are four kinds of method blocks: product manipulation, constraint

enforcement, product composition, and compositional-constraint enforcement. The

first type deals with the creation, edition, and deletion of product types, while

the second type deals with the enforcement of constraints when these actions are

performed. The last two types deal, respectively, with the establishment of cor-

respondences between the products of a compound method and the enforcement

of composition constraints.

The approach presented up to this point is extended in [128] with the concept

of method dynamics, as opposed to the method statics shown in Figure

3.3. Specifically, the dynamic aspects of a method identify the manner in which

the method can be used to develop products. In other words, method dynamics

deal with the selection of the method blocks to be executed. With respect to the

method dynamics, Prakash introduces new concepts such as development program,

which is the sequence of decisions (i.e., the sequence of executed method blocks)

followed by software engineers for product creation. Since this decision-making

process is not defined as part of the method, Prakash’s approach can be considered

to be fully product-oriented.

With respect to the tool support, Prakash’s approach is implemented as a meta-

CASE environment that is called MERU (which stands for “Method Engineering

Using Rules”) [38]. In this metaCASE environment, methods are defined in three

sequential steps. First, the method engineer expresses the method requirements

using a textual language that is called Method Requirements Specification Lan-

guage (MRSL). The requirements specification (MRS) represents the generic view

of the method. A method analyzer checks the MRS and looks for incompleteness,

inconsistency, and non-conformity with a metamodel that is called Method View

Model (MVM). Based on this analysis, data is generated to provide guidance to

the method engineer on how to improve the MRS. Once the MRS is complete,

the second step starts. In this step, the MRS is translated into an instantiation of

the MVM metamodel; this instantiation represents the method. Finally, the last

step involves the use of the resulting method for the generation of the supporting

software environment. As an illustration of MERU, Figure 3.4 shows a screenshot

of the tool. This screenshot illustrates how the MRS is defined as an assembly of

components developed using MRSL. For a more in-depth outline of MERU, see

[41].

Chapter 3. State of the Art 68

Figure 3.4: Screenshot of MERU [38]

Analysis of the Proposal

The work of Prakash represents a great effort to formalize and regularize the con-

ceptual framework and underpinning theory of development methods and meta-

CASE technology. Nonetheless, this work still presents some limitations. The

most relevant are the following:

• High complexity : the approach of Prakash is complex to apply in real con-

texts mainly due to the textual nature and high formality of the language

supported by MERU.

• Incomplete lifecycle coverage: in a similar way to all metaCASE environ-

ments, MERU focuses exclusively on the technical aspects of software devel-

opment methods. That is to say, MERU supports the method implementa-

tion phase of the Method Engineering lifecycle (allowing method engineers

to define the specification languages to be included in the final software

environments), neglecting the method design phase.

Chapter 3. State of the Art 69

Table 3.3: Classification of Prakash approach

Prakash approach

Specification
language(s)

Name MRSL

Type Textual

Formality level High

Size Small

Lifecycle
coverage

MI

Perspective Product

Software
support

Name MERU

Type MetaCASE

Use Research

Automation level High

• Fully product-oriented : Prakash’s approach is based on what is called “pas-

sive viewpoint”. Passive methods identify the set of decisions that can be

taken on a given product but leave it to the software engineer to select

the one to be executed. The sequence of selections constitutes the process

adopted and this process is external to the method; that is, the method does

not prescribe any way of working.

Table 3.3 summarizes the relevant information of the approach that is proposed

by Prakash according to the template that is presented in Table 3.1.

3.2.1.3 Ralyté et al. Approach

The assembly-based approach that is proposed by Ralyté et al. [23] relies on the

notion of method chunk [129, 130]. A method chunk can be defined as “an

autonomous and coherent part of a method, which supports the realization of

some specific software development activity” [26]. Each method chunk contains

a process part (also called guideline) and a product part (which defines the class

of products that are obtained as outputs of the chunk). This tight coupling

between product and process has been subject to some criticism; for instance,

Henderson-Sellers et al. [131] argue that there is a potential disadvantage in

this process-product linkage since it is neither one-to-one nor unique in real-life

scenarios.

Chapter 3. State of the Art 70

Figure 3.5: Example of method chunk [131]

Figure 3.5 shows an example of method chunk. As the figure shows, method

chunks have a descriptor that defines the context in which the chunk can be reused.

Additionally, chunks have an interface that is a tuple < situation, intention >

where situation is the input of the chunk and intention is the goal that the chunk

helps to achieve. Finally, the body of the chunk defines the product and process

parts. While the product part is defined by means of UML, the process part is

defined using the Map formalism, which was proposed by Rolland et al. in [132].

According to Rolland et al. [132], a map is a labelled directed graph with nodes

representing intentions and edges representing strategies. An intention captures

the notion of a task to be accomplished whereas a strategy suggests the way in

which this goal can be achieved. The core concept of the Map formalism is the

section, which is a triplet < Ii, Ij , Sij > where Ii is a source intention, Ij is a

target intention, and Sij is a strategy that can be followed to achieve Ij from Ii.

Thus, a map can be defined as a composition of sections, plus a Start and a Stop

intention [132].

In order to facilitate the assembly of method chunks, Ralyté et al. propose in

Chapter 3. State of the Art 71

Figure 3.6: Process model for chunk assembly [23]

[23] a generic process model for guiding method engineers during the assem-

bly process. Figure 3.6 graphically depicts this process model in the form of a

map. As the figure shows, Ralyté et al. suggest to start the assembly process

by selecting the method chunks to assemble. This is indicated by the select a

chunk intention. To achieve this intention, the only possibility is to follow the

requirements-driven strategy [133]. This strategy requires that the method engi-

neer specifies the requirements for the method; then, the method chunks matching

these requirements are retrieved from the method base. Any time a chunk is re-

trieved, the process model suggests to validate this candidate chunk by applying

the evaluation strategy. The evaluation strategy helps in evaluating the degree

of matching between the candidate chunk and the requirements; this evaluation

is based on similarity measures [23]. If it is necessary to refine the chunk, the

decomposition, aggregation, and refinement strategies can be applied. The de-

composition strategy is relevant when the selected method chunk is an aggregate

one having some component parts that may not be required. The aggregation

strategy is relevant when the candidate chunk partly covers the requirements; this

strategy suggests to search for an aggregate chunk containing the candidate chunk

based on the assumption that the aggregate chunk might provide a solution for

the missing requirements. The refinement strategy proposes to search for another

chunk satisfying the same intention but providing a set of guidelines richer than

those of the candidate chunk.

When at least two chunks have been selected, the method engineer can assemble

these chunks following one of two strategies: association or integration. The

Chapter 3. State of the Art 72

Figure 3.7: Reuse frame [134]

association strategy is relevant when the chunks do not have elements in common.

This might occur, e.g., when the output product of one chunk is the input product

of the other chunk. In this case, the assembly consists in establishing the execution

order of the chunks. The integration strategy is relevant when the chunks have

a similar objective but provide different ways of satisfying it. In this case, the

chunks overlap and the assembly consists in merging the overlapping elements.

To check whether two chunks overlap, similarity measures can be used [23]. To

perform the assembly, Ralyté et al. provide in [121] a set of assembly operators.

Some examples of these operators are “remove intention”, “add section”, and

“connect via association”.

Finally, to check whether the chunk assembly matches the requirements, the

method engineer shall use the completeness strategy. If the response is posi-

tive, then the assembly process ends. In any other case, other chunks have to be

selected and assembled to gain the required method completeness.

The proposal of Ralyté et al. is extended by Mirbel et al. in [134] with the notion

of reuse frame. The reuse frame is a hierarchical structure that contains knowl-

edge about the reuse context of method chunks and provides criteria for project

and software engineer situation characterization; thus, the descriptor of method

chunks takes values from the reuse frame, allowing enhanced storage and retrieval

Chapter 3. State of the Art 73

Table 3.4: Classification of Ralyté et al. approach (assembly-based)

Ralyté et al. approach (assembly-based)

Specification
language(s)

Name UML Map

Type Graphical Graphical

Formality level Medium High

Size Big Small

Lifecycle
coverage

MD

Perspective Product and Process

Software
support

Name x
Type x
Use x
Automation level x

from the repository. As figure 3.7 shows, the reuse frame stores knowledge in

terms of aspects belonging to aspect families, which are successive refinements of

three main factors: human, organizational, and application domain. Each aspect

of the hierarchy is characterized by two main properties: classified and exclusion.

The classified property indicates whether direct aspects or subfamilies are clas-

sified (cl=yes) or not (cl=no); thus, certain ordering/classification is established

between the aspects. On the other hand, the exclusion field indicates whether

direct aspects or subfamilies are exclusive (exc=e) or not (exc=ne); exclusive

aspects cannot be selected for the same project-specific method.

Analysis of the Proposal

Table 3.4 summarizes the relevant information of the approach that is proposed

by Ralyté et al. according to the template that is presented in Table 3.1. The

main limitations of this approach are the following:

• Lack of software support : the proposal of Ralyté et al. has neither been

implemented as a CAME environment nor as a metaCASE tool.

• Incomplete lifecycle coverage: in a similar way to most Method Engineering

approaches, the approach of Ralyté et al. does not address the method im-

plementation and the method execution phases of the Method Engineering

lifecycle.

Chapter 3. State of the Art 74

• Limited workflows: another limitation concerns the process support. In this

approach, the process part of methods is defined when method chunks are

assembled, generally by means of precedence relationships that establish

their execution order. Thus, the resulting process is quite limited in terms

of control flow, since complex behavior (such as the expressed by branching

conditions, events, and synchronizations) cannot be defined.

• Lack of producer fragments: the method chunk notion does not incorpo-

rate the producer aspects of methods, thereby limiting the reusability that

can be achieved with respect to this type of method element. Nonetheless,

producers are present in the reuse frame, under the “Human” aspect family.

3.2.1.4 OPEN Process Framework

In words of the OPEN Process Framework (OPF) website3, the OPF [135, 136,

137] is “a practical, public-domain, industry-standard, general-purpose manage-

ment and engineering process framework that is primarily intended for the object-

oriented, component-based development of software-intensive systems”. To sup-

port the construction of software development methods, the OPF builds on the

existing body of knowledge in assembly-based Method Engineering. Specifically,

the OPF provides three major components: a metamodel, a repository of reusable

method components, and construction guidelines (see Figure 3.8).

The OPF metamodel, which has been recently updated to be in conformance

with the ISO/IEC 24744 standard [67, 138], provides a clear way for formally

representing the OPF method components. It is imperative that each method

component in OPF conforms to the OPF metamodel. This implies that newly

created method components that extend the repository must also conform with

the metamodel.

The OPF repository contains a large number of OPF method components having

different levels of granularity. According to the ISO/IEC 24744 standard, there

are five major types of components in OPF: work units (i.e., pieces of work that

must be performed by persons or tools to develop work products), work products

(i.e., artifacts that are produced during software development, such as diagrams or

3 http://www.opfro.org/

Chapter 3. State of the Art 75

Figure 3.8: Method construction in OPF [31]

textual documents), producers (i.e., persons or tools that develop work products),

languages (i.e., notations used to represent the produced artifacts), and stages

(i.e., periods of time used for establishing the overall macro-scale and time-box of

sets of cohesive work units).

The construction guidelines help method engineers to instantiate the OPF

metamodel to create method components as well as to select the best method

components from the repository in order to create project-specific methods. As

an aid for selecting the best method components, the OPF suggests the use of

the deontic matrix approach [135]. A deontic matrix is a two-dimensional matrix

where each value represents the likelihood of the relationship between a pair of

OPF method components selected from the repository. In this approach, one of

five values of possibility is allocated to each matrix element. The possibilities

range from mandatory, recommended through optional to discouraged and for-

bidden [26]. Figure 3.9 shows an example of deontic matrix. The example shows

Chapter 3. State of the Art 76

Figure 3.9: An example of deontic matrix [3]

a two-dimensional relationship between tasks and activities. For each combina-

tion of activities and tasks, we can assess the likelihood of the occurrence of the

combination using five levels of possibility (which are labelled as M, R, O, D, and

F, respectively).

Analysis of the Proposal

In summary, we believe that OPF represents a great contribution that helps pave

the way from academic research to the industrial practice of Method Engineering.

The limitations that we find are the following:

• Lack of software support : this approach has neither been implemented as a

CAME environment nor as a metaCASE tool. The OPF should evolve from

a simple repository to a fully functional software product.

• Incomplete lifecycle coverage: this approach does not address the method

implementation and the method execution phases of the Method Engineer-

ing lifecycle.

• Limited workflows: while the ISO/IEC 24744 standard does support the

specification of the process part of methods, it provides limited support for

the definition of processes with a complex workflow. In ISO/IEC 24744,

process elements are defined as work units, which are allocated in stages.

The workflow of the process is established by the stages, which can only

be associated by means of precedence relationships. Aharoni et al. also

highlight this problem in [139] and suggest enriching processes by means of

Chapter 3. State of the Art 77

Table 3.5: Classification of the OPEN Process Framework

OPEN Process Framework

Specification
language(s)

Name ISO/IEC 24744

Type Graphical

Formality level Medium

Size Big

Lifecycle
coverage

MD

Perspective Product and Process

Software
support

Name x
Type x
Use x
Automation level x

an extension of the stage concept. This extension allows work units to be

combined within stages in more meaningful ways than simple inclusion (e.g.,

concurrently or iteratively).

• Limited process executability : another limitation of the ISO/IEC 24744 stan-

dard refers to the lack of formalization of the process execution semantics.

This limitation hinders the execution (by means of a process engine) of

the processes that are defined by assembling OPF components (since these

components are compliant with the ISO/IEC 24744 standard).

Table 3.5 summarizes the relevant information of OPF according to the template

that is presented in Table 3.1.

3.2.1.5 Method Editor

In 2003, Saeki [140] presented a CAME environment that is called Method Editor.

This CAME environment builds on some of the concepts and techniques that

were previously introduced by Decamerone. For instance, Method Editor applies

assembly-based Method Engineering techniques and is based on the concept of

method fragment.

Figure 3.10 shows the general overview of Method Editor. As the figure shows,

the major component of this CAME environment is a method editor that allows

Chapter 3. State of the Art 78

Figure 3.10: Overview of Method Editor [140]

method engineers to manipulate the method fragments that are stored in the

method base as well as to assemble these fragments to obtain new methods. This

editor is a kind of diagram editor that allows method engineers to easily edit

method fragments and also to generate, import, and export textual specifications

in MEL [126]. For the creation and manipulation of fragments, the editor takes

advantage of UML as its metamodeling technique. Class diagrams are used for

the specification of product fragments, while process fragments are described by

means of activity diagrams. The description of a newly built method is used

for generating a software environment supporting the method. This environment

incorporates diagram editors, a product repository, and a navigation browser. The

diagram editors allow software engineers to create the method products, which are

stored in the product repository. The navigation browser provides browsing pages

that guide software engineers through the process of software development. While

the pages are being browsed, the corresponding diagram editors are automatically

invoked.

The most recent version of Method Editor is extended by means of a version

control system [141], thereby supporting version control and change management

of methods and method fragments.

Chapter 3. State of the Art 79

Table 3.6: Classification of Method Editor

Method Editor

Specification
language(s)

Name UML

Type Graphical

Formality level Medium

Size Big

Lifecycle
coverage

MD, MI, and ME

Perspective Product and Process

Software
support

Name Method Editor

Type CAME and MetaCASE

Use Research

Automation level Medium

Analysis of the Proposal

Since Method Editor is built upon some of the concepts and techniques that

were previously introduced by Decamerone, it is also a very complete approach

in terms lifecycle coverage and method perspectives. Nonetheless, it also presents

some important limitations:

• Limited process executability : the main limitation of Method Editor relates

to the lack of executability of the UML Activity Diagrams. This limitation

prevents the software environments that are obtained by Method Editor

from incorporating a process engine, which could offer more advanced exe-

cution facilities than the ones that are provided by the navigation browser.

• Limited tools for product creation: another important limitation of Method

Editor refers to the tools that enable the creation and manipulation of

method products during the method execution phase. Specifically, Method

Editor is only able to obtain diagram editors, neglecting other types of tools

such as code generators, M2M transformations, and textual editors.

Table 3.6 summarizes the relevant information of Method Editor according to the

template that is presented in Table 3.1.

Chapter 3. State of the Art 80

3.2.2 Paradigm-based

Paradigm-based Method Engineering is the most general of the three types of

Method Engineering. It is based on some initial idea that is expressed as a model

(or a metamodel). To construct methods, this model, which is called the paradigm

model, is evolved into a new model satisfying another engineering objective. The

paradigm model thus represents a baseline as-is model that is either instantiated,

abstracted, or adapted to obtain to-be models of new methods. It is important to

note that, in the case of adaptation, the as-is model and the to-be model are at

the same level of abstraction, while in the cases of abstraction and instantiation,

these models pertain to different levels [121].

In general, paradigm-based approaches rely on (meta)modeling as their under-

lying core technique. Since most assembly-based approaches are also based on

metamodeling, it is sometimes hard to distinguish paradigm-based approaches

from assembly-based approaches. In fact, some approaches can be considered to

be both assembly-based and paradigm-based. In this thesis, we consider to be

paradigm-based those approaches that (even if they support assembly) do not

put especial emphasis on the use of method parts, but rather their focus is on the

construction of methods using models and/or metamodels.

The main benefit of paradigm-based Method Engineering approaches is that, since

they rely on (meta)modeling as their underlying core technique, they are suitable

for defining methods at a high level of abstraction. In the following subsections,

we present some of the most relevant paradigm-based approaches.

3.2.2.1 Rolland et al. Approach

One of the first paradigm-based Method Engineering approaches was presented

by Rolland et al. in [142, 143]. This work proposes a decision-oriented process

metamodel called NATURE (see Figure 3.11). This metamodel is founded on the

idea that software engineers react contextually according to the domain knowl-

edge they acquire and react by analogy with previous situations they have been

involved in. In order to take into account this basic nature of the development pro-

cess, NATURE emphasizes the contextual aspect of decisions. Thus, the central

concept of the NATURE metamodel is the one of context.

Chapter 3. State of the Art 81

Figure 3.11: The NATURE metamodel [143]

In NATURE, contexts are hierarchically grouped into trees, which, in turn, are

grouped into forests. Contexts are tuples <situation, decision> where situation

is a part of a product it makes sense to make a decision on (e.g., an entity of an

ER model) and decision reflects a choice that a software engineer can make at

a given moment – e.g., creating (an entity). According to the metamodel, there

are three different types of contexts: executable, plan, and choice. Executable

contexts are the leaves of the trees; that is, the contexts that can be executed

by the software engineer. Plan contexts represent an abstraction mechanism by

which a context (that is viewed as complex) can be decomposed into a number

of subcontexts via composition links. The execution order of the subcontexts

is defined by a dependency graph whose nodes represent contexts and the links

define ordered transitions between contexts. On the other hand, choice contexts

are used to divide contexts into subcontexts by means of refinement links. Unlike

plan contexts, in choice contexts only one of the subcontexts will be executed. To

facilitate the selection of the context to be executed, choice criteria are associated

to the contexts. These criteria establish priority rules that allow software engineers

to select one alternative among several based on a set of arguments.

It is at this point important to clarify that NATURE looks upon methods from a

process-oriented perspective; a complementary product metamodel for NATURE

Chapter 3. State of the Art 82

Figure 3.12: Architecture of MENTOR [145]

is defined in [144]. In the NATURE formalism, methods are considered in a similar

way to Prakash’s proposal (see Section 3.2.1.2); that is, methods are viewed as

“specification languages” rather than “software development methods”. In fact,

Prakash emphasizes in [128] that NATURE is complementary to his work, in the

sense that NATURE allows method engineers to model the method dynamics;

that is, NATURE allows method engineers to model the way of working that

drives decision selection, which is external to the method in Prakash’s proposal.

With respect to the software support, a software tool supporting NATURE is

presented in [145, 146]. This tool is called MENTOR and its overall architecture

is graphically depicted in Figure 3.12. As the figure shows, the core component of

MENTOR is a guidance engine, which provides guidance based on the execution

of process models to both software engineers (who construct system specifica-

tions) and method engineers (who construct ways of working). In addition to the

guidance engine, MENTOR comprises a Method Engineering environment, an

Application Engineering environment, and a repository. The Method Engineer-

ing environment includes viewers, editors, and tools for the method engineer: the

product editor and the process editor allow the graphical specification of products

and processes, respectively; the method generator aids in the automatic instan-

tiation of predefined generic patterns that are stored in the method base. The

Chapter 3. State of the Art 83

Table 3.7: Classification of Rolland et al. approach

Rolland et al. approach

Specification
language(s)

Name NATURE

Type Graphical

Formality level High

Size Small

Lifecycle
coverage

MI

Perspective Product and Process

Software
support

Name MENTOR

Type MetaCASE

Use Research

Automation level Medium

Application Engineering environment constitutes the CASE part of MENTOR,

providing tools for supporting the execution of ways of working. Finally, the

repository stores product and process metamodels; product and process models

that are under development; and also process traces resulting from the execution

of ways of working.

Analysis of the Proposal

The main strong points of this approach relate to the support for the different

method perspectives and also to the software support. Nonetheless, this approach

presents one major limitation:

• Incomplete lifecycle coverage: in a similar way to all metaCASE environ-

ments (such as MERU), MENTOR only supports the technical aspects of

methods, even though methods comprise other aspects, such as the activity-

related [21]. Thus, MENTOR does not allow method engineers to specify

method elements such as tasks, activities, roles, documents, or quality met-

rics, which we consider to be mandatory in any approach that supports the

design and execution of software development methods. For this reason, we

consider MENTOR to be a metaCASE environment that focuses exclusively

on the method implementation phase of the Method Engineering lifecycle,

rather than a CAME environment that supports other phases, such as the

method design and the method execution.

Chapter 3. State of the Art 84

Table 3.7 summarizes the relevant information of the approach that is proposed

by Rolland et al. according to the template that is presented in Table 3.1.

3.2.2.2 MetaEdit+

MetaEdit+ [40, 42, 147, 148] is a commercial metaCASE environment that allows

users to build graphical DSLs (which are also called “methods” in MetaEdit+)

and code generators that are adapted to specific application domains. The imple-

mentation of generators is performed by means of MERL, a textual DSL that is

designed for turning models into text. The construction of methods is performed

at a higher level of abstraction without having to write source code. For the con-

struction of methods, MetaEdit+ provides a (meta)metamodeling language called

GOPRR and a tool suite for defining method concepts, their properties, associated

rules, symbols, and checking reports. When a method is defined, MetaEdit+ au-

tomatically provides CASE tool functionality for using the method: diagramming

editors, browsers, etc.

Figure 3.13 shows the (meta)metamodel of GOPRR. The name GOPRR is an

acronym that stands for the metatypes that are supported by the language:

Graph, Object, Property, Role, and Relationship. An additional metatype (Port)

was added afterwards, and, therefore, the language was renamed GOPPRR. The

semantics of all of these metatypes is the following. A Graph specifies one model-

ing language or method (e.g., the ER notation or BPMN). Objects are the basic

concepts of the methods (e.g., the entities of the ER notation or the tasks of

BPMN); objects typically appear as shapes in the diagrams. Properties are char-

acterizing attributes that are attached to the objects; properties typically appear

as textual labels or icons in the diagrams (e.g., the names of the entities of the

ER notation or the markers of the tasks of BPMN). Relationships are the con-

cepts that connect the objects; typically, relationships are represented as lines.

Roles define the ways in which objects participate in relationships; roles typically

appear as end points of relationships (e.g., as arrowheads). Finally, ports allow

method engineers to specify additional semantics with respect to how roles can

be connected with objects; typically, in the diagrams, ports are attached to the

objects in order to restrict the possible points of connection between the objects

and the roles.

Chapter 3. State of the Art 85

Figure 3.13: The GOPRR metamodel [149]

Since the GOPRR language is exclusively product-oriented, an extension was

proposed in [150] to provide process support in MetaEdit+. The process-oriented

extension of GOPRR is called GOPRR-p. The main goal of GOPRR-p is to en-

able the definition of process models that provide automated guidance for software

engineers when they use the environments that are generated with MetaEdit+.

To achieve this goal, GOPRR-p extends GOPRR with two additional metatypes:

Process Element and Action. Process Elements, which inherit from the GOPRR

object metatype, represent the basic concepts of the process models, such as the

tasks or the deliverables. To specify the semantics of process elements (i.e., how

these elements must be supported in a CASE environment), actions can be at-

tached to them. Actions capture and conceptualize CASE environment behavior;

for instance, opening an editor or closing dialog. Thus, when we associate actions

with process elements, the process elements become objects that execute actions

within the context of the CASE environment.

The general architecture of MetaEdit+ is illustrated in Figure 3.14. The heart of

Chapter 3. State of the Art 86

Figure 3.14: MetaEdit+ architecture [40]

the environment is the MetaEngine, which implements the underlying conceptual

data model (i.e., GOPPRR). Tools within MetaEdit+ request services to the

MetaEngine in order to access and manipulate repository data. These tools are

classified into five distinct families: environment management tools (for managing

features of the environment and its main components); model editing tools (for

creating, modifying, and deleting model instances or their parts); model retrieval

tools (for retrieving design objects and their instances from the repository for

reuse and review); model linking and annotation tools (for linking design objects

for traceability and memorization); and method management tools (for method

specification, management, and retrieval).

Chapter 3. State of the Art 87

Table 3.8: Classification of MetaEdit+

MetaEdit+

Specification
language(s)

Name MERL GOPPRR

Type Textual Graphical

Formality level Medium Low

Size Big Small

Lifecycle
coverage

MI

Perspective Product

Software
support

Name MetaEdit+

Type MetaCASE

Use Research and Commercial

Automation level High

Of especial relevance for this thesis are the method management tools. The pri-

mary goal of this tool family is to enable flexibility and ease in the construction

and use of methods. The method management tools family consists of the fol-

lowing main parts: a method base (which stores method fragments and symbols

used for representing object types); a method assembly system (which consists of

specialized tools for method assembly, such as metamodel editors and a symbol

editor); and the environment generation system (which consists of generators that

take as input method specifications and deliver usable and user-friendly software

environments).

Analysis of the Proposal

The MetaEdit+ environment represents an effective solution for defining modeling

languages and code generators. It is easy to use, well-documented, and it also

has an intuitive graphical design. Furthermore, to the best of our knowledge,

MetaEdit+ is the only Method Engineering tool that has been commercialized.

However, it presents two important limitations:

• Incomplete lifecycle coverage: MetaEdit+ falls short in providing support

for the design of software development methods since it only focuses on the

technical aspects of Method Engineering; for instance, MetaEdit+ allows

method engineers to develop a code generator that automates a method

task, but it does not support the creation of a method model that provides

a conceptual definition for this task.

Chapter 3. State of the Art 88

• Fully product-oriented : in a similar way to MERU, MetaEdit+ is fully

product-oriented. This is because the process-oriented extension of its con-

ceptual data model (i.e., GOPRR-p) is not implemented in the commercial

version of the tool.

Table 3.8 summarizes the relevant information of MetaEdit+ according to the

template that is presented in Table 3.1.

3.2.2.3 Ralyté et al. Approach

Ralyté et al. present in [151] an approach for Method Engineering that is based on

the evolution of an existing method, model, or metamodel into a new one better

adapted for a given situation and/or satisfying a different engineering objective.

In a similar way to their assembly-based approach (see Section 3.2.1.3), Ralyté et

al. propose a generic process model for guiding method engineers during the

evolution-driven process. The process model proposes several strategies to evolve

the initial paradigm model into a new one and provides guidelines supporting

these strategies.

Figure 3.15 graphically depicts the process model in the form of a map [132]. As

the figure shows, Ralyté et al. suggest to start the evolution-driven process by

constructing the product part of the method. This is indicated by the construct

a product model intention. To achieve this intention, four different strategies can

be followed: abstraction, instantiation, utilization, or adaptation. The abstrac-

tion strategy is followed to obtain the product model by raising (or lowering) the

abstraction level of a given model. The instantiation strategy is followed to ob-

tain the product model by instantiating a metamodel. The utilization strategy

and the adaptation strategy assist, respectively, in the adjustment of a model or

a metamodel to some specific circumstances.

When the product model is built, the method engineer can proceed to the next

intention: construct a process model. The reason why the construct a process

model intention follows the construct a product model intention (and not the

opposite) is because process models must conform to the product model (i.e.,

process steps, activities, actions must refer to product model parts in order to

construct, refine, or transform them). To achieve the construct a process model

Chapter 3. State of the Art 89

Figure 3.15: Process model of the paradigm-based approach [151]

intention, four different strategies can be applied: simple, context-driven, pattern-

driven, and strategy-driven. The simple strategy is useful to define simple process

models that can be expressed informally, for example, as textual descriptions.

The context-driven strategy suggests the use of the NATURE process modeling

formalism (which is summarized in Section 3.2.2.1). The pattern-driven strategy

suggests the use of a catalogue of patterns. Each pattern identifies a problem that

can occur during the construction of the product model and proposes a solution

applicable every time that the problem appears. The strategy-driven strategy

allows method engineers to combine several process models (i.e., maps) into one

complex process model.

Finally, note that, during the construct a process model intention, backtrack-

ing to the construct a product model intention is always possible thanks to the

refinement strategy. This strategy allows method engineers to improve the prod-

uct model based on data obtained during the construction of the process model.

Additionally, to check whether the final models match the initial requirements,

method engineers shall apply the completeness strategy. If the response is posi-

tive, then the evolution-driven process ends. In any other case, either the product

model, the process model, or both have to be revised to gain the required method

completeness.

Chapter 3. State of the Art 90

Table 3.9: Classification of Ralyté et al. approach (paradigm-based)

Ralyté et al. approach (paradigm-based)

Specification
language(s)

Name UML Map NATURE

Type Graphical Graphical Graphical

Formality level Medium High High

Size Big Small Small

Lifecycle
coverage

MD

Perspective Product and Process

Software
support

Name x
Type x
Use x
Automation level x

Analysis of the Proposal

Table 3.9 summarizes the relevant information of the paradigm-based approach

that is proposed by Ralyté et al. according to the template that is presented in

Table 3.1. The main limitations of this approach are the following:

• Lack of software support : the proposal of Ralyté et al. has neither been

implemented as a CAME environment nor as a metaCASE tool. Software

support is necessary in order to enable the practical application of the ap-

proach.

• Incomplete lifecycle coverage: in a similar way to most Method Engineering

approaches, the approach of Ralyté et al. does not address the method im-

plementation and the method execution phases of the Method Engineering

lifecycle.

• Limited process support : another limitation concerns the process support

since this approach only considers the small-grained processes that specify

how to develop particular product models, thereby neglecting the overall

process of software development.

Chapter 3. State of the Art 91

Figure 3.16: Example of product-oriented method [22]

3.2.2.4 Work Product Pool Approach

Gonzalez-Perez et al. introduce in [22, 152] the work product pool approach. This

approach is founded on the idea that traditional process-oriented methods are too

prescriptive and rigid, and most of them end up being ignored or bypassed. The

authors argue that, since the ultimate aim of software development is to deliver

a software product, methods should be described in terms of the intermediate

products that are necessary to reach this software product (plus the processes

that are required to produce the intermediate products). To obtain such product-

oriented methods, the authors suggest that method engineers start formulating the

following question: “what products are necessary to easily and directly obtain the

final software product?”. This question is done recursively; thus, only the products

that are vital to the construction of the final software product are identified. When

these products are identified, the processes for creating them can be defined. For

the definition of methods following the work product pool approach, Gonzalez-

Perez et al. adopt the ISO/IEC 24744 standard.

Figure 3.16 illustrates a simple example of a product-oriented method. The ul-

timate objective of this method is a finished software system. This product is

represented in the diagram as the right-most box. The arrows indicate that, to

obtain the final software system, it is necessary to develop a class model and a

use case specification. These products, in turn, require the development of a re-

quirements specification and a reusable asset pool. The letter “F” in a small circle

means final fulfillment. On the other hand, the letter “e” means that the target

Chapter 3. State of the Art 92

Figure 3.17: Screenshot of Method Composer [22]

product is externally provided, while the letter “i” means that the target product

is internally available.

The execution of this kind of methods relies on the existence of a work product

pool. This pool is a central repository that stores all the work products that exist

at any point in time during a method execution. Initially, when the execution

starts, the work product pool contains few products; specifically, it contains the

products that are internally available and also those that are externally provided.

As tasks begin to be carried out, existing work products are read, modified, and

deleted, and new work products are created, changing the population of the pool.

Eventually, the final system appears in the pool and the method execution can

be considered to be complete. In order to enable this product-oriented method

execution, Gonzalez-Perez et al. [22] define a set of algorithms that calculate,

based on the content of the work product pool, the tasks to be performed by

Chapter 3. State of the Art 93

software engineers. This contextual guidance contrasts with the guidance that is

provided by process-oriented methods, which suggest the tasks to be performed

based on a pre-defined and fixed plan.

The work product pool approach is implemented in a CAME environment that is

called Method Composer [22, 153]. This CAME environment allows method engi-

neers to define product-oriented methods following the ISO/IEC 24744 standard

and it also allows software engineers to execute these methods. For the execution

of methods, Method Composer implements the algorithms that are proposed by

the work product pool approach. These algorithms allow software engineers to

display a list of candidate tasks at any point in time and choose, from that list,

the task that they wish to execute. The list of candidate tasks is dynamically

calculated on the fly according to the role of the software engineer, the organi-

zation’s context, and, most importantly, the content of the work product pool.

Figure 3.17 illustrates how Method Composer displays the list of candidate tasks

as well as the tasks that are in progress. The work product pool pane appears

at the bottom, showing an individual work product per row. Users’ actions of

any type (e.g., creation of a work product, modification of an existing one, or

completion of a task) must be reported manually to the system (even if they do

not alter the work product pool) so that Method Composer updates the state of

the method instance that is being executed.

Analysis of the Proposal

Table 3.10 summarizes the relevant information of the Work Product Pool ap-

proach according to the template that is presented in Table 3.1. We consider that

the main limitations of this approach are the following:

• Lack of support for method implementation: the major limitation of this

approach is the lack of support for the method implementation phase of

the Method Engineering lifecycle. While Method Composer does provide

support for method execution, this support only involves guidance on what

tasks to execute. The CAME environment does not incorporate tools that

allow software engineers to perform the tasks and develop the work prod-

ucts (e.g., textual/graphical editors, M2M transformations, and code gener-

ators). This deficiency restricts the level of automation that Method Com-

poser can achieve since all of the software engineers’ actions occur outside

Chapter 3. State of the Art 94

Table 3.10: Classification of the Work Product Pool approach

Work Product Pool approach

Specification
language(s)

Name ISO/IEC 24744

Type Graphical

Formality level Medium

Size Big

Lifecycle
coverage

MD and ME

Perspective Product

Software
support

Name Method Composer

Type CAME

Use Research

Automation level Low

of the context of the CAME environment. For instance, if a software engi-

neer transforms (either automatically or manually) a UML class model into

an ER model, he/she is forced to manually notify the system about this

action. In an ideal scenario, Method Composer would support the M2M

transformation, and, thus, it could automatically transform the models as

well as automatically set the corresponding method task as executed if the

transformation finished successfully.

• Fully product-oriented : this approach is based on a work product pool that

provides a fully product-oriented view of the development process.

3.2.3 Configuration-based

Method engineers in practice often take an existing organization-wide method

(a.k.a. base method) as their point of departure, rather than a set of method

parts for assembly [26]. Based on this observation, configuration-based Method

Engineering aims to facilitate the adaptation of this base method to the actual

needs of the development project at hand. This adaptation to situational factors

is collectively known as “method configuration”.

In a similar way to paradigm-based approaches, configuration-based approaches

take a model as starting point and evolve this model into a new one that satisfies

another engineering objective. Therefore, it is sometimes difficult to distinguish

Chapter 3. State of the Art 95

configuration-based approaches from paradigm-based approaches. In fact, some

approaches can be considered to be both configuration-based and paradigm-based.

In this thesis, we consider that paradigm-based approaches are more general, in

the sense that any approach that supports the construction of methods using

models and/or metamodels can be considered to be paradigm-based. In con-

trast, configuration-based approaches focus on (semi)automating the process of

adaptation of an existing base method to various situational factors or project

characteristics.

The use of configuration-based Method Engineering provides three major ben-

efits. First, it reduces the workload of method engineers, since project-specific

methods are obtained (semi)automatically, rather than manually by assembly, in-

stantiation, or abstraction. Second, by adopting a configuration-based approach,

organizations gain the required flexibility to build methods that are adapted to

the context of use. Finally, since project-specific methods are defined in-house,

software engineers are motivated to use them due to the feeling of method own-

ership [36]. In the following subsections, we present some of the most relevant

configuration-based approaches.

3.2.3.1 Deneckère et al. Approach

Deneckère et al. propose in [154, 155] a Method Engineering approach for enhanc-

ing existing methods with new features and properties. These kinds of enhance-

ments represent a type of method configuration that is known as extension-based

Method Engineering [9]. One example of method extension is introducing tempo-

ral features so that the method deals more systematically with the representation

of calendar time.

In order to carry out the extension of methods, Deneckère et al. advocate the use

of patterns. The general idea concerning any type of pattern is that a pattern

relates a recurrent problem to a solution, which can be applied any time the

problem occurs [154]. Deneckère et al. adopt this notion of pattern and apply

it in context of extension-based Method Engineering; the result is the notion

of extension pattern. According to Deneckère et al., an extension pattern is

a reusable component that helps method engineers to identify typical extension

Chapter 3. State of the Art 96

Figure 3.18: Structure of an extension pattern [154]

Figure 3.19: Interface of an extension pattern [154]

Figure 3.20: Body of an extension pattern [154]

situations (i.e., the recurrent problem) and provides guidance (i.e., the solution)

on how to perform the required extensions [9].

Figure 3.18 shows the general structure of an extension pattern. As the figure

shows, an extension pattern comprises three main parts: descriptor, interface,

and body. The descriptor manages the reusability aspects; that is, the context in

which it is useful to reuse the pattern. The interface (see Figure 3.19) manages

the applicability aspects; that is, in which situation and for which intention the

pattern is applicable. The interface is a triplet <situation, intention, target>

where situation is a (product) part of the method to be extended, intention refers

to the extension to apply, and target is the output of this extension. Finally, the

body of an extension pattern (see Figure 3.20) manages the reusable knowledge;

that is, the solution proposed by the pattern. The body contains the guidelines

Chapter 3. State of the Art 97

Figure 3.21: Process model for method extension [9]

to be followed when the pattern is applied (i.e., the process part of the pattern)

as well as the definition of the product under modification. The product part of a

pattern typically represents the concepts of a model to extend. On the other hand,

the guidelines can be expressed either formal or informally. Formal guidelines are

expressed using the NATURE process modeling formalism [142], while informal

guidelines are expressed in natural language. For the definition of the product

part of a pattern, Deneckère et al. make use of the class diagrams of the UML

standard.

In order to facilitate the process of method extension, Deneckère et al. propose a

generic process model for guiding method engineers. Figure 3.21 graphically

depicts this process model in the form of a map. As the figure shows, Deneckère

et al. advocate two different ways to extend a method: (1) directly through the

pattern-matching strategy or (2) through the path select a meta-pattern, extend a

method applying the pattern-based strategy. The former helps to match extension

patterns stored in a library to the requirements of the extension; the latter selects

first a meta-pattern corresponding to the extension domain, and, then, guides the

method extension by applying the patterns suggested by the meta-pattern. Both

approaches use a library of extension patterns, but they do it in different ways.

The domain-centric way exploits the fact that a set of patterns can be embodied

in a meta-pattern that is suitable for a specific domain (e.g., temporal data struc-

tures). If the required extension does not correspond to a well-identified extension

domain, then the pattern-matching approach must be selected. In [9], Ralyté et al.

provide a more in-depth summary about each of these two approaches: domain-

driven and pattern-matching. The notion of meta-pattern is further discussed by

Deneckère in [156].

Chapter 3. State of the Art 98

Table 3.11: Classification of Deneckère et al. approach

Deneckère et al. approach

Specification
language(s)

Name UML NATURE

Type Graphical Graphical

Formality level Medium High

Size Big Small

Lifecycle
coverage

MD

Perspective Product and Process

Software
support

Name x
Type x
Use x
Automation level x

Analysis of the Proposal

Table 3.11 summarizes the relevant information of the extension-based approach

that is proposed by Deneckère et al. according to the template that is presented

in Table 3.1. The limitations of this approach are similar to those that were

identified for Ralyté’s approach in Sections 3.2.1.3 and 3.2.2.3 These limitations

are the following:

• Lack of software support : the approach of Deneckère et al. lacks a soft-

ware tool that enables the practical application of extension-based Method

Engineering.

• Incomplete lifecycle coverage: the approach of Deneckère et al. focuses

exclusively on the method design phase of the Method Engineering lifecycle.

Thus, it enables the conceptual specification of methods, but neglects their

technical support (i.e., the construction of integrated environments that

support the method execution).

• Limited process support : another limitation of this approach concerns the

support for the process part of methods. Similarly to the method chunks

that are proposed by Ralyté et al. (see Section 3.2.1.3), the extension pat-

terns combine a product part with a process part. Thus, they define small-

grained processes that establish how to manipulate particular product parts,

but they neglect the overall process of software development.

Chapter 3. State of the Art 99

Figure 3.22: The method component concept (external view) [158]

3.2.3.2 Method for Method Configuration

One of the most relevant configuration-based Method Engineering approaches

was presented by Karlsson et al. in [4, 157]. This work defines a meta-method

that is called Method for Method Configuration (MMC). In the MMC, software

development methods are viewed as collections of reusable parts that are called

method components.

A method component can be defined as “a self-contained part of a software

development method expressing the transformation of one or several artifacts into

a defined target artifact and the rationale for such a transformation” [33, 158].

Similarly to method chunks [130], method components subscribe to the idea of in-

formation hiding [26], inspired by the traditional use of the component concept in

software engineering [159]. For this reason, the method component construct con-

sists of two basic views: the external view and the internal view, which are shown

in Figures 3.22 and 3.23, respectively. The external view is the one that enables

information hiding and reduces the focus on details during method configuration.

This view is given by an interface that defines the recommended input artifacts of

the component, the component’s deliverable, and the component’s overall goals.

On the other hand, the internal view consists of method elements (which can be

thought of as method fragments at lower layers of granularity than the component

itself), and goals (which are anchored in the values of the method creator [33]).

