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Me gustaŕıa dedicar mis primeras palabras a Valery, mi directora
de tesis, mi maestra, mi amiga y compañera en muchos ámbitos, no
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Abstract

The World Health Organization estimates that in 2010 there were
285 million people visually impaired in the world. It is calculated
that 80% of these cases are preventable or treatable. In addition, an
aging population and an increase in chronic diseases are two factors
based on which a higher number of blindness cases is predicted in the
future. Hypertension, diabetic retinopathy (DR), age-related macular
degeneration (AMD) and glaucoma are the most common pathologies
in the current society that provoke retinal damage and can be directly
related to blindness and vision loss. The early diagnosis of these diseases
allows, through appropriate treatment, to reduce costs generated when
they are in advanced states and may become chronic. This fact justifies
screening campaigns. However, a screening campaign requires a heavy
workload for trained experts in the analysis of anomalous patterns of
each disease, which in addition to the increase in population at risk,
makes these campaigns economically unfeasible. Therefore, the need
for automatic screening system developments is highlighted.

The final goal of this thesis is to develop novel methods that
allow the analysis and processing of fundus images to implement an
automatic screening of four of the most important diseases affecting
world population. In particular, the main objective of the thesis is to
build up algorithms for the characterization of the retinal structures and
the retina background in order to assist in the discrimination between
a “normal” and pathological retina.

Mathematical morphology along with other operators are used for
the detection of the retinal vessels and the optic disk. The proposed
methods work properly on databases with a large degree of variability.
Not only have the main structures been segmented, but significant
features have also been extracted to be used in a computer aided
diagnosis software for hypertensive risk determination. The texture
of the retina background is also analyzed in this work by means of local
binary patterns with the aim of identifying DR and AMD and avoiding



the need for segmentation of the characteristic retinal lesions of each
disease. The results are promising, above all for AMD diagnosis.



Resumen

La Organización Mundial de la Salud estima que en 2010 hab́ıa 285
millones de personas con alguna discapacidad visual en el mundo. Se
calcula que el 80% de estos casos son evitables o tratables. Además,
el envejecimiento de la población y el aumento de las enfermedades
crónicas son dos factores que hacen prever un número todav́ıa mayor
de casos de ceguera en el futuro. La hipertensión, la retinopat́ıa
diabética (RD), la degeneración macular asociada a la edad (DMAE) y
el glaucoma son las enfermedades más comunes que provocan daños en
la retina y, por tanto, están directamente relacionadas con la ceguera
y con la pérdida de visión. El diagnóstico de estas enfermedades en
estadios tempranos permite, mediante el tratamiento adecuado, reducir
los costes que generan en estados ya avanzados y que en la mayoŕıa de
los casos acaban convirtiéndose en crónicas, lo que justifica la realización
de campañas de cribado. Sin embargo, una campaña de cribado exige
una gran carga de trabajo de personal experto entrenado en el análisis
de los patrones anómalos propios de cada enfermedad, lo que sumado
al aumento de la población de riesgo, hace que estas campañas sean
inviables económicamente. Por lo tanto, se evidencia la necesidad del
desarrollo de sistemas de cribado automáticos.

El objetivo final del presente trabajo es la implementación de
métodos novedosos de análisis de imágenes de fondo de ojo para usarlos
en un sistema de cribado de cuatro de las enfermedades más importantes
que afectan a la población actual. En concreto, el objetivo principal
de la tesis es el desarrollo de algoritmos para la caracterización de las
estructuras y del fondo retiniano, los cuales servirán de ayuda para
discriminar una retina “normal” de otra patológica.

Para la detección de los vasos retinianos y del disco óptico, se
ha usado morfoloǵıa matemática además de otros operadores. Se
ha demostrado que los métodos propuestos para este fin funcionan
adecuadamente en bases de datos con un alto grado de variabilidad.
No sólo se han segmentado las principales estructuras retinianas, sino



que, además, se han extráıdo sus caracteŕısticas más significativas para
determinar el riesgo hipertensivo. En este trabajo, también se han
analizado las texturas presentes en el fondo de la retina por medio de
la teoŕıa de los patrones binarios locales con el objetivo de identificar la
RD y la DMAE a la vez que se evita la necesidad de la segmentación
de las lesiones espećıficas de cada enfermedad. Los resultados son
prometedores, sobre todo, para la detección de la DMAE.



Resum

L’Organització Mundial de la Salut estima que en 2010 havia 285
milions de persones amb alguna discapacitat visual en el món. Es
calcula que el 80% d’aquests casos són evitables o tractables. A més,
l’envelliment de la població i l’augment de les malalties cròniques són
dos factors que fan preveure un número encara major de casos de
ceguera en el futur. La hipertensió, la retinopatia diabètica (RD), la
degeneració macular associada a l’edat (DMAE) i el glaucoma són les
malalties més comuns que provoquen danys en la retina i, per tant,
estan directament relacionades amb la ceguera i amb la pèrdua de
visió. El diagnòstic d’aquestes malalties en estadis primerencs permet,
per mitjà del tractament adequat, reduir els costos que generen en
estats ja avançats i que en la majoria dels casos acaben convertint-
se en cròniques, la qual cosa justifica la realització de campanyes de
garbellament. No obstant això, una campanya de garbellament exigix
una gran càrrega de treball de personal expert entrenat en l’anàlisi dels
patrons anòmals propis de cada malaltia, que si es suma a l’augment
de la població de risc, fa que aquestes campanyes siguen inviables
econòmicament. Per tant, s’evidencia la necessitat del desenrotllament
de sistemes de garbellament automàtics.

L’objectiu final del present treball és la implementació de mètodes
nous d’anàlisi d’imatges de fons d’ull per a usar-los en un sistema de
garbellament de quatre de les malalties més importants que afecten
la població actual. En concret, l’objectiu principal de la tesi és el
desenvolupament d’algoritmes per a la caracterització de les estructures
i del fons retinià, els quals serviran d’ajuda per a discriminar una retina
“normal” d’una altra patològica.