All of the method elements in a method component contribute to achieve its over-

all goals. The most important specialization of the method element concept is the

artifact class, since method component is an artifact-centric concept. The input

artifacts of the component are transformed into a deliverable by means of actions

that are performed by actor roles. When an actor performs an action, concepts

and notations are used to manipulate the artifacts.

Chapter 3. State of the Art 100

Figure 3.23: The method component concept (internal view) [158]

In contrast to assembly-based approaches, whose point of departure is a set a

method parts for assembly, the MMC takes a base method as starting point. To

perform the configuration of the base method, the MMC relies on a set of con-

cepts, which are shown in Figure 3.24. Aside from the method component concept,

which is explained above, there are two additional constructs that represent the

key drivers of the process of method configuration: configuration package and con-

figuration template. Prior to the definition of these two concepts, Karlsson et al.

define the concept of project characteristic as “a delimited part of a development

Chapter 3. State of the Art 101

Figure 3.24: Main concepts of MMC [39]

situation, focusing on a certain problem or aspect which the method configuration

aims to solve or handle”. One example of project characteristic is “Data persis-

tence”, which has two possible values: “yes” and “no”. If we consider a project

that is characterized as “Data persistence = no”, then the project needs a config-

uration of the base method that does not include, e.g., method components that

deal with database design. A configuration package encapsulates such a method

configuration. Karlsson et al. define configuration package as “a configuration

of the base method that is suitable for one specific project characteristic’s value”.

Within a configuration package, the components of the base method are classi-

fied according to the classification schema4 that is shown in Table 3.12. When

a method engineer classifies a method component, he/she is specifying how the

component will be executed in the projects that exhibit the characteristic’s value

that the configuration package represents. For instance, in a configuration pack-

age that represents the value “Data persistence = no”, the method components

dealing with database design will be classified as “Omit”. Another task of method

engineers (aside from classifying method components) is to combine the resulting

4For an in-depth description of the classification schema, see [157]

Chapter 3. State of the Art 102

Table 3.12: Classification schema for method components [157]

configuration packages to obtain larger structures. This is because, in the real

world, development projects are not simple enough to be captured through one

single characteristic. These larger structures are called configuration templates.

A configuration template can be defined as “a combined method configuration,

based on configuration packages, for a set of recurrent project characteristics” [4].

Configuration templates can therefore be seen as project-specific methods that are

fine-tuned and adapted to the various characteristics of particular development

projects.

Based on the concepts that are shown in Figure 3.24, Karlsson et al. define

the MMC. The activities and artifacts that comprise the MMC are graphically

depicted in Figure 3.25. As the figure shows, the MMC is divided into three sec-

tions. Section 1 deals with the construction of configuration packages. Specifically,

the activity “Identify Development Situations and Characteristics” indicates that,

first, development projects must be abstracted as sets of key-distinctive charac-

teristics. Then, these characteristics are stored in the “Base of Development Sit-

uations and Characteristics” so that they can be later used to build configuration

packages5. This is done in the activity “Administration of Configuration Pack-

ages”. The resulting packages are stored in the “Base of Configuration Packages”.

Section 2 of the MMC deals with configuration templates. Specifically, this section

involves two main activities: “Selecting Configuration Packages” and “Combining

Configuration Packages”. The former is carried out matching project character-

istics with existing configuration packages. The latter involves the resolution of

classification conflicts between configuration packages and the evaluation of the

consistency of the resulting configuration templates. These templates are stored

5Note that choosing a base method is outside the scope of the MMC.

Chapter 3. State of the Art 103

Figure 3.25: The Method for Method Configuration [4]

Chapter 3. State of the Art 104

Figure 3.26: Screenshot of MC Sandbox [39]

in the “Base of Configuration Templates”. Finally, section 3 deals with starting

a specific project. This involves an investigation of the project situation, as indi-

cated by the activity “Identifying Project Characteristics”. If a matching configu-

ration template is found, it must be fine-tuned into a situational method. This is

illustrated by “Matching Project and Configuration Template”. The resulting sit-

uational method is used during the project. The feedback that is obtained is used

for improving the existing configuration packages and configuration templates.

The MMC is implemented in a CAME environment that is called MC Sandbox

[39, 160]. This CAME environment supports five basic operations: definition of

method components, edition of the base method, definition of configuration pack-

ages, definition of configuration templates, and definition of situational methods.

Figure 3.26 shows a screenshot of MC Sandbox. As the figure shows, the screen

of MC Sandbox is divided horizontally. The lower section contains the method

modeling area, which makes use of the external view of method components.

These components are depicted as rectangles; the arrows represent flow of arti-

facts. When a method component is selected in the modeling view, the content

of the component interface is presented in the upper left section of the screen.

The right part of the upper section shows as a tree structure the complete set

Chapter 3. State of the Art 105

Table 3.13: Classification of the Method for Method Configuration

Method for Method Configuration

Specification
language(s)

Name x
Type x
Formality level x
Size x

Lifecycle
coverage

MD

Perspective Product

Software
support

Name MC Sandbox

Type CAME

Use Research

Automation level High

of existing configuration packages. This tree structure is sorted by the project

characteristics that the configuration packages belong to.

Analysis of the Proposal

One important advantage of the MMC is the high level of automation that is

achieved during the configuration process: methods are (semi)automatically ob-

tained from the method requirements; that is, methods are obtained directly from

the characteristics of the projects where the methods will be applied. This reduces

the complexity of the Method Engineering approach, and, as a consequence, facil-

itates its application in practice. In contrast to this advantage, we also identified

two important limitations:

• Incomplete lifecycle coverage: the MMC is exclusively focused on the con-

ceptual configuration of methods so that they meet particular project needs;

thus, it only supports the method design phase of the Method Engineering

lifecycle.

• Fully product-oriented: the MMC does not support the process part of meth-

ods since the method component construct is exclusively product-oriented.

Table 3.13 summarizes the relevant information of the MMC according to the

template that is presented in Table 3.1.

Chapter 3. State of the Art 106

Figure 3.27: Overview of the PCA [6]

3.2.3.3 Process Configuration Approach

Bajec et al. propose in [6] the Process Configuration Approach (PCA). The

general idea that lies behind the PCA is illustrated in Figure 3.27. In the PCA,

project-specific methods are created by selecting components from a base method.

The selection of components is done automatically by processing rules that tell in

what circumstances or project situations it is compulsory, advisable, or discour-

aged to use a particular component.

Unlike the MMC, the PCA does not define its own notion of method component

but rather defines a generic data structure underpinning any arbitrary method

(i.e., a metametamodel). This generic data structure makes the PCA neither a

product-oriented nor a process-oriented approach; instead, the PCA is a generic

approach that could be applied to any model that instantiates the metameta-

model.

Figure 3.28 illustrates the main concepts of the generic data structure. As the

figure shows, the classes of the metametamodel are MetaElement (which can be

content elements such as activities, tools, and roles; or process flow elements, such

as decision nodes, joins, and synchronisations) and MetaLink (which represents

links between metaelements). By using such a generic data structure, a base

method is represented as a structure of instances of metaelements and metalinks,

Chapter 3. State of the Art 107

Figure 3.28: Generic data structure of the PCA [6]

and a project-specific method as a selection of the elements and links of the base

method.

To perform the selection of elements from the base method, the PCA proposes

the use of constraint rules. Constraint rules can be seen as assertions that

restrict some aspect of the PCA for constructing project-specific methods. For

instance, the rule “the deliverable Business Model depends on the activity Busi-

ness modeling” indicates that, if the deliverable is selected, then the activity must

be selected as well. This kind of rules allow the PCA to automate the configura-

tion process. The algorithm that supports the PCA starts by selecting an element

of the base method (typically, a starting activity) and ends when there is no link

that connects the current element further with any other element.

The PCA is supported by a CAME environment that is called Agile Methodology

Toolset (AMT) [37]. Figure 3.29 shows the general architecture of AMT. As the

figure shows, AMT consists of six interconnected modules: MethAdapt, MethE-

licit, MethModel, MetEval, MethGen, and MethUse. The MethAdapt module

facilitates method configuration applying constraint rules. MethElicit and Meth-

Model are used for method modeling. While the former supports the definition

Chapter 3. State of the Art 108

Figure 3.29: High level architecture of the AMT toolset [37]

of metamodels, the latter provides a graphical editor for metamodel instantia-

tion. The main purpose of MethEval is to facilitate continuous evaluation of the

method. The evaluation is carried out in a series of surveys that are conducted

among all of the method users. MethGen represents a module for generating

method reports. Finally, MethUse is utilized by method users who require access

to the electronic method reference guide. The main purpose of this module is to

make access to the method content as easy and quick as possible.

Analysis of the Proposal

One important advantage of the PCA is that it achieves a high level of automation

thanks to the use of constraint rules. In contrast to this advantage and similarly

to the MMC, the PCA has the following limitation:

• Incomplete lifecycle coverage: the PCA is exclusively focused on the concep-

tual configuration of methods so that they meet particular project needs;

thus, it only supports the method design phase of the Method Engineering

lifecycle.

Table 3.14 summarizes the relevant information of the PCA according to the

template that is presented in Table 3.1.

Chapter 3. State of the Art 109

Table 3.14: Classification of the Process Configuration Approach

Process Configuration Approach

Specification
language(s)

Name x
Type x
Formality level x
Size x

Lifecycle
coverage

MD

Perspective x

Software
support

Name AMT

Type CAME

Use Research

Automation level High

3.3 Conclusions

This chapter presents a state-of-the-art review of Method Engineering. The review

analyzes the most significant approaches that deal with the design, implementa-

tion, and execution of software development methods. Thus, the approaches of

the review were not selected only due to their relevance in the Method Engineer-

ing field but also due to their closeness to the main topic of this thesis. In the

review, the approaches are classified in three main categories according to their

underlying strategy: assembly-based, paradigm-based, and configuration-based.

For each approach, the review presents a summary of the approach together with

an analysis of its main limitations.

In order to extract common limitations and disclose the potential contributions

of this thesis, we analyzed all of the approaches in conjunction. As a result, we

identified four main limitations. Below, we describe these limitations and outline

the contributions of this thesis with respect to these issues.

High complexity. The state-of-the-art review that is presented in this chap-

ter illustrates that Method Engineering approaches are, in general, com-

plex to apply mainly due to the extensive knowledge that is required to

put them into practice. This is especially true for assembly-based and

paradigm-based approaches since they are purely manual. On the other

hand, configuration-based approaches ease the burden of method engineers

Chapter 3. State of the Art 110

since they are (semi)automatic. However, these approaches require the man-

ual definition of a base method that must reflect the actual performance of

an entire organization in all its projects, which can result in a large model

that is difficult to understand and expensive to maintain.

In addition to the level of automation, another important aspect that affects

the applicability of Method Engineering is the formality level of the lan-

guages. For instance, languages such as MEL, NATURE, Map, and MRSL

are highly formal and, therefore, they seem more appropriate for academic

environments. This problem is more significant in the case of textual lan-

guages (e.g., MEL and MRSL) since they require that method engineers

work at a low level of abstraction.

In order to alleviate the inherent complexity of Method Engineering, we

propose making use of MDE techniques, in particular metamodeling, model

transformations, and models at runtime. MDE techniques allow the method

engineer to work at a high level of abstraction and they also increase au-

tomation, which is generally acknowledged as one of the most challenging

and unsolved issues of Method Engineering [3, 161].

It is important to note that the application of metamodeling in Method

Engineering is not new. In assembly-based approaches, method parts are

instances of classes that are defined in a metamodel. Configuration-based

approaches depend on a base method, which is instance of a specific meta-

model. Paradigm-based approaches are generally based on metamodeling.

Nonetheless, we leverage method models going one step further. Specifi-

cally, our approach uses method models as input of model transformations

that (semi)automatically generate supporting software environments (i.e.,

method implementations). To the best of our knowledge, none of the re-

viewed approaches applies model transformations for this purpose. Saeki

discusses in [162] the role of model transformations in Method Engineering;

however, in this work, the author proposes two transformational approaches

(for, respectively, performing method assembly and obtaining formal method

descriptions), which are not related to the use that is proposed in this thesis.

In addition to model transformations, in this thesis we also leverage method

models at runtime to provide support for method execution. By apply-

ing model transformations and models at runtime, we increase the value of

method models in terms of how much functionality they deliver. Our goal is

Chapter 3. State of the Art 111

Table 3.15: Summary of lifecycle coverage

Design Impl. Exec.
Brinkkemper et al. + +/- +/-
Prakash - + -
Ralyté et al. (assembly) + - -
OPF + - -
Method Editor + +/- +/-
Rolland et al. - + -
MetaEdit+ - + -
Ralyté et al. (paradigm) + - -
Work Product Pool + - +
Deneckère et al. + - -
MMC + - -
PCA + - -

twofold; first, we aim to reduce the effort that requires designing and imple-

menting methods, and, second, we aim to assist software engineers during

the process of software development.

Incomplete lifecycle coverage. Most of the reviewed approaches only support

one of the phases of the Method Engineering lifecycle. This reality is il-

lustrated in Table 3.15, which summarizes the lifecycle coverage that the

approaches provide. The “+” symbols indicate phases that are supported

by the approaches; the “-” symbols indicate the opposite; and the “+/-”

symbols indicate phases that are supported with limitations. As the table

shows, only the Work Product Pool approach supports more than one phase.

The approach of Brinkkemper et al. and Method Editor also support more

than one phase, but they present important limitations with respect to pro-

cess executability and CASE tool support. The rest of the approaches either

focus on the method design or the method implementation. Approaches such

as MMC, PCA, or Ralyté’s provide rich ways to design software develop-

ment methods, but they do not offer CASE tool generation capabilities. In

contrast, approaches such as MetaEdit+, Prakash’s, or Rolland’s focus on

the construction of customized CASE environments, but they neglect the

design of the supported methods.

In this thesis, we study the linkage between the design, implementation,

and execution of software development methods. Our main goal is to bridge

Chapter 3. State of the Art 112

Table 3.16: Summary of perspectives

Product Process
Brinkkemper et al. + +/-
Prakash + -
Ralyté et al. (assembly) + +/-
OPF + +/-
Method Editor + +/-
Rolland et al. + +/-
MetaEdit+ + -
Ralyté et al. (paradigm) + +/-
Work Product Pool + -
Deneckère et al. + +/-
MMC + -
PCA x x

the gap between these three phases in order to provide a methodological

approach and software infrastructure that equally encompass all of them.

Limited process support. Even though methods are composed of two interre-

lated aspects – product and process – most of the reviewed approaches are

product-oriented. This is illustrated in Table 3.16, which summarizes the re-

sults of the review with respect to the perspective property. The “+” symbols

indicate perspectives that are supported by the approaches; the “-” symbols

indicate the opposite; the “+/-” symbols indicate perspectives that are sup-

ported with limitations; and the “x” symbols indicate perspectives that do

not apply to the approach under study. As the table shows, none of the ap-

proaches fully supports both perspectives, while all of them provide adequate

coverage of the product perspective. Product-oriented approaches provide

precise solutions to define the artifacts to be produced during the method

execution and also how these artifacts must be created and manipulated.

However, these approaches provide limited support for the specification and

the execution of the process part of methods. In general, assembly-based

approaches (such as those by Ralyté or Brinkkemper) define the develop-

ment process when the method parts are assembled, generally by means of

precedence relationships. Thus, the resulting process is limited in terms of

control flow since complex behavior cannot be specified. Additionally, these

approaches typically fail to address the producer aspects of methods, which

are indirectly represented by means of attributes of the proposed method

Chapter 3. State of the Art 113

parts. On the other hand, in paradigm-based and configuration-based ap-

proaches, the process depends on the underlying metamodel. Nonetheless,

most of the metamodels that are used in Method Engineering are product-

oriented (e.g., GOPRR, MVM, and UML). In addition to these metamodels,

various standard metamodels have recently appeared (e.g., ISO/IEC 24744

and SPEM 2.0). While these standards do support the specification of the

process part of methods, they provide limited support for the definition of

processes with a complex control flow. Furthermore, they do not formalize

execution semantics, which hinders the automated execution of the processes

that are defined using these languages.

In this thesis, we study how Process Modeling Languages can be used in

the context of Method Engineering in order to improve method definitions

in terms of process specification and process executability. In particular, we

advocate the use of BPMN 2.0 in combination with SPEM 2.0, since SPEM

2.0 provides adequate support for method modeling, while it also offers pow-

erful mechanisms for enhancing process definitions via behavioral modeling

formalisms (such as BPMN 2.0). The combination of SPEM 2.0 and BPMN

2.0 is further justified in Appendix A, which provides a comparative analysis

of these two languages.

Lack of software support. All of the Method Engineering approaches that are

analyzed in this chapter have contributed to establish a solid and wide the-

oretical basis in the Method Engineering field. To put this theory into

practice, some approaches have also been implemented as CAME or meta-

CASE environments. However, the use of this kind of tools has not been

as widespread as expected partly because most of them still represent aca-

demic prototypes – up to now, MetaEdit+ is the only one that has been

commercialized – that do not cover the entire lifecycle of Method Engineer-

ing. In general, CAME environments (such as Method Composer and MC

Sandbox) focus exclusively on the method design, while metaCASE envi-

ronments (such as MetaEdit+ and MERU) neglect this phase but provide

advanced engineering techniques for method implementation. These differ-

ences in focus have created a situation where the Method Engineering field

still lacks proper software support that equally enables the design, imple-

mentation, and execution of software development methods.

Chapter 3. State of the Art 114

In order to develop a software environment that supports these three phases,

in this thesis we analyze the requirements for such a tool and define a soft-

ware architecture based on these requirements. The architecture has also

been implemented in the context of Eclipse. The resulting CAME environ-

ment is called MOSKitt4ME.

Chapter 4

A Model-Driven Approach

for Method Engineering

This chapter introduces a novel Method Engineering approach that aims to over-

come the four limitations that are identified in Chapter 3 (see Section 3.3): high

complexity, incomplete lifecycle coverage, limited process support, and lack of soft-

ware support. To meet this challenge, our methodological approach advocates the

use of Model-Driven Engineering (MDE) techniques. The combination of MDE

and Method Engineering, which we refer to as model-driven Method Engineering,

involves the intensive use of models to support three phases of the Method Engi-

neering lifecycle: design, implementation, and execution. We believe that the use

of MDE reduces the complexity of Method Engineering (which in turn positively

affects its usefulness [163, 164, 165]) because it allows method engineers to work

at a high level of abstraction and it also increases automation and reuse. In our

approach, the level of abstraction is raised by allowing method engineers to design

methods as models using a DSL that provides high-level conceptual constructs.

On the other hand, automation is increased by means of model transformations,

which take the method models as input and automatically generate method imple-

mentations; these method implementations are integrated environments that use

the method models at runtime to assist software engineers during the execution

of development projects. Finally, reuse is increased by allowing method/software

engineers to encapsulate (in reusable assets) parts of the method models and

115

Chapter 4. A Model-Driven Approach for Method Engineering 116

also components of the supporting software environments. Thus, we enable the

rapid construction of method models and we also automate the implementation

of methods via the composition of reusable software components.

Our methodological approach supports the two parts that comprise methods –

product and process – without neglecting the method participants and the method

tools. To support the process part of methods, our approach prioritizes the spec-

ification of the method workflow, which determines the sequence of tasks to be

performed by software engineers as well as the participants that are involved in

each of these tasks. For the specification of the product part, our approach allows

method engineers to associate products (which are defined in the method models

by means of conceptual primitives such as “product” or “artifact”) with reusable

assets (which are stored in a repository). Depending on the asset type, these

associations have different meaning. For instance, if a product is associated with

an asset that contains a metamodel, then the asset specifies the product struc-

ture; on the other hand, the assets that encapsulate software tools (e.g., graphical

editors or code generators) enable the specification of the tools that will support

the creation of the products during the method execution.

In order to provide software support for the methodological approach that is

presented in this chapter, we define a supporting software architecture and we

also implement this architecture in the context of Eclipse. The resulting CAME

environment is called MOSKitt4ME and is presented in detail in Chapter 5.

In a nutshell, the above discussion outlines the novel characteristics of our method-

ological approach. From these characteristics, we can generalize a key aspect that

differentiates our approach from state-of-the-art Method Engineering: our ap-

proach envisions Method Engineering as a whole integrated discipline. This is in

line with the idea of holism, which maintains that systems operate as wholes and

their functioning cannot be fully understood solely in terms of their component

parts [166]. By analogy to this idea, our approach aims to address all of the phases

that comprise the Method Engineering lifecycle, supporting also all of the aspects

that comprise software development methods. This is unlike current Method Engi-

neering approaches, which in general try to explain Method Engineering in terms

of its component parts, thereby neglecting the relationships that exist between

these parts. For instance, the approaches that are based on metaCASE technol-

ogy (see, e.g., [7, 40]) are exclusively focused on the technical aspects of Method

Chapter 4. A Model-Driven Approach for Method Engineering 117

Engineering; thus, these approaches support the implementation of software de-

velopment methods but they do not address the relationships that exist between

these implementations and their conceptual counterparts. Other examples are ap-

proaches such as those by Karlsson et al. [4, 157] and Gonzalez-Perez et al. [22],

which view methods through an exclusively product-oriented perspective, thereby

neglecting the overall process of software development.

Due to the relevance of viewing Method Engineering in a holistic manner, this

chapter is structured according to the phases that comprise the Method Engi-

neering lifecycle: design, implementation, and execution. Prior to describing how

our approach supports these phases, Section 4.1 provides an overview of the ap-

proach. Then, the phases of method design, method implementation, and method

execution are detailed in Sections 4.2, 4.3, and 4.4, respectively. In each of these

sections, we put special emphasis on how our approach supports the product and

process aspects of software development methods. Finally, Section 4.5 draws some

conclusions about the present chapter. For two examples of use of our method-

ological approach, we refer the reader to the industrial case study that is described

in Appendix B and also to the technical report that can be found in [167].

4.1 Overview

In this section, before detailing our methodological approach, we provide a gen-

eral overview. Specifically, this section outlines the origins of the approach (i.e.,

the context where our approach emerged) and the process that we followed for

its development. Additionally, we provide an overview of the three phases that

comprise the approach.

4.1.1 Origins: The MOSKitt Project

Our methodological approach emerged in the context of the MOSKitt project,

which constitutes a collaborative work between the PROS research center and the

CITMA to develop an Eclipse-based environment that supports the gvMétrica

method (see Section 1.5). The result of the project was the MOSKitt tool, whose

last public version was released at the end of 2012.

Chapter 4. A Model-Driven Approach for Method Engineering 118

As Section 2.3.5 describes, MOSKitt has two important characteristics. First,

it is built on Eclipse; therefore, it implements the Eclipse plug-in architecture.

This architecture allows MOSKitt to be easily reconfigured and/or extended with

new tools. Second, MOSKitt incorporates a wide range of tools for software

systems analysis/design (such as graphical editors for defining UML 2.0 models

and database schemas) and code generation (in different languages such as Java

and PHP) as well as metatools that enable the construction of tools for software

development (e.g., frameworks such as FEFEM, which enables the rapid creation

of form-based editors). The infrastructure of MOSKitt also provides tools that

facilitate the synchronization and navigation of models as well as the definition

and execution of model transformations. Thus, MOSKitt embodies not only a

CASE environment that supports a development method (i.e., gvMétrica), but it

also offers an extensible platform for building CAME and CASE environments.

Despite the potential of MOSKitt, practitioners from the CITMA were still dis-

appointed with (1) the high effort that was required to adapt the tool to changes

in gvMétrica and (2) the lack of appropriate support for method execution. To

solve these problems, we took advantage of the plug-in architecture of MOSKitt

and developed MOSKitt4ME: a tool that is built upon MOSKitt and implements

the model-driven Method Engineering approach that is detailed in this chapter.

MOSKitt4ME alleviates the problems of MOSKitt because (1) it increases the de-

gree of automation that is achieved in the construction and adaptation of methods

and CASE environments, and (2) it provides assistance that allows software en-

gineers to execute methods more easily.

4.1.2 Developing the Methodological Approach

The problems that were identified in MOSKitt imposed a mandatory requirement:

our approach (and, therefore, the MOSKitt4ME environment) had to support

not only the method design phase of the Method Engineering lifecycle, but also

the implementation and execution phases. With this requirement in mind, we

developed our approach following a two-step process.

In the first step of the process, we focused on the technical aspects of the Method

Engineering lifecycle; that is, we determined how software environments had to

be structured to support the methods defined by method engineers. To this end,

Chapter 4. A Model-Driven Approach for Method Engineering 119

we analyzed how MOSKitt is structured to support gvMétrica. In this analysis,

we noted that we could leverage the plug-in architecture of MOSKitt by encap-

sulating the MOSKitt components in reusable assets; thus, these assets could

be systematically used in the construction of new software environments (that

support new versions of gvMétrica or other development methods).

Once we finished the analysis of MOSKitt, we performed the second step of the

process, which deals with the conceptual aspects of the Method Engineering life-

cycle. In this second step, we determined the method modeling language to be

used by method engineers and found a way to bridge the gap between the con-

cepts of this language and the technical data (i.e., the reusable assets). The result

of this two-step process was a model-driven Method Engineering approach and a

CAME environment that support three phases of the Method Engineering lifecy-

cle: design, implementation, and execution. Section 4.1.3 provides an overview of

each of these phases.

4.1.3 Phases of the Methodological Approach

Figure 4.1 graphically depicts the model-driven Method Engineering approach

that is detailed in this chapter. The three phases that comprise the approach are

summarized below.

Method Specification: the Method Design Phase

To support the method design phase, our approach enables the creation of a

method model by means of a DSL that combines concepts from the SPEM 2.0

and BPMN 2.0 standards [18, 49]. The method model specifies (among other

elements) the tasks to be carried out during the execution of the method, the

workflow that establishes the execution order of these tasks, the participants that

take part in this workflow, and the work products to be developed to reach the

final software system. To enable the rapid creation of the method model, our

approach allows method engineers to retrieve and assemble conceptual method

parts (e.g., tasks, roles, and products) from a repository of reusable assets. This

repository also stores technical assets, which encapsulate software tools such as

MOSKitt components (e.g., the UML 2.0 editor or the Dashboard component) or

dedicated tools created by means of the MOSKitt metatools (e.g., a form-based

Chapter 4. A Model-Driven Approach for Method Engineering 120

Figure 4.1: Overview of the methodological approach

editor created by means of FEFEM to support an organization-specific DSL).

The tools that are stored in the repository allow method engineers to define the

method technical data (i.e., the specific tools that will be involved in the method

execution). To define this technical data, method engineers must link technical

assets with method elements. A technical asset that is linked to a method element

indicates the tool that will support the element during the method execution; for

instance, a UML editor that is linked to a product called “Class model” will

support the creation of specific instances of this product (i.e., specific UML class

models).

Generating Software Support: the Method Implementation Phase

During the method implementation phase, a CASE environment that supports

the method is automatically obtained by means of a model transformation. This

CASE environment includes a process engine as well as software support for the

creation and manipulation of the method products. The process engine (which is

always included in the CASE environment regardless of the method that has been

specified) provides method process support: it interprets the method model at

runtime in order to assist software engineers during the entire process of software

development. The software support for the method products is obtained from the

technical assets that were linked to the method elements during the design phase.

Thus, by means of the process engine and the tools obtained from the technical

assets, the CASE environment incorporates support for both the product and

process parts of the method.

Chapter 4. A Model-Driven Approach for Method Engineering 121

Bringing Methods into Enactment: the Method Execution Phase

The method execution phase involves the enactment of method instances (in spe-

cific software development projects) using the CASE environment that was ob-

tained in the previous phase. In this CASE environment, the method execution

is driven by the process engine, which indicates the tasks that are executable ac-

cording to the state of the projects as well as the tools that must be used in these

tasks. When the tools do not require human participation (e.g., model trans-

formations), the process engine automatically starts their execution; in contrast,

when the tools require the participation of software engineers (e.g., graphical or

textual editors), the CASE environment provides guidance on the use of the tools.

This functionality allows software engineers to follow the method workflow more

easily and it also partially automates the method execution phase. In addition to

the process-related assistance, the CASE environment also allows software engi-

neers to keep track of the method products; to this end, the CASE environment

displays a hierarchical view that categorizes the products in domains, subdomains,

and work product elements (according to the categories that are defined in the

method model).

4.2 Method Design

In this section, we focus on the design phase of our methodological approach.

The idea that lies behind this phase was conceived with a primary goal in mind:

allowing methods (i.e., the method models that are produced in the design phase)

to go beyond design so that they can be used to (1) automate the construction

of the supporting software environments and also to (2) enable the execution of

methods in these environments; thus, our approach can support the method de-

sign, implementation, and execution phases. To achieve this goal, method models

must meet two requirements:

1. They must cover the product and process aspects of Method Engineering;

thus, method models will contain enough information to be used as input of

model transformations that automate the method implementation phase.

2. The process part of the method models must be executable; thus, the soft-

ware environments that are obtained in the implementation phase will be

Chapter 4. A Model-Driven Approach for Method Engineering 122

able to interpret the method model at runtime during the phase of method

execution.

In order to meet the first requirement, our approach must provide method engi-

neers with modeling primitives that allow them to specify the method product

and process parts. With respect to the process part, method engineers need prim-

itives for defining, inter alia, the method tasks, their execution order, and the

performing roles. As for the product part, method engineers need to define the

artifacts to be produced during the method execution and the tools that enable

their creation (i.e., the method technical aspects).

In the literature, we can find several standards that offer this kind of primitives;

most notably, SPEM 2.0 and BPMN 2.0. The former provides suitable product-

related concepts (e.g., Work Product Definition, Domain, and Tool Definition),

while the latter offers richer process-related primitives (e.g., gateways and different

types of tasks). In view of this situation, we defined a DSL that integrates concepts

from SPEM 2.0 and BPMN 2.0, and, thus, it reaps benefits from both languages

(see Appendix A). This integration allowed us to obtain a DSL that includes the

key method modeling constructs of SPEM 2.0 and also a set of BPMN 2.0 concepts

that overcome the SPEM 2.0 limitations with respect to process specification.

Another important advantage of combining two languages into a DSL is that we

enable the definition of constraints that apply to concepts from both languages;

additionally, since methods are defined in single models, it is not necessary to keep

various models synchronized. Even though this synchronization could be realized

by means of bidirectional transformations, this type of transformations are still

challenging and complex to implement nowadays [168, 169].

Below, we present our DSL in Section 4.2.1. To enable the rapid construction of

methods using this DSL, our approach allows method engineers to utilize reusable

method parts (e.g., roles, tasks, and products); our approach also enables the use

of other types of reusable assets (e.g., software tools) to fully specify the product

part of methods. Reusability is the focus of Section 4.2.2. Finally, Section 4.2.3

defines a three-step process that aims to assist method engineers during the entire

phase of method design. This process has been conceived to foster reusability and

also to allow method engineers to obtain executable methods (thereby meeting

the second requirement that is described above).

Chapter 4. A Model-Driven Approach for Method Engineering 123

Figure 4.2: Abstract syntax of a DSL for method design

4.2.1 A DSL for the Conceptual Modeling of Methods

This section defines the abstract syntax of our DSL. As for the concrete syntax,

we adopt the notation that is defined by SPEM 2.0 and BPMN 2.0; thus, we lower

the barrier for domain experts who are already familiar with these standards. The

abstract syntax of our DSL is defined by the metamodel that is shown in Figure

4.2. This metamodel is divided into two main sections. While the upper section

contains concepts that are equivalent to SPEM 2.0 concepts, the lower section

contains concepts that have their counterpart in BPMN 2.0. To illustrate the

concepts of our DSL, we take examples from the case study that is presented in

Appendix B.

Process is the central concept of the metamodel. The method processes are com-

posed of Flow Elements and Sequences. Flow elements are the objects that appear

in a process: Tasks, Activities, and Gateways; sequences connect flow elements

to establish their execution order. Tasks and activities represent Work Elements

(i.e., units of work to be carried out), while gateways establish mechanisms for

enabling/disabling workflow paths. Gateways can be of two types: Decisions and

Chapter 4. A Model-Driven Approach for Method Engineering 124

Synchronizations. Decisions create alternative paths within a workflow; synchro-

nizations are used to create parallel paths of execution. Tasks can be of various

types: automatic, user, and manual. Automatic tasks are executed without user

participation; for instance, the task “Database model generation” involves the

automatic construction of a database model by means of a model transformation.

User tasks are carried out by the user by means of a software tool; for instance,

the task “Database model revision” concerns the revision of the database model

by means of a graphical editor. Manual tasks do not require any type of soft-

ware; for instance, the task “Design validation” involves the manual validation of

the work that is carried out by the analysts. In general, tasks can be grouped

in categories (which are called Disciplines) and performed by Roles (e.g., “Ana-

lyst”). To assist the task performers, tasks can be associated to Guidance (e.g.,

textual descriptions or checklists). Tasks also typically consume and produce ar-

tifacts (which are represented by means of the input and output Products of the

tasks); for instance, the task “Database model revision” has one input – “DB

model” – which is also the output of the task. Products can be categorized by

Domain, created by means of software Tools (e.g., “UML 2.0 class editor”), and

assigned to roles (i.e., the people responsible for the products). Finally, tasks

can be nested1 within activities (e.g., “Business Logic Design”), which in turn

represent complete processes. Activities can also be nested within other activities

to create work breakdown structures. Thus, activities represent work units of

coarse-grained granularity (when compared to the granularity level of the tasks).

A special kind of activity are Process Patterns, which represent activities intended

for systematic reuse.

All of the concepts that are summarized above have their counterpart in the SPEM

2.0 and BPMN 2.0 metamodels. The mappings between the concepts of our DSL

and the concepts of SPEM 2.0 are summarized in Table 4.1. On the other hand,

Table 4.2 displays the mappings between our DSL and BPMN 2.0.

4.2.1.1 Supporting the Method Product and Process Parts

When we conceived our DSL, we took into consideration that the DSL had to

support the process part of methods without neglecting the product part. Below,

1Nesting is allowed (by inheritance) by the nesting relationship, which establishes that pro-
cesses can contain flow elements.

Chapter 4. A Model-Driven Approach for Method Engineering 125

Table 4.1: Mappings between concepts of our DSL and SPEM 2.0

DSL SPEM 2.0

Domain Category (kind=Domain)
Discipline Category (kind=Discipline)
Product Work Product Definition
Guidance Guidance
Tool Tool Definition
Task Task Definition
Role Role Definition
Work Element Work Breakdown Element
Activity Activity
Process Pattern Activity (kind=Process Pattern)
Process Activity (kind=Delivery Process)
Sequence Work Sequence

Table 4.2: Mappings between concepts of our DSL and BPMN 2.0

DSL BPMN 2.0

Automatic Task Service Task
User Task User Task
Manual Task Manual Task
Flow Element Flow Element
Gateway Gateway
Decision Exclusive Gateway
Synchronization Parallel Gateway

we identify the concepts of SPEM 2.0 that we selected to support both method

parts; then, we illustrate how BPMN 2.0 allowed us to overcome the limitations

of SPEM 2.0.

Product. The product part of methods is represented in our DSL by the Prod-

uct concept, together with Domain (which categorizes products) and Tool

(which establishes how the products must be created during execution).

An example of product is “Process Model”, which can be categorized in

a domain called “Models” and created by means of a tool called “BPMN

Editor”.

Process. Our DSL provides concepts for defining the overall process of methods

(i.e., Task, Activity, Process Pattern, Discipline, and Role); it also uses the

Chapter 4. A Model-Driven Approach for Method Engineering 126

Guidance concept to denote the micro-processes that specify how to pro-

duce single method products. An example of task is “Create Class Model”,

which can be contained in an activity called “Information System Design”,

categorized in a discipline called “Modeling”, and performed by a role called

“Designer”. This task can also be associated, e.g., to a process model that

provides guidance on the creation of UML 2.0 class diagrams.

Even though SPEM 2.0 offers primitives that enable the specification of methods

in a clear, intuitive, and natural way, it also presents an important limitation:

SPEM 2.0 provides limited support to represent complex processes since it only

allows method engineers to establish precedence relationships between tasks. To

overcome this limitation, we selected a set of BPMN 2.0 concepts that endow our

DSL with richer process-related primitives. Specifically, we added to our DSL

the concepts of Gateway, Decision, and Synchronization; thus, we enable the

specification of more complex workflows (i.e., those that can incorporate branching

conditions as well as synchronizations of different execution paths). In addition to

these concepts, we also added Automatic Task, User Task, and Manual Task ; thus,

our DSL enables the specification of different task types. These types depend on

the tools involved in the process of software development (e.g., a task that does

not require the use of any software tool will be considered as a manual task).

4.2.2 Promoting Reuse: A Method Fragment Taxonomy

It is a major goal of our methodological approach to foster reusability. For this

reason, we define different types of reusable assets that enable rapid method design

by means of their assembly. By analogy to the work of Brinkkemper et al. [5, 8]

(see Section 3.2.1.1), we use the term method fragment to denote the reusable

assets that are used in our approach. Even though Brinkkemper et al. define the

term method fragment as “a description of a software development method, or

any coherent part thereof”, our notion of method fragment slightly differs from

this vision. Rather than distinguishing levels of granularity, our method fragments

follow the definition that was given by Hofstede et al. in [28]: method fragments

are “any coherent part of a metamodel”. This definition suggests that method

fragments are created by instantiation from classes of a metamodel, and, thus,

method fragments can contain any type of atomic method element. Nonetheless,

Chapter 4. A Model-Driven Approach for Method Engineering 127

there is a general agreement that the most important kinds of method fragments

are: products, processes, and roles (or producers) [26]. For this reason, our ap-

proach supports, among others, these three types of method fragments.

The notion of method fragment contrasts with other types of method building

blocks that (rather than containing atomic elements) represent composites that

encapsulate two or more related method parts [26]. One example of these com-

posites are the method chunks that are proposed by Ralyté et al. in [129, 130]

(see Section 3.2.1.3). Unlike method fragments, method chunks encapsulate a

tight connection between a product-oriented fragment and a process-oriented frag-

ment. This tight connection, however, presents an important disadvantage: such

a process-product linkage is neither one-to-one nor unique in real-life scenarios

[131]. This problem is solved by method fragments since they allow method engi-

neers to link one process fragment with several product fragments (or vice versa).

This increment in flexibility also prevents method engineers from replicating in-

formation in the repository, but it comes at the expense of increasing the effort

that is required for method assembly (since a higher number of fragments will be

required to obtain the final method). Nonetheless, this additional effort is allevi-

ated in our approach by providing appropriate software tools. In summary, our

methodological approach works with method fragments that support the highest

possible precision in creating new methods while the slight increase in effort is

resolved by means of appropriate tool support.

4.2.2.1 Fragment Types

We define a taxonomy that includes the types of method fragments that are sup-

ported in our approach. To determine this taxonomy, we took into considera-

tion the thesis goals. Since a major goal of this thesis is to support both the

conceptual and technical aspects of Method Engineering, our taxonomy defines

two main types of method fragments: Conceptual Fragments and Technical Frag-

ments. These two types of fragments correspond, respectively, to the conceptual

and technical assets of Figure 4.1.

Figure 4.3 graphically depicts our method fragment taxonomy. In this taxonomy,

the fragments that are colored in gray represent the actual fragments that are used

for method assembly, while the rest of fragments, which are colored in white, are

Chapter 4. A Model-Driven Approach for Method Engineering 128

Figure 4.3: Method fragment taxonomy

only used for categorization purposes. Below, we describe conceptual fragments

and technical fragments; then, we detail the relationships that can be established

between the different fragment types.

Conceptual Fragments

Conceptual fragments encapsulate definitions of individual method parts (e.g.,

tasks, roles, and products); therefore, this type of method fragments are created by

instantiation from concepts of our DSL (see Figure 4.2). Conceptual fragments can

be of two types: Process Fragments or Content Fragments. This separation has

been established according to the separation of method content and process that

is proposed by the SPEM 2.0 standard (see Section 2.1.2.1). Specifically, process

fragments contain definitions of reusable processes; these reusable processes are

represented by the “Process Pattern” concept of our DSL. On the other hand,

content fragments contain definitions of reusable method content. Since the main

content elements of our DSL (in accordance with SPEM 2.0) are products, tasks,

and roles, our methodological approach proposes three types of content fragments:

Product Fragments, Task Fragments, and Role Fragments. These three types of

content fragments store, respectively, instances of the “Product”, “Task”, and

‘Role‘” concepts of our DSL.

Chapter 4. A Model-Driven Approach for Method Engineering 129

Technical Fragments

In contrast to conceptual fragments (which encapsulate method elements that

are created by instantiation from concepts of our DSL), technical fragments en-

capsulate CASE functionality. The functionality that is offered by CASE envi-

ronments is generally implemented as software tools (such as textual/graphical

editors, M2M transformations, and code generators) that enable the creation of

method products (see Section 2.1.3). In addition to these tools, the Method En-

gineering community also gives special attention to the guidelines (e.g., textual

descriptions, checklists, or process models) that assist software engineers during

the product creation (see, for example, [134, 145]). These guidelines correspond

to the small-scale processes that we describe in Chapter 1. To support the encap-

sulation of both software tools and guidelines, we included in our taxonomy two

types of technical fragments: Tool Fragments and Guidance Fragments.

One important requirement for technical fragments is that they must implement

a common interface so that the process engine (see Figure 4.1) can invoke them

during the method execution. To illustrate this idea, let us consider that all of the

technical fragments that encapsulate model transformations implement a common

operation. Thus, during the method execution, the process engine can launch the

model transformations by simply invoking this operation.

Note that, despite the existence of the “Guidance” concept in our DSL, guidance

fragments do not contain an instance of this class. This is because we advocate

a more tool-oriented vision of guidance. An example of tool-oriented guidance

is the Eclipse dynamic context help. This type of guidance, which must be im-

plemented as Eclipse plug-ins, is shown in the Eclipse “Help” view. This view

allows the user to dynamically interact with the contextual help, which provides

a more enriching experience than the one that is provided by, for example, static

text. To complement this tool-oriented guidance, method engineers can also as-

sociate Guidance elements to method tasks. These elements, which instantiate

the “Guidance” concept of our DSL, provide different types of guidelines, such as

checklists, examples, reports, templates, and white papers [18].

Relationships Between Method Fragments

In addition to the various types of fragments that are supported in our approach,

the taxonomy that is shown in Figure 4.3 also illustrates several relationships

Chapter 4. A Model-Driven Approach for Method Engineering 130

between method fragments. The Uses relationship represents that a process that

is stored in a process fragment can use one or more elements contained in content

fragments. This is in accordance with the approach that is adopted by SPEM

2.0, where processes take content elements and relate them into partially-ordered

sequences that are customized to specific types of projects [18]. On the other hand,

the Nesting relationship represents that a process may contain nested processes

and the References relationship represents that a method content element may

reference other method content elements (e.g., a task referencing its output work

products). Finally, the Depends relationship establishes dependencies between the

software tools that are encapsulated in tool fragments. A dependency relationship

can be defined as an unidirectional association between two software tools, T1

and T2, which implies that T1 requires T2 for its correct operation. Dependency

relationships form dependency trees, where nodes represent software tools and all

of the descendants of a node represent its dependencies. The dependencies that

are defined between tool fragments are used during the method implementation

phase; thus, all of the tools that are required to support the methods can be

successfully integrated in the generated software environments.

4.2.2.2 Fragment Structure

With the aim of minimizing the costs of reuse of our method fragments, we decided

to advocate consistent and standard packaging. For this reason, in our approach,

method fragments are stored in a repository as reusable assets that conform to the

Reusable Asset Specification (RAS) standard [170]. According to the guidelines

that are provided by RAS, our method fragments are stored as .ras zip files,

which contain a manifest file together with a set of artifacts that represent the

fragment content. These artifacts can be, for instance, Eclipse plug-ins (in the

case of technical fragments) or a model containing a single element (in the case

of conceptual fragments). The manifest file is an XML document that contains a

set of properties. These properties characterize method fragments, and, therefore,

they allow method engineers to search and retrieve fragments from the repository.

Depending on the type of method fragment, the properties that are stored in the

manifest file differ; nonetheless, there are some properties that are shared by all

of the types of method fragments. These common properties are the following:

Chapter 4. A Model-Driven Approach for Method Engineering 131

• Name: this property represents the identifier of the method fragment.

• Type: this property classifies the fragment in one specific category. For con-

ceptual fragments, there are four possible types, as defined in our fragment

taxonomy (see Figure 4.3): “Task”, “Role”, “Product”, and “Process”. For

technical fragments, the type property represents the kind of tool/guidance

that is encapsulated in the fragment. Specifically, there are eight possible

types of tools: “Graphical Editor”, “Metamodel”, “Textual Editor”, “Gram-

mar”, “Form-based Editor”, “Model Transformation”, “External Tool”, and

“Internal Tool”. On the other hand, we only consider one generic type of

guidance, which is simply represented by the “Guidance” type.

• Origin: this property establishes where the fragment content originates

from. For instance, a conceptual fragment can contain a task that was

extracted from the gvMétrica method, or a tool fragment can contain a

graphical editor that was extracted from the MOSKitt platform.

• Objective: this property defines the purpose of the elements that are con-

tained in the method fragment.

• Description: this property contains general information about the method

fragment.

In addition to the above properties, tool fragments are also characterized by an

interface that is composed of two main properties:

• Input : this property establishes the requirements that are needed to execute

the software tool that is contained in the tool fragment. For instance, the

input of a model transformation is its input model.

• Output : this property defines the artifacts that can be produced by means

of the software tool that is contained in the tool fragment. For instance, the

output of a model transformation is its output model.

4.2.3 A Process for Method Design

In this section, we propose a process to carry out the method design phase. This

process was conceived with a twofold objective in mind: fostering reusability and

Chapter 4. A Model-Driven Approach for Method Engineering 132

Figure 4.4: The method design process

enabling the construction of executable representations of the method models.

Based on these goals, we propose a process that comprises the steps that are

depicted in Figure 4.4: method definition, method configuration, and executable

process generation. The first step of the process involves the construction of the

conceptual definition of the method; that is, the method model, which instanti-

ates the metamodel of our DSL (see Section 4.2.1). Then, in the second step of

the process, method engineers employ reusable assets to specify technical details

(i.e., the tools that will support the method during its execution in development

projects). Separating these two steps allows method engineers to keep a generic

definition of the method (which does not contain details about the specific lan-

guages, notations, and tools that will be used during the method execution) and

to perform different configurations that meet the needs of different development

projects. Finally, in the last step of the process, an executable representation of

the method process part is automatically obtained by means of a M2M transfor-

mation. The executable process model that is obtained in this step is compliant

with the BPMN 2.0 standard. The three steps of our process for method design

are detailed in Sections 4.2.3.1, 4.2.3.2, and 4.2.3.3, respectively.

Chapter 4. A Model-Driven Approach for Method Engineering 133

Table 4.3: Relationships between method elements and conceptual fragments

Method Element Relationship Conceptual Fragment

Task �input� / �output� Product
Task �performs� Role

Product �responsible� Role
Activity �nesting� Task
Activity �nesting� Process

4.2.3.1 Method Definition

In this step, method engineers build the conceptual definition of the method by

means of the concepts that are provided by our DSL. The main concepts that

comprise the process part of the method model are the tasks, activities, sequences,

and roles. On the other hand, the main elements that comprise the product part

are the method products.

During the construction of the method model, method engineers can reuse con-

ceptual fragments by retrieving them from a repository. The elements that are

contained in conceptual fragments can be integrated in the method under con-

struction by means of the relationships that are provided by our DSL. Table 4.3

shows the relationships of our DSL that can be used to associate the elements

of a method with the elements that are contained in conceptual fragments. The

rationale of these relationships is the following:

Task – Product. The tasks that are defined in the method under construction

can be associated to products contained in product fragments. Tasks and

products can be associated by means of the �input� and �output� rela-

tionships that are provided by our DSL. The products that are set as input

of a task define artifacts that are required so that the task can be prop-

erly executed. The products that are set as output define artifacts that are

obtained after the task execution.

Task – Role. Similarly to products, the roles that are contained in role frag-

ments can be associated to the tasks of a method. Tasks and roles can be

associated by means of the �performs� relationship that is provided by

our DSL. The roles that are set as performers of a task define sets of related

Chapter 4. A Model-Driven Approach for Method Engineering 134

skills and competencies that individuals must possess in order to properly

carry out the task.

Product – Role. The products that are defined in the method under construc-

tion can be associated to roles defined in role fragments. Products and roles

can be associated by means of the �responsible� relationship that is pro-

vided by our DSL. The roles that are set as responsible of a product define

those individuals that are in charge of the product construction.

Activity – Task. The activities of a method can be associated to tasks defined

in task fragments. Activities and tasks can be associated by means of the

�nesting� relationship that is provided by our DSL. The tasks that are

nested in an activity define units of work whose granularity level is lower

than the granularity level of the activity.

Activity – Process. The activities of a method can be associated to process

patterns defined in process fragments. Activities and process patterns can

be associated by means of the �nesting� relationship that is provided by

our DSL. The process patterns that are nested in an activity define reusable

processes whose granularity level is lower than the granularity level of the

activity.

4.2.3.2 Method Configuration

During the method configuration2, the method engineer defines the technical de-

tails of the method that was defined in the previous step. These technical details

represent the tools that will allow software engineers to perform the method tasks

during the method execution as well as the guidance that will assist them during

the tasks performance. In order to define this technical data, the method engineer

must associate the tasks and products of the method with technical fragments that

are stored in a repository.

Table 4.4 gathers all the associations that are allowed between method elements

and technical fragments. The rationale of these associations is the following:

2Note that this step differs from the Method Engineering approach of method configuration,
which was proposed by Karlsson et al. in [4].

Chapter 4. A Model-Driven Approach for Method Engineering 135

Table 4.4: Relationships between method elements and technical fragments

Method Element Relationship Technical Fragment

Product �supports� Metamodel
Product �supports� Graphical Editor
Product �supports� Form-based Editor
Product �supports� Grammar
Product �supports� Textual Editor
Product �supports� External Tool
Product �supports� Internal Tool

Task �usedTool� Model Transformation
Task �guidance� Guidance

Product – Metamodel. The products of the method model can be associated

to metamodels by means of the�supports� relationship that is provided by

our DSL. A metamodel that is associated to a product defines the abstract

syntax of the notation that allows software engineers to create the product

during execution. Note that, when a method element is associated with a

technical fragment, an instance of the “Tool” concept is also created. This

instance is the element that references the technical fragment that is stored

in the repository.

Product – Graphical Editor. The products of the method model can be as-

sociated to graphical editors by means of the �supports� relationship. A

graphical editor that is associated to a product defines the abstract and

concrete syntax of the notation that allows software engineers to create the

product during execution.

Product – Form-based Editor. The products of the method model can be as-

sociated to form-based editors by means of the �supports� relationship.

Similarly to graphical editors, a form-based editor that is associated to a

product defines the abstract and concrete syntax of the notation that al-

lows software engineers to create the product during execution. The differ-

ence with graphical editors lies in the nature of the graphical user interface.

Unlike graphical editors, the interface of form-based editors is composed of

graphical widgets such as tables, text fields, labels, radio buttons, and check

boxes.

Chapter 4. A Model-Driven Approach for Method Engineering 136

Product – Grammar. The products of the method model can be associated

to grammars by means of the �supports� relationship. A grammar that

is associated to a product defines the syntax of the textual language that

allows software engineers to create the product during execution. Addition-

ally, the technical fragments that contain grammars define the semantics of

the language, which can be specified informally using natural language or

formally, e.g, by means of an ontology.

Product – Textual Editor. The products of the method model can be associ-

ated to textual editors by means of the�supports� relationship. A textual

editor that is associated to a product defines the syntax and semantics of

the textual language that allows software engineers to create the product

during execution. Additionally, the editor also defines its visual features

(e.g., syntax coloring, automatic code formatting, and content assist).

Product – External Tool. The products of the method model can be associ-

ated to external tools by means of the �supports� relationship. An exter-

nal tool is a software application that is installed in the system and cannot

be integrated in the software environment supporting the method (e.g., be-

cause it has been implemented using a different technology). In this case,

the software environment stores a reference to the external tool so that it

can be opened during execution for the creation of the product. Unlike the

other types of technical fragments, the technical fragments that define ex-

ternal tools do not encapsulate these tools but rather contain references to

them.

Product – Internal Tool. The products of the method model can be associated

to internal tools by means of the�supports� relationship. An internal tool

is a software application that is already installed in the CAME environment

(e.g., Eclipse frameworks such as GMF or EMF). The technical fragments

that represent internal tools do not need to encapsulate the implementa-

tion of these tools; instead, the fragments must store the identifiers of the

tool components (e.g., plug-ins in the context of Eclipse). When a CASE

environment is generated, the internal tools that are associated to method

products are included in the environment; thus, it will be possible to use the

internal tools for the creation of the products. One important advantage of

internal tools is that they are not subject to any requirement. For instance,

Chapter 4. A Model-Driven Approach for Method Engineering 137

unlike the other types of fragments, internal tools do not have to implement

a common interface (see Section 4.2.2.1); therefore, they can represent any

type of software tool. The disadvantage is that the process engine (see Fig-

ure 4.1) will not be able to launch them automatically when the method is

being executed.

Task – Model Transformation. The tasks of the method model can be asso-

ciated to model transformations by means of the�usedTool� relationship.

A task that is associated to a model transformation is considered automatic

and the execution of the task involves launching the model transformation.

Task – Guidance. The tasks of the method model can be associated to guidance

(e.g., textual descriptions or process models) by means of the �guidance�
relationship of our DSL. This guidance will be used to assist software engi-

neers during the performance of the method tasks.

4.2.3.3 Executable Process Generation

In this step, method engineers obtain an executable representation of the method

process part. To facilitate this task, we implemented a M2M transformation

that takes the configured method model as input and automatically generates a

process model. This process model conforms to the BPMN 2.0 standard; thus, we

ensure that the model can be executed by a process engine. When the Executable

Process Generation step is finished, method engineers therefore keep two separate

models. One model defines the method in terms of concepts from our DSL, while

the other model stores (in terms of BPMN 2.0) an executable representation of

the method process part. These two models are connected by means of trace links,

which associate the BPMN 2.0 elements (that were automatically generated) to

the method elements from which they originate. The reason for keeping two

models is that they complement each other. On the one hand, the BPMN 2.0

model stores an executable representation of the method – this model needs not

be edited manually. On the other hand, the method model contains information

about the method that cannot be represented in BPMN 2.0 (e.g., the method

roles and tools).

In order to provide further insight on how the M2M transformation obtains the

BPMN 2.0 model from the configured method model, we summarize in Table 4.5

Chapter 4. A Model-Driven Approach for Method Engineering 138

Table 4.5: Mappings between SPEM 2.0 concepts of our DSL and BPMN 2.0

DSL (SPEM 2.0) BPMN 2.0
1 Process Process
2 Activity Process and Call Activity
3 Process Pattern Process and Call Activity
4 Sequence Sequence Flow
5 Role Lane

some of the mappings between the concepts of our DSL and BPMN 2.0. Note that

this table only contains mappings for the concepts of our DSL that belong to the

process part of methods. Additionally, Table 4.5 only contains mappings for the

concepts of our DSL that are equivalent to concepts of SPEM 2.0; the mappings

of the rest of the concepts can be examined in Table 4.2. The description of the

mappings of Table 4.5 is the following:

1. An element of type Process, which represents the root element of the method

model, is mapped into a BPMN 2.0 Process.

2. An element of type Activity is mapped into two different elements: a BPMN

2.0 Call Activity and a BPMN 2.0 Process. When the Call Activity is ex-

ecuted, it invokes the BPMN 2.0 Process, which is the root element of a

separate process. Thus, we emulate in BPMN 2.0 the work breakdown

structures that are formed in the method model when activities are nested

within other activities.

3. Similarly to the Activities, an element of type Process Pattern is mapped

into two different elements: a BPMN 2.0 Call Activity and a BPMN 2.0

Process. The difference with activities lies in the fact that the BPMN 2.0

Process is only generated once, regardless of the number of times that the

Process Pattern is applied in the method model. This is a way of promoting

reusability since the BPMN 2.0 model may contain many different Call

Activities that invoke the same BPMN 2.0 Process.

4. An element of type Sequence is mapped into a BPMN 2.0 Sequence Flow.

The source of the Sequence Flow is set to the BPMN 2.0 element that is gen-

erated from the predecessor of the Sequence; the target is set to the BPMN

2.0 element that is generated from the successor of the Sequence. Note that,

Chapter 4. A Model-Driven Approach for Method Engineering 139

Figure 4.5: Excerpt of the M2M transformation

for all of the Tasks of the method model that are not successor of any Se-

quence, a BPMN 2.0 Sequence Flow will be created connecting the Start

Event and the corresponding Service/User/Manual Task. Likewise, for all

of the Tasks of the method model that are not predecessors of any Sequence,

a BPMN 2.0 Sequence Flow will be created connecting the corresponding

Service/User/Manual Task to the End Event.

5. An element of type Role is mapped into a BPMN 2.0 Lane if and only if

the Lane has not been previously generated.

Chapter 4. A Model-Driven Approach for Method Engineering 140

For illustrative purposes, Figure 4.5 shows the first instructions of the Java code

that implements the M2M transformation in MOSKitt4ME. As the figure shows,

the first action of the transformation is to create the output BPMN 2.0 model; that

is, the .activiti file that is supported by the Activiti Designer editor. Then, the

transformation generates the root process of the BPMN 2.0 model (see mapping 1

of Table 4.5). Once this process has been obtained, the transformation generates

the start event and the end event. When these two elements are included in the

output model, the transformation iterates the tasks of the method model. For

each of these tasks, the transformation produces a BPMN 2.0 task, which will be

a service task, a user task, or a manual task (see mappings of Table 4.2). Finally,

the transformation generates a BPMN 2.0 sequence flow for each of the tasks that

have no predecessor. The resulting sequence flows connect the tasks with the start

event of the BPMN 2.0 model (see mapping 4 of Table 4.5).

4.3 Method Implementation

The method implementation phase involves the construction of an integrated soft-

ware environment that supports the method that is defined during the method

design phase. As Figure 4.6 illustrates, we have automated the method imple-

mentation by means of a model transformation that obtains a CASE environment

from the method model. This model transformation makes use of the product and

process parts of the method to obtain the final tool. The product part corresponds

to the artifacts that must be created during the method execution and also to the

tools that enable the creation and manipulation of these artifacts (i.e., the tech-

nical fragments); the process part corresponds to the BPMN 2.0 model that is

obtained in the last step of the method design phase. Using the method product

and process parts, the model transformation obtains a software environment that

supports both aspects of the method.

In the software environment, the process part of the method is supported by a

process engine for BPMN 2.0. The method process part will be deployed into

this engine during the process of CASE environment construction. On the other

hand, the technical fragments that are referenced in the method model are the

components that provide product support in the software environment: these

Chapter 4. A Model-Driven Approach for Method Engineering 141

Figure 4.6: The method implementation phase

fragments are integrated in the environment to enable the creation of the method

products.

The Configuration Model

With the aim of providing a higher level of flexibility in the construction of CASE

environments, we introduce a new model in our proposal for method implemen-

tation: the configuration model (see Figure 4.6). This model stores information

about the CASE environment (such as its identifier and name), and, therefore, it

represents a mechanism for fine-tuning the model transformation (and, in turn,

the CASE environment) according to specific contextual needs. The benefits of

using configuration models were illustrated by Wagelaar et al. in [171]. This work

presents a comparative study of different techniques (such as feature models and

knowledge-based systems) for managing the configuration of model transforma-

tions.

To obtain the configuration model, method engineers can either generate (auto-

matically) a default version of the model or create it manually. In both cases,

method engineers can edit this model (if necessary) to specify attributes of the

CASE environment, such as its identifier, name, target path, about information,

or version. This is illustrated in Figure 4.7, which shows the general structure

of the configuration model. In addition to these attributes, method engineers

can also specify further information by means of general properties, such as the

Chapter 4. A Model-Driven Approach for Method Engineering 142

Figure 4.7: General structure of the configuration model

splash screen, the window title, the window images, the welcome page, or the

initial window dimensions. All of this information must be specified by method

engineers prior to the execution of the model transformation. During the process

of CASE environment construction, the method model will be used to complete

the configuration model with the tools and components that will comprise the

CASE environment. This data (which is obtained from the technical fragments

that are referenced in the method model) allows the configuration model to be-

come the place where all the information about the CASE environment is uniquely

gathered. Thus, we facilitate the last step of the construction process, where the

configuration model is used to generate the final tool. This process is detailed in

Section 4.3.1.

4.3.1 An Automatic Process for CASE Environment Con-

struction

This section details the process that is implemented in our approach to support

the automatic construction of CASE environments. This process is graphically

depicted in Figure 4.8. As the figure shows, the process comprises three sequential

steps: identification of software tools, resolution of dependencies, and deployment

Chapter 4. A Model-Driven Approach for Method Engineering 143

Figure 4.8: CASE environment construction process

of software tools. While the first two steps aim to obtain a complete version of

the configuration model, the last step is in charge of the generation of the final

software environment.

More specifically, the first step of the process involves the identification of the

software tools that must be integrated in the final software environment to support

the product and process parts of the method. Once these tools are identified, their

software dependencies are resolved in the second step. All of the tools that are

identified in the first two steps are used to complete the configuration model.

Finally, in the third step, the configuration model is used to generate the software

environment that supports the execution of the method. These three steps are

detailed in Sections 4.3.1.1, 4.3.1.2, and 4.3.1.3, respectively.

4.3.1.1 Identification of Software Tools

This step involves the identification of the tools that must be integrated in the final

software environment so that it provides support for the method. To identify these

tools, the model transformation explores the method model. For each task and

product of the method, the transformation checks whether the task or the product

is associated to a technical fragment. If so, the model transformation includes –

in the configuration model – the identifier and name of the software tool that

is contained in the fragment. Once the transformation has completely explored

the method model, an additional tool is added to the configuration model. This

tool is the process engine, which is always deployed in the CASE environments

regardless of the method that has been specified.

For illustrative purposes, Figure 4.9 shows an excerpt of a Xpand template that

implements the generation of the configuration model, which in the context of

Chapter 4. A Model-Driven Approach for Method Engineering 144

Figure 4.9: Generation of a product configuration file

Eclipse is represented by a textual product configuration file (see Section 2.3.1).

Specifically, the excerpt includes the definition of a Xpand rule that is called

productConfiguration, which produces an XML document entitled productConfig-

uration.product. After the execution of the template, the .product file contains the

properties of the Eclipse-based environment to be generated during the method

implementation phase. Examples of these properties (which can be manually

specified by the method engineer or automatically generated) are the name of

the environment, the identifier, the about information, the window images, and

the splash screen. These properties are included in the product configuration file

by means of the productName, productId, aboutInfo, windowImages, and splash

Xpand rules. Of special relevance in the Xpand template is the information that

is highlighted in a red rounded rectangle. This part of the template contains the

Chapter 4. A Model-Driven Approach for Method Engineering 145

Figure 4.10: Example of generation of Eclipse features

code that generates the Eclipse features (which represent the tools of the meta-

model of Figure 4.7) to be deployed in the CASE environment. Specifically, the

rule fixedFeatures is in charge of the generation of the features that represent

static tools (i.e., tools that are always included in the CASE environment): the

process engine. On the other hand, the foreach loop generates the Eclipse fea-

tures that represent dynamic tools (i.e., tools that depend on the method that is

being supported). In each iteration, the loop generates an XML element of type

<feature>. Each of these XML elements represents a technical fragment that

is referenced in the method model. These technical fragments are identified by

means of the technicalFragmentFeatures() operation, which explores the method

model by means of an algorithm that is implemented in Java.

Figure 4.10 graphically illustrates how the Eclipse features are included in the

product configuration file. As the figure shows, the technical fragments not only

contain Eclipse plug-ins but also an Eclipse feature that groups all of these plug-

ins. The identifier of this feature is extracted from the fragment (i.e., the zip file)

and stored in the product configuration file.

Two final remarks about the Identification of Software Tools step are the following.

First, note that the CASE environment will not incorporate support for those

tasks that do not have any technical fragment associated to them or their output

products. These tasks are assumed to be manual tasks, which must be performed

by software engineers outside of the context of the software environment. Second,

it is also important to note that the identifiers of the technical fragments of type

“external tool” must not be included in the configuration model since these tools

cannot be deployed in the final software environment.

Chapter 4. A Model-Driven Approach for Method Engineering 146

4.3.1.2 Resolution of Dependencies

The second step of the process involves the resolution of dependencies of the

software tools that are included in the configuration model. In other words, the

second step involves the identification of all the software tools that must be de-

ployed in the final CASE environment so that the tools that are identified in the

previous step can properly function. The identification of software dependencies

is enabled by the dependency relationships that connect the technical fragments

of the repository (see Section 4.2.2.1) since the software tools of the configuration

model are stored in these technical fragments. In order to identify the required

software dependencies (which must also be included in the configuration model)

the model transformation iterates – in the configuration model – the tools that

were identified in the previous step. For each of these tools, the model trans-

formation accesses the corresponding technical fragment in order to extract its

software dependencies. The software dependencies of a technical fragment can

be calculated by recursively exploring its associated dependency tree (see Section

4.2.2.1). When the software dependencies of all the software tools are included in

the configuration model, this model can be considered to be complete.

In order to illustrate the Resolution of Dependencies step, Figure 4.11 shows an

excerpt of the Java code that implements this step in MOSKitt4ME. Prior to

the description of the Java code, it is important to note that, in the context of

Eclipse, the dependencies of a software tool are specified within the Eclipse plug-

ins that implement the tool (specifically, in a file that is called manifest.mf); for

this reason, the algorithm that is shown in Figure 4.11 accesses this file, rather

than the dependency trees that are stored in the repository. Having introduced

this issue, we can explain the excerpt of Java code, which, as Figure 4.11 shows,

corresponds to a Java method that is called getPluginDependencies. This method

iterates a variable called plugins, which contains all of the Eclipse plug-ins of

the technical fragments that are referenced in the configuration model. For each

plug-in, the algorithm gets the location of the manifest.mf file; then, the algorithm

parses the file into a variable called manifest. This variable is used to access the

require-bundle attribute, which contains all of the dependencies of the Eclipse

plug-in. These dependencies are added to a collection called result, which is filled

iteratively until all of the required dependencies have been identified. Finally, the

result variable is returned by the Java method so that all of the dependencies that

Chapter 4. A Model-Driven Approach for Method Engineering 147

Figure 4.11: Resolution of software dependencies

have been identified can be added to the product configuration file by means of a

Xpand rule – this is not shown in the figure.

4.3.1.3 Deployment of Software Tools

The last step of the process involves the deployment of the tools that are included

in the configuration model into the final software environment. The first tool

to be deployed is the process engine. Prior to the deployment of this tool, the

BPMN 2.0 model that is obtained in the Executable Process Generation step (see

Section 4.2.3.3) is deployed into the engine database. Thus, the process engine

can execute instances of the process part of the method. Once the process engine

is fully integrated in the CASE environment, this environment is completed with

the software tools that are included in the configuration model.

As a result of the generation process, our model transformation also produces a

generation report. This report contains information about the number of tools

Chapter 4. A Model-Driven Approach for Method Engineering 148

Figure 4.12: Automatic production of the the generation report

that have been successfully installed in the CASE environment and how software

engineers must proceed to obtain full software support for the method. In general,

all of the software tools that are not defined as “external tool” can be integrated

in the CASE environment. Therefore, the generation report contains textual

information about the external tools. This information is extracted from the

attributes of the technical fragments (see Section 4.2.2.2).

In order to illustrate the automatic production of the generation report, Figure

4.12 shows an excerpt of the Java code that produces this report in MOSKitt4ME.

Specifically, the excerpt shows how the textual file is created first. Then, all of

the technical fragments that are installed in the CASE environment are iterated.

For each of these fragments, the algorithm retrieves three properties: description,

Chapter 4. A Model-Driven Approach for Method Engineering 149

type, and name. The type property is used to distinguish external tools from

other types of fragments. For each external tool, the algorithm prints the name

of the tool and also its description. Once all of the technical fragments have

been iterated, the algorithm calculates the percentage of tools that have been

successfully deployed in the CASE environment.

Note that, in this section, we do not illustrate the implementation of the Deploy-

ment of Software Tools step. This is because this step is fully implemented by

the Eclipse PDE, and, therefore, it has not been necessary to implement the de-

ployment of software tools in MOSKitt4ME. Specifically, the Eclipse PDE allows

users to automatically obtain fully functional Eclipse RCP products directly from

the specification of these products in product configuration files.

4.4 Method Execution

The method execution phase involves the enactment of method instances using

the software environment that is obtained in the method implementation phase.

The method execution is, therefore, tool-assisted; that is, it is guided by an in-

tegrated environment that provides assistance for software engineers during the

entire process of software development. To provide this assistance, the software

environment comprises various components: the Method Process Support (which

includes an engine that enables the execution of the method process part) and the

Method Product Support (which includes a set of tools that enable the creation of

the method products); additionally, the software environment incorporates a com-

ponent that offers an intuitive graphical user interface for end users. We call this

component the Project Manager. These components (i.e., the project manager,

the method process support, and the method product support) are graphically

depicted in Figure 4.13 and detailed below.

4.4.1 The Project Manager Component

The Project Manager component provides a graphical user interface for the CASE

environment and assists software engineers during the method execution. To do

this, the project manager uses the process engine to execute BPMN 2.0 process

Chapter 4. A Model-Driven Approach for Method Engineering 150

Figure 4.13: The method execution phase

instances; additionally, the project manager makes use of the method model at

runtime to extract information about the method that is not represented in the

BPMN 2.0 model.

The project manager is a static component; that is, it is always included in the

CASE environment regardless of the method that is being supported. It is divided

into four views – the project explorer, the process view, the product explorer, and

the help view – which provide software engineers with information of different

nature. These four views are detailed below.

Project Explorer. The project explorer view provides a tree-based representa-

tion of the workspace. This view is hierarchically organized in projects,

folders, and files. From the project explorer, software engineers can create

new projects, delete existing projects, add files/folders to these projects, etc.

This kind of functionality is implemented, for example, by the Eclipse Pack-

age Explorer (which is provided as part of the JDT), the Resource Explorer

of MOSKitt, or the Eclipse Project Explorer.

Process. The process view shows the current state of the process instance that

is associated to the project that is selected in the project explorer. From the

process view, software engineers can invoke the execution of the tasks that

Chapter 4. A Model-Driven Approach for Method Engineering 151

are executable as well as determine which tasks are non-executable or have

already been executed. Once a task is finished, the Project Manager invokes

the API of the BPMN 2.0 Process Engine to set the task as executed and

proceed to the next state of the process. The process view also enables task

filtering based on the role of the users; thus, the software engineer may focus

on the tasks that he/she is in charge of their performance. Another type of

task filtering is based on the task state; thus, software engineers may, for

instance, focus on the tasks that are executable in the current state of the

project.

Product Explorer. The product explorer view shows a hierarchical picture of

the artifacts that have been produced during the course of the project that

is selected in the project explorer view. To illustrate how this hierarchy is

organized, let us consider a file that is called “classModel.uml”, which rep-

resents a specific UML class diagram. The product explorer may show this

file under a product called “UML 2.0 model”, which represents a product

that is defined in the method model. The semantics of this nesting relation-

ship is that the file represents an instantiation of the product in a specific

software development project. Additionally, the product may, in turn, be

nested in a domain called “Models”, which represents a product category

that is also defined in the method model. Thus, the product explorer shows

a hierarchical representation of artifacts that is based on domains, subdo-

mains, and product elements, all of which are read from the method model.

On the other hand, the product explorer view also enables product filtering

based on the role of the user; thus, the software engineer may focus on those

artifacts that he/she is responsible for.

Help. The Help view provides guidance for software engineers during the per-

formance of the method tasks. This view is dynamically updated based on

the task that is selected in the process view. The guidelines of a specific

task are known by the Help view because they are associated to the task

as guidance fragments (see Section 4.2.2.1). One example of this type of

view is the Eclipse Help view, which is provided by the Help System that is

integrated in Eclipse (see Section 2.3.1).

Chapter 4. A Model-Driven Approach for Method Engineering 152

4.4.2 Method Process Support

The process engine is the component that provides process support in the software

environment that is obtained in the method implementation phase. Similarly to

the project manager, the engine is a static component: it is always included in

the environment regardless of the method that is being supported. As Figure 4.13

illustrates, the process engine is the central component of the software environ-

ment. By using the BPMN 2.0 model at runtime, the process engine provides

up-to-date and exact information about the running process instances, and, thus,

it drives the behavior of the software environment. Driving the behavior of the

software environment refers to the fact that the project manager (by communi-

cating with the process engine) restricts its functionality according to the state

of the process instances; for example, the user can only create a limited set of

products (specifically, the output products of the executable tasks). Additionally,

the software environment will behave differently depending on the type of task

that is being executed by the process engine:

• Service task: when a service task becomes active, the process engine starts

the task execution. The execution of a service task involves the invocation of

the model transformation that is associated to the task as a technical frag-

ment. When a model transformation is invoked, the software environment

opens a dialog that (optionally) allows the user to specify a configuration

model [172] as well as to cancel the execution of the transformation. When

the model transformation finishes, the software environment shows a popup

message that summarizes the transformation results.

• User task: when a user task becomes active, the process engine invokes

the software tools that are associated to the output products of the task as

technical fragments. When these tools are invoked, the software environ-

ment opens the creation wizards that allow software engineers to create the

products (e.g., empty models or textual files); then, the environment opens

the tools that enable the editing of these products (e.g., graphical or textual

editors).

• Manual task: when a manual task becomes active, neither the process engine

nor the software environment performs any action since this type of tasks

are performed without the aid of any software tool. Thus, the control of the

Chapter 4. A Model-Driven Approach for Method Engineering 153

process is transferred to the software engineer, who must manually indicate

when the task is finished so that the process can proceed to its next state.

• Call activity: when a call activity becomes active, the process engine auto-

matically starts a new instance of the BPMN 2.0 process that is referenced

by the call activity. This action simply involves a refresh of the process view

of the Project Manager component so that it shows an updated version of

the running process instance.

In order to offer all of the above functionality, the software environment (more

specifically, the Project Manager component) must communicate with the process

engine through its API. This communication is represented in Figure 4.13 by the

Get and Call arrows. By communicating with the process engine, the Project

Manager can perform actions such as deleting running process instances (when

development projects finish), creating new process instances (when new projects

start or call activities are executed), or setting tasks as executed (when software

engineers conclude the tasks). Due to the high frequency that the actions involving

the use of the process engine have at the code level, we implemented a facade

design pattern [173, 174] to facilitate the access to the API of the process engine.

Our facade is a Java class that provides a unified interface to the set of inferfaces

that comprise the engine API. This unified interface offers a set of convenient

methods that implement commonly recurring tasks that involve the use of the

process engine.

In order to illustrate our unified interface, Figure 4.14 shows one of the Java

methods that the interface provides. As the figure shows, the Java method is

called isBeingExecutedInProcessInstance. This method is in charge of checking

whether or not a task is executable (at the moment of invocation of the method)

in the context of a specific process instance (considering also the subinstances that

were created by means of the execution of call activities). To achieve this goal,

the Java method checks the current process instance first. To this end, the API of

the process engine is used. Then, the method checks the subinstances recursively.

To obtain the subinstances of the current process instance, the method creates a

process instance query, which is provided by the runtime service of the process

engine API.

Chapter 4. A Model-Driven Approach for Method Engineering 154

Figure 4.14: Example of Java method using the Activiti Engine API

4.4.3 Method Product Support

The software tools that are encapsulated in technical fragments are the compo-

nents that provide product support in the software environment that is obtained

in the method implementation phase. Unlike the project manager and the pro-

cess engine, the technical fragments are dynamic components: their inclusion in

the software environment depends on the method that is being supported. The

technical fragments that are included in the environment correspond to those that

are referenced in the method model (with the exception of the external tools).

In a similar way to the process engine, the technical fragments also play an im-

portant role in determining how the environment behaves. This is because the

Chapter 4. A Model-Driven Approach for Method Engineering 155

Figure 4.15: Excerpt of code implementing the method product support

process engine, which is the central driver of the environment behavior, needs to

access these fragments in order to function properly. To illustrate this idea, let us

consider that a user task is active. As Section 4.4.2 explains, the execution of a

user task involves the invocation of the software tools that are associated to the

output products of the task as technical fragments. Since the type of these tools

is variable (e.g., they can be graphical editors, textual editors, or external tools),

the behavior of the software environment will vary depending on the type of the

technical fragment that is being invoked. For this reason, the process engine needs

to obtain the type of these fragments, and, then, perform different actions based

on these types. This is illustrated in the excerpt of Java code that is shown in

Figure 4.15.

As Figure 4.15 shows, to create an output product of a user task, the identifier

of the technical fragment that is associated to this product is retrieved first. This

Chapter 4. A Model-Driven Approach for Method Engineering 156

technical fragment, in the context of the EPF Composer, is represented by an

element of type Tool Mentor. Once the identifier is retrieved, the algorithm checks

the type of the technical fragment. If the fragment encapsulates an editor3, then

the Java method launches the creation wizard of the editor so that the user can

create the corresponding product. If the fragment represents an external tool,

then the Java method creates a file that is editable by this external tool. For

instance, if the external tool is Microsoft Word, a .doc file will be created – the

information about the required file extension is stored in the technical fragment.

Finally, in case the technical fragment represents an internal tool, a message will

be shown to the user so that he/she gets instructions on the use of the tool – the

content of the message is also obtained from the technical fragment. Note that

the process engine cannot open internal tools because, unlike the other types of

tools, they do not implement a common interface (see Section 4.2.2.1).

4.5 Conclusions

This chapter introduces a methodological approach that supports model-driven

Method Engineering. The introduced approach has various unique characteristics.

Most notably, our approach is built upon MDE technology, which has allowed us to

properly handle the inherent complexity of Method Engineering. The use of mod-

els and model transformations (together with leveraging models at runtime) has

made possible the definition of an approach that equally encompasses the design,

implementation, and execution of methods, supporting also the method product

and process parts. This is unlike existing Method Engineering approaches, which

in general focus on the product part of methods and only support one of the phases

of the Method Engineering lifecycle. In order to overcome these limitations, our

approach defines a DSL that benefits from two widely acknowledged standards:

SPEM 2.0 and BPMN 2.0. While the concepts of SPEM 2.0 enable the defini-

tion of complete software development methods, the concepts of BPMN 2.0 allow

method engineers to enhance method definitions in terms of process specification.

On the other hand, since one of the major goals of our approach is to promote

reusability, we define a taxonomy of method fragments that enable rapid method

3The technical fragments of type “Metamodel” and “Grammar” are considered in this cat-
egory. In these cases, the CASE environment provides a default editor for the creation of the
products.

Chapter 4. A Model-Driven Approach for Method Engineering 157

design by means of their assembly. This taxonomy does not only takes into consid-

eration the conceptual aspects of methods, but it supports the technical aspects

as well. This allows method engineers to define methods in a conceptual manner

and later obtain customized software environments that support the method exe-

cution. Supporting the construction of these software environments is a significant

advantage of our approach; it allows method engineers to provide customized tool

support for many aspects of Software Engineering (such as the creation of method

products or the management of the roles of the development team).

In addition to all of the above characteristics, another distinctive aspect of our

methodological approach is the software infrastructure that has been developed

to support the approach. This software infrastructure is detailed in Chapter 5.

Chapter 5

MOSKitt4ME: A Software

Infrastructure

Models play a pivotal role in our methodological approach for Method Engineer-

ing. They allow method engineers to express method designs in terms of high-level

concepts, and, since the resulting models are machine-processable and precise

enough, they can be used to automate part of the Method Engineering lifecy-

cle. However, in the absence of appropriate tool support, models can become a

heavy burden and this burden can be further aggravated by the inherent com-

plexity of Method Engineering. The necessity of software tools for Model-Driven

Engineering (MDE) has already been emphasized in some relevant contributions

(see for example [43, 111]), while authors such as Bajec et al. [6], Niknafs et al.

[41], and Harmsen [20] highlight the need for appropriate tool support in Method

Engineering.

In order to meet this need for software tools, we implemented a Computer-Aided

Method Engineering (CAME) environment that provides complete software sup-

port for the methodological approach that is presented in Chapter 4. To ensure

that the CAME environment offered the necessary functionality, we identified a

set of functional requirements prior to developing the tool. Then, after these

requirements were identified, we defined the architecture of our CAME envi-

ronment at a conceptual level from a technology-independent perspective. By

159

Chapter 5. MOSKitt4ME: A Software Infrastructure 160

defining the architecture in a technology-independent manner, its components are

generic enough to enable their implementation in different software platforms.

Specifically, in the context of this thesis, we implemented the architecture as an

extension of MOSKitt. This implementation resulted in an Eclipse-based CAME

environment that is called MOSKitt4ME (which stands for MOSKitt for Method

Engineering).

The remainder of the present chapter is structured as follows. First, Section 5.1

describes the set of functional requirements that we identified to facilitate the

development of MOSKitt4ME. Then, Section 5.2 introduces the MOSKitt4ME

architecture and also how we implemented this architecture in the context of

Eclipse. Section 5.3 provides an in-depth description of the functionality that is

offered by MOSKitt4ME. Finally, Section 5.4 draws some conclusions about the

present chapter.

5.1 Functional Requirements

In order to ensure that we provide adequate software support for our method-

ological approach, we defined a set of functional requirements that guided the

development of MOSKitt4ME. To determine these requirements, we analyzed the

functionality that MOSKitt4ME must provide in each of the three phases that

comprise our approach: design, implementation, and execution. With respect to

the method design phase, we identified three functional requirements (Req. 1,

Req. 2, and Req. 3):

• Req. 1. MOSKitt4ME must enable the conceptual modeling of

the product and process parts of software development methods.

In order to meet this requirement, MOSKitt4ME must incorporate an editor

that supports the DSL that is defined in our methodological approach (see

Chapter 4). This editor will preferably be a graphical editor; thus, it will be

able to support the concrete syntax that is defined by SPEM 2.0 and BPMN

2.0. A tree-based editor can also be included in MOSKitt4ME. Unlike these

types of editors, a textual editor cannot be included since our DSL does not

define a textual syntax. Graphical and tree-based editors (when compared

Chapter 5. MOSKitt4ME: A Software Infrastructure 161

to textual editors) have the advantage that they offer higher level visual

constructs, which are more intuitive and easier to use and learn.

• Req. 2. MOSKtit4ME must allow users to build executable rep-

resentations of the method models. Our DSL does not define execution

semantics. Therefore, to meet this requirement, MOSKitt4ME must provide

a model transformation that obtains executable models from the methods

that are defined using our DSL; thus, the software environments that sup-

port the methods will be able to support method execution.

• Req. 3. MOSKitt4ME must support the creation, storage, re-

trieval, and integration of conceptual and technical fragments. In

order to meet this requirement, MOSKitt4ME must allow method engineers

to connect to repositories of conceptual and technical fragments. This can

be accomplished by means of a repository client. This client, when con-

nected to a repository, must allow users to store new fragments and to

search/retrieve existing fragments according to their properties. For the

creation of conceptual fragments, the client must allow method engineers

to select parts of the method under construction and to encapsulate these

parts in reusable assets; the repository client must also enable the inte-

gration of conceptual fragments into the method that is being defined by

method engineers. For the creation of technical fragments, MOSKitt4ME

must incorporate metatools that facilitate the construction of tools for soft-

ware development. These tools must not be limited to graphical editors, but

other types of tools (e.g., textual editors or model transformations) must be

supported as well. The encapsulation of these tools in reusable assets must

also be supported by the repository client, which, in turn, must enable the

linkage between these assets and the method elements.

In addition to the above requirements, we also identified one functional require-

ment (Req. 4) that relates to the method implementation phase:

• Req. 4. MOSKitt4ME must enable the automatic generation of

software environments that support the methods. To meet this re-

quirement, MOSKitt4ME must incorporate a software component that im-

plements the process that is described in Section 4.3.1. To implement this

Chapter 5. MOSKitt4ME: A Software Infrastructure 162

process, the software component must be able to interpret the method mod-

els that are created by means of the method editor (see Req. 1). Addition-

ally, the component must be able to obtain information from the technical

fragments (e.g., their software dependencies). This can be done by enabling

the communication between the component and the repository client (see

Req. 3).

Finally, we also identified one functional requirement (Req. 5) that relates to the

method execution phase:

• Req. 5. The software environments that are automatically gener-

ated by MOSKitt4ME must incorporate a set of integrated tools

that support the product and process parts of methods. In order to

provide product support, the software environments must enable (by means

of tools such as graphical editors or code generators) the creation and ma-

nipulation of the artifacts that are defined in the methods. The process

support must be provided in the form of a process engine, which will offer

enactment facilities (such as task orchestration) that enable the execution

of the method process part. In addition to these tools, the software en-

vironment will also provide a graphical user interface that assists software

engineers during the entire process of software development.