Per a la detecció dels vasos retinians i del disc òptic, s’ha usat
morfologia matemàtica a més d’altres operadors. S’ha demostrat que
els mètodes proposats per a aquest fi funcionen adequadament en bases
de dades amb un alt grau de variabilitat. No sols s’han segmentat les
principals estructures retinianes, sinó que, a més, s’han extret les seues



caracteŕıstiques més significatives per a determinar el risc hipertensiu.
En aquest treball, també s’han analitzat les textures presents en el
fons de la retina per mitjà de la teoria dels patrons binaris locals amb
l’objectiu d’identificar la RD i la DMAE al mateix temps que s’evita la
necessitat de la segmentació de les lesions espećıfiques de cada malaltia.
Els resultats són prometedors, sobretot, per a la detecció de la DMAE.
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Chapter 1

Introduction

This chapter presents the motivations behind this thesis, its objectives
and its main contributions. In addition, it also introduces the thesis
framework and the thesis outline.
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1.4 Thesis framework . . . . . . . . . . . . . . . . 6

1.5 Outline . . . . . . . . . . . . . . . . . . . . . . . 7
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1.1. Motivation 3

1.1 Motivation

Retinal imaging is nowadays a mainstay of the clinical care and
management of patients with retinal as well as systemic diseases. Many
important diseases manifest themselves in the retina and originate either
in the eye, the brain or the cardiovascular system. In particular,
the most prevalent diseases that can be studied via eye imaging and
image analysis are: diabetes, diabetic retinopathy, age-related macular
degeneration, glaucoma and cardiovascular disease (Abràmoff et al.,
2010).

The World Health Organization (WHO) estimates that in 2010 there
were 285 million people visually impaired around the world (World
Health Organization, 2013). In spite of the fact that the number of
blindness cases has been significantly reduced in recent years, it is
estimated that 80% of the cases of visual impairment are preventable
or treatable (World Health Organization, 2013).

Screening campaigns are usually considered effective if the disease
is identified at an early, preferably preclinical, stage and if it is
amenable to treatment (Cree and Jelinek, 2011). The early diagnosis
allows, through appropriate treatment, to reduce costs generated when
the diseases are in advanced states and may become chronic. In
the main, the best approach for the assessment of the population
at-risk seems to be a direct, regular and complete ophthalmologic
examination (Herbert et al., 2003). However, a screening campaign
requires a large workload of trained experts in the analysis of anomalous
patterns of each disease, which in addition to population growth, ageing,
physical inactivity and rising levels of obesity make these campaigns
economically infeasible because the number of ophthalmologists for
the assessment by direct examination of the population at-risk is high
(Verma et al., 2002). Moreover, it must be stressed that this type
of retinal disease identification that is based on manual observation,
is highly subjective (Anitha et al., 2011). So, for those reasons, the
need for automatic screening systems is highlighted and they have
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become increasingly important. Thanks to high resolution of the current
retinal cameras, the fundus images can be automatically processed by
a screening software providing invaluable help to clinicians in diagnosis
and disease prevention. Automatic screening systems are able to relieve
physicians of repetitive work, increase efficiency and provide remarkable
cost savings in addition to be accessible in rural and remote areas where
there is a lack of eye specialists (American Diabetes Association, 2008).

1.2 Objectives

The final goal of this thesis is the development of new methods
that allow the analysis and processing of fundus images for using
this information in the implementation of an automatic screening of
four of the most important diseases that affect world population:
hypertension, diabetic retinopathy, age-related macular degeneration
and glaucoma. In particular, the main objective of the thesis is to
build up algorithms for the characterization of the retinal structures and
the retina background in order to assist in the discrimination between
a “normal” and pathological retina. For that, several methods and
methodologies have been carried out, which will be further explained.
From the main objective, several secondary objectives arise:

Determination of the characteristic patterns of each disease under
study.

Development and implementation of methods for the location of
the main structures of the retina on fundus images which can be
related to several pathologies.

Development and implementation of methods for the extraction
of determinant features of the fundus images for diagnosis.

Selection of a model for the classification of the fundus images
as belonging to healthy subject or suspicious of some of the
pathologies under study.
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1.3 Main contributions

This thesis provides novel methods to characterize fundus images
by means of advanced image processing techniques. One of its
main contributions is to perform an in-depth study about the use of
mathematical morphology in order to detect the most significant retinal
structures: vascular network and optic disk. The methods presented
in the Chapter 3 are defined by combining different morphological
operators, basic ones and other more complex, and by making use of
a variant of the watershed transformation, the stochastic watershed,
which avoids over and under-segmentation problems related to the
classical watersheds.

The vascular network is characterized in two different ways, by
means of the segmentation of the complete vasculature and through
the vessel centerline extraction. Both approaches are based on
mathematical morphology but also use principal curvature information.
On the one hand, the main advantage of the method proposed for
complete vasculature segmentation is that the optic disk border is not
misclassified as vessel which would provoke vessel tracking problems
(Morales et al., 2012). On the other hand, the benefit of directly
extracting the vessel centerline through the presented algorithm, instead
of after a skeletonization process, is that the dependence of previous
stages is avoided at the same time that its robustness is kept (Morales
et al., 2014a).

The method developed for optic disk segmentation is also based
on mathematical morphology although includes a principal component
analysis (PCA) in the pre-processing stage to deal with the problem
of RGB to gray conversion. It is demonstrated that the use of PCA
improves the results of the red component, which is the component
most used in the state of the art for the optic disk detection. The
extensive validation of this method must also be highlighted. Its results
are compared with 5 public databases which shows the high reliability
of the algorithm (Morales et al., 2013).
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Other contribution of the thesis is that not only are the main retinal
structures (blood vessels and optic disk) segmented, but the vascular
network is also characterized through the detection of its significant
points and the computation of the vessel caliber and the bifurcation
angles. These features are used in a computer-aided diagnosis software
for hypertensive risk determination which increases the percentage of
cases detected if it is compared with the diagnosis obtained from the
visual inspection of the fundus (Morales et al., 2014b).

In addition to the hypertension risk determination, the thesis focuses
also on the diagnosis of diabetic retinopathy and age-related macular
degeneration. The last contribution of the thesis is related to the
detection of these diseases. Instead of relying on the segmentation of
the characteristic retinal lesions of each disease as most of state-of-the-
art works, the diagnosis is based on a texture analysis of the retina
background followed by machine learning techniques which achieves
promising results.

1.4 Thesis framework

This thesis stands within the framework of two research projects:
“Study of retinal microvascular architecture through fundus image pro-
cessing acquired by non-mydriatic retinal cameras” (IMIDTA/2010/47)
and “Fundus image processing for automatic screening of ophthalmo-
logical diseases - ACRIMA” (TIN2013-46751-R). These projects were
or are being funded by the Instituto de la Mediana y Pequeña Industria
Valenciana (IMPIVA) and by the Ministerio de Economı́a y Competi-
tividad of Spain, respectively.