5.2 Developing MOSKitt4ME

After the identification of the functional requirements that are introduced in Sec-

tion 5.1, we developed the MOSKitt4ME environment. To carry out this devel-

opment, we defined the architecture of MOSKitt4ME first; then, we implemented

the architecture in a specific software platform: MOSKitt. These two steps are

detailed in Sections 5.2.1 and 5.2.2, respectively.

5.2.1 The Architecture of MOSKitt4ME

The architecture of MOSKitt4ME has been specifically designed to meet the re-

quirements that are described in Section 5.1. For the definition of the architecture,

Chapter 5. MOSKitt4ME: A Software Infrastructure 163

Figure 5.1: A software architecture for Method Engineering

we rely on the component concept since this is a well-understood concept that can

be implemented in most of the implementation technologies available. Compo-

nents can be defined as the basic software pieces that conform the architecture of

a system.

Figure 5.1 shows the technology-independent components that conform the archi-

tecture of MOSKitt4ME. As the figure shows, the architecture is composed of two

main parts: the CAME platform and the CASE platform. The CAME platform is

composed of four components: Method Editor, Repository Client, Metatools, and

CASE Generator. The CASE platform is composed of a Process Engine and a

Project Manager ; the functionality of the CASE platform can also be extended

via Pluggable Components and External Tools, which are stored in a repository

as technical fragments. Below, we provide more details about all of these compo-

nents.

Method Editor. The method editor allows method engineers to perform the

conceptual modeling of methods according to our DSL. The inclusion of

this component in the software architecture of MOSKitt4ME fulfills Req. 1.

In order to fulfill Req. 2, the method editor must incorporate a model trans-

formation that obtains executable representations of the method models.

Chapter 5. MOSKitt4ME: A Software Infrastructure 164

Repository Client. The repository client allows method engineers to connect to

repositories of conceptual and technical fragments. By means of this client,

method engineers can create new fragments and also store, retrieve, and

integrate them. Thus, the inclusion of the repository client in MOSKitt4ME

fulfills Req. 3.

Metatools. The metatools allow method engineers to develop tools for software

development. Examples of metatools are frameworks for the construction

of graphical editors or languages for the implementation of code generators.

The inclusion of metatools in MOSKitt4ME relates to Req. 3 since they

allow method engineers to create new tools and to encapsulate them in

technical fragments by means of the repository client.

CASE Generator. The CASE generator is in charge of the automatic (or semi-

automatic) construction of the CASE platform, which provides software

support to the method that is defined by means of the CAME platform.

Thus, the CASE generator, which allows us to fulfill Req. 4, bridges the

gap between the conceptual design of the method and its final technical

implementation. To achieve this goal, the CASE generator uses the linkage

between the conceptual and technical aspects of the method, which is estab-

lished by means of the repository client. The functionality that is provided

by the CASE part of MOSKitt4ME allows us to fulfill Req. 5.

Process Engine. The process engine supports the execution of the process part

of the method that was defined using the method editor.

Project Manager. The project manager component provides a graphical user

interface that assists software engineers during the course of software devel-

opment projects. Specifically, this interface gives information regarding the

state of the projects and running process instances.

Pluggable Components. The pluggable components represent software tools

that can be composed in a pluggable manner to extend the functionality

that is offered by the CASE platform. These components can be editors,

transformations, and guidelines. Editors allow software engineers to create

method products by means of textual or graphical languages. Transforma-

tions represent tools that can transform one software artifact into another,

for instance a machine-processable model into executable code. Guidelines

Chapter 5. MOSKitt4ME: A Software Infrastructure 165

provide guidance (e.g., textual documentation or process models) that can

assist software engineers during the performance of the method tasks. All of

these types of tools are (semi)automatically plugged into the CASE platform

by means of the CASE generator.

External Tools. The external tools represent software pieces that can extend the

functionality that is offered by the CASE platform. Unlike the pluggable

components, the external tools cannot be plugged into the CASE platform

because they are implemented in a different technology. Nonetheless, the

CASE platform contains references to these tools so that they can be opened

outside of the environment context in order to enable the creation of specific

method products.

5.2.2 Implementation of the Architecture

In this section, we provide implementation details about each of the software

components of the architecture that is presented in Section 5.2.1. Specifically, we

focus on the software technologies that were used to carry out this implementation.

These technologies are graphically depicted in Figure 5.2.

Method Editor. In order to implement this component of MOSKitt4ME, we

integrated two editors that have been developed by the Eclipse community:

the EPF Composer – a SPEM 2.0 editor that is distributed as part of the

Eclipse Process Framework Project – and the Activiti Designer – a BPMN

2.0 editor that is provided as part of the Activiti Project. To integrate

these two editors (and the metamodels that define the abstract syntax of

their DSLs), we performed two steps. First, we extended the metamodel of

the EPF Composer in order to fit the metamodel of our DSL (see Figure

4.2); to this end, we extended the metamodel of the EPF Composer with

references to the metamodel of the Activiti Designer. Second, we enhanced

the functionality of the EPF Composer so that this editor supports BPMN

2.0; for instance, we added a menu item that allows method engineers to open

BPMN 2.0 processes (which are edited by means of the Activiti Designer)

within the context of the EPF Composer. In addition to these two steps, we

also implemented a M2M transformation that obtains executable BPMN 2.0

models from the method models that are defined using the EPF Composer.

Chapter 5. MOSKitt4ME: A Software Infrastructure 166

Figure 5.2: Technologies used to implement our software architecture

Repository Client. This component has been implemented as an Eclipse view

that allows method engineers to connect to FTP repositories. The connec-

tion with these repositories is established by means of a FTP client that is

provided by the Apache Commons Project1.

Metatools. XText and GMF allow method engineers to develop textual and

graphical editors, respectively. The development of form-based editors is

supported by the FEFEM framework that is provided by MOSKitt, while

EMF supports the specification of metamodels and the generation of tree-

based editors. On the other hand, Model-to-Model (M2M) transformations

can be implemented by means of ATL, while Xpand supports the develop-

ment of code generators; that is, Model-to-Text (M2T) transformations.

CASE Generator. The CASE generator has been implemented in Xpand as a

M2T transformation. This transformation obtains an Eclipse product con-

figuration file (which represents the configuration model of Figures 4.6 and

1 http://commons.apache.org/

Chapter 5. MOSKitt4ME: A Software Infrastructure 167

4.8) from the method model that is defined by means of the EPF Com-

poser. The configuration file, thanks to the functionality that is offered

by the Eclipse PDE, enables the automatic construction of the CASE part

of MOSKitt4ME. This CASE part is a reconfiguration of MOSKitt that

only contains the Eclipse plug-ins that are strictly required to support the

method.

Process Engine. The process engine of MOSKitt4ME is the Activiti Engine,

which is a Java process engine that runs BPMN 2.0 processes and is provided

as part of the Activiti project. The Activiti Engine can run the BPMN 2.0

processes that are built by means of the Activiti Designer.

Project Manager. The project manager component has been implemented in

Java as a set of Eclipse views. For the implementation of these views, we

used the functionality that is provided by the Eclipse community to develop

graphical user interfaces, mainly the plug-ins of the Eclipse UI packages and

the SWT/JFace libraries.

Pluggable Components. These components can be developed using any tech-

nology as long as they are implemented as Eclipse plug-ins. Nonetheless,

using the metatools of MOSKitt4ME enables the subsequent communication

between the pluggable components and the project manager.

External Tools. These tools can be implemented in any technology; they are

not part of MOSKitt4ME but rather installed in the system. MOSKitt4ME

contains references to the external tools so that they can be opened when

necessary. These tools can be opened within MOSKitt4ME since Eclipse

provides mechanisms for running tools that are not part of the platform.

5.3 The MOSKitt4ME Environment

By leveraging the technologies that are described in Section 5.2.2, we developed

the MOSKitt4ME environment. MOSKitt4ME has been conceived as an exten-

sion of MOSKitt; for this reason, the installation of MOSKitt4ME must be per-

formed in two steps. The first step involves the download and installation of

MOSKitt 1.3.10 from the MOSKitt website (http://www.moskitt.org/). Then,

Chapter 5. MOSKitt4ME: A Software Infrastructure 168

in the second step, MOSKitt4ME has to be installed within MOSKitt by means

of the following update site: http://www.pros.upv.es/moskitt4me/Updates. To

install MOSKitt4ME from this update site, the user must select “Install New

Software. . . ” from the “Help” menu; then, push the “Add. . . ” button to add the

MOSKitt4ME update site; and, finally, follow the wizard to install the tool. It is

important to activate the checkbox “Contact all update sites during install to find

required software” so that all of the MOSKitt4ME dependencies can be resolved

during the installation.

In the following sections, we detail the functionality of MOSKitt4ME. We focus

on the CAME part of MOSKitt4ME first, and, then, we detail the functionality

of the CASE part. Further information about the functionality of MOSKitt4ME

is available in the user guide, which can be downloaded from the MOSKitt4ME

website: http://users.dsic.upv.es/~mcervera/moskitt4me.

5.3.1 The CAME Part of MOSKitt4ME

When MOSKitt4ME is successfully installed, the CAME part of the tool is added

to MOSKitt; note that the CASE part is not included because a separate environ-

ment will be generated during the phase of method implementation. As Section

5.2.1 describes, the CAME part of MOSKitt4ME is composed of the following

software components: method editor, repository client, metatools, and CASE

generator. These components are detailed in Sections 5.3.1.1, 5.3.1.2, 5.3.1.3, and

5.3.1.4, respectively.

5.3.1.1 Specifying Methods: the Method Editor

The method editor of MOSKitt4ME can be accessed by opening the “Method

Design” perspective. This perspective can be opened by means of the “Open Per-

spective” dialog, which is available at the “Window” menu. When the “Method

Design” perspective is opened, the MOSKitt4ME workbench is organized in three

different parts, which are graphically depicted in Figure 5.3. These three parts

are the following:

http://users.dsic.upv.es/~mcervera/moskitt4me

Chapter 5. MOSKitt4ME: A Software Infrastructure 169

Figure 5.3: Parts of the method design perspective

1. Library view: this view offers a hierarchical picture of the elements that

compose the method that is being defined by method engineers. These

elements conform to the SPEM 2.0 standard; some examples are tasks, roles,

and work products.

2. Configuration view: this view shows a subset of the elements that are dis-

played in the Library view; thus, it provides a mechanism for defining partial

views on methods.

3. Editor area: the properties of the method elements that are selected in the

Library view can be edited by means of specific editors that are opened by

default on the right side of the MOSKitt4ME workbench.

Both the Library view and the Configuration view of MOSKitt4ME are provided

by the EPF Composer. Below, we provide a brief summary of how methods are

Chapter 5. MOSKitt4ME: A Software Infrastructure 170

Figure 5.4: The library view

defined by means of this editor. For further details, we refer the reader to the

user guide that is provided in the Eclipse website [175].

EPF Composer

The definition of methods by means of the EPF composer is carried out in two

steps. First, method engineers define the method content; second, the method

content is instantiated in specific development processes (see Section 2.1.2.1).

Both method content and processes are defined within method libraries, which

can be created by means of the “File” menu: “New Method Library”. When a

method library is created, it can be edited by means of the Library view. The

Library view can only show one method library at a time.

In a method library, method content and processes are organized in hierarchical

structures named method plug-ins. Method plug-ins contain content packages,

which define method content, and process packages, which define processes. This

hierarchy is graphically depicted in Figure 5.4 (left).

Within content packages, new elements can be added and existing elements can

be deleted by means of the contextual menu. The properties of the content el-

ements can be specified by means of form-based editors that are opened in the

editor area by selecting “Edit” on the contextual menu (or double-clicking the

content elements). Figure 5.4 (right) shows an example of these form-based edi-

tors. Specifically, in the example, the editor allows the user to specify the inputs

and outputs of the task that is selected in the Library view. In this case, the task,

Chapter 5. MOSKitt4ME: A Software Infrastructure 171

Figure 5.5: The process editor of MOSKitt4ME

which is called “Business Logic Design”, has an output product that is called

“UML Class Model”.

Unlike method content elements, processes are defined by means of a process

editor, which is also opened by selecting the “Edit” action (or double-clicking

the process elements). By means of this editor, processes are defined as work

breakdown structures. These work breakdown structures define activities, which

contain references to method content elements. Activities can be created by means

of the contextual menu; references to content elements can be created by adding

task descriptors, role descriptors, and work product descriptors. Task descrip-

tors can be added by means of the contextual menu; work product descriptors

and role descriptors are automatically created according to the roles and work

products that are associated to the tasks in the content packages. Finally, prece-

dence relationships can be established between process elements by means of the

“Predecessors” column. Figure 5.5 shows an example of a process that has been

defined by means of the process editor of the EPF Composer.

The SPEM2BPMN Transformation

This transformation allows method engineers to automatically obtain BPMN 2.0

representations of the method processes. To invoke this transformation, the user

must open the contextual menu of the root element and select “Open BPMN 2.0

Diagram”. This action generates a BPMN 2.0 process for each SPEM 2.0 activity.

The Activiti Designer is the editor that has been integrated in MOSKitt4ME to

support BPMN 2.0. By means of this editor, method engineers can manually

Chapter 5. MOSKitt4ME: A Software Infrastructure 172

Figure 5.6: The BPMN 2.0 view

modify the generated processes; for instance, they can add BPMN 2.0 gateways

to enhance the process workflows.

In order to facilitate the access to the BPMN 2.0 processes, MOSKitt4ME provides

the “BPMN 2.0” view. This view can be opened by means of the “Show View”

dialog, which is available at the “Window” menu. The BPMN 2.0 view provides a

hierarchical representation of the BPMN 2.0 processes that are generated for the

process that is selected in the Library view. Each of the elements of the hierarchy

represents one specific BPMN 2.0 process. The user can double-click any of these

processes to open the Activiti Designer file storing it. This is illustrated in Figure

5.6.

5.3.1.2 Connecting to Repositories: the Repository Client

The repository client of MOSKitt4ME can be accessed by opening the “Reposito-

ries” view. This view can be opened by means of the “Show View” dialog, which is

available at the “Window” menu. The Repositories view allows method engineers

to connect to FTP repositories that store either conceptual fragments or technical

fragments. Thus, the main functionality that is provided by the Repositories view

Chapter 5. MOSKitt4ME: A Software Infrastructure 173

Figure 5.7: Adding a repository location in MOSKitt4ME

is twofold. On the one hand, it allows method engineers to reuse method parts,

which makes the method construction process less error-prone, and more rapid

and cost-effective. On the other hand, it allows method engineers to establish

the linkage between the conceptual aspects and the technical aspects of methods;

that is, it enables the association of conceptual method elements with the techni-

cal fragments that indicate the software tools that will support the method during

its execution.

In order to connect to a FTP repository, the Repositories view provides the “Add

Repository Location” action, which can be found in the toolbar of the view.

This action opens the “Add Repository Location” dialog, which allows the user

to enter the host that contains the repository, the repository path, and his/her

username and password. The “Add Repository Location” dialog, together with

the Repositories view, is shown in Figure 5.7. As the figure shows, repository

locations are displayed in the Repositories view according to the following pattern:

user @ host : repositorypath. These locations can be refreshed or deleted by

means of the contextual menu.

Conceptual Fragments

The Repositories view allows method engineers to store new conceptual fragments

in the FTP repositories by means of the “Create Conceptual Fragment” action

of the contextual menu. This action opens the “Create Conceptual Fragment”

Chapter 5. MOSKitt4ME: A Software Infrastructure 174

Figure 5.8: Dialog for creating conceptual fragments

dialog, which is graphically depicted in Figure 5.8. As the figure shows, this

dialog allows the user to specify the fragment properties (e.g., name, type, and

origin) and also to select the elements of the method that will be encapsulated in

the conceptual fragment. The elements of the method can be selected by means

of a graphical component that is called “Content”. This component filters the

elements according to the fragment type; for instance, in Figure 5.8 the graphical

component only displays the method tasks because the user is going to create a

task fragment (i.e., the user has selected “Task” as the fragment type). We have

also implemented the possibility to store different kinds of content elements (e.g.,

two products and one task) in the same conceptual fragment. To create this type

of conceptual fragment, the user must select “Content Element” as the fragment

Chapter 5. MOSKitt4ME: A Software Infrastructure 175

Figure 5.9: Conceptual fragment properties in the Repositories view

type.

When a conceptual fragment is created and stored in the repository, the fragment

is shown as a nested element of the repository location. This is illustrated in Figure

5.9. As the figure shows, the Repositories view also allows method engineers to

examine the fragment properties by opening the nested elements of the conceptual

fragment. These properties can be used by method engineers to search for the most

appropriate fragments. To facilitate this search, the Repositories view provides

the “Search” action, which can be found in the toolbar of the view. This action

opens a dialog that allows method engineers to specify different property values,

which are used by the Repositories view to filter its content (i.e., the Repositories

view will only show the fragments whose properties match the values that are

specified by the user).

Once the user selects a conceptual fragment in the Repositories view, the inte-

gration of the fragment into the method under construction can be performed by

means of the “Integrate Conceptual Fragment” action, which can be found in the

toolbar of the view. The integration of a conceptual fragment is performed in two

different ways depending on the type of the fragment that is being integrated. If

the fragment is a content fragment (i.e., a task fragment, a role fragment, a prod-

uct fragment, or contains a combination of these), then the “Integrate Conceptual

Fragment” action will open the “Content Package Selection” dialog. This dialog

allows the user to select the content package that will store the content elements

that are encapsulated in the fragment. On the other hand, if the fragment that is

Chapter 5. MOSKitt4ME: A Software Infrastructure 176

Figure 5.10: Wizard for process fragment integration

selected is a process fragment, then the “Integrate Conceptual Fragment” action

will open the “Process Fragment Integration” wizard.

The “Process Fragment Integration” wizard is depicted in Figure 5.10. As the

figure shows, the wizard takes the user through three sequential steps. In the first

step, the user must select an element of a method process. This element will be

the destination of the process that is encapsulated in the fragment (e.g., if the

selected element is an activity, then the process will be nested within this activity).

The integration of the process fragment can be performed in two different ways:

“Extend” and “Copy”. If “Extend” is selected, then the process fragment will not

be included in the method process but rather copied separately and referenced; if

“Copy” is selected, then all of the fragment content will be copied into the selected

process element. Once the first step of the wizard is finished, in the second step

the user must select the process package where the process that is encapsulated

in the fragment will be stored. If the process already exists in the package, the

process will not be copied. In this case, the third step of the wizard is omitted;

otherwise, the third step involves the selection of a content package of the method

Chapter 5. MOSKitt4ME: A Software Infrastructure 177

Figure 5.11: Dialog for technical fragment creation

library. This package will store the content elements that are referenced by the

process fragment.

Technical Fragments

In addition to conceptual fragments, the Repositories view also enables the cre-

ation of technical fragments. To do this, method engineers must invoke the “Cre-

ate Technical Fragment” action, which is available in the contextual menu of the

repository location. This action opens the “Create Technical Fragment” dialog,

which is graphically depicted in Figure 5.11. As the figure shows, this dialog

allows the user to create new technical fragments and also to specify their depen-

dencies with other technical fragments; that is, the dependency tree (see Section

4.2.2.1). Specifically, the “Create Technical Fragment” dialog supports the cre-

ation of technical fragments by means of a graphical component that is called

“Dependencies Tree”. This component, which implements a Tree Viewer of the

Eclipse JFace library, initially contains one technical fragment (i.e., the root of the

dependency tree) and also allows the user to add additional fragments represent-

ing its software dependencies. This is done by means of the “Add Dependency”

Chapter 5. MOSKitt4ME: A Software Infrastructure 178

Figure 5.12: Dialog for the edition of technical fragments

button. On the other hand, the “Remove Dependency” button allows the user to

remove technical fragments from the tree.

In order to edit the properties of the technical fragment that is selected in the

dependency tree, the “Create Technical Fragment” dialog provides the “Edit”

button, which opens the “Edit Technical Fragment” dialog. This dialog, which

is graphically depicted in Figure 5.12, allows the user to specify the properties of

the technical fragment (e.g., name, type, and input/output) and also to select the

Eclipse plug-ins that implement the tool that will be encapsulated in the fragment.

These plug-ins can be selected by means of a graphical component that is called

Chapter 5. MOSKitt4ME: A Software Infrastructure 179

Figure 5.13: Technical fragments errors

“Plug-ins”. This component displays all of the projects of type “Plug-in Project”

that are available in the MOSKitt4ME workspace.

Once the fragment properties are specified, errors may appear due to, for example,

software dependencies (i.e., the plug-ins of the technical fragment may require

other plug-ins that are not included in the fragment); another example of error is

when the user does not specify the name or the type of the technical fragment.

A technical fragment that contain errors is highlighted in the dependency tree by

means of a red “X”. This is illustrated in Figure 5.13. In order to see all of the

errors of a technical fragment, the user can place the cursor over the fragment

area, as illustrated in the figure.

In order to solve the errors that are related to software dependencies, the user can

add/remove technical fragments in the dependency tree by means of the “Add

Dependency” and “Remove Dependency” buttons. When the user pushes the

“Add Dependency” button, a new technical fragment is created. This fragment is

added to the tree as a child of the fragment that is selected by the user; thus, the

child fragment represents a dependency of the parent fragment (i.e., the parent

fragment requires the use of the child fragment for its correct operation). On

the other hand, the “Remove Dependency” button allows the user to remove the

Chapter 5. MOSKitt4ME: A Software Infrastructure 180

Figure 5.14: An example of dependency tree

fragment that is selected in the dependency tree and also all of its nested fragments

(i.e., all of its software dependencies).

In addition to the add/remove buttons, the user can establish dependencies be-

tween technical fragments by means of the “Import” button. This button opens

the “Import Technical Fragment” dialog, which allows the user to select a tech-

nical fragment that is already stored in the repository and to import it (and all

of its software dependencies) into the dependency tree. When a fragment is im-

ported, it is added to the dependencies tree as a child of the selected fragment.

Unlike regular fragments, the icon of the imported fragments contains a yellow

arrow. This arrow represents that these fragments are references to fragments

that already exist in the repository, and, therefore, they must not be created so as

to avoid duplicate fragments. As an example, Figure 5.14 shows the dependency

tree of the “Glossary Editor” fragment. Note that, in the example, the “Glossary

Metamodel” is the only fragment that has been imported from the repository.

Additionally, none of the technical fragments contain errors, and, therefore, the

Chapter 5. MOSKitt4ME: A Software Infrastructure 181

Figure 5.15: Technical fragment properties in the Repositories view

user can push the “OK” button to create a new technical fragment for each of the

fragments of the tree (with the exception of the imported fragment).

Similarly to conceptual fragments, when a technical fragment is created and stored

in the repository, the fragment is shown as a nested element of the repository

location. This is illustrated in Figure 5.15. As the figure shows, the Repositories

view also allows method engineers to examine the fragment properties by opening

the nested elements of the technical fragment. These properties can be used by

method engineers to search for the most appropriate fragments. This task is

facilitated by the “Search” action of the toolbar.

Note that, some technical fragments are not shown in the Repositories view. This

is because technical fragments may be created for the sole purpose of resolving

dependency problems, and, thus, they may fall out of the tool types that are sup-

ported by MOSKitt4ME (e.g., editors, meta-models, model transformations, or

guidance). To create this type of fragments, MOSKitt4ME provides the category

“Others”.

Once the user selects a technical fragment in the Repositories view, the linkage

between this fragment and a conceptual element of the method can be established

by means of the “Integrate Technical Fragment” action. This action, which can be

found in the toolbar of the view, opens the “Task/Work Product Selection” dialog.

This dialog, which is depicted in Figure 5.16, allows the user to select a task or

Chapter 5. MOSKitt4ME: A Software Infrastructure 182

Figure 5.16: Dialog for establishing conceptual-technical linkage

a product of the method. When a task or a product is chosen, it is associated to

the technical fragment that is selected in the Repositories view. This association

is performed by means of the creation of a new element of type “Tool Mentor”,

which is automatically displayed on the Library view.

Finally, it is also important to mention that the Repositories view offers two addi-

tional actions in the contextual menu of the repository location: “Define External

Tool” and “Define Internal Tool”. These actions allow the user to create two

special types of technical fragments: external tools and internal tools. External

tools differ from regular technical fragments in that they do not contain Eclipse

plug-ins; rather, they represent software tools that are implemented in a different

technology. Thus, external tools support situations where method engineers want

to specify that a particular product must be developed by means of a tool that

cannot be installed in an Eclipse-based environment; for instance, a product that

needs to be created during the method execution by means of Microsoft Word. On

the other hand, internal tools differ from regular technical fragments in that they

Chapter 5. MOSKitt4ME: A Software Infrastructure 183

Figure 5.17: Dialog for the definition of external tools

do not contain plug-ins that have been implemented by the user (which are devel-

oped by means of the metatools of MOSKitt4ME and located in the workspace);

rather, they reference plug-ins that are installed in the MOSKitt4ME platform.

Thus, internal tools allow method engineers to specify that a particular product

will be created by means of an Eclipse-based framework such as GMF, EMF, or

FEFEM. One important advantage of internal tools is that, since these tools are

available in the MOSKitt4ME platform, it is not necessary to store their plug-

ins in the repository; it suffices to store their identifiers. Another advantage of

internal tools is that they are not subject to any requirements, and, therefore,

they can represent any type of software tool that can be conceived as Eclipse

plug-ins; nonetheless, this lack of requirements prevents the Project Manager of

the CASE part of MOSKitt4ME to interact with the internal tools during the

method execution.

For the definition of external tools, MOSKitt4ME opens the “Define External

Tool” dialog after the user selects the “Define External Tool” action in the con-

textual menu. This dialog is shown in Figure 5.17. Similarly to the definition

Chapter 5. MOSKitt4ME: A Software Infrastructure 184

Figure 5.18: Dialog for the definition of internal tools

Chapter 5. MOSKitt4ME: A Software Infrastructure 185

of regular technical fragments, the “Define External Tool” dialog allows the user

to specify the properties of the external tool (e.g., name, origin, and objective);

nonetheless, to define an external tool, the user must also specify a file extension

and a description. The former property represents the extension of the files that

will be created by means of the external tool. The main purpose of this property

is to be used by the operating system as a way to identify the software tool that

must be launched during the method execution. In the example of Figure 5.17,

the “.doc” extension identifies Microsoft Word as the tool that must be invoked

for the creation of the products that are associated to the external tool. On the

other hand, the latter property provides textual information that can be used by

software engineers to configure the system so that the external tool is available

during the method execution. This information is made available to the software

engineer by means of a report that is produced during the CASE environment

generation process.

The definition of internal tools can be performed in MOSKitt4ME by means of the

“Define Internal Tool” dialog. This dialog, which is shown in Figure 5.18, allows

the user to specify the properties of the internal tool, such as its name, origin, and

description. In this case, the description property will provide textual information

that can be used by software engineers during the method execution; note that, the

Project Manager component of the CASE environment cannot provide any other

assistance regarding internal tools because they do not implement any common

interface. In addition to the above properties, method engineers must also specify

the plug-ins to be referenced by the internal tool. To specify these plug-ins,

the “Define Internal Tool” dialog provides a graphical component that is called

“Plug-ins”. This component enables the selection of plug-ins from the whole

MOSKitt4ME platform.

5.3.1.3 Building Eclipse Plug-ins: the Metatools

MOSKitt4ME provides method engineers with a set of Eclipse technologies that

facilitate the construction of the plug-ins to be encapsulated in technical frag-

ments. Since the major goal of these plug-ins is to provide product support

during the method execution, it is desirable that they can communicate with the

Project Manager of MOSKitt4ME. To enable this communication, the Eclipse

plug-ins that are developed using the metatools of MOSKitt4ME must meet a

Chapter 5. MOSKitt4ME: A Software Infrastructure 186

set of requirements. In the following, we describe for all of the types of tech-

nical fragments that are supported in the current version of MOSKitt4ME, the

requirements that they must satisfy and also the Eclipse technologies that can

be used for their development. Note that we do not include external tools and

internal tools in this section. This is because, unlike the other types of technical

fragments, external/internal tools are not developed by MOSKitt4ME users.

Metamodels

Metamodels can be specified in MOSKitt4ME by means of the Ecore language,

which is provided as part of the EMF framework. Thus, the EMF framework

supports the definition of metamodels, and, additionally, it provides generation

facilities that take metamodels as input and automatically obtain (1) the set of

Java classes that implement the metamodels, along with (2) Java classes that

enable the edition of the models (that instantiate the metamodels), and (3) basic

tree-based editors.

In order to be compatible with the MOSKitt4ME requirements, the plug-ins that

are contained in a technical fragment of type “Metamodel” must define an Ecore

metamodel; additionally, the Java classes that implement the metamodel, the

editing classes, and the tree-based editor must have been generated.

Graphical Editors

Graphical editors can be developed in MOSKitt4ME by means of the GMF frame-

work. This framework, which is built on EMF, applies a model-driven approach

to obtain fully-functional graphical editors. To develop a graphical editor using

GMF, the user must build a set of models that define (1) an Ecore metamodel,

(2) the graphical elements to be displayed in the editor, and (3) the tools that

will appear in the palette, menus, and toolbars. Once these models are defined,

a set of generative tools automatically obtain a graphical editor supporting the

construction of models that are compliant with the metamodel that has been

specified.

There are no particular requirements to be met by the plug-ins that are contained

in a technical fragment of type “Graphical Editor”. All of the graphical editors

that are developed by means of GMF are compatible with the Project Manager

of MOSKitt4ME.

Chapter 5. MOSKitt4ME: A Software Infrastructure 187

Form-based Editors

Form-based editors can be developed in MOSKitt4ME by means of the MOSKitt

FEFEM framework. This framework facilitates the construction of form-based

editors by implementing a set of patterns that are typically found during the

development of this kind of editors. An example of these patterns is a textbox

for editing properties of type String. FEFEM offers a class that represents this

pattern; developers only need to extend this class and write a few lines of code

to add this kind of textboxes to their editors. It is important to note that, since

FEFEM is based on SWT and JFace, form-based editors can also be directly

built by means of these libraries; however, we recommend the use of FEFEM

since it significantly reduces the workload that is inherent to the development of

form-based editors.

There are no particular requirements to be met by the plug-ins that are contained

in a technical fragment of type “Form-based Editor”. All of the form-based editors

that are developed by means of FEFEM (or directly by means of SWT and JFace)

are compatible with the Project Manager of MOSKitt4ME.

Model Transformations

For the development of model transformations, MOSKitt4ME offers the ATL

and Xpand languages, which are two programming languages that have been

designed by the Eclipse community to support the implementation of M2M and

M2T transformations, respectively.

Despite the availability of these two languages in MOSKitt4ME, model trans-

formations can be implemented in any language (for instance, Java or C++);

nonetheless, to be compatible with the Project Manager component, the plug-ins

that are contained in a technical fragment of type “Model Transformation” must

meet two requirements:

• The model transformation must be declared by means of the extension point

“es.cv.gvcase.trmanager.transformation”, which is provided by the Transfor-

mation Manager of MOSKitt. The Transformation Manager is a software

component that provides a set of Java classes that facilitate the specification

and the invocation of model transformations; additionally, it implements a

Chapter 5. MOSKitt4ME: A Software Infrastructure 188

graphical user interface that makes these transformations readily available

in the MOSKitt workbench.

• In the declaration of the model transformation by means of the aforemen-

tioned extension point, the user must provide a Java class extending the

“Transformation” class of the “es.cv.gvcase.trmanager” plug-in. This class

is an abstract class that declares two abstract methods: “transform” and

“inputsValid”. While the former must implement the invocation of the

model transformation, the latter must implement validation rules for the

input model. Thus, by extending the “Transformation” class, the Project

Manager will be able to invoke the model transformation during the method

execution by simply calling the “transform” method.

Guidance

Contextual help can be developed in MOSKitt4ME by means of the HTML and

XML languages. This help can be later encapsulated in guidance fragments.

In order for these guidance fragments to be compatible with MOSKitt4ME, the

Eclipse plug-ins that implement the help must use two extension points:

• org.eclipse.epf.authoring.ui.helpcontextprovider: the plug-ins of a guidance

fragment must use this extension point to declare an identifier for the con-

textual help. During method execution, whenever a method task that is

associated to the guidance fragment is selected in the Process view, this

identifier will be sent to the Help view of the Project Manager. Thus, the

Help view knows the help that must be shown to the user based on the task

that he/she is going to execute.

• org.eclipse.help.contexts: the plug-ins of a guidance fragment must use this

extension point to declare a “contexts.xml” file. This file associates the help

identifier (which is defined by means of the previous extension point) with

the HTML/XML files that implement the help.

5.3.1.4 Obtaining Software Support: the CASE Generator

The CASE generator of MOSKitt4ME can be accessed by means of the “Generate

CASE Tool” action of the contextual menu of the Library view. This action, which

Chapter 5. MOSKitt4ME: A Software Infrastructure 189

Figure 5.19: Generation of CASE environments in MOSKitt4ME

is shown on the left side of Figure 5.19, opens the “CASE Tool Generation” dialog,

which is shown on the right side. The “CASE Tool Generation” dialog allows the

user to enter the destination path and the name of the software environment that

will be generated. When the user pushes the “OK” button, the generation process

starts. Nonetheless, the executable representation of the method must have been

previously obtained; otherwise, the dialog will show an error message suggesting

that the user must invoke the “Open BPMN 2.0 Diagram” action.

When the user successfully starts the generation process, three automatic steps

are performed. First, the technical fragments that are associated to method el-

ements are downloaded from the FTP repository and stored in a temporal local

folder. In this step, all of the dependencies of these fragments are also down-

loaded to the same folder. This first step corresponds to the first two steps that

are described in Section 4.3.1. Second, the Eclipse plug-ins that are contained in

the technical fragments are extracted from the .ras zip files and imported into the

MOSKitt4ME workspace (if they do not already exist). At this point, an extra

plug-in is generated. This plug-in contains an Eclipse product configuration file

that defines the RCP product (i.e., the CASE environment) that will be gener-

ated. Finally, in the third step of the process, an Eclipse product export process

is launched. This process produces the final Eclipse-based environment, which

is a reconfiguration of MOSKitt that only contains the plug-ins that are strictly

necessary to support the method. These plug-ins are the ones that have been

imported into the workspace along with the plug-ins that implement the Project

Chapter 5. MOSKitt4ME: A Software Infrastructure 190

Figure 5.20: An example of generation report

Manager and a plug-in that contains the libraries of the Activiti Engine. Once the

MOSKitt reconfiguration is completely generated, the plug-ins that were imported

into the MOSKitt4ME workspace are deleted so that the workspace returns to its

original state. This third step of the generation process corresponds to the last

step that is described in Section 4.3.1.

The duration of the three steps that are described above depends on the size and

the number of software tools that are required to support the method. Thus, the

CASE environment generation process may take from a few minutes to more than

one hour.

As a result of the generation process, a generation report is also produced (see

Section 4.3.1.3). This report contains information about the number of tools that

are successfully installed in the CASE environment; it also contains information

about the external tools since these tools cannot be included in the environment,

and, therefore, software engineers need to configure the system to make the exter-

nal tools available during the method execution. Figure 5.20 shows an example

of generation report.

Chapter 5. MOSKitt4ME: A Software Infrastructure 191

5.3.2 The CASE Part of MOSKitt4ME

The software environments that are generated by means of the CASE generator

(see Section 5.3.1.4) constitute the CASE part of the MOSKitt4ME architecture.

This CASE part offers customized tool support that assists software engineers

during the entire process of software development; that is, during the execution of

the method that method engineers defined using the CAME part of MOSKitt4ME.

All of the functionality of the CASE part is made available to software engineers

through a component that is called Project Manager. This component is detailed

in Section 5.3.2.1.

5.3.2.1 Bringing Methods into Enactment: the Project Manager

The project manager of MOSKitt4ME can be accessed by opening a perspective

that is called “Method Execution”. This perspective can be opened by means of

the “Open Perspective” dialog, which is available at the “Window” menu. When

the “Method Execution” perspective is opened, the MOSKitt4ME workbench is

organized in four different parts, which are graphically depicted in Figure 5.21.

These four parts are the following:

1. MOSKitt Resource Explorer: This view provides a hierarchical picture of the

workspace. This hierarchy is organized in projects, folders, and files. From

the MOSKitt Resource Explorer, software engineers can, for example, create

new projects, delete existing projects, or add files to these projects. This

view corresponds to the Project Explorer view that is described in Section

4.4.1.

2. Process view: This view shows the current state of the process instance

that is associated to the project that is selected in the MOSKitt Resource

Explorer. The process instance is shown in the same notation as the one that

was used by method engineers; that is, the notation of the EPF Composer.

The Process view corresponds to the view of the same name that is described

in Section 4.4.1.

3. Product Explorer: This view shows a hierarchical picture of the artifacts

that have been produced during the course of the project that is selected in

Chapter 5. MOSKitt4ME: A Software Infrastructure 192

Figure 5.21: Parts of the method execution perspective

the MOSKitt Resource Explorer. This view corresponds to the view of the

same name that is described in Section 4.4.1.

4. Editor area: Method products can be created and manipulated by means

of software tools that are opened by default on the upper-right side of the

MOSKitt4ME workbench. These tools correspond to the technical frag-

ments (e.g., graphical or form-based editors), which were associated to the

method tasks and products during the phase of method design.

In addition to the above views, which are opened by default when the “Method

Execution” perspective is active, the project manager of MOSKitt4ME also pro-

vides two additional views. These views, which are in charge of showing method

guidelines to software engineers, correspond to the Help view that is described in

Chapter 5. MOSKitt4ME: A Software Infrastructure 193

Figure 5.22: Wizard to create new projects in MOSKitt4ME

Section 4.4.1. Below, we detail all of the views that comprise the project manager

of MOSKitt4ME.

MOSKitt Resource Explorer

The MOSKitt Resource Explorer allows software engineers to create and delete

development projects. To create a new project, the user must select “Other. . . ”

in the “New” item of the contextual menu. This action opens the “New” wizard,

which is graphically depicted in Figure 5.22. As the figure shows, the “New”

wizard takes the user through two sequential steps. First, the user must select

the project type; in this case, the type to select is called “MOSKitt4ME Project”.

Second, the user must enter the project name and select the process to be asso-

ciated to the project. In this second page of the wizard, the user is allowed to

choose among all of the processes that were defined during the phase of method

design. When the wizard is finished, a new MOSKitt4ME project is added to the

Chapter 5. MOSKitt4ME: A Software Infrastructure 194

Figure 5.23: Task filtering in the process view

MOSKitt Resource Explorer view. This project can be deleted by means of the

“Delete” action of the contextual menu.

Process View

When a project is selected in the MOSKitt Resource Explorer, the project man-

ager of MOSKitt4ME automatically invokes the Activiti Engine, which returns

the current state of the process instance that is associated to the project. The

view that is in charge of showing this process instance is the Process view.

By default, the Process view only shows the tasks that are executable in the

current state of the process. These tasks (and their parent activities) are displayed

in green. This is illustrated on the left side of Figure 5.23. In order to see all the

activities and tasks of the process, users can make use of the “All Tasks” action

of the toolbar. This action acts as a toggle button, as Figure 5.23 illustrates.

When the button is deactivated, the Process view only displays the executable

tasks (i.e., the tasks that can be performed in the current state of the process).

When the button is activated, all of the tasks of the process are displayed. In this

case, non-executable tasks are displayed in red, executable tasks are displayed in

green, and the tasks that have already been executed are displayed in blue. The

color of the activities depends on their nested tasks and subactivities. An activity

is shown in blue if and only if all of its tasks and sub-activities have already been

executed. On the other hand, the activity is shown in red if and only if all of its

Chapter 5. MOSKitt4ME: A Software Infrastructure 195

Figure 5.24: Executing a task in the process view

tasks and sub-activities are non-executable. Otherwise, the activity is shown in

green.

Displaying tasks in different colors represents useful guidance for software engi-

neers since it tells them the tasks to be executed based on the current state of

the project. In order to execute a specific task, software engineers must double-

click the (executable) task in the Process view. When the user carries out this

action, different possibilities exist. For instance, if the task is associated to a

model transformation, then the project manager of MOSKitt4ME launches the

execution of the transformation; or, if the task has an output product that has

a graphical editor (or a metamodel) associated to it, then the Project Manager

opens a wizard that enables the creation of an empty model. This model will be

manipulated by means of the graphical editor (or a default tree-based editor in

the case of the metamodel).

When the execution of a task has been requested and the output products are

already created, subsequent execution requests for the same task do not have the

same effect. Specifically, when the user double-clicks an executable task that has

already been started, the project manager opens its output products so that the

user can modify them.

Once a task is considered to be finished, the user must manually set the task as

executed. This can be performed by means of the “Run” action of the toolbar.

Chapter 5. MOSKitt4ME: A Software Infrastructure 196

Figure 5.25: Selection of roles in the process view

When a task is set as executed, the project manager notifies the Activiti Engine,

which takes the process instance to its next state. This is illustrated in Figure

5.24. As the figure shows on the left side, the “Glossary of Terms Definition” task

is displayed in green before the user invokes the “Run” action. Then, after the

invocation, the task is shown in blue, which indicates that the task has already

been finished. This is shown on the right side of the figure.

In addition to the “Run” action, the Process view also provides the “Run Repeat-

able” action. This action has the same icon as the “Run” action plus an overlay

icon in the form of an arrow. The “Run Repeatable” action, which can be found

in the toolbar of the Process view, is only enabled for the tasks that were set as

“repeatable” during the phase of method design. When the “Run Repeatable”

action is invoked for a task, the task is considered again as not started. This

means that subsequent execution requests will have the same effect as if the task

had never been executed.

Chapter 5. MOSKitt4ME: A Software Infrastructure 197

The Process view also provides support to task filtering based on the role of the

user. In order to select a specific role, users can make use of the “Role Selection”

action of the toolbar. Similarly to the “All Tasks” action, the “Role Selection”

action acts as a toggle button, as Figure 5.25 illustrates. When the button is

deactivated, tasks are not filtered; when it is activated, tasks are filtered based on

the roles that are selected by the user. The role selection is performed by means

of the “Role Selection” dialog. As an example of use of this dialog, Figure 5.25

illustrates that the user selects the “Designer” role, and, thus, the Process view

filters the tasks that are not assigned to this role. Note that the toolbar always

shows the roles that are selected by the user.

Finally, the Process view also provides support to returning to previous states of

the process by means of the “Undo” action of the toolbar . This action allows the

user to go back in the process execution but does not delete the files that have

already been created.

Product Explorer

When a project is selected in the MOSKitt Resource Explorer, the Product Ex-

plorer view shows a hierarchical representation of the method products that have

been created for the project. This hierarchy, as Figure 5.26 illustrates, is based

on the elements of type “Domain” and “Product” that are defined in the method

model. Specifically, the Product Explorer shows (1) the domains that are defined

in the method, (2) the subdomains and products that are contained in these do-

mains, and (3) the files that have been created for each particular product. These

files represent instantiations of the products in specific development projects.

Similarly to the Process view, the Product Explorer can also be filtered by role.

If one or more roles are selected in the Process view, then the Product Explorer

will only show the products that are output of the tasks that are assigned to the

selected roles. Thus, the user can easily focus on the products he/she is responsible

for.

Guides View

The project manager of MOSKitt4ME also provides the Guides view, which can

be opened by means of the “Show View” dialog (available at the “Window” menu).

Chapter 5. MOSKitt4ME: A Software Infrastructure 198

Figure 5.26: Product explorer view in MOSKitt4ME

The Guides view – by making use of the method model at runtime – provides soft-

ware engineers with guidelines on the performance of the method tasks. Specifi-

cally, the Guides view shows the elements of type “Guidance” that are associated

to the method task that is selected in the Process view. In order to see the content

of these guidance elements, the user must double-click them. This action opens the

“Content” view of the EPF Composer, which displays an HTML representation

of the guidance content.

Figure 5.27 shows how the Guides view operates. Specifically, the figure illustrates

that a user selects a task in the Process view. This action updates the Guides

view, which shows three elements of type “Guidance”; all of these elements are

retrieved from the method model. When the user selects one of these elements,

its content is displayed in the Content view.

Help View

As another type of guidelines, the project manager also provides support to the

Eclipse dynamic context help. This type of help is shown in the Help view that is

provided by Eclipse. Specifically, when a method task is selected in the Process

view, the project manager obtains – if any – the guidance fragments that are

associated to the task. Then, the guidelines that are contained in these guidance

fragments are displayed in the Help view. This is illustrated in Figure 5.28.

Chapter 5. MOSKitt4ME: A Software Infrastructure 199

Figure 5.27: Guides view in MOSKitt4ME

Figure 5.28: Help view in MOSKitt4ME

Chapter 5. MOSKitt4ME: A Software Infrastructure 200

5.4 Conclusions

This chapter presents MOSKitt4ME, a CAME environment that has been im-

plemented to support our approach for model-driven Method Engineering. To

ensure that MOSKitt4ME offered the necessary functionality, we identified a set

of functional requirements prior to developing the tool. These requirements were

conceived to provide complete support to the lifecycle of Method Engineering.

Thus, MOSKitt4ME incorporates components that cover from the initial design

of methods (e.g., the method editor) over their implementation (e.g., the CASE

generator) to the final method execution (e.g., the project manager).

It is worth mentioning that, by implementing the MOSKitt4ME environment, we

show that it is possible to systematize (and partially automate) the design, imple-

mentation, and execution of methods. Nonetheless, the benefits of MOSKitt4ME

still need to be demonstrated via rigorous evaluation methods. For this reason,

we performed a study that evaluates MOSKitt4ME by means of the Technology

Acceptance Model (TAM) [45] and the Think Aloud method [48]. This evaluation

study is thoroughly described in Chapter 6.

Chapter 6

Evaluation of the Proposal

Despite the potential benefits of CAME technology, this kind of tools have never

been widely adopted in industry mainly due to the high complexity of existing

Method Engineering approaches [3, 31]. In order to facilitate the use of our CAME

environment (MOSKitt4ME), one of the major goals of this thesis was to minimize

the complexity of the methodological approach that is introduced in Chapter 4.

In the present chapter, we describe a study that we carried out to evaluate the ex-

tent to which we accomplished the above thesis goal. The study that is presented

in this chapter evaluates MOSKitt4ME with respect to two quality attributes:

perceived usefulness and perceived ease of use. We evaluated perceived ease of

use because this attribute represents a subjective measure of complexity [46, 47].

We evaluated perceived usefulness because this attribute is causally affected by

perceived ease of use [164], and, for this reason, the usefulness of Method Engi-

neering is often negatively perceived by practitioners (which represents a major

obstacle for the success of Method Engineering and CAME technology).

In order to evaluate the perceived usefulness and the perceived ease of use of

MOSKitt4ME, we applied the Technology Acceptance Model (TAM) [45]. The

subjective results that we obtained by means of the TAM were reinforced by the

Think Aloud method [48], which allowed us to assess usefulness and ease of use

in an objective manner. Thus, we could analyze not only the users’ satisfaction

201

Chapter 6. Evaluation of the Proposal 202

with MOSKitt4ME, but also the users’ actual performance during the study and

the difficulties that they experienced using our tool.

In summary, the main goal of this chapter is to illustrate that MOSKitt4ME can

be positively rated in terms of perceived usefulness and ease of use and that it

can also improve the users’ performance while posing little difficulty of use. Our

positive results contrast with traditional Method Engineering, whose usefulness

is often negatively perceived by practitioners and whose complexity remains an

unsolved issue. As a collateral benefit of the study, this chapter also illustrates

how MOSKitt4ME reduces the complexity of Method Engineering by means of

Model-Driven Engineering (MDE) techniques.

The remainder of this chapter is structured as follows. First, Section 6.1 pro-

vides background on Method Engineering evaluation. Then, Section 6.2 gives an

overview of our evaluation study. Each of the four phases that comprise the study

(i.e., the initial design of the study, its execution, the analysis of the collected

data, and the presentation of results) are detailed in Sections 6.3, 6.4, 6.5, and

6.6, respectively. Finally, Section 6.7 draws some conclusions about the present

chapter.

6.1 Background on Method Engineering Evalua-

tion

In 1996, Tolvanen et al. [176] noted that Method Engineering researchers had

focused mostly on the theoretical foundations of the discipline and highlighted

the need for investigating usability issues such as usefulness or complexity. A

similar conclusion was reached in 1997 by Ter Hofstede et al. [28], who stated

that more empirical research was needed to substantiate the claims associated

with the potential benefits of Method Engineering. Despite these demands for

more empirical research, two decades later it is still hard to find empirical studies

that investigate methods and tools for Method Engineering [11].

One of the few empirical studies that have been conducted in the context of

Method Engineering is the work by Sousa et al. [177]. This work evaluates the

graphical notation of a language for method design: the ISO/IEC 24744 standard

Chapter 6. Evaluation of the Proposal 203

[67]. The main contributions of this work are several suggestions for improving

the notation, such as extending the taxonomy of action types. Other empirical

studies are those by Kelly et al. [178] and Kerzazi et al. [179]. The former

study evaluates an approach for testing metaCASE environments; this approach

is based on an error classification that allows the performance of metamodelers

to be measured. The latter study evaluates the usability of two method design

tools: EPF Composer and DSL4SPM.

In a more theoretical context, we can find two Method Engineering approaches

that take complexity into consideration. In [6], Bajec et al. present the Process

Configuration Approach (PCA), which was conceived to be simple enough to be

adopted by software companies. On the other hand, in [4] Karlsson et al. propose

the Method for Method Configuration (MMC). The MMC is based on the notion

of method component [158], which combines Method Engineering with activity

theory to make Method Engineering less cumbersome.

In addition to the above research efforts, which deal with usability issues, we can

also find empirical studies that concern other aspects of the Method Engineering

discipline. For instance, Qumer et al. [180] tested the applicability of an analytical

framework for assessing the agility of software development methods, while in [181]

Karlsson describes the lessons learned in the evaluation of a wiki-based approach

for method tailoring. On the other hand, Seidita et al. [182] performed a study

where they tested their Method Engineering approach for the construction of

multi-agent system design processes.

The analysis of all the aforementioned studies allowed us to identify two important

limitations. First, most of the empirical research that has been performed in the

Method Engineering field only investigates the method design phase of the Method

Engineering lifecycle; thus, the method implementation and execution phases are

almost completely neglected. Second, even though some authors take complexity

into consideration [4, 6, 28], none of them provide a detailed empirical analysis

of the usefulness and ease of use of a Method Engineering approach when it is

put into practice by means of a supporting CAME environment. In order to fill

these gaps, our study makes a detailed analysis of the usefulness and ease of use

of a model-driven Method Engineering approach (MOSKitt4ME) when it is put

into practice during three phases of the Method Engineering lifecycle: design,

implementation, and execution.

Chapter 6. Evaluation of the Proposal 204

6.2 Overview of the Evaluation Study

In this section, before detailing the evaluation study, we present an overview that

summarizes (1) the measures that were used to assess usefulness and ease of use

and (2) the experimental process that was followed during the study.

6.2.1 Measures of Usefulness and Ease of Use

In our study, we evaluate usefulness and ease of use by means of two types of

measures: subjective and objective. Subjective measures are those which concern

the perception of users (e.g., a user’s estimation of the time invested in a task),

while objective measures are free from human judgement (e.g., the real time that

is invested by the user).

The use of two types of measures has two main advantages [183]. First, since

each type of measure may lead to different conclusions, obtaining similar results

reinforces the evaluation study. Second, the combination of two types of measures

provides a more complete picture of the phenomenon that is studied. Nonetheless,

the utility of using subjective and objective measures depends on the context of

use. In our study, we use two types of measures because we are interested in

improving the users’ objective performance with MOSKitt4ME and also in making

their subjective experience with the tool more satisfying.

Figure 6.1 summarizes the measures of usefulness and ease of use that are em-

ployed in our study. As the figure shows, the subjective measures evaluate the

users’ satisfaction with MOSKitt4ME. Similarly to most usability studies (which

use questionnaires to quantify satisfaction [183]), we used two standard question-

naires; specifically, the questionnaires that are defined by the TAM [45]. The

TAM is the most widely applied model for evaluating usefulness and ease of use

in a subjective manner [47, 184]. This evaluation is done through two measures:

perceived usefulness and perceived ease of use.

On the other hand, the objective measures that are used in our study evaluate

the performance of MOSKitt4ME users. Specifically, we measured task completion

time (which is a measure of efficiency) and task completeness (which is a measure

of effectiveness). These measures quantify the usefulness of MOSKitt4ME in the

Chapter 6. Evaluation of the Proposal 205

Figure 6.1: Measures used in the evaluation study

sense that our tool can be considered useful if it improves performance. Addi-

tionally, to evaluate the ease of use of MOSKitt4ME, we measured task difficulty.

Unlike the other two measures, this measure was tested qualitatively; specifically,

it was tested in terms of the challenges (or difficulties) that were faced by the

users during the execution of the tasks of the study. These challenges disclose the

complexity of MOSKitt4ME, and, consequently, they can be considered to be an

objective appraisal of the ease of use of the tool. Identifying these challenges also

gives us the opportunity to mitigate them, and, thus, improve MOSKitt4ME to

provide better tool support for Method Engineering.

The objective measures of our study were tested through direct observation [185]

since this type of evaluation method provides the most in-depth understanding of

the phenomenon under study [186]. Of all the methods based on direct observa-

tion, we selected the Think Aloud method [48] because it is the most systematic

and valid [185, 187]. This method gathers data while a real user-system interaction

is taking place, thereby avoiding the problems of interviews and questionnaires.

Note that, while interviews and questionnaires are more straightforward, the data

that they produce typically represents an incomplete picture of reality [188]. Fur-

thermore, post-use questions to the user may be biased due to the tendency of

people to describe their behavior in terms of formal methods (that they acquired

during their professional training), while their real actions usually deviate from

these methods [48].

Chapter 6. Evaluation of the Proposal 206

Figure 6.2: Phases of the experimental process (adapted from [189])

6.2.2 Experimental Process

For the evaluation of MOSKitt4ME, we followed the guidelines for experimenta-

tion in software engineering that are proposed by Wohlin et al. in [189]. Based on

these guidelines, we followed the process that is shown in Figure 6.2. As the figure

shows, this process comprises four sequential phases: (1) definition and planning,

(2) execution, (3) data analysis, and (4) results. First, we established the scope of

the study (by defining its goal) and its planning (which determines how the study

is conducted: design, subjects, research questions, etc.). Second, we executed the

study with the subjects in order to collect the data to be analyzed. Third, we

analyzed the collected data; we applied procedures and statistical techniques that

allowed us to answer the research questions that were proposed for the study. Fi-

nally, in the fourth phase, the responses to the research questions were elaborated

using the results that were obtained from data analysis. The four phases of the

experimental process are detailed in the following sections.

6.3 Definition and Planning

This section details the first phase of the study. In this phase, we defined the goal

of the study as well as the research questions, subjects, objects, factors, tasks,

context, instrumentation, experimental setup, and validity evaluation.

6.3.1 Goal

The goal of the study is to evaluate two attributes of MOSKitt4ME: usefulness

and ease of use. To achieve this goal, we put MOSKitt4ME into practice by means

of a set of users that were selected from both academia and industry. Following

the template for goal definition that is suggested in [189], the goal of the study

can be summarized as follows:

Chapter 6. Evaluation of the Proposal 207

Analyze MOSKitt4ME

For the purpose of evaluation

With respect to usefulness and ease of use

From the point of view of the researcher

In the context of academia and industry

6.3.2 Research Questions

To achieve the goal of the study, we defined four questions that guided the research

that was performed in this study. The first two research questions (RQ1 and RQ2)

focus on the subjective perception of users; specifically, RQ1 investigates perceived

usefulness and RQ2 investigates perceived ease of use.

RQ1. What is the users’ perceived usefulness of MOSKitt4ME?

RQ2. What is the users’ perceived ease of use of MOSKitt4ME?

The next research questions (RQ3 and RQ4) focus on objective measures; specif-

ically, RQ3 investigates the actual improvement in performance that is provided

by MOSKitt4ME and RQ4 explores the actual difficulties that are faced by the

users of the tool.

RQ3. To what extent does MOSKitt4ME enhance efficiency and effectiveness?

RQ4. To what extent can MOSKitt4ME be used free from difficulty?

6.3.3 Subjects

Software developers are the population of interest for this study; in practical

settings, they are the performers of the methods and they often work as casual

method engineers. The study does not require expert developers, but subjects

must have basic knowledge in software development methods: design of method

models, implementation of tools that support methods, and execution of methods

in development projects. Additionally, we require subjects to be familiar with

Eclipse and MDE.

Chapter 6. Evaluation of the Proposal 208

Figure 6.3: The object of the study

Table 6.1: Method details

Id Inputs Outputs Roles Tools

T1 None Glossary model Designer Glossary editor

T2 None UML 2.0 model Designer UML 2.0 editor

T3 UML 2.0 model Database model Designer Database editor

T4 Database model DDL Script System DB2DDL

T5 DDL Script DDL Script Developer None

6.3.4 Object

The object that was selected for the study is a part of gvMétrica1: the method

that is used at the Valencian Regional Ministry of Infrastructure, Territory, and

Environment. The object selection was carried out with a twofold purpose in

mind. First, we aimed to find a simple, understandable, and realistic scenario that

included enough elements (e.g., tasks, roles, and products) for the complete use

of MOSKitt4ME. Thus, subjects could use all of the MOSKitt4ME functionality

without being affected by the excessive complexity of the selected object. Second,

we aimed to minimize the threat of maturation [189] (see Section 6.3.10.2).

Figure 6.3 shows the object of the study; Table 6.1 contains details about the

method tasks. As the figure shows, the first task of the method is to build a

glossary model, which defines the terms involved in the system design. This model

is built by a designer using a glossary editor. Parallel to the construction of the

glossary model, the designer defines the business logic of the system by means of

a UML 2.0 editor. Once the UML 2.0 model is finished, the designer defines a

1 http://www.gvpontis.gva.es/cast/proyectos-integra/

Chapter 6. Evaluation of the Proposal 209

model of the database schema using a database editor; in this task, the UML 2.0

model is used as input. The database model enables the generation of the code

that implements the schema in terms of a Data Definition Language (DDL). The

DDL code generation is performed by the DB2DDL transformation, which takes

the database model as input and produces a DDL script as output. Finally, a

developer revises the generated DDL script. The description of the method (as

handed out to the subjects during the execution of the study) can be found in the

MOSKitt4ME website: http://users.dsic.upv.es/~mcervera/moskitt4me.

6.3.5 Factors and Treatments

Our study applies a paired comparison of one factor (ME approach) with two

treatments (None and MOSKitt4ME) [189]. In this design, both treatments are

applied by all of the subjects of the study. When the subjects apply the None

treatment, they perform the tasks of the study without using Method Engineer-

ing techniques; in contrast, when they apply the MOSKitt4ME treatment, they

perform the same tasks using MOSKitt4ME. Thus, subjects can compare their

subjective perception of using MOSKitt4ME with not using any Method Engi-

neering approach. This design also allows us to evaluate MOSKitt4ME objectively

since we can compare the subjects’ performance using MOSKitt4ME with their

performance without the tool.

6.3.6 Tasks

Based on the selected factor and treatments, we divide the study into two parts

– one for each treatment. Below, we describe the tasks to be performed by the

subjects in each of these parts. The description of the tasks (as handed out to

the subjects during the execution of the study) can be found in the MOSKitt4ME

website: http://users.dsic.upv.es/~mcervera/moskitt4me.

Treatment 1. ME approach = None. In this part of the study, the subjects

perform the tasks without using any tool supporting Method Engineering.

This part is divided into two tasks.

http://users.dsic.upv.es/~mcervera/moskitt4me
http://users.dsic.upv.es/~mcervera/moskitt4me

Chapter 6. Evaluation of the Proposal 210

• Task 1.1. Method Design/Implementation. In this task, we

provide the subjects with a printed document that contains the textual

and graphical descriptions of the method that is presented in Section

6.3.4. Since the subjects do not have any method editor available, they

do not perform the method design; instead, they build a supporting

software environment. To enable the subjects to do this task, we give

them access to a repository that contains software tools (e.g., graphical

editors and model transformations). The challenge lies in manually

integrating into the same Eclipse installation only the tools that are

strictly necessary to support the method. This can be accomplished

by copying the tools into the dropins folder of Eclipse and solving

the dependency problems that appear. To identify the dependency

problems, the subjects can use the error log that is provided by Eclipse.

All of the tools that are required to solve the dependency problems can

be found in the repository.

• Task 1.2. Method Execution. In this task, the subjects use the

software environment that is built in Task 1.1 to run a development

project according to the prescribed method. During the course of this

project, the subjects must follow the method, executing the tasks in

the correct order. To do this, the subjects can only use the printed

document as assistance.

Treatment 2. ME approach = MOSKitt4ME. In this part of the study, the

subjects perform the same tasks that are described above; however, in this

case, the subjects use MOSKitt4ME.

• Task 2.1. Method Design/Implementation. Similarly to Task

1.1, we provide the subjects with a printed document that contains the

textual and graphical descriptions of the method that is presented in

Section 6.3.4. The subjects must use this document to create a model

of the method by means of MOSKitt4ME. To enable the definition of

the method technical data, we give the subjects access to a repository

that contains reusable software tools (e.g., graphical editors and model

transformations). When the method model is finished, MOSKitt4ME

allows the subjects to automatically obtain the supporting software

environment.

Chapter 6. Evaluation of the Proposal 211

• Task 2.2. Method Execution. In this task, the subjects use the

software environment that is generated in Task 2.1 to run a develop-

ment project according to the prescribed method. During the course

of this project, the subjects must follow the method, performing the

tasks in the correct order. This is facilitated by the project manager

component that is integrated in the software environment.

6.3.7 Context

The evaluation study was executed in a teaching laboratory of the Departamento

de Sistemas Informáticos y Computación (DSIC) at the Universitat Politècnica

de València (UPV). Therefore, the study was executed in an academic environ-

ment, not as part of an industrial project. Nonetheless, since our intention was

to emulate an industrial environment, the study involved the participation of pro-

fessionals as well as master/PhD students and postdocs. Additionally, the study

addressed part of a real problem: the design, implementation, and execution of

an industrial software development method.

6.3.8 Instrumentation

We used five instruments during the execution of the study. These instruments

are the following.

Printed document. We provided subjects with a printed document that con-

tains the description of the method that is proposed in Section 6.3.4 and

also the tasks of the study. After each task description, the document re-

quests the mental effort that is invested in the task. Mental effort ranges

from “very low” (0) to “neutral” (3) to “very high” (6).

Characterization form. This form requests demographic data (such as gender,

age, or work status) and it also quantifies the knowledge of the subjects

regarding the topics that are covered by the study (see Section C.1). To

quantify this knowledge, the characterization form includes twelve multiple-

choice questions about the subjects’ experience in method modeling, de-

velopment projects, CASE environments, and technology involved in the

Chapter 6. Evaluation of the Proposal 212

study (e.g., Eclipse and MDE). We took experience into consideration since

it influences perceived usefulness and perceived ease of use [47].

User acceptance form. The user acceptance form quantifies the subjective per-

ception of the subjects with respect to the usefulness and ease of use of

MOSKitt4ME (see Section C.2). We developed this form following the TAM

[45], which suggests measuring these attributes by means of two scales of

six 7-point Likert items, ranging from “strongly disagree” (0) to “neutral”

(3) to “strongly agree” (6).

Interview questions. We elaborated a set of questions to gain further insight

into the subjective perception of MOSKitt4ME users (see Section C.3).

These questions were divided into two parts. The first part requests the

opinion of the subjects with respect to their performance applying the treat-

ments of the study; the second part requests the subjects’ opinion about

specific functional aspects of MOSKitt4ME (e.g., the CASE tool generation

capabilities).

Physical devices and tools. Following the Think Aloud method [48], we used a

webcam to record the subjects’ physical behavior and the uttered thoughts.

We also used HyperCam 3.5 to create screencasts that stored the subjects’

work. The computer that we provided to the subjects was a HP Spec-

tre XT Pro Ultrabook 13-b000 with Windows 7 Professional, Intel Core i5

1.7GHz, and 4GB of RAM memory. In this computer, we installed Eclipse,

MOSKitt4ME, and the repositories that are required to carry out Tasks 1.1

and 2.1.

6.3.9 Experimental Setup

The process that was followed in the study is shown in Figure 6.4 (A). First,

we gathered demographic data by means of the characterization form. Based

on this demographic data, we assigned subjects to two groups of equal size and

similar average experience. Then, the study was executed as Think Aloud sessions.

These sessions were individual; that is, only the experimenter and one subject

participated in each session. The groups were used to determine for each subject

the treatment to be applied first; thus, we minimized the threat of maturation

[189] (see Section 6.3.10.2).

Chapter 6. Evaluation of the Proposal 213

Figure 6.4: Experimental setup

The process that was followed in each of the Think Aloud sessions is shown in

Figure 6.4 (B). Each session began with a training phase. In this training phase,

the experimenter assisted the subject in performing the tasks using a small ex-

ample method; the experimenter also gave instructions on how to think aloud.

After the training phase, the subject performed the tasks using the method that

is defined in Section 6.3.4. During the performance of the tasks, the subject was

asked to verbalize their thoughts as if he/she was alone in the room. When the

subject finished a task, he/she had to specify the mental effort invested. Once all

of the tasks were finished, the subject filled out the user acceptance form, and,

then, the experimenter conducted the interview.

6.3.10 Validity Evaluation

The results of an evaluation study may be invalidated for different reasons de-

pending on the way the study is conducted. Therefore, it is important to consider

the question of validity early in the planning phase so that threats can be min-

imized. In our study, we considered four types of validity threats: conclusion

validity, internal validity, construct validity, and external validity [189].

6.3.10.1 Conclusion Validity

Our study was affected by three threats to conclusion validity. First, our study was

threatened by the reliability of the collected measures. Since we video-recorded

the Think Aloud sessions, the collection of objective measures was separated from

Chapter 6. Evaluation of the Proposal 214

human judgement, and, hence, these measures can be considered to be reliable.

We increased the reliability of subjective measures by using scales previously val-

idated in other studies [45]. The second threat appears because the Think Aloud

sessions were individual and took place on different dates; thus, the implementa-

tion of the treatments may have differed between sessions. To reduce this threat,

we replicated the same settings for all of the subjects. Finally, we reduced the

random heterogeneity of the subjects via a characterization form that allowed us

to evaluate their experience beforehand.

6.3.10.2 Internal Validity

Our study was affected by three threats to internal validity. The first threat is

related to the fact that different groups may behave differently (e.g., learning at

different rates). We minimized this threat by selecting heterogeneous subjects

and placing them in two groups of similar average experience. The second threat

is maturation, which implies that subjects may react differently as time passes

(e.g., due to boredom or tiredness). To minimize this threat, we designed our

study so that one group applied Treatment 1 first and the other group applied

Treatment 2 first; additionally, we selected a test object that allowed subjects to

finish the tasks in less than two hours. Finally, social threats were avoided because

the Think Aloud sessions were individual and the subjects were not allowed to

talk to each other about the tasks of the study. Also, since the subjects were

not knowledgeable about the treatments to apply, they did not reduce or increase

their performance due to excess or lack of motivation.

6.3.10.3 Construct Validity

Our study was affected by two threats to construct validity. The first threat is

hypothesis guessing. To reduce this threat, we hid the goal of the study and the

mechanisms used to collect data; thus, subjects could focus on the task at hand

in the most spontaneous way possible instead of trying to get results that would

favour or harm the study. To reduce the second threat, we minimized the effect

of the experimenter expectancies; specifically, we reduced the interaction between

the experimenter and the subjects to a minimum. During the think aloud sessions,

Chapter 6. Evaluation of the Proposal 215

the experimenter only said “keep talking” to remind the subjects to keep thinking

aloud.

6.3.10.4 External Validity

Our study was affected by two threats to external validity. The first threat involves

the selection of subjects that are not representative of the population of interest.

We minimized this threat by selecting software developers from two industrial

software companies. The second threat involves having an experimental setting

that is not representative of industrial practice. To minimize this threat, we

utilized tools that are commonly used in industrial environments (e.g., the Eclipse

platform); additionally, the object of the study is part of an industrial method:

gvMétrica. Nonetheless, further experimentation is needed to assess how far the

results of our study can be generalized to industrial settings and to other types of

development methods.

6.4 Execution

This section details the second phase of the experimental process: execution.

This phase involves three steps: preparation (where the required material was

elaborated and the subjects were chosen), operation (where the selected subjects

performed the tasks of the study), and data validation (where we verified that the

gathered data was reasonable and that it had been collected correctly).

6.4.1 Preparation

The preparation for the study included the elaboration of the required documents

and measurement instruments; that is, the method description, the tasks de-

scriptions, the characterization form, the user acceptance form, and the interview

questions. We also prepared the material required for the training phase.

Once the required material was ready, we selected the subjects according to strati-

fied random sampling [189]. Our population comprised two groups: one academic

and one industrial. The former group was composed of master/PhD students

Chapter 6. Evaluation of the Proposal 216

Table 6.2: Subjects of the study

Id Gender Age Work Status Degree
S1 Female 41-55 Professional Engineer
S2 Female 26-40 Academic Master
S3 Male 26-40 Academic PhD
S4 Male 26-40 Professional Master
S5 Female 26-40 Academic Master
S6 Male 26-40 Professional Engineer
S7 Male 26-40 Professional Engineer
S8 Female 18-25 Academic Engineer

Table 6.3: Distribution of the subjects

Group G1 Group G2
Subjects S1 S4 S6 S7 S2 S3 S5 S8

Experience 4.33 2.67 2.17 3.25 3.67 3.67 3.42 1.75
Average 3.10 3.12

and postdocs from the DSIC department; all of them had no relationship with

MOSKitt4ME but they worked in the area of software engineering. The latter

group comprised software engineers from two valencian companies. The result of

the selection is shown in Table 6.2. As the table shows, we selected eight subjects:

four males and four females. One subject was under 25 years old; another subject

was over 40 years old. In general, their ages ranged from 26 to 40 years old.

One of the subjects was a master student (S8), two were PhD students (S2 and

S5), and one was a postdoc (S3); the rest were industrial software engineers. We

selected eight subjects since small samples are adequate in Think Aloud studies

due to the richness and large amount of data that is produced [185, 190].

With respect to the experience level of the subjects, the characterization form

revealed that they had low experience in method modeling, medium in develop-

ment projects and CASE environments, and high in Eclipse and MDE. Based on

the subjects’ experience (which was measured on a scale from 0 to 6), we evenly

distributed them in two groups: G1 and G2. Table 6.3 shows the resulting dis-

tribution. The experience level of each group was calculated by averaging the

experience level of the subjects pertaining to the group. The experience level of

each subject was calculated by averaging the results obtained for the questions of

the characterization form.

Chapter 6. Evaluation of the Proposal 217

In addition to the elaboration of material and the gathering of demographic data,

the preparation phase also involved the execution of a pre-test, where we simulated

a Think Aloud session prior to the actual study. The pre-test allowed us to

ensure the feasibility of the general setup and to improve the comprehensibility

of the textual documents. The person that was selected for the pre-test did not

participate in the actual study; therefore, her results were not considered for

analysis.

6.4.2 Operation

We successfully conducted the eight Think Aloud sessions over a two-week period

in October 2013. The sessions lasted approximately 2.5 hours on average. To

replicate the same settings in all of the sessions, we provided subjects with the

same installations of Eclipse and MOSKitt4ME, and these tools were restored to

their original state after each session. Additionally, to ensure that the experi-

mental setup was strictly followed by all of the subjects, the experimenter stayed

inside the laboratory throughout the duration of the entire sessions. Nonetheless,

he only talked to break silences after a fixed interval of 30 seconds. If the subjects

needed help, they were allowed to consult the MOSKitt4ME user manual and

also the slides that were used by the experimenter in the training phase. The

user manual and the slides were printed and handed out to the subjects at the

beginning of each session.

As an illustration of a Think Aloud session, Figure 6.5 shows a snapshot of a

subject using the software environment that is generated by MOSKitt4ME at the

end of Task 2.1 (see Section 6.3.6). As the figure shows, the camera was directed at

the subject to give a clear view of the subject’s face and hand movements. This

facilitated the subsequent interpretation of the verbal data that was produced

during the sessions.

6.4.3 Data Validation

As the Think Aloud method suggests [48], only one subject participated in each

session, and, thus, we could easily ensure that the experimental setup was strictly

followed by all of the subjects. We are also confident that all of the subjects

Chapter 6. Evaluation of the Proposal 218

Figure 6.5: One of the subjects during a Think Aloud session

understood how to fill in the user acceptance form and how to assess mental effort

since we explained these tasks in great detail to all of them.

6.5 Data Analysis

In this section, we describe the third phase of the experimental process, which

involves the analysis of the data that is collected during the execution phase.

This section is divided into two subsections. One subsection deals with subjective

data, which allowed us to answer RQ1 and RQ2; the other subsection deals with

objective data, which allowed us to answer RQ3 and RQ4.

Note that this section describes how we carried out the analysis of the data (i.e.,

the analysis processes that we followed, the calculations that we performed, and

the statistical techniques that we applied); we also describe the rationale behind

the decisions that were made during data analysis. The results of the analysis are

reported in Section 6.6.

6.5.1 Analysis of the Subjective Data

The subjective data that was collected in our study corresponds to: (1) the quanti-

tative feedback obtained by means of the user acceptance form, (2) the qualitative

feedback obtained during the interviews, and (3) the mental effort that was re-

ported by the subjects after the execution of the tasks of the study.

Chapter 6. Evaluation of the Proposal 219

6.5.1.1 Quantitative Feedback

We analyzed the responses of the user acceptance form in order to obtain a quanti-

tative view of the subjects’ perceived usefulness and ease of use of MOSKitt4ME.

To obtain this quantitative view, we considered the numerical values of the re-

sponses: from 0 for “Strongly disagree” to 6 for “Strongly agree”. Thus, we could

calculate the minimum, maximum, and average values for each of the Likert items

of the form (and also the total averages combining all of the items). Additionally,

we calculated the frequencies of the responses. The frequency of a response is the

sum of occurrences of the response divided by the total number of questions. All

of this data allowed us to answer RQ1 and RQ2.

6.5.1.2 Qualitative Feedback

In order to reinforce the results obtained for RQ1 (i.e., perceived usefulness), we

analyzed the qualitative feedback that was collected during the interviews. This

feedback was analyzed in two steps. First, we focused on the first part of the

interviews, which deal with the subjects’ performance. This part allowed us to

determine whether the subjects considered MOSKitt4ME to be useful; that is,

whether they believed that MOSKitt4ME improved their performance. Second,

we analyzed the second part of the interviews, which deal with the MOSKitt4ME

functionality. This part allowed us to assess perceived usefulness with respect

to specific functional aspects of MOSkitt4ME (rather than MOSKitt4ME as a

whole).

6.5.1.3 Mental Effort

In order to reinforce the results that were obtained for RQ2 (i.e., perceived ease

of use), we analyzed the mental effort that was invested by the subjects in the

tasks of the study. To this end, we performed Wilcoxon signed-rank tests [189]

using IBM SPSS Statistics 2.0. The Wilcoxon test is an appropriate technique

in our study for two main reasons. First, we have repeated (paired) samples.

We have paired samples because the two tasks of the study (i.e., method de-

sign/implementation and method execution) were tested twice (with and without

MOSKitt4ME). Second, the Wilcoxon test (in contrast to the paired t-test) is

Chapter 6. Evaluation of the Proposal 220

a non-parametric technique that does not require the data to be normally dis-

tributed, a requirement that was not met in our study. The normality tests that

we performed are presented in Section C.4.

By performing the Wilcoxon tests, we were able to verify if there was a significant

difference between two datasets: the mental effort invested by the subjects when

they did not use MOSKitt4ME (i.e., Treatment 1) and the mental effort invested

using our tool (i.e., Treatment 2). The difference between the two treatments

should be in line with the results obtained for perceived ease of use; note that,

for example, a subject who invests little mental effort using MOSKitt4ME should

consider the tool as easy to use.

Specifically, we performed two Wilcoxon signed-rank tests. The first test fo-

cused on the method design/implementation, while the second test focused on

the method execution. We considered the Wilcoxon tests to be two-tailed and

they were performed at a confidence level of 95% (α = 0.05). The null hypothesis

(H0) was the same for both tests: the median of differences in mental effort is

equal to zero. H0 can be rejected if p < α, where p is the p-value obtained from

the Wilcoxon tests.

6.5.2 Analysis of the Objective Data

In contrast to the subjective data, the objective data does not involve human

judgement; it is obtained by analyzing the subjects’ behavior. In our study,

the subjects’ behavior was stored in video records and screencasts, which were

produced during the Think Aloud sessions; therefore, we extracted the objective

data from these sources. This data was used to answer RQ3 and RQ4.

The process that we followed to obtain the objective data is outlined in Figure 6.6.

First, we transcribed the Think Aloud sessions; that is, we typed out video records

and screencasts as verbatim as possible. Then, we annotated the transcriptions

using a coding scheme to obtain Think Aloud protocols. The coding scheme, which

was developed in parallel to the protocols, contains codes that define different

types of utterances and actions. Thus, the protocols are transcriptions whose

utterances and actions are classified as, for instance, suggestions, errors, doubts, or

opinions. When the transcriptions were fully annotated, we analyzed the resulting

protocols. The four tasks of the process are detailed in the following subsections.

Chapter 6. Evaluation of the Proposal 221

Figure 6.6: Data analysis process (adapted from [48])

6.5.2.1 Session Transcription

It is hard to analyze the Think Aloud sessions directly from audio recording and

screencasts; for this reason, we transcribed the sessions into text, and, then, we

divided this text into segments. The segments of a transcription represent utter-

ances (which are obtained from the video records) and actions (which are obtained

from the screencasts). We produced a total of 8 transcriptions, which have 895

segments on average. Each of the segments of these transcriptions stores three

items: time, type, and text. Time indicates the exact moment of occurrence of the

segment within the Think Aloud session. Type determines whether the segment

is an utterance or an action. Finally, text represents the segment content. The

content of an utterance is the textual representation of the subject’s verbalization;

the content of an action is a short description of the action.

6.5.2.2 Coding Scheme Definition

Because it is difficult, and therefore unreliable, to analyze the transcriptions “as

is”, it is necessary to make a coding scheme to help in the analysis. The coding

scheme defines codes that allow the segments of the transcriptions to be catego-

rized, thereby bringing structure to the unstructured data [191].

Similarly to grounded theory [192], we developed the coding scheme applying a

bottom-up approach; that is, we analyzed the transcriptions, and, concurrently,

we created new codes for each segment that did not fall neatly into the existing

coding scheme. Then, we categorized the resulting codes. The final version of the

coding scheme includes 90 codes in 7 different categories (see Section C.5). The

categories of the coding scheme are the following:

Chapter 6. Evaluation of the Proposal 222

Actions (A). General actions that are performed during the execution of the

tasks of the study; for instance, deleting a file.

Tasks (T). Actions that correspond to tasks of the method that is proposed as

test object (see Section 6.3.4); for instance, creating a glossary model or

revising the DDL script.

Errors (E). Actions that do not adhere to any valid solution for the task at

hand; for instance, setting a name incorrectly.

Comments (C). General utterances, such as opinions, suggestions, or doubts;

for instance, the utterance “I do not know if I selected the right tool” rep-

resents a doubt.

Strategies (S). Utterances or actions whereby subjects express or adopt a plan

to achieve a goal. Examples of strategies are trial and error, and postponing

an analysis; for instance, the utterance “I think it is better to work this out

later” represents postponing an analysis.

Expert Knowledge (EK). Utterances or actions whereby the subjects either

suggest that they require further knowledge to carry out a task, show that

they have previous knowledge about a task, or gain new knowledge during

the performance of a task. For instance, the utterance “I do not need to

check this because I am familiar with the tool” reflects that the subject has

previous knowledge.

Challenges (CH). Utterances or actions that suggest the presence of a challenge

or difficulty. Indicative of challenges can be utterances or actions from the E,

C, S, and EK categories. For instance, if a subject applies the “postponing

an analysis” strategy, then the subject is probably facing difficulties that

he/she decides to work out later. Another example is the following utterance

from the EK category: “I require technical details about the tools to make

the right choice”. This utterance suggests that it is hard to select the right

tools to perform the method tasks during the method execution. In addition

to utterances or actions from the aforementioned categories, we also consider

long periods of silence to be indicative of challenges (since these periods

typically represent that the subject is experiencing difficulty).

Chapter 6. Evaluation of the Proposal 223

Table 6.4: Excerpt of a Think Aloud protocol

Time Type Text Code
1:31:50 Action Looks at method description A10
1:31:50 Utterance And now, business logic design C6
1:31:53 Utterance It is a UML class diagram C3
1:31:54 Action Looks for UML 2.0 editor A29
1:31:57 Utterance UML model C7
1:31:58 Action Selects the “UML Model” tool A30, E1, CH2
1:31:59 Utterance I assume that it is UML model S1, EK3

6.5.2.3 Protocol Construction

The Think Aloud protocols are the coded versions of the transcriptions; that

is, transcriptions that have been annotated with codes from the coding scheme.

The coding process should be carried out by people who are not involved in

the evaluation study; the researchers that design and execute the study may be

too attached to specific hypotheses, and, therefore, they can be biased towards

certain outcomes of protocol analysis [48]. To increase the objectivity of our

coding process, we selected two researchers that were external to the study and

we trained them in the use of the coding scheme. These researchers revised the

Think Aloud protocols that we coded; all of the discrepancies were discussed and

fixed when agreements were reached.

Table 6.4 shows an excerpt of a protocol; each row represents a different segment.

In this example, the subject starts by consulting the method description (A10).

After this action, the subject verbalizes the information that is retrieved from the

method description (C6) and resolves that he must create a UML class diagram

(C3). To this end, he looks for the UML 2.0 editor (A29). When the subject

is performing the search, he comes across a tool called “UML Model”, reads it

(C7), and selects the tool (A30). Since this tool is not the correct choice (E1),

we consider selecting the correct tools to be a challenge of the method execution

(CH2). Finally, the subject verbalizes that he assumes “UML Model” is the

correct tool. He is adopting a “trial and error” strategy (S1), which indicates that

he requires further technical knowledge (EK3).

Chapter 6. Evaluation of the Proposal 224

6.5.2.4 Protocol Analysis

Once the protocols were obtained, we analyzed them to measure task completion

time, task completeness, and task difficulty (see Section 6.2.1).

Task Completion Time. We used the Time column of the protocols to cal-

culate the exact time that was spent by the subjects on the tasks of the

study. We applied Wilcoxon tests to analyze the differences between the

tasks of Treatment 1 and Treatment 2. Thus, we could determine whether

MOSKitt4ME allowed subjects to solve the tasks more quickly.

Task Completeness. In order to calculate task completeness, we used the Type,

Text, and Code columns of the protocols. As for the task of method de-

sign/implementation, we analyzed the subjects’ actions and errors (i.e., the

segments of type “Action” and code categories “A” and “E”, respectively);

this allowed us to determine whether the subjects built a software environ-

ment that provided complete support for the method. To determine the

completeness of the task of method execution, we analyzed the subjects’

errors and also the actions associated to method tasks (i.e., the segments of

type “Action” and code category “T”); thus, we could determine the num-

ber of method tasks that were successfully performed by the subjects. We

consider that a subject successfully performs a task if two conditions are

met: (1) the subject obtains the correct output product (i.e., he/she creates

a file with the right content and the right file extension) and (2) the subject

utilizes the right tool to create the product (e.g., he/she utilizes the glossary

editor to create the glossary model).

Task Difficulty. In order to estimate the difficulty of the tasks of the study, we

analyzed the protocol segments falling into the “CH” category of the coding

scheme. Since these segments represent challenges or difficulties faced by the

subjects, they allowed us to determine whether using MOSKitt4ME was a

big effort for the subjects or rather it posed little difficulty.

Chapter 6. Evaluation of the Proposal 225

Table 6.5: Results for perceived usefulness

Item Min Max Avg

1 - Allows working more quickly 5 6 5.625

2 - Improves job performance 4 6 5.5

3 - Increases productivity 4 6 5.375

4 - Enhances effectiveness 4 6 5.375

5 - Makes work easier 5 6 5.375

6 - Is useful for the job 4 6 5.25

Total Average 5.42

6.6 Results

In this section, we focus on the last phase of the experimental process, which

involves the presentation of the results obtained after data analysis. To present

these results, we answer the four research questions that are formulated in Section

6.3.2.

6.6.1 Research Question 1

In this section, we answer the following question:

RQ1. What is the users’ perceived usefulness of MOSKitt4ME?