The first one was carried out thanks to the collaboration among
LabHuman (Univesitat Politècnica de València), the Department of
Pediatrics of the Hospital General de Valencia and the Fundación
Oftalmológica del Mediterráneo. The aim of this project was the
study of retinal microvascular architecture by measuring the bifurcation
angles and the caliber of the retinal arterioles in children with low
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birth weight, as a prognostic marker of hypertension and cardiovascular
pathology. For that purpose, a computer-aided diagnosis software, able
to segment blood vessels and perform angle and caliber measurements,
was developed. This project supposed the beginning of a research line
in LabHuman about retinal image processing.

The scope of ACRIMA is wider than the previous project. Its
objective is to develop an automatic screening system for the three
most significant diseases related to visual impairment: glaucoma,
diabetic retinopathy and age-related macular degeneration. At present,
there is no screening system as the proposed in the project, which
combines the screening of these three diseases. The members of
the Fundación Oftalmológica del Mediterráneo, renamed nowadays as
FISABIO-Oftalmoloǵıa Médica, continue collaborating with LabHuman
in this project.

Both projects have a common denominator. The resulting systems
are designed to be used by general practitioners (GP) as computer-
aided diagnosis tools. When a patient goes to a medical consultation,
the GP will determine the need for medical tests. If they are needed,
a fundus image of the patient will be captured and processed by the
developed tools. If the tool detects that there is pathology risk, the
patient will be sent to the ophthalmologist who will decide if some
specific tests are needed and will determine the final diagnosis. This
process is summarized in Figure 1.1.

1.5 Outline

This thesis is divided in 5 chapters. This chapter has presented the
motivations behind the research involved in the thesis, the main and
secondary objectives and its main contributions. Finally, the thesis
framework is also explained.

Chapter 2 introduces the anatomical aspects of the retina, the most
important retinal diseases and the most relevant groups working on the
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development of screening systems for the detection of some of these
diseases.

Chapter 3 presents new methods to detect the retinal vessels and
the optic disk, two of the most important anatomical structures of the
fundus, and to determine some of their main characteristics. These
elements will be key for pathology detection.

In Chapter 4, the texture of the retina background is analyzed by
means of local binary patterns to differentiate between pathological and
healthy images. With this analysis, it is intended to determine if a
patient is suspicious of pathology but avoiding the need for segmentation
of different types of lesions.

General and final conclusions in addition to future prospects are
presented in Chapter 5. Next, the scientific publications derived from
this thesis are cited.



1.5. Outline 9

PATIENT

OPHTHALMOLOGIST

FUNDUS IMAGE

DIAGNOSIS

MEDICAL 
CONSULTATION

GP

PATHOLOGY 
RISK?

TESTS?

YES

NO

NO

SPECIFIC TESTS 
(OCT, CAMPIMETRY, ...)

PATIENT DATA

YES

Figure 1.1: Thesis framework flowchart.





Chapter 2

The retina

This chapter presents a brief explanation about anatomical aspects of
the retina, the most important retinal diseases and the most relevant
groups working on the development of screening systems for the detec-
tion of some of these diseases.
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2.1 Retina’s anatomy

The eye is the sense organ of sight. It is often compared to a camera
which captures and transmits light through a lens to create an image.

The eyeball consists of three coats: the sclera, with its anterior part,
the cornea; the uvea that includes the choroid, ciliary body and iris;
and the retina (Figure 2.1). The retina is the innermost layer and the
focus of this thesis. The purpose of the retina is to transform light into
a nerve impulse.

Figure 2.1: Eyeball anatomy.1

Approximately 1.2 million axons of ganglion cells converge to form
the optic nerve. The optic nerve is directly connected to the retina. Its
function is to send the nerve impulses produced by the retina to the
brain to be interpreted and transformed into a visual perception.

The retina is made up two kinds of photoreceptors (cones and rods).
The cones are responsible for bright light and colors and the rods for
peripheral and night vision. There are 5 million cones and 125 million
rods in an average retina.

1Image adapted from Blausen gallery 2014 - Wikiversity Journal of Medicine
(http://en.wikiversity.org/wiki/Blausen_gallery_2014).

http://en.wikiversity.org/wiki/Blausen_gallery_2014
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Next, the most important structures of the retina will be detailed.
They can be observed in Figure 2.2.

Blood vessels.
Blood vessels supply the retina. They enter and exit to and from
the retina via the optic disk. The retinal vascular network is
composed by arteries and veins. The main branches of the central
retinal artery and vein form four vascular arcades.

Optic disk.
The optic disk is a circular to oval area where the optic nerve is
connected to the retina. It measures about 2 x 1.5 mm across and
can be seen as a bright yellow disk. It is also called blind spot
because there are not receptors in this part of the retina.
In the center of the optic disk there is a white depression with
cup-like shape called optic cup. The optic cup is not occupied by
nerve fibers, i.e., devoid of neuroretinal tissue. The neuroretinal
rim is the area the optic disk which contains the neural elements
and is located between the edge of the disk and the optic cup.
The cup-to-disk ratio is important clinically because its increase
indicates the death of ganglion cells.

Macula.
The macula is a pigmented area near the center of the retina
that is responsible for finest central vision. It is about 1.5 mm
in diameter and it is located two disk diameter temporal to optic
disk. The normal macula appears darker than the rest of the
retina.

Fovea.
The fovea is a small pit (approximately 500 µm in diameter)
involved with high acuity vision. It is located in the center of the
macula and contains a high density of cones. Rods are present
everywhere in the retina except at the fovea.
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Figure 2.2: Main parts of the retina: blood vessels, optic disk, macula and
fovea. The vascular arcades formed by the blood vessels are marked in blue:
superotemporal (ST), inferotemporal (IT), superonasal (SN) and inferonasal
(IN).

2.2 Pathologies related to the retina

Due to the retina’s vital role in vision, the damage of the retina can
cause visual impairment and, even, permanent blindness. Hypertension,
diabetic retinopathy, age-related macular degeneration and glaucoma
are some of the most common diseases in the current society that
provoke retinal damage and are detectable through fundus inspection
(World Health Organization, 2010a; Abràmoff et al., 2010). Next, these
pathologies will be described, emphasizing the characteristic patterns of
the disease and summarizing the works found in the literature for their
detection. By way of introduction, in Figure 2.3 the effects of some
diseases on the vision are shown.

2.2.1 Hypertensive retinopathy

Hypertension is a chronic disease characterized by a continuous
increase in the blood pressure in the arteries. It is one of the major
cardiovascular risk factors. Globally, the overall prevalence of high
blood pressure in adults aged 25 and above was around 40% in 2008
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(a) (b)

(c) (d)

Figure 2.3: Effects of different pathologies on the vision: (a) Normal vision,
(b) With diabetic retinopathy, (c) With age-related macular degeneration and
(d) With glaucoma.2

(World Health Organization, 2010b). This data is directly related to
hypertension prevalence.

Hypertension results from a complex interaction of genes and
environmental factors as overweight and salt and alcohol intake.
Moreover, as blood pressure rises with aging, the risk of becoming
hypertensive increases in later life (Vasan et al., 2002).

Although hypertension is rarely accompanied by visual symptoms,
it can be suspected on the basis of the presence of hypertensive
retinopathy since changes in the arterial hypertension of the retina
are indicator of the state of the blood vessels in other organs (Wong
and Mitchell, 2007). In particular, vascular changes produced in

2Images provided by the National Eye Institute (www.nei.nih.gov).

www.nei.nih.gov
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systemic diseases usually induce specific modifications in the retinal
vessels, such as: generalized retinal-arteriolar narrowing which implies
a decrease in the ratio between the diameter of retinal arteries and
veins, arteriovenous nicking, focal arteriolar narrowing, alteration in
the arteriolar light reflex, arteriolar tortuosity, an increase in the
angle of arteriolar branching, central or branch retinal artery and vein
occlusions, etc. (Wong et al., 2001; Liew and Wang, 2011). Some of
these signs can be observed in Figure 2.4.

(a) (b)

Figure 2.4: Some retinal vascular signs: (a) Focal arteriolar narrowing and
(b) Arteriovenous nicking. Images extracted from (Liew and Wang, 2011).

In general, state-of-the-art software applications that compute
measurements of retinal vessels for hypertensive risk determination
are focused only on caliber determination and no other measures are
performed. At the beginning, software applications were not used to
detect retinal vessels or measure geometrical properties automatically
but the diameters of all arterioles and venules were measured by trained
graders using different tools provided by the systems to make this task
simpler (Wong et al., 2004; Knudtson et al., 2003; Hubbard et al., 1999).
Nowadays, there are some automatic or semiautomatic approaches to
perform these measures (Ruggeri et al., 2007; Muramatsu et al., 2010;
Tramontan et al., 2008; Niemeijer et al., 2011; Ortega et al., 2010).
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2.2.2 Diabetic retinopathy

Diabetes is a metabolic disease due to insufficient production of the
hormone insulin, or a resistance to its action which prevents the glucose
uptake of the blood by the cells of the organism giving place to high
blood sugar levels. Diabetic retinopathy (DR) is a common symptom
of diabetes and one of the leading causes of blindness worldwide. In
fact, this disease occurs in 80% of patients who have had diabetes for
more than 10 years (Wang et al., 2000). To ensure that DR treatment
is received on time, fundus images from diabetic patients must be
examined at least once a year (Fong et al., 2003).

Diabetic retinopathy is a silent disease because only affects vision
when retina changes have progressed to a level where treatment is
complicated and expensive and the maintenance of vision is uncertain.
The most effective treatment of the disease can only be administered in
the early stages and, thus, early detection through regular screening is of
paramount importance. For automatic screening of DR, most systems
are based on the detection of the following features (Yun et al., 2008):

Microaneurysms. Microaneurysms are the first identifiable
characteristic of the disease. They are small saccular dilatations
of capillaries that appear as round spots of dark red color.

Exudates. Exudates are accumulations of lipids and proteins in
the retina. They are typically bright lesions of white or cream
color.

Hemorrhages. Hemorrhages become visible when the DR degree
progresses. They indicate an ischemia increase (lack of oxygen)
of the retina.

DR can be broadly classified as nonproliferative DR (NPDR) and
proliferative DR (PDR) depending on the presence and amount of the
mentioned features (Early Treatment DR Study Research Group, 1991).
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Figure 2.5 identifies the different types of DR features and Figure 2.6
shows two fundus images with NPDR and PDR, respectively.

Exudates

Hemorrhages

Microaneurysms Microaneurysms

Figure 2.5: Features of diabetic retinopathy (zoom in the area with
microaneurysms).

(a) (b)

Figure 2.6: Grades of diabetic retinopathy: (a) Nonproliferative DR (also
known as background DR) and (b) Proliferative DR.

DR is the disease which more research groups are working on. So,
DR and normal retina have been classified for multitude of methods
with different results up to now. Some of them will be enumerated.
Multilayer perceptron neural network is used in (Sinthanayothin et al.,
2002) achieving a sensitivity of 80.21% and a specificity of 70.66%. The
identification of exudates, hemorrhages and microaneurysms is needed
to carry out the screening in (Singalavanija et al., 2006), which gets
a sensitivity of 74.8% and a specificity of 82.7%. Microaneurysms
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are detected by Bayes optimality criteria and early detection of DR
is performed by a decision support system in (Kahai et al., 2006)
obtaining a sensibility of 100% but a specificity of 67%. An automated
grading for DR detection with 90.5% sensitivity and 67.4% specificity
is used in (Philip et al., 2007). The classification is based on fovea,
blood vessels, optic disk and bright and dark lesion segmentations in
(Estabridis and de Figueiredo, 2007) obtaining 90% of accuracy. A
sensitivity of 84% and a specificity of 64% was achieved by the system
proposed in (Abràmoff et al., 2008). Note that these works are validated
on different databases therefore their direct comparison is difficult. A
wider review about DR detection systems can be found in (Faust et al.,
2012).

2.2.3 Age-related macular degeneration

Age-related macular degeneration (AMD) is a degenerative condition
which degrades progressively the macula. The proper functioning of the
macula lets appreciate details, reading, driving, face recognizing, etc.
AMD is a common eye disease that affects adults and it has become
the leading cause of blindness over 60 years (Jager et al., 2008). Its
progression is so slow that patients only notice small changes in their
vision although it can provoke a total loss of central vision. In spite
of the fact that AMD has currently no definitive cure, early detection
allows to provide treatments that retard and mitigate the effects of the
disease (Jager et al., 2008).