After the analysis of the responses of the user acceptance form, we obtained the

results that are shown in Table 6.5. The minimum (Min) and maximum (Max)

columns indicate that all of the subjects somewhat agreed (4), agreed (5), or

strongly agreed (6) about each of the items of the usefulness scale: all of the

values fall within the range 4–6. We obtained the best result for the first item

(average: 5.625); that is, the subjects expressed a strong belief that tasks can be

performed more quickly with MOSKitt4ME. The subjects also positively rated the

improvement in job performance (average: 5.5). In general, the subjects agreed

that MOSKitt4ME was useful for solving the tasks of the study (total average:

5.42).

In order to provide further insight into perceived usefulness, Figure 6.7 shows a

histogram that graphically depicts the distribution of responses of the subjects.

Chapter 6. Evaluation of the Proposal 226

Figure 6.7: Frequencies of responses for perceived usefulness

The horizontal axis of this histogram contains the seven possible responses for

the Likert items of the usefulness scale; the vertical axis represents the frequency

of occurrence of these responses. The histogram shows that the most common

responses were “Strongly agree” and “Agree”; on average, more than 4 subjects

selected “Strongly agree” in each of the Likert items and nearly 3 subjects selected

“Agree”.

These positive results were reinforced by the qualitative feedback that was ob-

tained during the interviews. All of the subjects expressed that MOSKitt4ME

was useful since it allowed them to perform the tasks more easily. Most subjects

emphasized the method execution; for instance, one subject stated: “Executing

the method with MOSKitt4ME, you click on the tasks and the tools are automati-

cally opened. Without MOSKitt4ME, it is hard to find the right tools in the large

set of tools that are offered by Eclipse”, while another subject said: “When you

execute the method with MOSKitt4ME, everything is tool-assisted; for instance,

you just double-click on the tasks and the tools are automatically opened. With-

out MOSKitt4ME, you need additional documentation that tells you what to do

next; otherwise, you would lose the awareness of the method you are following”.

The usefulness of the CASE generation capabilities was also emphasized by some

Chapter 6. Evaluation of the Proposal 227

subjects: “I would not invest the time needed to implement a CASE environ-

ment. Using MOSKitt4ME, I would consider the possibility”. Four subjects also

highlighted that MOSKitt4ME facilitates the method design by enabling the def-

inition of methods as models at a high level of abstraction: “It is so much more

user-friendly and intuitive to edit the method using MOSKitt4ME, compared to

the textual descriptions that we use in our company.”. Finally, we also found

comments that, despite being more general, illustrate the subjects’ willingness to

accept and use MOSKitt4ME: “I hate to do work that can be avoided. Knowing

the functionality of MOSKitt4ME is possible, I would not want to work differently

from now on”.

6.6.2 Research Question 2

In this section, we answer the following question:

RQ2. What is the users’ perceived ease of use of MOSKitt4ME?

The results for perceived ease of use are shown in Table 6.6. Compared with

perceived usefulness, the results were also positive, but we found more dispersion

in them. The minimum (Min) and maximum (Max) columns indicate that all of

the subjects considered (4, 5, or 6) MOSKitt4ME to be clear, understandable,

flexible, and easy to use; but this did not occur for the other three items of

the ease of use scale. We obtained the worst result for the “Controllable” item

(average: 2.625); that is, most of the subjects did not consider MOSKitt4ME

to be controllable. This means that it was not easy for some subjects to get

MOSKitt4ME to do what they wanted it to do. We believe that this result was

due to the low level of experience using MOSKitt4ME: we observed that most

subjects frequently consulted the user manual. In general, the subjects somewhat

agreed that MOSKitt4ME can be used with little difficulty (total average: 4.35).

In order to provide further insight into perceived ease of use, Figure 6.8 shows a

histogram that graphically depicts the distribution of responses of the subjects. As

this histogram shows, the most common responses were “Agree” and “Somewhat

agree”; on average, nearly 4 subjects selected “Agree” in each of the Likert items

and more than 2 subjects selected “Somewhat agree”.

Chapter 6. Evaluation of the Proposal 228

Table 6.6: Results for perceived ease of use

Item Min Max Avg

1 - Easy to learn 3 6 4.5

2 - Controllable 1 5 2.625

3 - Clear and understandable 4 6 4.75

4 - Flexible 4 6 4.625

5 - Easy to become skillful 3 6 4.75

6 - Easy to use 4 6 4.875

Total Average 4.35

Figure 6.8: Frequencies of responses for perceived ease of use

These positive results were reinforced by the mental effort that was expressed by

the subjects after the execution of the tasks of the study. The subjects’ men-

tal effort is depicted as a box plot in Figure 6.9. The horizontal axis of this

box plot contains the four tasks of the study, while the vertical axis represents

mental effort; thus, each box represents, for one specific task, the mental efforts

that were invested by the eight subjects of the study. The distribution of the

data indicates that the subjects expended less effort executing the method with

MOSKitt4ME than executing the method without the aid of our tool. The ef-

fort invested in the method design/implementation was low but similar in both

approaches. We believe that this similarity was due to the low experience of

Chapter 6. Evaluation of the Proposal 229

Figure 6.9: Mental effort (box plot)

the subjects in method modeling and the high experience in Eclipse. Note that

when the subjects were not using MOSKitt4ME, they had to manually config-

ure an Eclipse-based environment, which was easy for some subjects; in contrast,

when they used MOSKitt4ME, the environment was obtained automatically but

it required the construction of a method model.

To verify whether the differences in mental effort were statistically significant, we

performed two Wilcoxon signed-rank tests. In the first test, which focused on

the method design/implementation, we obtained p = 0.931. Since α = 0.05, then

p > α and, therefore, we cannot reject H0. Thus, there is no significant difference

in mental effort in the method design/implementation. In the second Wilcoxon

test, which focused on the method execution, we obtained p = 0.027. In this case,

we can reject H0 since p < α. Thus, subjects expended significantly less mental

effort when they executed the method with the aid of MOSKitt4ME.

Chapter 6. Evaluation of the Proposal 230

6.6.3 Research Question 3

In this section, we focus on the following question:

RQ3. To what extent does MOSKitt4ME enhance efficiency and effec-

tiveness?

In order to answer this question, we quantified the efficiency and effectiveness of

the subjects, and, then, we contrasted the results obtained in the two treatments

of the study. Below, we focus on the subjects’ efficiency first (Section 6.6.3.1);

then, we focus on their effectiveness (Section 6.6.3.2).

6.6.3.1 Efficiency

After protocol analysis, we found that the efficiency of the subjects was affected

by their experience level: while some subjects considered some tasks to be trivial,

finishing the same tasks took two (or even three) times longer for other subjects.

This can be observed in Figure 6.10, which depicts in a boxplot the efficiency of

the subjects. The vertical axis of this boxplot represents time; the horizontal axis

contains the four tasks of the study. Thus, each box represents, for one specific

task, the completion times of the eight subjects of the study. Analyzing the data

distribution, we observed that, for example, one subject spent nearly 50 minutes

performing the method design/implementation with MOSKitt4ME, while another

subject spent less than 20 minutes. In this task, subjects were, in general, more

efficient without MOSKitt4ME than using our tool. The goal of this task was

to obtain a software environment; thus, MOSKitt4ME failed to reduce the time

needed to build this tool. The cause of this result was the high amount of time that

some subjects (mainly those with low experience in method modeling) invested

building the model of the method, which is mandatory in MOSKitt4ME since the

software environment is obtained automatically from this model.

Despite this negative result, it is important to consider that having the method

represented as a machine-processable model brings important benefits that are

not reaped in the manual approach. Some of these benefits are described in

Section 2.2.2. Of these benefits, particularly important is the fact that software

environments can execute method models at runtime to assist software engineers

during the course of the projects. This benefit became apparent in our study since

Chapter 6. Evaluation of the Proposal 231

Figure 6.10: Efficiency (box plot)

the subjects invested significantly more time during the method execution without

MOSKitt4ME than executing the method with the assistance of our tool. This

positive result is of particular relevance. Note that, even though the development

of the method model is costly in terms of time, this time is only invested once2.

In contrast, time savings during method execution occur any time a development

project is performed. Thus, it seems fair to conclude that MOSKitt4ME improves

efficiency if it is applied in multiple projects.

Finally, to verify whether the differences in efficiency were statistically significant,

we performed two Wilcoxon signed-rank tests. The first test analyzes the time

invested during the method design/implementation; the second test focuses on

method execution. In both tests, we obtained p = 0.012. Thus, the condition

p < α was fulfilled, and, therefore, the differences in efficiency were statistically

significant.

2In this statement, we do not consider the time that is needed to perform subsequent adap-
tations of the method.

Chapter 6. Evaluation of the Proposal 232

6.6.3.2 Effectiveness

After the analysis of the protocols, we found that all of the subjects obtained

the correct outcome in the task of method design/implementation (effectiveness:

100%). This outcome was obtained in the two treatments of the study; that is,

when the subjects used MOSKitt4ME and also when they followed the manual

approach. Nonetheless, the manual approach caused severe problems when sub-

jects tried to integrate tools into Eclipse. Since the basic Eclipse installation that

we prepared for the study only contained a minimum set of plug-ins, installing

new tools “by hand” raised problems of missing software dependencies. Solving

these problems was considered by all of the subjects to be complex, tedious, and

error-prone. This was reflected in four subjects, who adopted a trial and error

strategy; that is, they retrieved random tools from the repository, installed them

into Eclipse, and checked whether the tools satisfied the missing dependencies.

None of the problems related to software dependencies occurred when the sub-

jects used MOSKitt4ME since our tool automates the construction of the software

environment.

In contrast to the method design/implementation (where the subjects were equally

effective), we found differences in effectiveness in the method execution. All of the

subjects executed the entire method when they were assisted by MOSKitt4ME

(effectiveness: 100%), while in the manual approach three subjects abandoned the

method execution before completion. These subjects failed to perform T4 because

they performed T3 incorrectly: they selected the wrong tool, and, therefore, they

created incorrectly the output product of T3. Since this product is the input of

the model transformation that supports T4, the error prevented the subjects from

launching the transformation and, consequently, from executing T4.

In addition to selecting incorrect tools and creating incorrect products, we also

found in the protocols other deviations from the method; for instance, one subject

performed T2 and T3 in reverse order and omitted the execution of T5. None of

these deviations occurred when the subjects were assisted by MOSKitt4ME.

6.6.4 Research Question 4

In this section, we focus on the following question:

Chapter 6. Evaluation of the Proposal 233

RQ4. To what extent can MOSKitt4ME be used free from difficulty?

By analyzing the protocols, we identified recurring difficulties that were faced by

the subjects of the study when they used MOSKitt4ME. All of these difficulties

related to two main aspects of the tool: SPEM 2.0 and the technical fragments.

Below, we focus on SPEM 2.0 first (Section 6.6.4.1); then, we focus on the technical

fragments (Section 6.6.4.2).

6.6.4.1 Difficulty Using SPEM 2.0

Several subjects experienced difficulty understanding the SPEM 2.0 concepts.

Specifically, two subjects had problems defining the output products of the tasks:

it was not easy for these subjects to distinguish the different kinds of products

that are proposed by SPEM 2.0. Additionally, six subjects experienced doubt

during the definition of the process: they were uncertain whether or not to make

explicit the precedences between the tasks contained in “Data Persistence De-

sign” and the tasks outside this activity. Finally, three subjects had problems

distinguishing method content from method process. One of them spent three

minutes trying to define an activity within a content package. Another subject

took two minutes to realize that process tasks had to be defined by instantiation

from content tasks (and not from scratch). The third subject did not realize that

the products defined as method content could be instantiated several times; he

created the product “DDL Script” twice because it is the output of two different

tasks. This was the only error that was made by the subjects as a result of all

these minor difficulties.

Some of the subjects that had difficulty with SPEM 2.0 made suggestions during

the Think Aloud sessions to facilitate the design of methods with MOSKitt4ME.

Examples of these suggestions are: “I recommend the inclusion of contextual help

to assist the user during the specification of the method” and “I would rather have

a graphical method modeler instead of a tree-based method modeler”.

6.6.4.2 Difficulty Defining Technical Data

Some subjects had difficulty associating method elements and technical fragments,

and, in general, understanding the notion of technical fragment. Specifically, one

Chapter 6. Evaluation of the Proposal 234

subject stated that he did not understand why (unlike tasks, roles, and products)

the method tools had to be defined using a repository. Another subject spent

one minute trying to determine the technical fragment to be associated to T5,

even though this task must not have any tool associated to it. Another doubt

was whether T3 was automatic; note that this task is not automatic because it

is supported by a graphical editor (and not by a model transformation). Some

subjects also had problems understanding the semantics of some types of tech-

nical fragments. All of these doubts caused that three subjects made incorrect

associations between method elements and technical fragments; therefore, this is

an important aspect of MOSKitt4ME to be improved in the near future.

6.6.5 Discussion

The evaluation study that is presented in this chapter provides valuable insight

into the usefulness and ease of use of MOSKitt4ME. Below, we highlight the most

relevant aspects of the results that are presented herein:

• The subjective perception that was expressed by the subjects of the study

indicates their willingness to accept and use MOSKitt4ME. They perceived

MOSKitt4ME to be a useful tool that can improve performance without

posing severe difficulties for the users (see RQ1 and RQ2).

• The assistance that is provided by MOSKitt4ME allowed subjects to per-

form the method execution without deviations, and this led to a significant

increase in efficiency and effectiveness (see RQ3). This result suggests that

MOSKitt4ME facilitates the use of methods, and, thus, it reduces the dis-

tance that typically exists between methods and the real actions that are

performed by software engineers [34]. Nonetheless, this benefit is reaped at

the expense of the time that is required to build the method model, which

may be high in cases of low modeling experience. In order to reduce this

time, we plan to enhance MOSKitt4ME in two ways. First, we will increase

the starting population of the repository so that it also contains conceptual

fragments (specifically, reusable method parts extracted from gvMétrica).

This will reduce time by enabling rapid method assembly. Second, we will

Chapter 6. Evaluation of the Proposal 235

increase the level of automation of MOSKitt4ME by incorporating vari-

ability mechanisms that automate the adaptation of methods and CASE

environments.

• The method design is the only phase of the Method Engineering lifecycle

where MOSKitt4ME users experienced difficulty during the study (see RQ4).

Most of these difficulties were of low severity and were related to the use

of SPEM 2.0 and the technical fragments; therefore, these difficulties can

be mitigated by enhancing MOSKitt4ME with appropriate assistance for

method construction. To do this, we plan to include a wizard that will free

users from having to be expert method engineers, allowing them to create

method models following a set of intuitive steps. We expect this wizard to

also reduce the time invested by the users in the method design phase.

In addition to all of the above findings, our study also had a collateral bene-

fit. Even though it was not the focus of the evaluation, our results suggest that

MDE plays a key role in the reduction of Method Engineering complexity that is

achieved by MOSKitt4ME. Four subjects strongly believed that (meta)modeling

techniques reduce the complexity of the method design phase by enabling the def-

inition of methods as models at a high level of abstraction (see RQ1). This result

is in line with one of the most recognized benefits of MDE: the reduction of the

complexity of software development by providing higher levels of abstraction that

hide platform-specific details [43]. On the other hand, the eight subjects of the

study were strongly satisfied with the level of automation of MOSKitt4ME (see

RQ1 and RQ3). This level is achieved thanks to model transformations, which

reduce the complexity of the method implementation phase by automating the

process of CASE environment construction. This is in line with another benefit of

MDE: the reduction of complexity by means of the automation of labor-intensive

and error-prone tasks [43]. Finally, all of the subjects experienced a significant

improvement in efficiency and effectiveness during the method execution phase

(see RQ3). This result is a strong indicator of the reduction of complexity that is

achieved by using the method model at runtime. Thus, the modeling effort made

at design time is not only useful for automating the CASE environment con-

struction, but it can also assist software engineers during the process of software

development.

Chapter 6. Evaluation of the Proposal 236

The reduction of complexity that is achieved by MOSKitt4ME makes us believe

that MDE may represent a promising alternative to turn Method Engineering into

a practical reality. This belief is strengthened by a recent study of the state of

practice in MDE [97]; this study concludes that MDE is more widespread than

commonly believed and works best when it is applied in narrow and tight domains

(such as Method Engineering).

6.7 Conclusions

This chapter presents a study that evaluates the usefulness and ease of use of

MOSKitt4ME. Our motivation is to demonstrate that MOSKitt4ME mitigates an

important problem of traditional Method Engineering: its high complexity. To

achieve this goal, the study evaluates MOSKitt4ME using the TAM and the Think

Aloud method. While the TAM enables the evaluation of the subjective perception

of users, the Think Aloud method allows us to evaluate the tool objectively.

The results of the study are encouraging. All of the subjects either somewhat

agreed, agreed, or strongly agreed about each of the items of the usefulness scale

(see RQ1); we also obtained positive results for perceived ease of use, even though

we found more disparate opinions (see RQ2). These subjective results were rein-

forced by an increase in efficiency and effectiveness (see RQ3) as well as by the

little difficulty that was experienced by the subjects of the study (see RQ4). We

believe that these results were obtained thanks to the use of MDE techniques

(such as metamodeling, model transformations, and models at runtime), which

reduce the complexity of three phases of the Method Engineering lifecycle: design,

implementation, and execution.

In contrast to these positive findings, we also found several challenges that are

inherent to MOSKitt4ME usage (see RQ4). With the aim of providing better tool

support for model-driven Method Engineering, we will address these challenges

in the near future. For instance, as Section 6.6.5 describes, we will enhance the

repository of MOSKitt4ME, incorporate support for variability, and include a

wizard that enables guided model creation. The main goal of these enhancements

is to facilitate the design of methods in MOSKitt4ME.

Chapter 7

Conclusions and Future

Work

The present thesis introduces a tool-supported methodological approach that is

aimed at method/software engineers that need to carry out the design, implemen-

tation, and execution of software development methods. Facing the development

of the thesis work from a model-driven perspective allowed us to provide impor-

tant contributions in the field of Method Engineering. These contributions were

presented in relevant international conferences and journals; thus, we expect that

our work is properly disseminated not only among researchers from the Method

Engineering community, but also among other communities such as Software En-

gineering, Information Systems, and Conceptual Modeling. It is also important

to highlight that the research line in which this work is aligned is by no means

completed here. Further work will be undertaken in the near future in order to

complement and extend the contributions that have been achieved during the

development of the thesis work.

The remainder of this chapter is structured as follows. First, Section 7.1 summa-

rizes the contributions that are provided by this thesis. Then, Section 7.2 describes

the publications that emerged during the development of the thesis work. Section

7.3 presents the degree projects and master theses that were co-directed within

the context of the present PhD thesis. Finally, Section 7.4 outlines future research

237

Chapter 7. Conclusions and Future Work 238

directions. These research directions are in line with the limitations of the present

work.

7.1 Summary of Contributions of the Thesis

In this thesis, we propose a methodological approach for Method Engineering.

This methodological approach offers four novel contributions that go beyond those

of traditional Method Engineering approaches. These four contributions (each of

which relates to one of the four research questions that are formulated in Section

1.2) can be summarized as follows:

Contribution 1. We show how Model-Driven Engineering (MDE) techniques

(such as metamodeling, model transformations, and models at runtime),

along with an intensive use of reusability principles, can reduce the com-

plexity of a Method Engineering approach.

• By applying (meta)modeling techniques, our approach enables the def-

inition of methods as models at a high level of abstraction; thus, our

approach reduces the complexity of the method design phase of the

Method Engineering lifecycle.

• In our approach, model transformations reduce the complexity of the

method implementation phase by automating the process of CASE

environment construction.

• By using method models at runtime, our approach reduces the com-

plexity of the method execution phase; thus, the modeling effort that

is made at design time is not only useful for automating the CASE en-

vironment construction, but it can also assist software engineers during

the entire process of software development.

• In order to foster reusability, we define a taxonomy of method frag-

ments. This taxonomy proposes two main types of reusable assets:

conceptual fragments and technical fragments. While conceptual frag-

ments alleviate the complexity of the method design phase by enabling

rapid method assembly, technical fragments enable a high level of au-

tomation in the process of CASE environment construction.

Chapter 7. Conclusions and Future Work 239

• In order to assess the actual reduction in Method Engineering com-

plexity, we performed an evaluation study that put our methodological

approach to practical use. Overall, the results of this evaluation study

were favorable. These positive results contrast with traditional Method

Engineering, whose complexity still remains an unsolved issue.

Contribution 2. Our approach paves the way for method/software engineers

that need to carry out the design, implementation, and execution of

software development methods. This is unlike traditional Method En-

gineering approaches, which, in general, only support one of these phases. In

order to equally cover the three phases, our approach considers method mod-

els as first-class citizens of the entire Method Engineering lifecycle; that is,

our approach not only employs method models during the phase of method

design but also during the phases of implementation and execution.

• During the method implementation phase, method models are used as

input of model transformations that automate the construction of the

supporting software environments; thus, we bridge the gap between the

high-level concepts that are used at method design and the technical

details of the method implementations. To bridge this gap, our ap-

proach requires a step – the method configuration (see Section 4.2.3.2)

– where method engineers connect method concepts with their techni-

cal counterparts (i.e., technical fragments).

• During the method execution phase, method models (which are created

at design time) are used during runtime for driving the behavior of the

CASE environments; thus, we bring method models to the runtime

context, thereby increasing their value in terms of the functionality

that they can deliver.

Contribution 3. We show how Process Modeling Languages can be used in the

context of Method Engineering to enable the specification and execu-

tion of the process part of methods without neglecting product

support. This is in contrast to existing Method Engineering approaches,

which are mostly product-oriented (i.e., they cover the product part of meth-

ods but fail to provide complete support for the process part). In order to

equally support the product and process parts of methods, our approach

Chapter 7. Conclusions and Future Work 240

defines a DSL that takes into consideration both the product-related and

the process-related aspects of Method Engineering.

• We define a DSL for the conceptual specification of methods. This DSL

combines concepts from the SPEM 2.0 and BPMN 2.0 standards, and,

thus, it reaps benefits from both languages; for instance, SPEM 2.0

provides concepts that are suitable for method modeling, while BPMN

2.0 offers richer workflow-related primitives. The product part of meth-

ods is represented in our DSL by means of concepts such as Product,

Domain, and Tool. The process part is represented by concepts such

as Task, Activity, and Role.

Contribution 4. We provide MOSKitt4ME: a supporting software infras-

tructure for our model-driven Method Engineering approach. This

software infrastructure comprises a technology-independent architecture as

well as a CAME environment that implements the architecture in the con-

text of Eclipse.

• We define a technology-independent architecture that is composed of

two main parts: (1) the software components that support the design of

methods and the generation of CASE environments (CAME part); and

(2) the software components that support method execution (CASE

part). Prior to the definition of the architecture, we identified a set of

functional requirements.

• We provide a CAME environment that implements our software archi-

tecture, and, thus, it provides complete support to our methodological

approach. This CAME environment allows us to offer the following

additional contributions:

– We demonstrate that it is possible to systematize (and partially

automate) the design, implementation, and execution of methods.

This is in accordance with one of the principles of design science,

which states that the instantiation of a design artifact (e.g., our

methodological approach) demonstrates its feasibility [50]. This is

called “proof by construction”. We reinforced the feasibility of our

approach by using the CAME environment to solve an industrial

problem: the design of gvMétrica and the generation of a software

environment that supports part of the method (see Appendix B).

Chapter 7. Conclusions and Future Work 241

– We show that our CAME environment can be positively rated in

terms of perceived usefulness and ease of use, and that it can also

improve the users’ performance while posing little difficulty of use.

This contribution is achieved via an evaluation study where we

collected empirical data by means of questionnaires and direct ob-

servation.

7.2 Publications

The contributions that are discussed in Section 7.1 were published in distinct

peer-reviewed forums. Our main goal was to validate our work in top conferences

and journals within the fields of Method Engineering, Model-Driven Engineering,

and Software Engineering. The result was a total of 6 publications. We list these

publications in Sections 7.2.1 (conferences and workshops) and 7.2.2 (international

journals). For each publication, we briefly describe below the part of the thesis

that is addressed by the publication. The author position indicates the degree of

contribution that is made by the author of this PhD thesis. Section 7.2.3 provides

information about the relevance of some of the conferences and journals where we

published our work.

7.2.1 Conferences and Workshops

This section lists in chronological order our publications in international confer-

ences and workshops. Specifically, we published three papers in international

conferences (number: 1, 3, and 4) and one paper in a national workshop (number:

2).

1. Mario Cervera, Manoli Albert, Victoria Torres, Vicente Pelechano: A

Methodological Framework and Software Infrastructure for the Construction

of Software Production Methods. In proceedings of the 4th International

Conference on Software Process (ICSP), vol. 6195, pp. 112–125, Springer-

Verlag Berlin Heidelberg, 2010.

Chapter 7. Conclusions and Future Work 242

The above publication provides a general overview of our methodological ap-

proach; it also outlines preliminary ideas about the supporting software infras-

tructure.

2. Mario Cervera, Manoli Albert, Victoria Torres, Vicente Pelechano: A

Technological Framework to support Model Driven Method Engineering. In

Actas del Taller sobre Desarrollo de Software Dirigido por Modelos (DSDM),

celebrado junto a las Jornadas de Ingenieŕıa del Software y Bases de Datos

(JISBD), vol. 2, pp. 47–56, 2010.

The above publication focuses on a specific phase of our methodological approach:

method implementation.

3. Mario Cervera, Manoli Albert, Victoria Torres, Vicente Pelechano: Turn-

ing Method Engineering Support into Reality. In Proceedings of the 4th IFIP

WG 8.1 Working Conference on Method Engineering (ME), vol. 351, pp.

138–152, Springer Berlin Heidelberg, 2011.

The above publication focuses on the second contribution of this thesis (see Section

7.1).

4. Mario Cervera, Manoli Albert, Victoria Torres, Vicente Pelechano: The

MOSKitt4ME Approach: Providing Process Support in a Method Engineer-

ing Context. In Proceedings of the 31st International Conference on Con-

ceptual Modeling (ER), vol. 7532, pp. 228–241, Springer-Verlag Berlin

Heidelberg, 2012.

The above publication focuses on the third contribution of this thesis (see Section

7.1).

7.2.2 International Journals

This section lists in chronological order our publications in international journals.

Chapter 7. Conclusions and Future Work 243

5. Mario Cervera, Manoli Albert, Victoria Torres, Vicente Pelechano: A

Model-Driven Approach for the Design and Implementation of Software De-

velopment Methods. International Journal of Information System Modeling

and Design (IJISMD), vol. 3(4), pp. 86–103, IGI Global, 2012.

The above publication was prepared for an special issue called “New Trends in

Situational Method Engineering”. The paper represents an extension of the paper

that was published in ME 2011.

6. Mario Cervera, Manoli Albert, Victoria Torres, Vicente Pelechano: On

the Usefulness and Ease of Use of a Model-Driven Method Engineering Ap-

proach. Information Systems, vol. 50, pp. 36–50, Elsevier, 2015

The above publication focuses on the first contribution of this thesis (see Section

7.1).

7.2.3 Relevance of the Publications

This section provides information about the quality level of the most relevant

conferences and journals where we published our work. For conferences, we use the

ranking that is provided by the Computing Research and Education Association of

Australasia (CORE)1. On the other hand, for journals, we use the ranking that is

provided by the Journal Citation Reports (JCR)2. Of the six conferences/journals

where our publications were accepted, three of them are included in one of these

international rankings. These conferences/journals are ICSP, ER, and Information

Systems.

ICSP. The International Conference on Software Process provides a forum for

researchers and industrial practitioners to exchange new research results,

experiences, and findings in the area of software and system process model-

ing and management.

ICSP is categorized as a CORE A conference. According to the CORE

website, conferences of this category are “excellent conferences and highly

respected in a discipline area”.

1 http://www.core.edu.au/
2 http://thomsonreuters.com/journal-citation-reports.html

Chapter 7. Conclusions and Future Work 244

ER. The International Conference on Conceptual Modeling is a leading forum

for presenting and discussing research and applications in which the major

emphasis is on conceptual modeling. Topics of interest include theories of

concepts and ontologies underlying conceptual modeling, methods and tools

for developing and communicating conceptual models, and techniques for

transforming conceptual models into effective implementations.

ER is categorized as a CORE A conference. In 2012, the acceptance rate

was 17% (24 papers out of 141 submissions). According to the Conference

Ranking in Computer Science (CSCR)3, the Estimated Impact of Conference

(EIC) was 0.90 (measured from 0 to 1), which situates ER in the 11th

position out of 636 listed conferences.

Information Systems. The Information Systems journal publishes articles con-

cerning the design and implementation of languages, data models, process

models, algorithms, software and hardware for information systems.

According to the JCR, this journal has a 2014 Impact Factor of 1.456 and a

5-Year Impact Factor of 1.618. It is positioned in the second quartile (Q2)

and ranked 46th out of 139 journals in the “Computer Science, Information

Systems” category.

In addition to ICSP, ER, and Information Systems, it is also relevant to highlight

our publication in ME 2011. Even though ME is not listed in the CORE rankings,

it represents the most important international conference in the area of Method

Engineering. Therefore, our publication in ME 2011 allowed us to disseminate our

results within a community that includes many researchers working in the field

that is the focus of this thesis.

7.3 Co-directed Projects

In addition to the publications that are listed in Section 7.2, further results of

this thesis include a degree project and a master thesis, which were carried out

to explore some ideas that are related to our work. The degree project and the

master thesis, which were co-directed by the author of the present PhD thesis,

are the following:

3 http://aholab.ehu.es/users/derro/documents/CSConfRank.pdf Accessed 03-2015

Chapter 7. Conclusions and Future Work 245

1. Especificación de procesos en la herramienta CAME MOSKitt4ME y con-

strucción de un marco de evaluación para herramientas CAME y CASE.

Alicia Jaén Bielsa. September 2011. Degree project.

2. CMMI aplicado a entornos de desarrollo software: El caso de MOSKitt4ME.

Edith Elsa Dı́az Aspilcueta. September 2013. Master thesis.

7.4 Future Work

The research that is presented in this thesis is not a closed work; it can be improved

and extended in several ways. The following subsections summarize the research

directions that are planned for the near future. The main goal of this future work

will be to overcome some of the limitations of the work that has been developed

thus far.

7.4.1 Automated Production of Situational Methods

The methodological approach that is presented in this thesis supports the design,

implementation, and execution of methods; however, it does not facilitate the

work of method engineers when they need to obtain methods that are adapted

to the characteristics of specific development projects. The methods that take

into consideration the situation where they will be applied are called situational

methods [26].

In order to reduce the effort that is required to obtain situational methods, we

plan to enhance our Method Engineering approach with Software Product Line

Engineering (SPLE)4 techniques [193]. The general idea is that, similarly to a

product family (or product line), a set of related methods can be decomposed

into reusable assets (i.e., method fragments) and organized as a method family

[194, 195]. Organizing methods as a method family would allow method engineers

to exploit commonality and manage variability among method fragments with the

aim of automating the production of new methods. Thus, we believe that method

families can significantly reduce (through an increased level of automation and

4 http://www.softwareproductlines.com/

Chapter 7. Conclusions and Future Work 246

Figure 7.1: Basic concepts of a method family

reusability) the effort that is required to obtain methods that are adapted to the

characteristics of the projects at hand.

Figure 7.1 graphically depicts the basic elements that come into play in a method

family. As the figure shows, a method family supports the creation of a set

of situational methods from a shared set of method fragments using a common

means of production. Each situational method of the method family is uniquely

defined by a project specification, which represents choices made in a decision

model. The decision model defines the whole set of project characteristics (and the

relationships between them) that determine all the possible situational methods

of the method family. Thus, when a new project starts, method engineers must

select (in the decision model) a specific set of characteristics based on this project;

then, according to the selected set of characteristics (i.e., according to the project

specification), a new situational method is automatically produced by means of

the assembly and integration of method fragments.

In order to illustrate how the specification of projects could be performed in

MOSKitt4ME, the left part of Figure 7.2 shows a small example of decision model.

This decision model is represented as a feature model in terms of the MOSKitt

Feature Model Editor. Each of the features of the feature model represents a

project characteristic, being the features close to the root more general than the

features close to the leaves, which are more specific. Thus, the specification of

Chapter 7. Conclusions and Future Work 247

Figure 7.2: Example of project specification in MOSKitt4ME

projects could be performed in MOSKitt4ME by means of a graphical compo-

nent (see right part of Figure 7.2) that displayed as checkboxes all the project

characteristics that are available in the feature model. When the user activated a

checkbox, then then corresponding feature would be selected. In the example of

Figure 7.2, the user is specifying that the project will involve the development of a

software application where (1) the data will be persisted in a PostgreSQL database

and (2) the target platform will be gvHidra5. According to these project charac-

teristics, MOSKitt4ME would automatically produce a method that is adapted

for the project; that is, a situational method. This situational method could

include, for example, a task called “User Interface Design for gvHidra” and a

product called “PostgreSQL database model”. This task and this product repre-

sent method elements that are adapted to the specific project characteristics that

have been selected by the user. If the user had selected, for example, the “None”

characteristic (instead of “PostgreSQL”), then the database model would have

been omitted from the method.

Note that supporting the automated production of situational methods would

be a significant step forward in our Method Engineering approach. Since the

method implementation phase is automatic, we would be able to obtain not only

situational methods but also customized software environments directly from the

project characteristics that are specified by method engineers.

5 http://www.gvpontis.gva.es/cast/gvhidra-herramienta/

Chapter 7. Conclusions and Future Work 248

7.4.2 Method as a Service (MaaS)

Recently, there has been a rise in Service-Oriented Architectures (SOA), which has

led to a new focus within the Method Engineering community [26]. Rolland elabo-

rates in [10] the idea of applying a service-oriented approach to Method Engineer-

ing and defines the concepts of Method as a Service (MaaS) and Method-Oriented

Architecture (MOA). Despite its novelty, this idea has only been explored in a

limited way thus far. Two examples of research efforts that have been undertaken

in this context are those by Gholami et al. [138] and Cauvet et al. [196, 197].

While the former developed a set of service-oriented method fragments for their

inclusion in the OPF repository, the latter investigated how to build methods by

discovering, adapting, and dynamically composing method services.

The above approaches show that, up to now, the notion of service has been con-

sidered in the Method Engineering field mostly for method design (specifically, as

a new type of building block, called method service, whereby methods are built

by service composition). Thus, some important aspects remain unexplored. For

instance, there is no Method Engineering approach that defines how to obtain

integrated software environments that support this new type of service-oriented

methods. In the words of Rolland [10]: “a platform permitting an easy execution

of method service compositions is missing today”. Another limitation is that there

is no Method Engineering approach that allows method engineers to define how

method services must be orchestrated during the method execution.

In order to fill these gaps, we plan to incorporate the notion of service to our

Method Engineering approach. Thus, the method design phase of our approach

will be performed by means of the composition of method services, while the

method implementation phase will obtain software environments that enable the

execution of these method service compositions. The environments that are ob-

tained during the method implementation phase will be based on the notion of

Software as a Service (SaaS) [198]; thus, they will support the creation and ma-

nipulation of the method products by means of the invocation of services that are

dynamically discovered at runtime. The environments will also support service

orchestration through the execution of the process part of the methods (which

will be defined in BPMN 2.0) by means of an orchestration engine.

Chapter 7. Conclusions and Future Work 249

7.4.3 Megamodeling in Method Engineering

During the last decade, there has been an increase in methods that advocate the

use of MDE as the means to carry out software development. An example of these

methods is gvMétrica. In the projects where this type of methods are applied,

models do not represent mere documentation; rather, they embody primary ar-

tifacts that drive the construction of software systems. In order for models to

become first-class entities of the development process, they must take into con-

sideration all (or, at least, many) of the aspects that concern the software system

to be developed (i.e., its requirements, its software architecture, its graphical user

interface, the structure of the data that it manipulates, the services that it offers

to other systems, etc.). For this reason, it is common to find a large number of

interrelated models (expressed by means of many different DSLs) taking part in

development projects [199]. This reality is reflected in industrial CASE environ-

ments, such as MOSKitt, which support the creation of many different types of

models. For instance, MOSKitt supports, among others, UML (activity, class,

state machine, sequence, use case, and profile), BPMN, UIM, Sketcher, Dash-

board, WBS, and Sqlchema.

The coexistence of many different models within the same development project

may cause significant problems. For instance, it may hinder (1) the overall under-

standing of the system that is under development and also (2) the communication

between the people that is involved in the project (which are two of the most

recognized benefits of MDE); furthermore, it may lead to (3) inconsistencies be-

tween the models and broken references. To avoid all of these problems, CASE

environments must facilitate the work of software engineers by offering effective

mechanisms for managing and coordinating interrelated models and DSLs. Ex-

amples of the facilities that can be offered by CASE environments are high-level

specification of constraints between the models, storage of metadata, search of

models based on this metadata, storage of traceability information, and graphical

visualization of different types of relationships between the models.

Even though the above functionality may bring significant benefits, its develop-

ment, in contrast, adds further complexity to the process of building CASE envi-

ronments that are adapted to the context of use – one of the main goals of Method

Engineering. To mitigate this problem, it is necessary to define a systematic so-

lution that enables the construction of CASE environments that provide effective

Chapter 7. Conclusions and Future Work 250

Figure 7.3: Megamodeling in our methodological approach

model management, and, at the same time, are adapted to the situation at hand.

With the aim of providing this systematic solution, we plan to extend our method-

ological approach with megamodeling techniques [200, 201]. By making use of

megamodeling, software engineers will be able to represent global entities (such

as models, metamodels, and software tools) within a single (mega)model; then,

this megamodel can be used to, for example, obtain visual representations of the

relationships between the models by simply opening the megamodel in a graph-

ical editor. Since megamodeling represents a global, centralized, and high-level

solution for model management, we believe that it can alleviate the complexity

that entails the development of CASE environments that support an intensive use

of models.

Figure 7.3 graphically illustrates how we plan to extend our methodological ap-

proach with megamodeling techniques (see red rounded rectangle). Specifically,

we will develop an additional model transformation that obtains a megamodel

from the method that is defined by method engineers. This megamodel, which

will be integrated in the software environment that is generated in the method

implementation phase, will evolve during the course of the method execution. The

Chapter 7. Conclusions and Future Work 251

megamodel will contain, among other data, information about the products that

are produced during software development. To enable the manipulation of the

megamodel, we will enhance the static part of the software environment with an

additional component called “Megamodeling Tool”6. Thanks to this component,

the environment will be able to provide enhanced functionality; for instance, the

Product Explorer view will allow users to graphically display relationships between

the products at different granularity levels.

7.4.4 Method Analysis and Monitoring

As Section 2.1 describes, the lifecycle of Method Engineering comprises the phases

of analysis, design, implementation, execution, and monitoring. In this thesis, we

address three of these phases: design, implementation, and execution. With the

aim to providing complete support for Method Engineering, we will extend our

methodological approach so that it also covers the analysis and monitoring phases.

The analysis phase of the Method Engineering lifecycle, by analogy with Soft-

ware Engineering [203], encompasses the tasks that aim to determine the needs or

conditions to be meet by a new method; that is, the features (e.g., design tasks or

managerial activities) that are expected to be present in the method that will be

defined in the next Method Engineering phases. Within the Method Engineering

community, it is generally agreed that the elements of a method are determined by

the characteristics of the project where the method will be applied [3, 38, 39, 134]

(e.g., if the project involves the development of a system that does not require

data persistence, then the method tasks that relate to database design can be

omitted); for this reason, we will consider project characteristics to be central

elements of the method analysis phase. Specifically, in our approach, method

requirements will be specified by means of natural-language documents and the

characteristics of the projects will be specified by means of feature models. These

feature models will enable the automated production of situational methods, as

Section 7.4.1 illustrates.

The monitoring phase of the Method Engineering lifecycle involves the observa-

tion of the projects’ progress so that appropriate corrective actions can be taken

when the software engineers’ performance deviates significantly from the plan.

6As an example of megamodeling tool, see the Eclipse AM3 toolset [202].

Chapter 7. Conclusions and Future Work 252

Monitoring is typically performed by measuring the actual values of project plan-

ning parameters (e.g., costs, schedule, and effort), comparing actual values to the

estimates in the plan, and identifying significant deviations [204]. In order to sup-

port the monitoring phase in our methodological approach, we will carry out two

main extensions. First, we will define and implement a M2M transformation for

mapping SPEM 2.0 models into project plans; thus, method engineers will be able

to define, for example, cost and schedule baselines, which are not supported by

SPEM 2.0. Second, we will add a new view to the Project Manager component;

this view will show monitoring data when the role of the user is project manager.

Note that the BPMN 2.0 process engine does not require any extension since the

current version of the Activiti Engine stores history information about ongoing

and past process instances. This information can be examined by means of the

“History Service” of the engine API.

Appendix A

Comparative Analysis of

SPEM 2.0 and BPMN 2.0

This appendix presents a comparative analysis between the SPEM 2.0 and BPMN

2.0 standards. The comparative analysis applies the evaluation framework that

is presented by Niknafs et al. in [21]. This framework is organized as a number

of evaluation criteria (EC), each describing a characteristic or requirement that

a Process Modeling Language needs to address in order to be considered suitable

for use in a Method Engineering context. These criteria are divided into two

groups: method modeling criteria and process support criteria. We present these

two groups in Sections A.1 and A.2, respectively. For each criterion, a short

description is given first; then, the criterion is applied to SPEM 2.0 and BPMN

2.0. Finally, Section A.3 presents the conclusions of the comparative analysis.

Note that we omit in this appendix the “Coverage of Method Engineering lifecycle”

criterion. The reason for this is that, in our analysis, we focus exclusively on the

design and execution phases, which are covered, respectively, by the “modeling

support” and “process execution” criteria.

253

Appendix A. Comparative Analysis of SPEM 2.0 and BPMN 2.0 254

A.1 Method Modeling Criteria

In order to be suitable for use in a Method Engineering context, a Process Model-

ing Language must provide adequate mechanisms for modeling software develop-

ment methods. The criteria of the evaluation framework that assess the fulfillment

of this requirement are the following:

EC1. Modeling support. This criterion refers to the ability of a Process Mod-

eling Language to express the elements of a method in a clear and natural

way. As we mention in Chapter 1, methods are generally composed of two

main parts: product and process. To the product and process parts, some

authors add the method people and tools [3, 24, 25]. In accordance with

these authors, we consider that a method definition must, at least, contain

the following elements: the products to be created and/or consumed, the

process to be followed, the people that are involved in this process, and the

software tools to be used during the method execution.

• SPEM 2.0 provides adequate concepts for modeling method elements.

The main SPEM 2.0 concepts for representing the (1) product, (2) pro-

cess, (3) people and (4) tool aspects of methods are the following: (1)

Work Product Definition; (2) Activity, Task Definition, Work Sequence,

and Milestone; (3) Role Definition, Qualification, and Role Set ; and (4)

Tool Definition.

• BPMN 2.0 provides obscure concepts for modeling method elements

(mainly because it is more oriented towards process modeling). The

main BPMN 2.0 concepts for representing the (1) product and (2) pro-

cess parts of methods are, respectively, (1) DataObject, and (2) Activ-

ity (and all its subclasses: Task, Subprocess, etc.) and Sequence Flow.

The (3) people dimension is usually modeled using the Lane primitive.

Another possibility is to associate generic Resources to Activities by

means of Performer elements. The (4) tool dimension can be modeled

in different ways depending on the type of task. For User Tasks the

Rendering element can be used as an extensible mechanism for spec-

ifying User Interface renderings. For Script Tasks and Service Tasks

the attributes “script” and “operationRef” establish, respectively, the

script and operation that will be invoked during the task execution.

Appendix A. Comparative Analysis of SPEM 2.0 and BPMN 2.0 255

EC2. Abstraction/Modularization. This criterion enables the evaluation of

the extent to which a Process Modeling Language supports the organization

and modularization of reusable method content.

• SPEM 2.0 proposes powerful mechanisms for designing and managing

maintainable, large-scale, reusable, and configurable libraries or repos-

itories of method content. These mechanisms enable SPEM 2.0 to

be used as a framework for the construction of software development

knowledge bases, where reusable method content can be stored in a

standardized manner. Note that this feature of SPEM 2.0 aligns with

one of the most common Method Engineering approach, the assembly-

based approach [9], since it facilitates the construction of method bases

that store reusable method parts.

• BPMN 2.0 processes are by definition reusable. They can be in-

voked by other processes by means of Call Activities. However, BPMN

2.0 does not define mechanisms for defining libraries or repositories of

reusable process elements.

EC3. Formalism. This criterion refers to the way a Process Modeling Language

represents method elements. The more formal rigor is applied, the more

automated support is possible, but the language gets less understandable.

The best approach is to use an intuitive graphical representation that is

built upon a formal textual language.

• SPEM 2.0 defines a visual, semi-formal UML-based language. For-

mal features are not considered, but seem feasible using the Object

Constraint Language (OCL).

• BPMN 2.0 defines a graphical notation and it also formalizes process

execution semantics, thereby bridging the gap between process design

and process implementation. In addition, BPMN 2.0 defines mappings

with WS-BPEL, a formal XML-based language for the definition of

executable business processes.

EC4. Simplicity. This criterion refers to the clarity, ease of use, and under-

standability of a Process Modeling Language. It is commonly believed that

Appendix A. Comparative Analysis of SPEM 2.0 and BPMN 2.0 256

these features are related to the adoption of a graphical notation, since “pic-

tures” are closer (as compared to text) to the cognitive part of the human

brain [205].

• SPEM 2.0 does not address simplicity, due to its complex structure.

This makes the language difficult to learn.

• BPMN 2.0 defines an intuitive graphical notation that has been espe-

cially designed for use by the people who design and manage business

processes. This makes the language easy to learn.

A.2 Process Support Criteria

In order to be suitable for use in a Method Engineering context, a Process Model-

ing Language must not overlook the process aspects of methods. The evaluation

criteria that assess the fulfillment of this requirement are the following:

EC5. Process Execution. This criterion evaluates whether the syntax of a

Process Modeling Language has underlying executable semantics, allowing

the processes to be executed.

• SPEM 2.0 does not provide concepts for executing process models,

but proposes two alternative ways to do so: (1) mapping processes into

project plans and executing these plans using project planning tools

such as Microsoft Project; or (2) mapping processes into executable

languages such as BPMN 2.0 and executing the resulting processes by

means of a process engine.

• BPMN 2.0 fully formalizes process execution semantics. Thus, the

process models that are compliant with BPMN 2.0 can be executed

by means of process engines that provide enactment facilities such as

activity orchestration, transaction management, and event/exception

handling.

EC6. Process Elicitation. This criterion refers to the extent to which a Pro-

cess Modeling Language supports the representation of complete, under-

standable, unambiguous, and well-structured processes.

Appendix A. Comparative Analysis of SPEM 2.0 and BPMN 2.0 257

• SPEM 2.0 provides limited support to represent complex processes

since it only allows method engineers to establish precedence relation-

ships between tasks. Thus, SPEM 2.0 provides poor support to work-

flow patterns such as Synchronization and Exclusive Choice1.

• BPMN 2.0 defines powerful mechanisms to represent complete pro-

cesses that support a large number of workflow patterns.

EC7. Process Evolution. This criterion evaluates whether a Process Model-

ing Language provides mechanisms for facilitating the resumption of pro-

cess model executions after the modification of the process model (without

altering previous states of artifacts, process activities, etc.).

• SPEM 2.0 does not address process evolution.

• BPMN 2.0 does not address process evolution.

EC8. Process Evaluation. This criterion assesses whether a Process Modeling

Language supports the evaluation of process models; for instance, via the

collection of process execution data and the subsequent comparison of these

data with predefined process objectives.

• SPEM 2.0 does not directly address process evaluation since it does

not support the collection of execution data.

• BPMN 2.0 does not directly address process evaluation. However,

since it is an executable language, implementations can perform eval-

uation based on the execution data that is retrieved from the process

engine.

A.3 Conclusions

This appendix illustrates by means of a comparative analysis that both SPEM

2.0 and BPMN 2.0 have advantages and limitations. This is shown in Table A.1,

which summarizes the results of the analysis. A “+” symbol indicates that a

Process Modeling Language fulfills a specific evaluation criterion; a “-” symbol

indicates the opposite; and a “+/-” symbol indicates that a criterion is partially

fulfilled.
1 http://www.workflowpatterns.com/

Appendix A. Comparative Analysis of SPEM 2.0 and BPMN 2.0 258

Table A.1: Summary of the analysis of SPEM 2.0 and BPMN 2.0

Method Modeling Process Support
EC1 EC2 EC3 EC4 EC5 EC6 EC7 EC8

SPEM 2.0 + + +/- - - +/- - -
BPMN 2.0 +/- +/- + + + + - +/-

Table A.2: Evaluation criteria that are covered by this thesis

Method Modeling Process Support
EC1 EC2 EC3 EC4 EC5 EC6 EC7 EC8

SPEM 2.0 X X
BPMN 2.0 X X X X

In this thesis, our goal is to obtain benefits from both SPEM 2.0 and BPMN

2.0, and, for this reason, we define a DSL (see Chapter 4) that combines the two

languages. By combining the two languages, we cover six of the eight evaluation

criteria that are described in this appendix. These six criteria are supported by

either SPEM 2.0 or BPMN 2.0, as shown in Table A.2. Specifically, SPEM 2.0

supports the first two criteria because it provides suitable concepts for method

modeling (EC1) – e.g., task, role, and work product – as well as mechanisms

for defining repositories of reusable method content (EC2). On the other hand,

BPMN 2.0 strikes a good balance between formalism (EC3) and simplicity (EC4)

– that is, it provides an intuitive graphical notation, while, at the same time,

applies enough formal rigor for enabling execution – while it also fully formalizes

process execution semantics (EC5) and provides suitable workflow-related primi-

tives (EC6). Finally, neither SPEM 2.0 nor BPMN 2.0 support process evolution

(EC7) and process evaluation (EC8), and, therefore, these criteria are not covered

in this thesis.

In a nutshell, based on the results of the comparative analysis that is presented

in this appendix, we define a DSL that integrates concepts from both SPEM 2.0

and BPMN 2.0. While the concepts of SPEM 2.0 enable the definition of com-

plete methods, the concepts of BPMN 2.0 allow method engineers to enhance the

method process part (by means of primitives that are not supported in SPEM 2.0,

such as gateways or different types of tasks). Additionally, we leverage BPMN 2.0

by implementing a M2M transformation that obtains executable representations

of the method models that are defined using our DSL.

Appendix B

A Case Study: the

gvMétrica Method

This appendix introduces a case study that was carried out in the context of the

Valencian Regional Ministry of Infrastructure, Territory, and Environment (also

known as CITMA). Within this public entity, we put into practice the method-

ological approach that is presented in Chapter 4: we used MOSKitt4ME to design

gvMétrica1 and also to generate a software environment that supports part of the

method. Overall, the application of MOSKitt4ME in an industrial context was

successful; this is a good indicator of the feasibility of the model-driven Method

Engineering approach that is presented in this thesis.

The remainder of the present appendix is structured as follows. First, Section B.1

introduces gvMétrica. Due to the large size of gvMétrica, this section does not

provide a thorough description of the method; rather, it gives a general overview

first, and, then, it details a small excerpt: the phase of information systems

design. We selected this excerpt of gvMétrica for our case study for two main

reasons. First, it represents a simple, understandable, and realistic scenario that

includes enough elements for the complete application of our Method Engineering

approach. Second, it is the part of gvMétrica that is best supported by the

software environment that was obtained during the case study. The application

1 http://www.gvpontis.gva.es/cast/proyectos-integra/

259

Appendix B. A Case Study: the gvMétrica Method 260

of the three phases that comprise our Method Engineering approach – design,

implementation, and execution – is described in Section B.2. Finally, Section B.3

outlines some conclusions about the case study.

B.1 The gvMétrica Method

GvMétrica is the result of the adaptation (to the needs of the CITMA) of a

software development method that is called Métrica III2. The Métrica III method

was defined by the Spanish government in 2001 and its main goal is to provide

organizations with an instrument that systematizes the activities that support

the lifecycle of software applications. Métrica III is not only designed to enable

its adaptation to the needs of particular projects or organizations, but it also

explicitly recommends to carry out this adaptation. For this reason, the CITMA

adapted Métrica III during the period between 2003 and 2006. The result was

gvMétrica.

The specification of gvMétrica by practitioners from the CITMA involved several

activities, which were documented as part of the gvPONTIS project3. Examples

of these activities are the definition of templates for reporting deliverables and the

selection of the processes of Métrica III that were needed for the CITMA. The

result of the process selection included three processes that comprise the general

structure of gvMétrica: planning of information systems (PSI), development of

information systems (DSI), and maintenance of information systems (MSI). Of

these three main processes, the one that falls within the scope of this thesis is

the DSI process since it deals with the development of software systems. The

overall structure of the DSI process is composed of five major phases: study of

the feasibility of the system (EVS), analysis of the information system (CASI),

design of the information system (CDSI), construction of the information system

(CCSI), and deployment and acceptance of the system (CIAS). In the following

subsection, we detail the CDSI phase since it represents the test object of the case

study that is described in this appendix.

2 http://administracionelectronica.gob.es/pae Home/pae Documentacion.html
3 http://www.gvpontis.gva.es/cast/inicio-gvpontis/

Appendix B. A Case Study: the gvMétrica Method 261

Figure B.1: Overall process of the CDSI phase of gvMétrica

Table B.1: Elements of the CDSI phase of gvMétrica

B.1.1 Design of Information Systems in gvMétrica

The CDSI phase of gvMétrica involves a set of processes and tasks that are carried

out according to the workflow that is graphically depicted in Figure B.1. As this

figure shows, the CDSI phase comprises four processes (i.e., System Architecture

Definition, User Interface Design, Business Logic Design, and Data Persistence

Design) and two tasks (i.e., Tests Design and Design Validation). All of these

processes and tasks are further detailed in Table B.1. As one can observe in this

table (in the leftmost column), the processes of the CDSI phase are decomposed

into various tasks, which, in turn, reference their input and output products, the

roles that are in charge of the tasks performance, and the tools that enable the

tasks execution. Below, we describe the elements that are involved in the CDSI

phase.

Appendix B. A Case Study: the gvMétrica Method 262

System Architecture Definition. During this process, analysts perform two

tasks that can be performed in parallel:

• Definition of the components that comprise the software architecture

of the system. To do this, analysts must use the MOSKitt-UML2 tool

to create a UML 2.0 package model.

• Specification of the technological environment of the project (i.e., the

required software tools) using a set of predefined textual templates.

These templates must be filled by means of the Writer application that

is provided as part of the Open Office tool suite.

Once the System Architecture Definition process is completed, two different pro-

cesses start in parallel: User Interface Design and Business Logic Design.

User Interface Design. In this process, software engineers define the graphical

user interface of the system. To this end, they perform three sequential

tasks:

• Definition at a high level of abstraction of the graphical components

(e.g., windows, menus, and buttons) that comprise the user inter-

face of the system. To do this, analysts must use a graphical editor:

the MOSKitt-Sketcher tool. The output of this task is, therefore, a

model that conforms to the MOSKitt-Sketcher metamodel. This out-

put model does not specify, for example, the behavior of the graphical

components; it only contains graphical information, such as position

and size.

• Generation of a lower-level model of the graphical user interface. This

task is automated by a M2M transformation: MOSKitt-Sketcher2UIM.

This transformation takes the sketcher model as input and obtains a

model that conforms to the MOSKitt-UIM metamodel. This meta-

model provides more expresiveness than the MOSKitt-Sketcher meta-

model.

• Analysts revise the generated UIM model using a graphical editor: the

MOSKitt-UIM tool. The main goal of this task is to enhance the

definition of the user interface; for instance, by specifying the behavior

of its graphical components.

Appendix B. A Case Study: the gvMétrica Method 263

Business Logic Design. During this process, analysts perform two sequential

tasks:

• Specification of the use cases of the system. To do this, analysts must

use the MOSKitt-UML2 tool to create a UML 2.0 use case diagram.

• Specification of the services that the system will offer to other systems.

To do this, analysts must use the MOSKitt-UML2 tool; in this case,

analysts must build a UML 2.0 class diagram.

Once the Business Logic Design process is completed, Data Persistence Design

can start.

Data Persistence Design. In this process, three tasks are performed sequen-

tially:

• Generation of a database schema model from the UML 2.0 class model.

The database model is automatically obtained by means of a M2M

transformation: MOSKitt-UML2DB.

• The analyst manually revises the database schema model using a graph-

ical editor: the MOSKitt-DB tool.

• Automatic generation of the DDL code that implements the database

schema. The DDL code is generated by means of a M2T transforma-

tion: MOSKitt-DB2DDL.

Once all of the system artifacts (i.e., the specification of the graphical user in-

terface, the UML 2.0 models, the database schema model, the DDL code, etc.)

have been obtained, the next task to be performed is called Tests Design. In this

task, analysts define a set of test cases for the software system. To do this, they

must use the Writer application that is provided as part of the Open Office tool

suite. Finally, the last task to be performed is Design Validation. In this task,

the project leader validates all the work performed in the CDSI phase.

B.2 Applying the Methodological Approach

This section describes how we applied our methodological approach to design,

implement, and execute the CDSI phase of gvMétrica. We divide this section into

Appendix B. A Case Study: the gvMétrica Method 264

three subsections (B.2.1, B.2.2, and B.2.3), each of which focuses on a specific

phase of the approach.

B.2.1 Method Design

As Section 4.2.3 describes, our approach for method design is composed of three

major steps: method definition, method configuration, and executable process gen-

eration. The application of these three steps to the case study is presented in

Sections B.2.1.1, B.2.1.2, and B.2.1.3, respectively.

B.2.1.1 Method Definition

The definition of the CDSI phase of gvMétrica was performed by means of the

EPF Composer editor, which is integrated in MOSKitt4ME (see Section 5.3.1.1).

The result of the method definition is shown in Figure B.2. As the figure shows on

the left hand side, the method content, which was defined by means of the Library

view, comprises three roles, twelve tasks, and nine work products, all of which were

extracted from the data that is presented in Table B.1. For instance, the task

“databaseScriptsGen” corresponds to the task “Database Scripts Generation”.

Note that the tools of the method are not displayed in Figure B.2. This is because

the method tools are defined in the next step of our approach (see Section B.2.1.2).

On the other hand, the right side of Figure B.2 shows the process part of the case

study after being defined by means of the process editor of the EPF Composer. As

one can observe in the figure, the activities of the process represent processes from

Table B.1 (e.g., “Business Logic Design”) and the task descriptors represent tasks

(e.g., “Design Validation”). These activities and task descriptors form a work

breakdown structure where precedence relationships are established by means of

the “predecessors” column (e.g., the predecessor of the activity “User Interface

Design” is the activity “System Architecture Definition”). Note that the process

editor also allows the user to examine the roles, inputs, and outputs of the task

descriptors, as illustrated in the bottom-right part of Figure B.2.

It is important to highlight that, during the Method Definition step of our Method

Engineering approach, two important limitations of MOSKitt4ME came to light.

Appendix B. A Case Study: the gvMétrica Method 265

Figure B.2: Definition in EPF Composer of the CDSI phase of gvMétrica

First, MOSKitt4ME does not allow users to specify method variability, a capabil-

ity that is desirable in the context of the CITMA. While MOSKitt4ME supports

the definition and reuse of method fragments, it does not enable the association of

these method fragments with project characteristics. This association would al-

low MOSKitt4ME to automatically obtain project-specific methods directly from

the characteristics of the projects. Second, more expresiveness – for instance,

the expresiveness that is provided by Responsibility Assignment Matrices (RAM)

– is needed to specify the roles that are defined in gvMétrica. In its current

version, MOSKitt4ME only supports the specification of primary and additional

performers for the tasks.

Appendix B. A Case Study: the gvMétrica Method 266

Table B.2: Associations between technical fragments and method elements

Technical fragment Supported Elements

MOSKitt-UML2.ras
Package model
Use case model

Class model

OpenOffice.ras
TE specification

Test cases
MOSKitt-Sketcher.ras Sketcher model

MOSKitt-Sketcher2UIM.ras Generation of the UIM model
MOSKitt-UIM.ras UIM model

MOSKitt-UML2DB.ras Database model generation
MOSKitt-DB.ras DB model

MOSKitt-DB2DDL.ras Database scripts generation

B.2.1.2 Method Configuration

This step was performed by means of the repository client of MOSKitt4ME (see

Section 5.3.1.2), which enabled the specification of the method tools by means of

the association of method elements with technical fragments. The associations

that resulted from the Method Configuration step are shown in Table B.2. As the

table shows, eight technical fragments were required to support the CDSI phase

of gvMétrica4. Seven of these fragments encapsulate MOSKitt components, while

the “OpenOffice.ras” fragment represents an external tool. All of these technical

fragments were associated either to method products or method tasks. As an

example of association between a technical fragment and a method element, let

us consider the task “Database model generation”. The execution of this task

obtains a database model from a UML 2.0 class model. To specify this behavior,

we associated the task with a technical fragment that contains the Eclipse plug-

ins that implement the UML2DB transformation that is provided by MOSKitt.

Thus, we specified that this model transformation will be launched when the

“Database model generation” task is active during the method execution. On the

other hand, the output product of this task (i.e., the product “DB model”) was

associated to the technical fragment “MOSKitt-DB”; thus, we specified that the

4Even though it is not shown in the table, additional fragments were required to satisfy the
software dependencies of these eight fragments; nonetheless, the resolution of dependencies was
transparent to the users since it is automatically performed by MOSKitt4ME.

Appendix B. A Case Study: the gvMétrica Method 267

Figure B.3: Technical fragments in the EPF Composer

graphical editor that is contained in the technical fragment will be used during

the method execution for the manipulation of the database model.

Figure B.3 shows a screenshot of MOSKitt4ME after we performed the Method

Configuration step of our approach. As the figure shows, the Library view of the

EPF Composer shows (under the “Guidance” folder) the eight technical fragments

that were retrieved from the repository and associated to method elements. The

right part of the figure illustrates how the user can examine the associations

between technical fragments and method elements. Specifically, these associations

can be examined in the “Guidance” tab of the editor that is opened when the user

selects a task or a product in the Library view.

Appendix B. A Case Study: the gvMétrica Method 268

Figure B.4: Example of generated BPMN 2.0 processes

B.2.1.3 Executable Process Generation

This step was performed automatically by means of the SPEM2BPMN trans-

formation that is provided by MOSKitt4ME (see Section 5.3.1.1). As an exam-

ple of the result obtained in the Executable Process Generation step, Figure B.4

shows two of the BPMN 2.0 processes that were generated after applying the

SPEM2BPMN transformation to the case study. These processes are represented

in terms of the Activiti Designer, the Eclipse-based graphical editor that is inte-

grated in MOSKitt4ME to support BPMN 2.0.

To illustrate how the BPMN 2.0 processes that are shown in Figure B.4 were

generated, we describe below some mappings between elements of the method

model (which was defined in the previous two steps) and BPMN 2.0 elements.

• The Process “CDSI” of the method model was mapped into a BPMN 2.0

Process (diagram “A” in Figure B.4).

Appendix B. A Case Study: the gvMétrica Method 269

• The Activity “Data Persistence Design” of the method model was mapped

into a Call Activity and a BPMN 2.0 Process (diagram “B” in Figure B.4).

• The Task “Database Model Generation” of the method model was mapped

into a BPMN 2.0 Service Task since this task is considered automatic. This

is because the task has a M2M transformation associated to it as a technical

fragment (i.e., “MOSKitt-UML2DB”).

• The Task “Database Model Revision” of the method model was mapped

into a BPMN 2.0 User Task since this task must be performed manually

by means of a software application. This is because the task has an output

product with a technical fragment associated to it. This product is “DB

model” (which is not shown in Figure B.4) and it was associated to the

technical fragment “MOSKitt-DB”.

• The Task “Design Validation” of the method model was mapped into a

BPMN 2.0 Manual Task since this task must be performed manually with-

out using any software application. This is because none of the technical

fragments was associated to the task (nor to its output products).

• The Sequences of the method model were mapped into the Sequence Flows

that connect the BPMN 2.0 elements in both diagrams.

B.2.2 Method Implementation

The method implementation phase of our approach is automatic; therefore, we did

not have to perform any work at this point. The result of the method implementa-

tion phase was (1) a software environment that provides support to the method of

the case study and also (2) a generation report. The generation report is shown in

Figure B.5. As the figure shows, seven of the eight technical fragments were suc-

cessfully installed in the software environment. These seven technical fragments

correspond to the components of MOSKitt (e.g., the MOSKitt-UML2DB trans-

formation and the MOSKitt-UIM editor); these components could be successfully

installed since they are implemented as Eclipse plug-ins. In contrast, the techni-

cal fragment “OpenOffice.ras” could not be installed since it is implemented in

a different technology. In this case, the generation report indicates that software

Appendix B. A Case Study: the gvMétrica Method 270

Figure B.5: Generation report obtained in the case study

engineers must install Open Office so that this tool is available during the phase

of method execution.

B.2.3 Method Execution

In order to illustrate the method execution phase of the case study, we created an

example project by means of the Project Explorer view of the software environ-

ment that was generated in the method implementation phase. When this new

project is selected in the Project Explorer view, the Activiti Engine starts a new

process instance and the Process and Product Explorer views are updated accord-

ingly. At this point, the Process view shows the initial state of the process and

the Product Explorer view is empty. Now, let us consider that the following six

tasks have been executed: definition of the architectural components, definition of

the technological environment, design of the sketcher interface, generation of the

UIM model, UIM model revision, and analysis of the use cases. Thus, the next

executable task is “Design of the Services Offered by the System”. This state of

the process is shown in Figure B.6.

Appendix B. A Case Study: the gvMétrica Method 271

Figure B.6: Process and Product Explorer views

The Process view (left part of Figure B.6) shows the tasks and activities in dif-

ferent colors depending on whether they have already been executed (blue), are

executable (green), or are not executable (red) in the current state of the process.

Note that, even though the Process view shows the process in terms of SPEM 2.0,

the process instance corresponds to an instance of a BPMN 2.0 process. This is

possible because there is a one-to-one correspondence between SPEM 2.0 tasks

and BPMN 2.0 tasks.

On the other hand, the Product Explorer view (right part of Figure B.6) depicts

the artifacts that have been produced during the method execution. In this case,

the Product Explorer is showing the output products of the six tasks that have

been executed.

Now, let us consider that the user wants to proceed with the method execution.

To do this, the user must select the task “Design of the Services Offered by the

System” since it is the only task that is displayed in green. When this task is

executed (along with the remaining five tasks), the Activiti Engine deletes the

process instance, and, then, the project can be considered to be concluded.

Appendix B. A Case Study: the gvMétrica Method 272

B.3 Conclusions

This appendix presents a case study that exemplifies the model-driven Method

Engineering approach that is presented in this thesis. To this end, the appendix

applies the approach to an example method, which represents an excerpt of the

software development method that was defined in the CITMA: gvMétrica. The

application of the approach to an industrial method allowed us to identify some

limitations of MOSKitt4ME (such as the lack of support for variability and the

limited expresiveness that MOSKitt4ME provides for role definition); nonetheless,

it also allows us to be optimistic since MOSKitt4ME successfully supported the

design, implementation, and execution of the case study.

Appendix C

Supplementary Material on

the Evaluation Study

This appendix includes material that was used during the evaluation study that

is presented in Chapter 6. First, the appendix presents several instruments that

were employed during the execution phase of the study. These instruments are

the characterization form, the user acceptance form, and the interview questions,

which are presented in Sections C.1, C.2, and C.3, respectively. Then, Section

C.4 details the statistical tests that were performed during data analysis. Finally,

Section C.5 presents the coding scheme that was developed during the construction

of the Think Aloud protocols.

C.1 Characterization Form

This section presents the characterization form. As Section 6.3.8 describes, the

characterization form is divided in two parts. The first part requests demographic

data, such as gender, age, and work status. This part of the form is shown in

Figure C.1. On the other hand, the second part includes twelve multiple-choice

questions that request the experience level of the subjects regarding the topics that

273

Appendix C. Supplementary Material on the Evaluation Study 274

Figure C.1: Characterization form: Demographic data

are covered by the study (e.g., Eclipse, SPEM 2.0, and Model-Driven Engineering).

This part of the form is shown in Figures C.2 and C.3.

Appendix C. Supplementary Material on the Evaluation Study 275

Figure C.2: Characterization form: Experience (1)

Appendix C. Supplementary Material on the Evaluation Study 276

Figure C.3: Characterization form: Experience (2)

Appendix C. Supplementary Material on the Evaluation Study 277

C.2 User Acceptance Form

This section presents the user acceptance form. As Section 6.3.8 describes, we

developed the user acceptance form following the Technology Acceptance Model

(TAM), which suggests measuring perceived usefulness and perceived ease of use

by means of two scales of six 7-point Likert items, ranging from “strongly disagree”

(0) to “neutral” (3) to “strongly agree” (6). The first of these two scales, which

evaluates perceived usefulness, is graphically depicted in Figure C.4. The second

scale, which evaluates perceived ease of use, is graphically depicted in Figure C.5.

C.3 Interview Questions

Performance

1. What do you think about your performance when you carried out the tasks

of the study without using MOSKitt4ME? (e.g., do you think you were

effective?)

2. What do you think about your performance when you carried out the tasks

of the study using MOSKitt4ME? (e.g., do you think you were effective?)

Functionality

1. What do you think about the role that MOSKitt4ME plays in automating

the CASE environment construction?

2. Do you find useful the assistance that is provided by MOSKitt4ME during

the method execution? Why (not)?

3. What do you think it is more useful? The textual definition of the method

or the method model? Why?

Appendix C. Supplementary Material on the Evaluation Study 278

Figure C.4: User acceptance form: Perceived usefulness

Appendix C. Supplementary Material on the Evaluation Study 279

Figure C.5: User acceptance form: Perceived ease of use

Appendix C. Supplementary Material on the Evaluation Study 280

C.4 Statistical Tests

This section describes the statistical tests that were carried out in the evaluation

study of MOSKitt4ME. These tests, which were performed by means of the IBM

SPSS Statistics 2.0, involve the following eight variables:

• Time T1 None: the time (in minutes) that is invested by the subjects in

the method design/implementation task applying Treatment 1.

• Time T1 MOSKitt4ME: the time (in minutes) that is invested by the

subjects in the method design/implementation task applying Treatment 2.

• Time T2 None: the time (in minutes) that is invested by the subjects in

the method execution task applying Treatment 1.

• Time T2 MOSKitt4ME: the time (in minutes) that is invested by the

subjects in the method execution task applying Treatment 2.

• MentalEffort T1 None: the mental effort (0–6) that is invested by the

subjects in the method design/implementation task applying Treatment 1.

• MentalEffort T1 MOSKitt4ME: the mental effort (0–6) that is invested

by the subjects in the method design/implementation task applying Treat-

ment 2.

• MentalEffort T2 None: the mental effort (0–6) that is invested by the

subjects in the method execution task applying Treatment 1.

• MentalEffort T2 MOSKitt4ME: the mental effort (0–6) that is invested

by the subjects in the method execution task applying Treatment 2.

The data that was collected in the study for each of the above variables is shown

in Table C.1. Each column of the table corresponds to one of the eight variables,

while each row represents one subject of the study. To analyze the gathered data,

we performed statistical tests that aimed to assess the differences between the

results obtained in Treatment 1 and Treatment 2. To achieve this goal, two types

of tests exist: parametric and non-parametric. Since we have paired samples,

the parametric test that is suitable for our study is the paired t-test; however,

Appendix C. Supplementary Material on the Evaluation Study 281

Table C.1: Data obtained for task completion time and mental effort

this technique requires the data to be normally distributed and the “MentalEf-

fort T2 MOSKitt4ME” variable does not meet this requirement. For this reason,

we performed non-parametric tests; specifically, Wilcoxon signed-rank tests. Be-

low, we present the normality tests that we performed in our study (Section C.4.1);

then, we present the results of the Wilcoxon signed-rank tests (Section C.4.2).

C.4.1 Normality Tests

In order to test the normality of our data, we applied Shapiro-Wilk tests. The

results of these tests are shown in Table C.2. As the table shows (in the right-

most column), the only variable whose significance is less than 0.05 is “Men-

talEffort T2 MOSKitt4ME”; therefore, all of the other seven variables follow a

normal distribution and “MentalEffort T2 MOSKitt4ME” can be considered as

non-normal.

This conclusion is also reflected in the eight Q-Q plots that are printed by the

IBM SPSS Statistics 2.0. In the first seven plots (each of which corresponds to

one of the first seven variables), most data points are close to the line y = x, which

represents the expected normal distribution. Figure C.6 shows as an example the

Q-Q plot of the first variable (i.e., “Time T1 None”).

Appendix C. Supplementary Material on the Evaluation Study 282

Table C.2: Results of the tests of normality

Figure C.6: An example of Q-Q plot

Appendix C. Supplementary Material on the Evaluation Study 283

Figure C.7: Results of the first Wilcoxon test

C.4.2 Non-parametric Tests

Since one variable (MentalEffort T2 MOSKitt4ME) does not follow a normal dis-

tribution, we performed non-parametric tests; specifically, four Wilcoxon signed-

rank tests. Each of these tests compares two variables of the study. The two

variables that are involved in a single test measure the same data (i.e., either task

completion time or mental effort), relate to the same task (i.e., either method de-

sign/implementation or method execution), but they differ on the applied treat-

ment. Thus, the Wilcoxon tests aim to evaluate the significance of the differences

between the results obtained in the two treatments of the study.

The first Wilcoxon test evaluates the following two variables: “Time T1 None”

and “Time T1 MOSKitt4ME”. For this test, the summary of results that is pro-

vided by the IBM SPSS Statistics 2.0 is graphically depicted in Figure C.7. As

the figure shows, the null hypothesis can be rejected since p < α (where p = 0.012

and α = 0.05). Thus, the difference in task completion time (between Treat-

ment 1 and Treatment 2) can be considered significant for the task of method

design/implementation.

The second Wilcoxon test evaluates the following variables:“Time T2 None” and

“Time T2 MOSKitt4ME”. The summary of results of this test is graphically de-

picted in Figure C.8. As the figure shows, the null hypothesis can be rejected

since the condition p < α (where p = 0.012 and α = 0.05) is fulfilled. Thus, the

difference in task completion time (between Treatment 1 and Treatment 2) can

be considered significant for the task of method execution.

Appendix C. Supplementary Material on the Evaluation Study 284

Figure C.8: Results of the second Wilcoxon test

Figure C.9: Results of the third Wilcoxon test

The third Wilcoxon test evaluates the “MentalEffort T1 None” and the “Mental-

Effort T1 MOSKitt4ME” variables. The results are depicted in Figure C.9. In

this case, the null hypothesis cannot be rejected because p > α (where p = 0.931

and α = 0.05). Thus, the difference in mental effort (between Treatment 1 and

Treatment 2) cannot be considered statistically significant for the task of method

design/implementation.

Finally, the fourth Wilcoxon test evaluates the “MentalEffort T2 None” and the

“MentalEffort T2 MOSKitt4ME” variables. The summary of results of this test is

depicted in Figure C.10. As the figure shows, the null hypothesis can be rejected

since the condition p < α (where p = 0.027 and α = 0.05) is fulfilled. Thus,

the difference in mental effort (between Treatment 1 and Treatment 2) can be

considered significant for the task of method execution.

Appendix C. Supplementary Material on the Evaluation Study 285

Figure C.10: Results of the fourth Wilcoxon test

C.5 Coding Scheme

This section contains the coding scheme that was developed during the phase of

data analysis. We used this coding scheme to annotate the transcriptions that

were obtained from the Think Aloud sessions. The annotation process resulted in

a set of Think Aloud protocols that can be found in the MOSKitt4ME website:

http://users.dsic.upv.es/~mcervera/moskitt4me.

Category 1. Errors

All of the items of this category follow the pattern code – description.

• E1 – Selection of incorrect tool for executing a method task.

• E2 – Creation of an incorrect method element or relationship.

• E3 – Specification of an incorrect property value.

• E4 – Eclipse error not related with MOSKitt4ME.

• E5 – Selection of incorrect GUI component.

• E7 – Performance of an action that is either not related to the task at hand

or unnecessary for its proper execution.

• E8 – Performance of an action that is the incorrect way to achieve correct

(or partially correct) results within a task.

• E9 – Incorrect transition between tasks of the method.

http://users.dsic.upv.es/~mcervera/moskitt4me

Appendix C. Supplementary Material on the Evaluation Study 286

• E10 – Execution of an action that does not correspond to the experiment

task at hand.

• E11 – Incorrect association between a conceptual fragment and a technical

fragment.

• E12 – Error occurring due to a MOSKitt4ME bug.

• E13 – Omission of the “clean” command when restarting Eclipse.

• E14 – Confusing a plug-in that is already installed with a software depen-

dency.

• E15 – Creation of an incorrect file.

• E16 – Abandoning method execution.

Category 2. Challenges

All of the items of this category follow the pattern code – description. Utterances

or actions such as doubts (C2), guessing (C5), postponing analysis of action (S6),

and trial and error (S1) may point to challenges.

• CH1 – Management of the plug-ins dependencies without appropriate tool

support.

• CH2 – Selection of the appropriate tool to carry out a task.

• CH3 – Properly managing the GUI.

• CH5 – Understanding the separation of method content and processes.

• CH6 – Understanding the relationships between conceptual and technical

fragments.

• CH7 – Understanding the concepts of method design, method implementa-

tion, and method execution.

• CH8 – Understanding the relationship between the SPEM 2.0 model and

the BPMN 2.0 model.

• CH9 – Understanding the semantics of the method.

• CH10 – Understanding the semantics of SPEM 2.0.

Appendix C. Supplementary Material on the Evaluation Study 287

• CH11 – Understanding the notion of technical fragment.

• CH12 – Understanding the general problem to solve (in a task of the exper-

iment) and how to solve it.

• CH13 – Fixing problems with the help of the Eclipse error messages.

Category 3. Tasks

All of the items of this category follow the pattern code – description.

• T1 – Glossary of terms definition.

• T2 – Business logic design.

• T3 – Database model specification.

• T4 – Database scripts generation.

• T5 – Database scripts revision.

Category 4. Expert Knowledge

All of the items of this category follow the pattern code – description – example.

• EK1 – The subject has previous knowledge related to the task – “I am

familiar with this tool so I don’t need to check . . . ”.

• EK2 – The subject gains knowledge during the task execution – “Now I

know that this cannot be done”.

• EK3 – The task requires knowledge to be properly carried out – “To resolve

this problem I should be familiar with . . . ”.

Category 5. Strategies

All of the items of this category follow the pattern code – description – example.

• S1 – Trial and error – “I will try this to see if it works”.

• S2 – Revising previous work – “I’d like to check first if I did this correctly”.

Appendix C. Supplementary Material on the Evaluation Study 288

• S3 – Proposing a solution – “The way to solve the problem is . . . ”.

• S4 – Justifying a proposed solution – “This is the way to go because . . . ”.

• S5 – Retracting a previous solution – “This approach is wrong, what if I ..”.

• S6 – Postponing analysis of action – “I will have to work that out later”.

Category 6. Actions

All of the items of this category follow the pattern code – description.

• A1 – Opening a tool.

• A2 – Closing a tool.

• A3 – Clearing the Error Log.

• A4 – Copying a folder.

• A5 – Creating a project.

• A6 – Setting a file name.

• A7 – Selecting a root element.

• A8 – Adding new elements to a model.

• A9 – Editing model elements.

• A10 – Consulting method.

• A11 – Consulting task description.

• A12 – Consulting slides or user manual.

• A13 – Opening a file.

• A14 – Closing a file.

• A15 – Deleting a file.

• A16 – Opening a view.

• A17 – Selecting input model.

• A18 – Selecting destination folder.

• A19 – Opening a perspective.

Appendix C. Supplementary Material on the Evaluation Study 289

• A20 – Connecting to a repository.

• A21 – The subject performs a physical action that is not related with the

task.

• A22 – Deleting elements from a model.

• A23 – Creating a file.

• A24 – Checking the Error Log.

• A25 – Undoing an action.

• A26 – Applying a filter.

• A27 – Creating a new folder.

• A28 – Changing display mode.

• A29 – Selecting a tool.

• A30 – Launching CASE generation.

Category 7. Comments

All of the items of this category follow the pattern code – description – example.

• C1 – Comments about the subject’s actions – “I am going to create a new

project”.

• C2 – Doubts – “I don’t know if I opened the tool correctly”.

• C3 – Comments showing resolution – “Ok, definitely this is the place where

. . . ”.

• C4 – Getting a result – “I can see that the list of dependencies is . . . ”.

• C5 – Guessing – “I think it must be finished now”.

• C6 – Getting information from documentation – “The next task to execute

is . . . ”.

• C7 – Reading – “Designer . . . Analyst . . . ”.

• C8 – Comments that are not related with the task at hand – “Oh, I must

not forget to call my friend”.

Appendix C. Supplementary Material on the Evaluation Study 290

• C9 – Evaluation of the task or task-situation at a meta-level (i.e., complaints,

opinions, etc.) – “It is tiring to talk so much”.

• C10 – Comments related with problems or errors – “The editor does not

work”.

• C11 – Comments showing reasoning – “In order to resolve this, I should first

. . . ”.

• C12 – Unintelligible comments.

• C13 – Suggestions – “This component should allow me to . . . ”.

• C14 – Comments related to the current situation – “I am in the work prod-

ucts tab”.

• C15 – Comments related with tool capabilities – “This editor allows me to

. . . ”.

• C16 – Comments related with tool limitations – “This editor does not allow

me to . . . ”.

• C17 – Comments expressing emotions – “Great!”.

• C18 – Comments expressing regret – “I should have done this before”.

• C19 – Giving an example – “For instance, I could . . . ”.

Bibliography

[1] Alistair Cockburn. Selecting a project’s methodology. IEEE software, 17

(4):64–71, 2000.

[2] Robert L Glass. Matching methodology to problem domain. Communica-

tions of the ACM, 47(5):19–21, 2004.

[3] Brian Henderson-Sellers and Jolita Ralyté. Situational method engineering:

State-of-the-art review. Journal of Universal Computer Science, 16(3):424–

478, 2010.

[4] Fredrik Karlsson and Par J Ågerfalk. Method configuration: adapting to

situational characteristics while creating reusable assets. Information and

Software Technology, 46(9):619–633, 2004.

[5] Sjaak Brinkkemper. Method engineering: engineering of information sys-

tems development methods and tools. Information and software technology,

38(4):275–280, 1996.

[6] Marko Bajec, Damjan Vavpotič, and Marjan Krisper. Practice-driven ap-

proach for creating project-specific software development methods. Infor-

mation and Software Technology, 49(4):345–365, 2007.

[7] Naveen Prakash. Towards a formal definition of methods. Requirements

Engineering, 2(1):23–50, 1997.

[8] Sjaak Brinkkemper, Motoshi Saeki, and Frank Harmsen. Meta-modelling

based assembly techniques for situational method engineering. Information

Systems, 24(3):209–228, 1999.

291

Bibliography 292

[9] Jolita Ralyté, Rébecca Deneckère, and Colette Rolland. Towards a generic

model for situational method engineering. In Advanced Information Systems

Engineering, pages 95–110. Springer, 2003.

[10] Colette Rolland. Method engineering: towards methods as services. Software

Process: Improvement and Practice, 14(3):143–164, 2009.

[11] Marco Kuhrmann, Daniel Méndez Fernández, and Michaela Tiessler. A

mapping study on the feasibility of method engineering. Journal of Software:

Evolution and Process, pages 1–22, 2014.

[12] Kent Beck. Extreme programming explained: embrace change. Addison-

Wesley Professional, 2000.

[13] Ken Schwaber and Mike Beedle. Agile Software Development with Scrum.

Prentice Hall, 2001.

[14] Alistair Cockburn. Crystal clear: a human-powered methodology for small

teams. Pearson Education, 2004.

[15] Philippe Kruchten. The rational unified process: an introduction. Addison-

Wesley Professional, 2004.

[16] Barry W. Boehm. A spiral model of software development and enhancement.

Computer, 21(5):61–72, 1988.

[17] Michael Turner. Microsoft solutions framework essentials: building success-

ful technology solutions. Microsoft Press, 2006.

[18] OMG. Software & Systems Process Engineering Metamodel (v2.0), 2007.

[19] Alfonso Fuggetta. A classification of CASE technology. Computer, 26(12):

25–38, 1993.

[20] Anton Frank Harmsen. Situational method engineering. PhD thesis, Uni-

versity of Twente, 1997.

[21] Ali Niknafs and Mohsen Asadi. Towards a process modeling language for

method engineering support. In Computer Science and Information Engi-

neering, 2009 WRI World Congress on, volume 7, pages 674–681. IEEE,

2009.

Bibliography 293

[22] Cesar Gonzalez-Perez and Brian Henderson-Sellers. A work product pool

approach to methodology specification and enactment. Journal of Systems

and Software, 81(8):1288–1305, 2008.