Drusen, yellow deposits in the macula, are one of the early signs
more common of the AMD and the basis on which ophthalmologists pay
attention to detect the disease. Drusen usually are of two types: hard
and soft. Hard drusen are small, round, with sharp edges. These drusen
are generally not harmful if they present in small quantity. Soft drusen
are larger than the hard drusen and may have indistinct borders. As
the disease progresses, the number and size of the drusen increases and
other signs can also appear such as geographic atrophy of the retinal
pigment epithelium, choroidal neovascularization, disciform scar, etc.
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(Miller, 2013). In Figure 2.7, different signs of AMD can be observed.

Drusen Geographic atrophy

Disciform scar

(a) (b) (c)

Figure 2.7: Signs of age-related macular degeneration: (a) Drusen, (b)
Geographic atrophy of the retinal pigment epithelium and (c) Disciform scar.

Most works of the state of the art related to AMD is based on drusen
segmentation but not in AMD diagnosis (Hijazi et al., 2012) although
some reports can be found (Agurto et al., 2011a; Garnier et al., 2014).
Agurto et al. use an Amplitude Modulation - Frequency Modulation
(AM-FM) technique to define the features followed by two-step Partial
Least Squares (PLS) classifier achieving a sensitivity of 94% and a
specificity of 50%. Garnier et al. do not perform drusen segmentation
but they analyze texture information through wavelet decomposition
and local binary patterns. A sensitivity of 91% and a specificity of 95%
are obtained using a LDA classifier. These methods are validated on
different private databases.

2.2.4 Glaucoma

Glaucoma is a progressive disease of the optic nerve caused by high
intraocular pressure due to a bad drainage of the ocular fluid. Clinically,
it causes a progressive and irreversible loss of the visual field that
progresses to the complete loss of vision. It is currently the second
leading cause of blindness worldwide and affects one in every hundred
people under 50 and one in ten over 80 years (Kwon et al., 2009).
In most cases, glaucoma is belatedly detected when visual field loss
is irreversible. Currently, there is no cure for glaucoma damage and,
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therefore, early detection and prevention is the only way to prevent
progression to total vision loss.

According to the literature, the diagnosis of glaucoma is mainly
based on three studies: the measurement of intraocular pressure by
tonometry, the examination of the visual field by campimetry and
the computing of the ratio between the optic cup and optic disk area
from fundus images, also known as cup-to-disk ratio (CDR) (Nath and
Dandapat, 2012). Since this thesis focuses on the detection of glaucoma
by means of retinal image analysis, it is the last of the studies, the
measure of the cup-disk ratio, which is of our interest. The optic nerve
damage is manifested in a change in the appearance of the optic cup,
so that its size (and therefore the CDR) is related to the presence or
absence of glaucoma. For healthy patients, CDR falls in the range of
0.3 to 0.5 and for glaucoma it is greater than 0.5. The sight of vision
is completely lost at the CDR value of 0.8 (Nath and Dandapat, 2012).
In Figure 2.8 the existing difference between a fundus with and without
glaucoma can be appreciated.

(a) (b)

Figure 2.8: Glaucoma effects on the cup-to-disk ratio: (a) Healthy fundus
and (b) Glaucomatous fundus. Optic disk is marked in red and optic cup in
blue.

Among the different works that deal with glaucoma detection the
following can be stood out. The ARGALI system performs an automatic
cup-to-disk ratio measurement using level-sets and achieves a RMS error
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of 0.05 with a risk assessment accuracy of 95% (Liu et al., 2009). Nayak
et al. not only use the CDR as feature but also take into account other
anatomical ratios (the ratio of the distance between optic disk center
and optic nerve head to diameter of the optic disk and the ratio of blood
vessels area in inferior-superior side to area of blood vessels in the nasal-
temporal side). All these features are incorporated in a neural network
classifier which obtains a sensitivity and specificity of 100% and 80%
respectively (Nayak et al., 2009). Hatanaka et al. carried out a different
approach and measure the cup-to-disk ratio through the vertical profile
of the optic disk getting a sensitivity of 80% and a specificity of 85%
(Hatanaka et al., 2010). These statistics were computed on different
databases. More techniques of glaucoma detection can be found in
(Nath and Dandapat, 2012).

2.3 Relevant groups

The most relevant groups working on retinal image processing, which
have developed some prototype of detection systems of one or more
pathologies under study in this thesis, are:

International groups

The Retinal Image Computing & Understanding group3 at the
University of Lincoln (United Kingdom) works on segmentation and
measurement of the retinal vessels (Lowell et al., 2004; Al-Diri et al.,
2009; Al-Diri and Hunter, 2009) and optic disk segmentation (Lowell
et al., 2004). Their works are mainly related to hypertension although
some publications are referred to diabetic retinopathy (Massey et al.,
2009). Nowadays, they are the coordinators of a European project,
named “REVAMMAD - REtinal Vascular Modelling, Measurement and
Diagnosis”4, included in the Seventh Framework Programme.

3www.aldiri.info/Default.aspx
4http://revammad.blogs.lincoln.ac.uk/revammad/

www.aldiri.info/Default.aspx
http://revammad.blogs.lincoln.ac.uk/revammad/
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VisionQuest Biomedical5 (Albuquerque) focuses on diabetic
retinopathy screening although they also work on the detection of other
pathologies such as age-related macular degeneration (Agurto et al.,
2011a; Agurto et al., 2011b). Their system EYESTAR6 is now in a
clinical trial.

The Institute for Infocomm Research7 (Singapore). They have
mainly worked on glaucoma detection through a system for automatic
measurement of the cup-to-disk ratio called ARGALI (Liu et al., 2009).
They have also worked, along with the National University of Singapore,
on the development of a platform for vascular disease risk prediction
(Hsu et al., 2011).

The Computer Vision and Image Processing (CVIP) group8 at the
University of Dundee (Scotland) has worked on the implementation
of VAMPIRE9, a vessel assessment and measurement platform (Perez-
Rovira et al., 2011).