[23] Jolita Ralyté and Colette Rolland. An assembly process model for method

engineering. In Advanced information systems engineering, pages 267–283.

Springer, 2001.

[24] PS Seligmann, GM Wijers, and HG Sol. Analyzing the structure of is

methodologies, an alternative approach. In Proceedings of the First Dutch

Conference on Information Systems, Amersfoort, The Netherlands, EU,

1989.

[25] Adrian Iacovelli, Carine Souveyet, and Colette Rolland. Method as a service

(MaaS). In Second International Conference on Research Challenges in

Information Science (RCIS), pages 371–380. IEEE, 2008.

[26] Brian Henderson-Sellers, Jolita Ralyté, Par Ågerfalk, and Matti Rossi. Sit-

uational Method Engineering. Springer, 2013.

[27] Marko Bajec. Application of method engineering principles in practice:

Lessons learned and prospects for the future. In Engineering Methods in the

Service-Oriented Context, pages 2–3. Springer, 2011.

[28] Arthur HM Ter Hofstede and TF Verhoef. On the feasibility of situational

method engineering. Information Systems, 22(6):401–422, 1997.

[29] Juha-Pekka Tolvanen. Incremental Method Engineering with Modeling

Tools: Theoretical Principles and Empirical Evidence. PhD thesis, Uni-

versity of Jyvaskyla, 1998.

[30] Par J Ågerfalk, Sjaak Brinkkemper, Cesar Gonzalez-Perez, Brian

Henderson-Sellers, Fredrik Karlsson, Steven Kelly, and Jolita Ralyté. Mod-

ularization constructs in method engineering: towards common ground? In

Situational method engineering: fundamentals and experiences, pages 359–

368. Springer, 2007.

[31] Brian Henderson-Sellers. Method engineering for OO systems development.

Communications of the ACM, 46(10):73–78, 2003.

Bibliography 294

[32] Brian Fitzgerald, Nancy L Russo, and Tom O’Kane. Software development

method tailoring at motorola. Communications of the ACM, 46(4):64–70,

2003.

[33] Kai Wistrand and Fredrik Karlsson. Method components–rationale re-

vealed. In Advanced Information Systems Engineering, pages 189–201.

Springer, 2004.

[34] Brian Fitzgerald. The use of systems development methodologies in practice:

a field study. Information Systems Journal, 7(3):201–212, 1997.

[35] Brian Lings and Bjorn Lundell. Method in action and method in tool: some

implications for CASE. In ICEIS 2004, pages 623–628, 2004.

[36] Brian Henderson-Sellers and MK Serour. Creating a dual-agility method:

The value of method engineering. Journal of Database Management, 16(4):

1–24, 2005.

[37] Marko Bajec and Damjan Vavpotič. A framework and tool-support for

reengineering software development methods. Informatica, 19(3):321–344,

2008.

[38] Daya Gupta and Naveen Prakash. Engineering methods from method re-

quirements specifications. Requirements Engineering, 6(3):135–160, 2001.

[39] Fredrik Karlsson and Par J Ågerfalk. MC Sandbox: Devising a tool

for method-user-centered method configuration. Information and Software

Technology, 54(5):501–516, 2012.

[40] Steven Kelly, Kalle Lyytinen, and Matti Rossi. Metaedit+ a fully config-

urable multi-user and multi-tool case and came environment. In Advanced

Information Systems Engineering, pages 1–21. Springer, 1996.

[41] Ali Niknafs and Raman Ramsin. Computer-aided method engineering: an

analysis of existing environments. In Advanced Information Systems Engi-

neering, pages 525–540. Springer, 2008.

[42] Juha-Pekka Tolvanen and Matti Rossi. Metaedit+: defining and using

domain-specific modeling languages and code generators. In Companion

of the 18th annual ACM SIGPLAN conference on Object-oriented program-

ming, systems, languages, and applications, pages 92–93. ACM, 2003.

Bibliography 295

[43] Parastoo Mohagheghi, Wasif Gilani, Alin Stefanescu, and Miguel A Fer-

nandez. An empirical study of the state of the practice and acceptance of

model-driven engineering in four industrial cases. Empirical Software Engi-

neering, 18(1):89–116, 2013.

[44] Jeff Kramer. Is abstraction the key to computing? Communications of the

ACM, 50(4):36–42, 2007.

[45] Fred D Davis. Perceived usefulness, perceived ease of use, and user accep-

tance of information technology. MIS quarterly, pages 319–340, 1989.

[46] Cynthia K. Riemenschneider, Bill C. Hardgrave, and Fred D. Davis. Ex-

plaining software developer acceptance of methodologies: a comparison of

five theoretical models. IEEE Transactions on Software Engineering, 28

(12):1135–1145, 2002.

[47] Viswanath Venkatesh and Fred D Davis. A model of the antecedents of

perceived ease of use: Development and test. Decision sciences, 27(3):451–

481, 1996.

[48] Maarten W Van Someren, Yvonne F Barnard, Jacobijn AC Sandberg, et al.

The think aloud method: A practical guide to modelling cognitive processes,

volume 2. Academic Press London, 1994.

[49] OMG. Business Process Model and Notation (v2.0), 2011.

[50] Alan R Hevner, Salvatore T March, Jinsoo Park, and Sudha Ram. Design

science in information systems research. MIS quarterly, 28(1):75–105, 2004.

[51] Salvatore T March and Gerald F Smith. Design and natural science research

on information technology. Decision support systems, 15(4):251–266, 1995.

[52] Vijay Vaishnavi and William Kuechler. Design science

research in information systems. http://desrist.org/

design-research-in-information-systems/, 2004.

[53] J. Bergstra, H. Jonkers, and J. Obbink. A software development model for

method engineering. In Esprit 1984: Status Report of Ongoing Work, 1985.

[54] Kuldeep Kumar and Richard J Welke. Methodology engineering r: a pro-

posal for situation-specific methodology construction. In Challenges and

http://desrist.org/design-research-in-information-systems/
http://desrist.org/design-research-in-information-systems/

Bibliography 296

strategies for research in systems development, pages 257–269. John Wiley

& Sons, Inc., 1992.

[55] Kees van Slooten and Sjaak Brinkkemper. A method engineering approach

to information systems development. In Proceedings of the IFIP WG8. 1

Working Conference on Information System Development Process, pages

167–186. North-Holland Publishing Co., 1993.

[56] Gregor Engels and Stefan Sauer. A meta-method for defining software en-

gineering methods. In Gregor Engels, Claus Lewerentz, Wilhelm Schafer,

Andy Schurr, and Bernhard Westfechtel, editors, Graph transformations

and model-driven engineering, volume 5765 of Lecture Notes in Computer

Science, pages 411–440. Springer Berlin Heidelberg, 2010.

[57] Philip A Laplante. What every engineer should know about software engi-

neering. CRC Press, 2007.

[58] Ivar Jacobson, Grady Booch, James Rumbaugh, James Rumbaugh, and

Grady Booch. The unified software development process, volume 1. Addison-

Wesley Reading, 1999.

[59] Naveen Prakash and SB Goyal. Towards a life cycle for method engineer-

ing. In Proceedings Eleventh International Workshop on Exploring Modeling

Methods in Systems Analysis and Design (EMMSAD’07), pages 27–36, 2007.

[60] M Leppanen. Conceptual analysis of current me artifacts in terms of cover-

age: a contextual approach. In 1st International Workshop on Situational

Engineering Processes Methods, Techniques and Tools to Support Situation-

Specific Requirements Engineering Processes (SREP), pages 75–90, 2005.

[61] Frank Harmsen and Sjaak Brinkkemper. Description and manipulation of

method fragments for the assembly of situational methods. Memoranda

Informatica, pages 94–52, 1994.

[62] Chittoor V Ramamoorthy, Atul Prakash, Wei-Tek Tsai, and Yutaka Usuda.

Software engineering: problems and perspectives. Computer, 17(10):191–

209, 1984.

[63] Manuel Bollain and Juan Garbajosa. A metamodel for defining development

methodologies. In Software and Data Technologies, pages 414–425. Springer,

2009.

Bibliography 297

[64] Manfred A Jeusfeld, Matthias Jarke, and John Mylopoulos. Metamodeling

for method engineering. the MIT Press, 2009.

[65] Cesar Gonzalez-Perez, Tom Mcbride, and Brian Henderson-Sellers. A meta-

model for assessable software development methodologies. Software Quality

Journal, 13(2):195–214, 2005.

[66] Brian Henderson-Sellers and Cesar Gonzalez-Perez. A comparison of four

process metamodels and the creation of a new generic standard. Information

and software technology, 47(1):49–65, 2005.

[67] ISO/IEC 24744. Software Engineering: Metamodel for Development

Methodologies, 2007.

[68] Brian Henderson-Sellers and Cesar Gonzalez-Perez. Standardizing method-

ology metamodelling and notation: an ISO exemplar. In Roland Kaschek,

Christian Kop, Claudia Steinberger, and Günther Fliedl, editors, Informa-

tion Systems and e-Business Technologies, volume 5 of Lecture Notes in

Business Information Processing, pages 1–12. Springer Berlin Heidelberg,

2008.

[69] Iván Ruiz-Rube, Juan Manuel Dodero, Manuel Palomo-Duarte, Mercedes

Ruiz, and David Gawn. Uses and applications of SPEM process models. A

systematic mapping study. Journal of Software Maintenance and Evolution:

Research and Practice, 1(32):999–1025, 2012.

[70] Daniel Teichroew. Problem statement languages in MIS. In Management-

Informationssysteme, pages 251–282. Springer, 1971.

[71] Daniel Teichroew and Ernest A Hershey III. PSL/PSA: A computer-aided

technique for structured documentation and analysis of information pro-

cessing systems. Software Engineering, IEEE Transactions on, (1):41–48,

1977.

[72] Ahmed Abd El-Rahman Mahdy, Mohamed Mohamed Abd El-Salam

Ahmed, and Sherif Mohamed Zahran. Flexible CASE tools for require-

ments engineering: a benchmarking survey. In International Conference of

Informatics and Systems, number 2, pages 20–26, 2008.

Bibliography 298

[73] Albert F Case. Computer-aided software engineering (CASE): technology

for improving software development productivity. ACM SIGMIS Database,

17(1):35–43, 1985.

[74] Elliot J Chikofsky and Burt L Rubenstein. CASE: reliability engineering

for information systems. Software, IEEE, 5(2):11–16, 1988.

[75] Carma McClure. CASE is software automation. Prentice-Hall, Inc., 1988.

[76] Charles F Martin. MetaCASE: dream or reality. In Electro/94 International.

Conference Proceedings. Combined Volumes., pages 195–199. IEEE, 1994.

[77] Jeffrey E Kottemann and Benn R Konsynski. Dynamic metasystems for

information systems development. In Proc. of the 5th Intl. Conf. on Infor-

mation Systems, pages 187–204, 1984.

[78] Paul G Sorenson, Jean-Paul Tremblay, and Andrew J McAllister. The

metaview system for many specification environments. IEEE software, 5

(2):30–38, 1988.

[79] Steven Kelly and Kari Smolander. Evolution and issues in metaCASE.

Information and Software Technology, 38(4):261–266, 1996.

[80] Pentti Marttiin. Towards flexible process support with a CASE shell. In

Advanced Information Systems Engineering, pages 14–27. Springer, 1994.

[81] Per Bergsten, J Bubenko, Roland Dahl, Mats Gustafsson, and Lars-Ake

Johansson. RAMATIC - a CASE shell for implementation of specific CASE

tools. TEMPORA T6, 1, 1989.

[82] JP Gray, Anna Liu, and Louise Scott. Issues in software engineering tool

construction. Information and software technology, 42(2):73–77, 2000.

[83] Jurgen Ebert, Roger Suttenbach, and Ingar Uhe. Meta-CASE in Practice:

a Case for KOGGE. In Advanced Information Systems Engineering, pages

203–216. Springer, 1997.

[84] Nathaniel Palmer. XML Process Definition Language. In Encyclopedia of

Database Systems, pages 3601–3601. Springer, 2009.

[85] Wil MP Van der Aalst and Arthur HM Ter Hofstede. YAWL: yet another

workflow language. Information systems, 30(4):245–275, 2005.

Bibliography 299

[86] Diane Jordan, John Evdemon, Alexandre Alves, Assaf Arkin, Sid Askary,

Charlton Barreto, Ben Bloch, Francisco Curbera, Mark Ford, Yaron Goland,

et al. Web services business process execution language version 2.0. OASIS

standard, 11:11, 2007.

[87] Thomas Allweyer. BPMN 2.0: introduction to the standard for business

process modeling. BoD–Books on Demand, 2010.

[88] Reda Bendraou, Benoit Combemale, Xavier Crégut, and Marie-Pierre Ger-

vais. Definition of an executable SPEM 2.0. In Software Engineering Con-

ference, 2007. APSEC 2007. 14th Asia-Pacific, pages 390–397. IEEE, 2007.

[89] Mario Cervera, Manoli Albert, Victoria Torres, and Vicente Pelechano. The

MOSKitt4ME approach: providing process support in a method engineering

context. In Conceptual Modeling, pages 228–241. Springer, 2012.

[90] Jan Recker, Michael Rosemann, Marta Indulska, and Peter Green. Business

process modeling - a comparative analysis. Journal of the Association for

Information Systems, 10(4):1, 2009.

[91] OMG. Model-Driven Architecture, 2001.

[92] Anneke G Kleppe, Jos B Warmer, and Wim Bast. MDA explained: the model

driven architecture: practice and promise. Addison-Wesley Professional,

2003.

[93] Stuart Kent. Model driven engineering. In Integrated formal methods, pages

286–298. Springer, 2002.

[94] Jean Bézivin. In search of a basic principle for model driven engineering.

Novatica Journal, Special Issue, 5(2):21–24, 2004.

[95] Jean-Marie Favre. Megamodeling and etymology - a story of words: From

MED to MDE via MODEL in five milleniums. In In Dagstuhl Seminar

on Transformation Techniques in Software Engineering, number 05161 in

DROPS 04101. IFBI. Citeseer, 2005.

[96] Frédéric Fondement and Raul Silaghi. Defining model driven engineering

processes. In Third International Workshop in Software Model Engineering

(WiSME), held at the 7th International Conference on the Unified Modeling

Language (UML). Citeseer, 2004.

Bibliography 300

[97] Jon Whittle, John Hutchinson, and Mark Rouncefield. The state of practice

in model-driven engineering. Software, IEEE, 31(3):79–85, 2014.

[98] Marco Brambilla, Jordi Cabot, and Manuel Wimmer. Model-driven software

engineering in practice. Synthesis Lectures on Software Engineering, 1(1):

1–182, 2012.

[99] Colin Atkinson and Thomas Kuhne. Model-driven development: a meta-

modeling foundation. Software, IEEE, 20(5):36–41, 2003.

[100] Stephen J Mellor, Tony Clark, and Takao Futagami. Model-driven develop-

ment: guest editors’ introduction. IEEE software, 20(5):14–18, 2003.

[101] Jesús Sánchez Cuadrado and Jesús Garćıa Molina. Building domain-specific

languages for model-driven development. Software, IEEE, 24(5):48–55,

2007.

[102] Arie Van Deursen, Paul Klint, and Joost Visser. Domain-specific languages:

An annotated bibliography. Sigplan Notices, 35(6):26–36, 2000.

[103] Frédéric Jouault, Freddy Allilaire, Jean Bézivin, and Ivan Kurtev. ATL: A

model transformation tool. Science of computer programming, 72(1):31–39,

2008.

[104] Tom Mens and Pieter Van Gorp. A taxonomy of model transformation.

Electronic Notes in Theoretical Computer Science, 152:125–142, 2006.

[105] Jochen M Kuster, Shane Sendall, and Michael Wahler. Comparing two

model transformation approaches. In Proc. Workshop on OCL and Model

Driven Engineering, 2004.

[106] Anna Gerber, Michael Lawley, Kerry Raymond, Jim Steel, and Andrew

Wood. Transformation: The missing link of MDA. In Graph Transforma-

tion, pages 90–105. Springer, 2002.

[107] Krzysztof Czarnecki and Simon Helsen. Classification of model transforma-

tion approaches. In Proceedings of the 2nd OOPSLA Workshop on Genera-

tive Techniques in the Context of the Model Driven Architecture, volume 45,

pages 1–17. Citeseer, 2003.

Bibliography 301

[108] Jon Oldevik, Tor Neple, Roy Grønmo, Jan Aagedal, and Arne-J Berre.

Toward standardised model to text transformations. In Model Driven

Architecture–Foundations and Applications, pages 239–253. Springer, 2005.

[109] Gordon Blair, Nelly Bencomo, and Robert B France. Models @ run.time.

Computer, 42(10):22–27, 2009.

[110] Carlos Cetina, Pau Giner, Joan Fons, and Vicente Pelechano. Autonomic

computing through reuse of variability models at runtime: The case of smart

homes. Computer, 42(10):37–43, 2009.

[111] Robert France and Bernhard Rumpe. Model-driven development of complex

software: A research roadmap. In 2007 Future of Software Engineering,

pages 37–54. IEEE Computer Society, 2007.

[112] Stephen J Mellor, Marc Balcer, and Ivar Foreword By-Jacoboson. Exe-

cutable UML: A foundation for model-driven architectures. Addison-Wesley

Longman Publishing Co., Inc., 2002.

[113] Matjaz B Juric, Benny Mathew, and Poornachandra G Sarang. Business

Process Execution Language for Web Services: An Architect and Developer’s

Guide to Orchestrating Web Services Using BPEL4WS. Packt Publishing

Ltd, 2006.

[114] Germán Harvey Alférez Salinas. Achieving Autonomic Web Service Com-

positions with Models at Runtime. PhD thesis, Universitat Politècnica de

València, 2013.

[115] Jim desRivieres and John Wiegand. Eclipse: A platform for integrating

development tools. IBM Systems Journal, 43(2):371–383, 2004.

[116] Dan Rubel. The heart of eclipse. Queue, 4(8):36–44, 2006.

[117] Frédéric Jouault and Ivan Kurtev. Transforming models with ATL. In

Satellite Events at the MoDELS 2005 Conference, pages 128–138. Springer,

2006.

[118] Jorg Becker, Ralf Knackstedt, Daniel Pfeiffer, and Christian Janiesch. Con-

figurative method engineering - on the applicability of reference modeling

mechanisms in method engineering. AMCIS 2007 Proceedings, page 56,

2007.

Bibliography 302

[119] Mohsen Asadi and Raman Ramsin. Method engineering process patterns.

In Proceedings of the 2nd India software engineering conference, pages 143–

144. ACM, 2009.

[120] Colette Rolland. Method engineering: State-of-the-art survey and research

proposal. SoMeT, 9:3–21, 2009.

[121] Jolita Ralyté, Colette Rolland, and Rébecca Deneckère. Towards a meta-tool

for change-centric method engineering: A typology of generic operators. In

Advanced Information Systems Engineering, pages 202–218. Springer, 2004.

[122] Jane Webster and Richard T Watson. Analyzing the past to prepare for

the future: Writing a literature review. Management Information Systems

Quarterly, 26(2):3, 2002.

[123] Sjaak Brinkkemper, Motoshi Saeki, and Frank Harmsen. Assembly tech-

niques for method engineering. In Advanced Information Systems Engineer-

ing, pages 381–400. Springer, 1998.

[124] Anton Frank Harmsen, JN Brinkkemper, and JL Han Oei. Situational

method engineering for information system project approaches. University

of Twente, Department of Computer Science, 1994.

[125] Frank Harmsen and Sjaak Brinkkemper. Design and implementation of a

method base management system for a situational CASE environment. In

Software Engineering Conference, 1995. Proceedings., 1995 Asia Pacific,

pages 430–438. IEEE, 1995.

[126] Sjaak Brinkkemper, Motoshi Saeki, and Frank Harmsen. A method engi-

neering language for the description of systems development methods. In

Advanced Information Systems Engineering, pages 473–476. Springer, 2001.

[127] Peter Pin-Shan Chen. The entity-relationship model - toward a unified view

of data. ACM Transactions on Database Systems (TODS), 1(1):9–36, 1976.

[128] Naveen Prakash. On method statics and dynamics. Information Systems,

24(8):613–637, 1999.

[129] Jolita Ralyté. Reusing scenario based approaches in requirement engineering

methods: CREWS method base. In Database and Expert Systems Applica-

tions, 1999. Proceedings. Tenth International Workshop on, pages 305–309.

IEEE, 1999.

Bibliography 303

[130] Jolita Ralyté and Colette Rolland. An approach for method reengineering.

In Conceptual Modeling, pages 471–484. Springer, 2001.

[131] Brian Henderson-Sellers, Cesar Gonzalez-Perez, and Jolita Ralyté. Com-

parison of method chunks and method fragments for situational method

engineering. In Software Engineering, 2008. ASWEC 2008. 19th Australian

Conference on, pages 479–488. IEEE, 2008.

[132] Colette Rolland, Naveen Prakash, and Adolphe Benjamen. A multi-model

view of process modelling. Requirements Engineering, 4(4):169–187, 1999.

[133] Jolita Ralyté. Requirements definition for the situational method engineer-

ing. In Engineering Information Systems in the Internet Context, pages

127–152. Springer, 2002.

[134] Isabelle Mirbel and Jolita Ralyté. Situational method engineering: com-

bining assembly-based and roadmap-driven approaches. Requirements En-

gineering, 11(1):58–78, 2006.

[135] Donald G Firesmith and Brian Henderson-Sellers. The OPEN process frame-

work: An introduction. Pearson Education, 2002.

[136] Brian Henderson-Sellers. Process metamodelling and process construction:

examples using the OPEN Process Framework (OPF). Annals of Software

Engineering, 14(1-4):341–362, 2002.

[137] Didar Zowghi, DG Firesmith, and B Henderson-Sellers. Using the OPEN

process framework to produce a situation-specific requirements engineering

method. Proceedings of SREP, 5:29–30, 2005.

[138] Mahdi Fahmideh Gholami, Mohsen Sharifi, and Pooyan Jamshidi. Enhanc-

ing the OPEN Process Framework with service-oriented method fragments.

Software and Systems Modeling, pages 1–30, 2014.

[139] Anat Aharoni and Iris Reinhartz-Berger. A domain engineering approach

for situational method engineering. In Conceptual Modeling, pages 455–468.

Springer, 2008.

[140] Motoshi Saeki. CAME: The first step to automated method engineering.

In Workshop on Process Engineering for Object-Oriented and Component-

Based Development, Anaheim, CA, 2003.

Bibliography 304

[141] Motoshi Saeki. Configuration management in a method engineering context.

In Advanced Information Systems Engineering, pages 384–398. Springer,

2006.

[142] Colette Rolland, Carine Souveyet, and Mario Moreno. An approach for

defining ways-of-working. Information Systems, 20(4):337–359, 1995.

[143] Colette Rolland and Veronique Plihon. Using generic method chunks to gen-

erate process models fragments. In Requirements Engineering, 1996., Pro-

ceedings of the Second International Conference on, pages 173–180. IEEE,

1996.

[144] Jean-Roch Schmitt. Product modeling for requirements engineering process

modelling. In Information System Development Process, pages 231–245,

1993.

[145] Samira Si-Said, Colette Rolland, and Georges Grosz. MENTOR: a computer

aided requirements engineering environment. In Advanced Information Sys-

tems Engineering, pages 22–43. Springer, 1996.

[146] Veronique Plihon. MENTOR: an environment supporting the construction

of methods. In Software Engineering Conference, 1996. Proceedings., 1996

Asia-Pacific, page 384. IEEE, 1996.

[147] Juha-Pekka Tolvanen. Metaedit+: domain-specific modeling for full code

generation demonstrated [gpce]. In Companion to the 19th annual ACM

SIGPLAN conference on Object-oriented programming systems, languages,

and applications, pages 39–40. ACM, 2004.

[148] Juha-Pekka Tolvanen and Steven Kelly. Metaedit+: defining and using inte-

grated domain-specific modeling languages. In Proceedings of the 24th ACM

SIGPLAN conference companion on Object oriented programming systems

languages and applications, pages 819–820. ACM, 2009.

[149] Frank Harmsen and Motoshi Saeki. Comparison of four method engineering

languages. In Method Engineering, pages 209–231. Springer, 1996.

[150] Minna Koskinen and Pentti Marttiin. Process support in MetaCASE: imple-

menting the conceptual basis for enactable process models in MetaEdit+. In

Eighth Conference on Software Engineering Environments, pages 110–122.

IEEE, 1997.

Bibliography 305

[151] Jolita Ralyté, Colette Rolland, and Mohamed Ben Ayed. An approach for

evolution-driven method engineering. In Information Modeling Methods and

Methodologies, pages 80–101. IGI Global, 2005.

[152] Cesar Gonzalez-Perez. Supporting situational method engineering with

ISO/IEC 24744 and the work product pool approach. In Situational Method

Engineering: Fundamentals and Experiences, pages 7–18. Springer, 2007.

[153] Cesar Gonzalez-Perez. Tools for an extended object modelling environment.

In Proceedings of the 10th IEEE International Conference on Engineering

of Complex Computer Systems, pages 20–23, 2005.

[154] Rébecca Deneckère and Carine Souveyet. Patterns for extending an OO

model with temporal features. In OOIS’98, pages 201–218. Springer, 1998.

[155] Rébecca Deneckère. Approche d’extension de méthodes fondée sur

l’utilisation de composants génériques. PhD thesis, Université Panthéon-

Sorbonne-Paris I, 2001.

[156] Rébecca Deneckère. Using meta-patterns to construct patterns. In Object-

Oriented Information Systems, pages 124–134. Springer, 2002.

[157] Fredrik Karlsson and Par J Ågerfalk. Towards structured flexibility in infor-

mation systems development: Devising a method for method configuration.

Journal of Database Management, 20:51–75, 2009.

[158] Fredrik Karlsson and Kai Wistrand. Combining method engineering with

activity theory: theoretical grounding of the method component concept.

European Journal of Information Systems, 15(1):82–90, 2006.

[159] Perdita Stevens and Rob J Pooley. Using UML: software engineering with

objects and components. Pearson Education, 2006.

[160] Fredrik Karlsson and Par J Ågerfalk. Method-user-centred method config-

uration. In Proceedings of the first international workshop on situational

requirements engineering processes: methods, techniques and tools to sup-

port situation-specific requirements engineering processes (SREP’05), Paris

France, pages 31–43, 2005.

Bibliography 306

[161] Julio Ariel Hurtado, Maŕıa Cecilia Bastarrica, Sergio F Ochoa, and Jocelyn

Simmonds. MDE software process lines in small companies. Journal of

Systems and Software, 86(5):1153–1171, 2013.

[162] Motoshi Saeki. Role of model transformation in method engineering. In

Advanced Information Systems Engineering, pages 626–642. Springer, 2002.

[163] Fethi Calisir and Ferah Calisir. The relation of interface usability character-

istics, perceived usefulness, and perceived ease of use to end-user satisfaction

with enterprise resource planning (ERP) systems. Computers in Human Be-

havior, 20(4):505–515, 2004.

[164] Fred D. Davis. User acceptance of information technology: system charac-

teristics, user perceptions and behavioral impacts. International Journal of

Man-Machine Studies, 38(3):475–487, 1993.

[165] Jen-Her Wu, Shu-Ching Wang, and Li-Min Lin. Mobile computing accep-

tance factors in the healthcare industry: A structural equation model. In-

ternational journal of medical informatics, 76(1):66–77, 2007.

[166] Barry Oshry. Seeing systems: Unlocking the mysteries of organizational life.

Berrett-Koehler Publishers, 2007.

[167] Mario Cervera, Manoli Albert, Victoria Torres, and Vicente Pelechano.

Model driven method engineering: a case study. Technical report, Cen-

tro de Investigación en Métodos de Producción de Software, Universitat

Politècnica de València, 2011.

[168] Soichiro Hidaka, Zhenjiang Hu, Kazuhiro Inaba, Hiroyuki Kato, and Keisuke

Nakano. GRoundTram: An integrated framework for developing well-

behaved bidirectional model transformations. In 26th IEEE/ACM Interna-

tional Conference on Automated Software Engineering (ASE), pages 480–

483. IEEE, 2011.

[169] Christopher M Poskitt, Mike Dodds, Richard F Paige, and Arend Rensink.

Towards rigorously faking bidirectional model transformations. In Proceed-

ings of the Workshop on Analysis of Model Transformations co-located with

the 17th International Conference on Model Driven Engineering Languages

and Systems (MoDELS 2014), Valencia, Spain, pages 70–75, 2014.

Bibliography 307

[170] OMG. Reusable Asset Specification (v2.2), 2005.

[171] Dennis Wagelaar and Ragnhild Van Der Straeten. A comparison of configu-

ration techniques for model transformations. In Model Driven Architecture–

Foundations and Applications, pages 331–345. Springer, 2006.

[172] Javier Muñoz, Miguel Llacer, and Begoña Bonet. Configuring ATL transfor-

mations in MOSKitt. In Proceedings of the Second International Workshop

on Model Transformation with ATL (MtATL), 2010.

[173] Eric Freeman, Elisabeth Robson, Bert Bates, and Kathy Sierra. Head first

design patterns. O’Reilly Media, Inc., 2004.

[174] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design

patterns: elements of reusable object-oriented software. Pearson Education,

1994.

[175] Eclipse Process Framework (EPF) Composer . Installation, Introduc-

tion, Tutorial and Manual . http://www.eclipse.org/epf/general/EPF_

Installation_Tutorial_User_Manual.pdf, 2010.

[176] Juha-Pekka Tolvanen, Matti Rossi, and Hui Liu. Method engineering: cur-

rent research directions and implications for future research. In Method

Engineering, pages 296–317. Springer, 1996.

[177] Kenia Sousa, Jean Vanderdonckt, Brian Henderson-Sellers, and Cesar

Gonzalez-Perez. Evaluating a graphical notation for modelling software de-

velopment methodologies. Journal of Visual Languages & Computing, 23

(4):195–212, 2012.

[178] Steven Kelly and Matti Rossi. Evaluating method engineer performance: an

error classification and preliminary empirical study. Australasian Journal

of Information Systems, 6(1), 1998.

[179] Noureddine Kerzazi and Mathieu Lavallee. Inquiry on usability of two soft-

ware process modeling systems using iso/iec 9241. In Electrical and Com-

puter Engineering (CCECE), 2011 24th Canadian Conference on, pages

000773–000776. IEEE, 2011.

http://www.eclipse.org/epf/general/EPF_Installation_Tutorial_User_Manual.pdf
http://www.eclipse.org/epf/general/EPF_Installation_Tutorial_User_Manual.pdf

Bibliography 308

[180] Asif Qumer and Brian Henderson-Sellers. An evaluation of the degree of

agility in six agile methods and its applicability for method engineering.

Information and Software Technology, 50(4):280–295, 2008.

[181] Fredrik Karlsson. A wiki-based approach to method tailoring. In Proceedings

of the 3rd International Conference on the Pragmatic Web: Innovating the

Interactive Society, pages 13–22. ACM, 2008.

[182] Valeria Seidita, Massimo Cossentino, and Salvatore Gaglio. Adapting PASSI

to support a goal oriented approach: a situational method engineering ex-

periment. In Proc. of the Fifth European workshop on Multi-Agent Systems

(EUMAS’07), 2007.

[183] Kasper Hornbæk. Current practice in measuring usability: Challenges to

usability studies and research. International journal of human-computer

studies, 64(2):79–102, 2006.

[184] Younghwa Lee, Kenneth A Kozar, and Kai RT Larsen. The technology

acceptance model: past, present, and future. Communications of the Asso-

ciation for Information Systems, 12(1):50, 2003.

[185] Raquel Benbunan-Fich. Using protocol analysis to evaluate the usability of

a commercial web site. Information & Management, 39(2):151–163, 2001.

[186] Per Runeson and Martin Host. Guidelines for conducting and reporting case

study research in software engineering. Empirical software engineering, 14

(2):131–164, 2009.

[187] Ron D Henderson, Mike C Smith, John Podd, and Hugo Varela-Alvarez.

A comparison of the four prominent user-based methods for evaluating the

usability of computer software. Ergonomics, 38(10):2030–2044, 1995.

[188] Timothy C Lethbridge, Susan Elliott Sim, and Janice Singer. Studying

software engineers: Data collection techniques for software field studies.

Empirical software engineering, 10(3):311–341, 2005.

[189] Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson, Bjöorn Reg-

nell, and Anders Wesslén. Experimentation in Software Engineering: An

Introduction. Kluwer Academic Publishers, Norwell, MA, USA, 2000. ISBN

0-7923-8682-5.

Bibliography 309

[190] Stephen Owen, Pearl Brereton, and David Budgen. Protocol analysis: a

neglected practice. Communications of the ACM, 49(2):117–122, 2006.

[191] John S. Gero and Thomas Mc Neill. An approach to the analysis of design

protocols. Design Studies, 19(1):21 – 61, 1998.

[192] Barney G. Glaser and Anselm L. Strauss. The Discovery of Grounded The-

ory: Strategies for Qualitative Research. Aldine de Gruyter, New York, NY,

1967.

[193] Klaus Pohl, Günter Böckle, and Frank van der Linden. Software Product

Line Engineering: Foundations, Principles and Techniques. Springer-Verlag

New York, Inc., 2005.

[194] Elena Kornyshova, Rébecca Deneckère, and Colette Rolland. Method

families concept: application to decision-making methods. In Enter-

prise, Business-Process and Information Systems Modeling, pages 413–427.

Springer, 2011.

[195] Mohsen Asadi, Bardia Mohabbati, Dragan Gaševic, Ebrahim Bagheri, and

Marek Hatala. Developing semantically-enabled families of method-oriented

architectures. International Journal of Information System Modeling and

Design (IJISMD), 3(4):1–26, 2012.

[196] Gwladys Guzelian and Corine Cauvet. SO2M: Towards a service-oriented

approach for method engineering. In Proceedings of the 2007 World Congress

in Computer Science, Computer Engineering and Applied Computing, vol-

ume 7, 2007.

[197] Corine Cauvet. Method engineering: a service-oriented approach. In In-

tentional Perspectives on Information Systems Engineering, pages 335–354.

Springer, 2010.

[198] Mark Turner, David Budgen, and Pearl Brereton. Turning software into a

service. Computer., 36(10):38–44, 2003.

[199] Frédéric Jouault, Bert Vanhooff, Hugo Bruneliere, Guillaume Doux, Yolande

Berbers, and Jean Bézivin. Inter-DSL coordination support by combining

megamodeling and model weaving. In Proceedings of the ACM Symposium

on Applied Computing, pages 2011–2018. ACM, 2010.

Bibliography 310

[200] Jean Bézivin, Frédéric Jouault, and Patrick Valduriez. On the need for meg-

amodels. In Proceedings of the OOPSLA/GPCE: Best Practices for Model-

Driven Software Development workshop, 19th Annual ACM Conference on

Object-Oriented Programming, Systems, Languages, and Applications, 2004.

[201] Jean Bézivin, Frédéric Jouault, Peter Rosenthal, and Patrick Valduriez.

Modeling in the large and modeling in the small. In Model Driven Archi-

tecture, pages 33–46. Springer, 2005.

[202] Freddy Allilaire, Jean Bézivin, Hugo Brunelière, and Frédéric Jouault.

Global model management in Eclipse GMT/AM3. In Proceedings of the

Eclipse Technology eXchange (eTX) workshop at ECOOP, 2006.

[203] Ian Sommerville and Gerald Kotonya. Requirements engineering: processes

and techniques. John Wiley & Sons, Inc., 1998.

[204] CMMI Institute. Capability Maturity Model Integration (v1.3), 2010.

[205] Kamal Zuhairi Zamli and Nor Ashidi Mat Isa. A survey and analysis of

process modeling languages. Malaysian Journal of Computer Science, 17

(2), 2004.

	1 Introduction
	1.1 Research Motivation
	1.2 Problem Statement
	1.3 Thesis Contributions
	1.4 Research Method
	1.5 Context of the Thesis
	1.6 Outline

	2 Background and Technological Context
	2.1 Method Engineering
	2.1.1 Defining Method Engineering
	2.1.1.1 Terminology

	2.1.2 Method Design
	2.1.2.1 The SPEM 2.0 Standard
	2.1.2.2 The BPMN 2.0 Standard

	2.1.3 Method Implementation
	2.1.3.1 Computer-Aided Software Engineering
	2.1.3.2 MetaCASE Environments

	2.1.4 Method Execution
	2.1.4.1 Operational Aspects of BPMN 2.0

	2.2 Model-Driven Engineering
	2.2.1 Defining Model-Driven Engineering
	2.2.2 Metamodeling
	2.2.2.1 Domain-Specific Languages

	2.2.3 Model Transformations
	2.2.4 Models at Runtime

	2.3 Eclipse-based Technologies
	2.3.1 The Eclipse Platform
	2.3.2 Eclipse Modeling
	2.3.3 Eclipse Process Framework
	2.3.4 Activiti
	2.3.5 MOSKitt

	2.4 Conclusions

	3 State of the Art
	3.1 Properties to Analyze Method Engineering Approaches
	3.2 Method Engineering Approaches
	3.2.1 Assembly-based
	3.2.1.1 Brinkkemper et al. Approach
	3.2.1.2 Prakash Approach
	3.2.1.3 Ralyté et al. Approach
	3.2.1.4 OPEN Process Framework
	3.2.1.5 Method Editor

	3.2.2 Paradigm-based
	3.2.2.1 Rolland et al. Approach
	3.2.2.2 MetaEdit+
	3.2.2.3 Ralyté et al. Approach
	3.2.2.4 Work Product Pool Approach

	3.2.3 Configuration-based
	3.2.3.1 Deneckère et al. Approach
	3.2.3.2 Method for Method Configuration
	3.2.3.3 Process Configuration Approach

	3.3 Conclusions

	4 A Model-Driven Approach for Method Engineering
	4.1 Overview
	4.1.1 Origins: The MOSKitt Project
	4.1.2 Developing the Methodological Approach
	4.1.3 Phases of the Methodological Approach

	4.2 Method Design
	4.2.1 A DSL for the Conceptual Modeling of Methods
	4.2.1.1 Supporting the Method Product and Process Parts

	4.2.2 Promoting Reuse: A Method Fragment Taxonomy
	4.2.2.1 Fragment Types
	4.2.2.2 Fragment Structure

	4.2.3 A Process for Method Design
	4.2.3.1 Method Definition
	4.2.3.2 Method Configuration
	4.2.3.3 Executable Process Generation

	4.3 Method Implementation
	4.3.1 An Automatic Process for CASE Environment Construction
	4.3.1.1 Identification of Software Tools
	4.3.1.2 Resolution of Dependencies
	4.3.1.3 Deployment of Software Tools

	4.4 Method Execution
	4.4.1 The Project Manager Component
	4.4.2 Method Process Support
	4.4.3 Method Product Support

	4.5 Conclusions

	5 MOSKitt4ME: A Software Infrastructure
	5.1 Functional Requirements
	5.2 Developing MOSKitt4ME
	5.2.1 The Architecture of MOSKitt4ME
	5.2.2 Implementation of the Architecture

	5.3 The MOSKitt4ME Environment
	5.3.1 The CAME Part of MOSKitt4ME
	5.3.1.1 Specifying Methods: the Method Editor
	5.3.1.2 Connecting to Repositories: the Repository Client
	5.3.1.3 Building Eclipse Plug-ins: the Metatools
	5.3.1.4 Obtaining Software Support: the CASE Generator

	5.3.2 The CASE Part of MOSKitt4ME
	5.3.2.1 Bringing Methods into Enactment: the Project Manager

	5.4 Conclusions

	6 Evaluation of the Proposal
	6.1 Background on Method Engineering Evaluation
	6.2 Overview of the Evaluation Study
	6.2.1 Measures of Usefulness and Ease of Use
	6.2.2 Experimental Process

	6.3 Definition and Planning
	6.3.1 Goal
	6.3.2 Research Questions
	6.3.3 Subjects
	6.3.4 Object
	6.3.5 Factors and Treatments
	6.3.6 Tasks
	6.3.7 Context
	6.3.8 Instrumentation
	6.3.9 Experimental Setup
	6.3.10 Validity Evaluation
	6.3.10.1 Conclusion Validity
	6.3.10.2 Internal Validity
	6.3.10.3 Construct Validity
	6.3.10.4 External Validity

	6.4 Execution
	6.4.1 Preparation
	6.4.2 Operation
	6.4.3 Data Validation

	6.5 Data Analysis
	6.5.1 Analysis of the Subjective Data
	6.5.1.1 Quantitative Feedback
	6.5.1.2 Qualitative Feedback
	6.5.1.3 Mental Effort

	6.5.2 Analysis of the Objective Data
	6.5.2.1 Session Transcription
	6.5.2.2 Coding Scheme Definition
	6.5.2.3 Protocol Construction
	6.5.2.4 Protocol Analysis

	6.6 Results
	6.6.1 Research Question 1
	6.6.2 Research Question 2
	6.6.3 Research Question 3
	6.6.3.1 Efficiency
	6.6.3.2 Effectiveness

	6.6.4 Research Question 4
	6.6.4.1 Difficulty Using SPEM 2.0
	6.6.4.2 Difficulty Defining Technical Data

	6.6.5 Discussion

	6.7 Conclusions

	7 Conclusions and Future Work
	7.1 Summary of Contributions of the Thesis
	7.2 Publications
	7.2.1 Conferences and Workshops
	7.2.2 International Journals
	7.2.3 Relevance of the Publications

	7.3 Co-directed Projects
	7.4 Future Work
	7.4.1 Automated Production of Situational Methods
	7.4.2 Method as a Service (MaaS)
	7.4.3 Megamodeling in Method Engineering
	7.4.4 Method Analysis and Monitoring

	Appendices
	A Comparative Analysis of SPEM 2.0 and BPMN 2.0
	A.1 Method Modeling Criteria
	A.2 Process Support Criteria
	A.3 Conclusions

	B A Case Study: the gvMétrica Method
	B.1 The gvMétrica Method
	B.1.1 Design of Information Systems in gvMétrica

	B.2 Applying the Methodological Approach
	B.2.1 Method Design
	B.2.1.1 Method Definition
	B.2.1.2 Method Configuration
	B.2.1.3 Executable Process Generation

	B.2.2 Method Implementation
	B.2.3 Method Execution

	B.3 Conclusions

	C Supplementary Material on the Evaluation Study
	C.1 Characterization Form
	C.2 User Acceptance Form
	C.3 Interview Questions
	C.4 Statistical Tests
	C.4.1 Normality Tests
	C.4.2 Non-parametric Tests

	C.5 Coding Scheme

	Bibliography