The University of Aberdeen (Scotland) has worked on an automated
grading of diabetic retinopathy in primary care screening (Philip et al.,
2007; Goatman et al., 2011).10 Although only for a disease, it is the
only existing CE-accredited commercial system in terms of analysis for
automatic fundus screening.11

5www.visionquest-bio.com
6www.visionquest-bio.com/eyestar-tm.html
7www.i2r.a-star.edu.sg/industries/medical-and-healthcare
8http://cvip.computing.dundee.ac.uk/
9http://vampire.computing.dundee.ac.uk/

10www.abdn.ac.uk/heru/research/assessment-of-technologies/projects/t

he-role-of-automated-grading-of-diabetic-retinopa/
11www.shil.co.uk/Products/igradingtm-platform-diabetic-retinopathy-s

creening-software.html

www.visionquest-bio.com
www.visionquest-bio.com/eyestar-tm.html
www.i2r.a-star.edu.sg/industries/medical-and-healthcare
http://cvip.computing.dundee.ac.uk/
http://vampire.computing.dundee.ac.uk/
www.abdn.ac.uk/heru/research/assessment-of-technologies/projects/the-role-of-automated-grading-of-diabetic-retinopa/
www.abdn.ac.uk/heru/research/assessment-of-technologies/projects/the-role-of-automated-grading-of-diabetic-retinopa/
www.shil.co.uk/Products/igradingtm-platform-diabetic-retinopathy-screening-software.html
www.shil.co.uk/Products/igradingtm-platform-diabetic-retinopathy-screening-software.html
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National groups

The VARPA group12 at University of A Coruña works mainly on
hypertension detection by means of automatic computation of the
arteriolar-to-venular ratio. They developed a web application for this
purpose known as SIRIUS (Ortega et al., 2010).

The University of Huelva works on an expert system for early
automated detection of diabetic retinopathy.13 At this moment, there
are not results of this system but some algorithms for retinal structure
segmentation have been published (Aquino et al., 2010; Maŕın et al.,
2011).

In spite of the amount of groups working on retinal image processing,
there is no system that detects at the same time the most common
diseases that cause retinal damage. Moreover, the screening systems
developed up to now are characterized by achieving high sensitivity
(correct detection of pathological retinas) but not specificity enough
(correct detection of healthy subjects) to be effective for screening
purposes. All these facts stand out the need to continue working on
this topic.

12www.varpa.es
13www.uhu.es/retinopathy/index.php

www.varpa.es
www.uhu.es/retinopathy/index.php




Chapter 3

Retinal structure
characterization

The retinal vessels and optic disk are two of the most important anatom-
ical structures of the fundus. This chapter presents new methods to
detect them and to determine some of their main characteristics. The
detection and analysis of these elements are used for hypertensive risk
determination. Finally, results and conclusions of the chapter are de-
tailed.

In this chapter, works previously published, although adapted for this
thesis, are included:

Subsection 3.3.1 - Vessel extraction.

Morales, S., Naranjo, V., Angulo, J., Fuertes, J. J., Alcañiz, M.
(2012). Segmentation and Analysis of Retinal Vascular Tree from
Fundus Images Processing. In International Conference on Bio-
inspired Systems and Signal Processing (BIOSIGNALS 2012),
pages 321-324.

27
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Subsection 3.3.2 - Centerline extraction.

Morales, S., Naranjo, V., Angulo, J., López-Mir, F., Alcañiz,
M. (2014). Determination of Retinal Network Skeleton through
Mathematical Morphology. In 22nd European Signal Processing
Conference (EUSIPCO 2014), pages 1691-1695.

Section 3.4 - Significant points.

Morales, S., Naranjo, V., Colomer, A., Alcañiz, M. (2015).
Significant point characterization in fundus images. In 5th
International Conference on Image Processing Theory, Tools and
Applications (IPTA 2015) (Accepted for publication).

Section 3.5 - Optic disk segmentation.

Morales, S., Naranjo, V., Angulo, J., Alcañiz, M. (2013). Au-
tomatic detection of optic disc based on PCA and mathematical
morphology. IEEE Transactions on Medical Imaging, 32(4): 786-
796.

Section 3.6 - Application to pathology detection: Hypertensive
risk.

Morales, S., Naranjo, V., Navea, A., Alcañiz, M. (2014).
Computer-Aided Diagnosis Software for Hypertensive Risk De-
termination Through Fundus Image Processing. IEEE Journal of
Biomedical and Health Informatics, 18(6):1757-1763.
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3.1 Introduction

Retinal structure segmentation is a fundamental component of most
automatic retinal disease screening systems (Fraz et al., 2012). It is
usually a prerequisite before systems carrying out more complex tasks
as identifying different pathologies. In general, several anatomical
structures are segmented through fundus image processing and then
some features are extracted from them to characterize each pathology.
The most important anatomical structures of the fundus are the
vascular network that is the retinal blood vessels, and the optic disk
(OD). Both of them can be used as reference to detect other anatomical
ocular structures or several retinal lesions and to identify some fundus
features. For example, among their multiples uses, the following can
be stressed. Morphological attributes of retinal blood vessels, such
as length, width, tortuosity and/or branching pattern and angles are
utilized for diagnosis, screening, treatment, and evaluation of various
cardiovascular and ophthalmologic diseases (Kanski and Bowling, 2011).
The relation between the size of the optic disk and the cup (cup-to-disk
ratio) is widely used for glaucoma diagnosis (Hatanaka et al., 2010).
The relatively constant distance between the optic disk and the fovea
is useful for estimating the location of the macula, area of the retina
related to fine vision (Niemeijer et al., 2009). Their detection may also
be used for not taking them into account in the analysis of the retina
background with the aim of pathology diagnosis, as discussed in Chapter
4. Due to their importance in screening systems of ophthalmologic
diseases, this chapter presents new algorithms related to detection
and characterization of the retinal vessels and the optic disk. Their
performance and their place with respect to previous studies will be
detailed along the chapter.

Numerous segmentation methods of retinal structures have been
reported in the literature. Nevertheless, only a review of the state of
the art of the methods regarding the description of the vascular tree
and the optic disk will be performed here.
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Referring to vessel extraction techniques, they can be mainly
divided into four categories: edge detectors, matched filters, pattern
recognition techniques and morphological approaches. A more extensive
classification can be found in (Fraz et al., 2012). Most edge detection
algorithms assess changes between pixels values by calculating image
gradient magnitude and then it is thresholded to create a binary
edge image (Martinez-Perez et al., 2007; Jiang and Mojon, 2003).
Matched filters are filters rotated in different directions in order to
identify the cross section of blood vessels (Hoover et al., 2000; Al-
Rawi et al., 2007). Pattern recognition techniques can be divided into
supervised and unsupervised approaches. Supervised methods, such
as artificial neural networks (Sinthanayothin et al., 1999) or support
vector machines (Ricci and Perfetti, 2007; Maŕın et al., 2011), exploit
some prior labelling information to decide whether a pixel belongs
to a vessel or not, while unsupervised algorithms perform the vessel
segmentation without any prior labelling knowledge (Kande et al.,
2010). Morphological processing is based on vessels characteristics
known a priori (line connected segments) and combines morphological
operators to achieve the segmentation (Zana and Klein, 2001; Mendonça
and Campilho, 2006; Sun et al., 2011). Although most of the state-of-
the-art methods look for detecting all vessel pixels of the vascular tree,
there are also some attempts based on finding the vessel skeleton or, in
other words, the vessel centerline. The work of Chen et al. is based on
shortest path connection (Chen et al., 2011), Sofka and Stewart on the
use of matched filters (Sofka and Stewart, 2006), Wu and Derwent on
ridge descriptors (Wu et al., 2009) and Walter and Klein and Bessaid et
al. on the application of watershed transformation (Walter and Klein,
2002; Bessaid et al., 2009).

Once the vessels are segmented, the identification of the vascular
bifurcations and crossovers is helpful for predicting cardiovascular
diseases and can be used as biometric features and for image registration
(Grisan et al., 2004; Bevilacqua et al., 2005; Bhuiyan et al., 2007; Calvo
et al., 2011; Azzopardi and Petkov, 2011). After identifying the vascular
bifurcations, the angles generated in these points are usually measured
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by fitting the vessels that form the bifurcation by straight lines and then
estimating the angle between them (Gao et al., 2000; Martinez-Perez
et al., 2002; MacGillivray et al., 2012).

Regarding the OD-boundary detectors, the presented techniques
can mainly be grouped into template-based methods, deformable
models, and morphological algorithms. Different approaches have
been proposed according to template-based methods: edge detection
techniques followed by the Circular Hough Transform (Park et al.,
2006; Aquino et al., 2010); pyramidal decomposition and Hausdorff-
based template matching (Lalonde et al., 2001); color decorralated
templates (Kauppi and Kälviäinen, 2008); or a kNN-regressor along
with a circular template (Niemeijer et al., 2009). Concerning deformable
models, GVF-snake (Osareh et al., 2002), ASM (Li and Chutatape,
2004) and modified active contours, which exploit specific features of
the optic disk anatomy (Lowell et al., 2004) or incorporate knowledge-
based clustering and updating (Xu et al., 2007), have also been used
to this purpose. As for algorithms based on mathematical morphology,
most of them detect the OD by means of watershed transformation,
generally through marker-controlled watershed (Walter et al., 2002;
Eswaran et al., 2008; Welfer et al., 2010), although each author chooses
different markers. The centroid of the largest and brightest object of
the image is considered as an approximation for the locus of the OD
and it is used as internal marker (Walter et al., 2002). The extended
minima transformation (Gonzalez et al., 2004) is applied to select the
internal markers and external markers are calculated as an effectively
partition of the image into regions, so that each region contains single
internal marker and part of the background (Eswaran et al., 2008). A
list of pixels belonging to the main vessels arcade in the vicinity of an
internal OD point previously detected are also used (Welfer et al., 2010).
On the other hand, some authors propose combining various algorithms
to get a better approximation of the OD-boundary (Hajer et al., 2008;
Qureshi et al., 2012).

The rest of the chapter is organized as follows: Section 3.2
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describes the theoretical background. Sections 3.3, 3.4 and 3.5 present
the algorithms proposed for detection and characterization of the
main retinal structures. Section 3.6 shows how these methods can
be applied for hypertensive risk determination. Section 3.7 details
the experimental results of the methods explained above and their
comparison with other state-of-the-art algorithms. Finally, Section 3.8
provides conclusions.

3.2 Theoretical background

This section focuses on introducing the main concepts that will
be used in the chapter in order to facilitate its comprehension to the
reader. The main morphological operators and the stochastic watershed
transformation will be described below to be able to understand the
methods developed. More complete readings about mathematical
morphology applied to digital image processing can be found in (Serra,
1982; Soille, 2003).

3.2.1 Morphological operators

Mathematical morphology is a non-linear image processing method-
ology based on minimum and maximum operations whose aim is to filter
or extract relevant structures of an image (Serra, 1982). Next, different
morphological filters will be defined and an explanation about geodesic
transformations will also be included. The different operators will be
illustrated with figures along the section.

Morphological filters

Let f be a gray-scale image which is defined as f(x) : E → T
where x is the pixel position. In the case of discrete-valued images,
T = {tmin, tmin + 1, ..., tmax} is an ordered set of gray-levels. Typically,
in digital 8-bit images tmin = 0 and tmax = 255. Furthermore, let B(x)
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be a sub-set of Z2 called structuring element (SE) centered at point
x, whose shape is usually chosen according to some a priori knowledge
about the geometry of the relevant and irrelevant image structures. The
two basic morphological operators are:

Dilation: [δB(f)](x) = maxb∈B(x) f(x + b)

Erosion: [εB(f)](x) = minb∈B(x) f(x + b).
(3.1)

Their purpose is to expand light or dark regions, respectively, according
to the size and shape of the structuring element. See Figure 3.1.

(a) (b) (c)

Figure 3.1: Basic morphological operators: (a) Original image, (b)
Dilation and (c) Erosion. Both operators were performed using a disk-shaped
structuring element of radius 2.

In mathematical morphology, the gradient %(f)(x) of an image f(x)
can be obtained as the pointwise difference between a unitary dilation
and a unitary erosion, i.e.,

%(f)(x) = δB(f)(x)− εB(f)(x). (3.2)

The goal of the gradient transformation is to highlight image contours.
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Dilation and erosion can be combined successively to obtain a new
set of operators or basic filters given by:

Opening: γB(f) = δB(εB(f))

Closing: ϕB(f) = εB(δB(f)).
(3.3)

Light or dark structures are respectively filtered out from the image by
these operators regarding the structuring element chosen (Figure 3.2).

(a) (b) (c)

Figure 3.2: Basic morphological filters: (a) Original image, (b) Opening
and (c) Closing. Both filters were performed using a disk-shaped structuring
element of radius 5.

Openings and closings act as non-linear low-pass filters simplifying
the details of an image. However, the objects of interest may also be
those details and, not always, only one operator is enough to obtain
all the desired objects. To solve these problems there exist other
morphological operators derived from the previous ones: top-hats and
the supremum of openings or the infimum of closings.

The top-hat transformation aims to suppress slow trends, therefore
to enhance the contrast of some features in images, according to size or
shape criteria. The top-hat (or positive top-hat) is the residue between
the original image and its opening and the dual top-hat (or negative
top-hat) can be defined as the residue between a closing and its original
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image, i.e.,

Top-hat: ρ+B(f) = f − γB(f)

Dual top-hat: ρ−B(f) = ϕB(f) − f .
(3.4)

The top-hat transformation is used to extract contrasted components
with respect to the background (Figure 3.3(c)). The basic top-hat
extracts positive components and the dual top-hat the negative ones.

(a) (b) (c)

Figure 3.3: Top-hat transformation: (a) Original image, (b) Opening with a
circular SE of radius 5 and (c) Top-hat.

For a collection γi of openings, the supremum of openings, γsup =∨
i γi can be considered as the union of all openings which is also

an opening. Figure 3.4 shows an example where the supremum of
two openings performed with linear SE of different orientations was
performed. This is useful when the object to be extracted has not a
unique orientation, as in the case of the figure. On the other hand, if
ϕi is a collection of closings, then the infimum of closings, ϕinf =

∧
i ϕi

is the intersection of all closings which is a closing as well.
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(a) (b) (c)

Figure 3.4: Supremum of openings: (a) Opening with a linear SE (+45◦),
(b) Opening with a linear SE (−45◦) and (c) Supremum of linear openings.
The original image is that shown in Figure 3.3(a)

Geodesic operators

Other operators used in this thesis are: reconstruction by dilation
and close-holes. First, elementary geodesic transformations will be
introduced to be able to explain these operators. The geodesic
transformations involve two images: a marker image f and a reference
image g. By definition, the reference image must be greater than or
equal to the marker image (f ≤ g).

The geodesic dilation is the iterative unitary dilation of the marker
image f with respect to the reference image g,

δ(n)
g (f) = δ(1)

g δ(n−1)
g (f), being δ(1)

g (f) = δB(f) ∧ g. (3.5)

The reconstruction by dilation is the successive geodesic dilation of f
regarding g up to idempotence,

Rδg(f) = δ(i)
g (f), so that δ(i)

g (f) = δ(i+1)
g (f). (3.6)

The reconstruction by erosion can be obtained as its dual operator,
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Rεg(f) = [Rδgc(f
c)]c, being f c the complement image (i.e., the negative).

The reconstruction by dilation removes from the reference image g
the light objects unconnected with the marker image f and the
reconstruction by erosion the dark ones (Figure 3.5).

(a) (b) (c)

Figure 3.5: Geodesic reconstruction: (a) Reference image, (b) Marker image
and (c) Reconstruction by dilation.

Using the reconstruction by dilation, the close-hole operator can also
be defined. For a gray-scale image, it is considered a hole any set of
connected points surrounded by connected components of value strictly
greater than the hole values. This operator fills all holes in an image f
that do not touch the image boundary f∂ that is used as marker (Figure
3.6):

ψch(f) = [Rδfc(f∂)]c. (3.7)

3.2.2 Stochastic watershed transformation

Watershed transformation is a segmentation technique for gray-scale
images (Beucher and Meyer, 1992). This algorithm is a powerful
segmentation tool whenever the minima of the image represent the
objects of interest and the maxima are the separation boundaries
between objects. Due to this fact, the input image of this method
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(a) (b) (c)

Figure 3.6: Close-hole operator: (a) Reference image, (b) Marker image and
(c) Close-hole.

is usually a gradient image %(f)(x). The watershed transformation
produces a segmentation which can be viewed as: a set of closed
contours of segmented regions which will be noted by WS(%(f)), or
a partition of the space E in a set of classes named Π(WS(%(f))).

One problem of this technique is the over-segmentation, which
is caused by the existence of numerous local minima in the image
normally due to the presence of noise. One solution to this problem
is using marker-controlled watershed, WS(%)fmrk , in which the markers
fmrk artificially indicate the minima of the image. Nevertheless the
controversial issue consists in determining fmrk for each region of
interest,

fmrk(x) =

{
0 if x ∈ marker
255 Otherwise.

(3.8)

Note that the number of markers determines the number of regions
obtained. The use of few markers along with the existence of borders
within the structure to be segmented can also cause that some parts
of it are not detected (under-segmentation). So that, the choice of the
correct markers is crucial for the effectiveness and robustness of the
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algorithm. In marker definition not only markers contained inside the
objects of interest (internal markers) are needed but also a marker that
determines the image background (external marker). For example, in
the case that only a single region was desired, two markers should be
used, one internal and other external. Figure 3.50 shows the over and
under-segmentation problems related to the watershed transformation
when attempting to segment the optic disk.

(a) (b) (c)

(d) (e) (f)

Figure 3.7: Over and under-segmentation problems of the watershed
transformation: (a) Original image, (b) Gray image after closing operator
for vessel removal, (c) Gradient image, (d) Classical watershed (over-
segmentation), (e) Artificial markers and (f) Marker-controlled watershed
using the artificial markers (under-segmentation).

There exist different strategies to choose the markers to be used in
the marker-controlled watershed. The following ones can be stood out:
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Markers based on a seed. This seed can be chosen manually or
selected automatically according to the significance of its intensity
level, for instance the minima having a local dynamics larger than
a given value (Beucher and Meyer, 1992). Another example can
be the pixel with the highest/lowest intensity value (Walter et al.,
2002).

Stratified markers. Stratified markers are uniform markers
generated within an area. The generation of stratified markers
consists of dividing the region to be segmented into a uniform
grid, and only the centroid of each region is considered as marker
(Chilès and Delfiner, 2012; Bernander et al., 2013).

Uniform random markers. Random markers are uniformly
distributed in the image domain to be segmented (Angulo and
Jeulin, 2007).

Regionalized random markers. Regionalized random markers are
non-uniform random markers whose distribution is restricted to
areas that accomplished a specific condition, for example they can
only be located in high-intensity areas (Angulo and Jeulin, 2007;
Angulo and Velasco-Forero, 2010).

In this thesis, stratified and uniform random markers are used. It can
be observed in Subsection 3.3.2 and Section 3.5.

Making use of random markers, a watershed transformation variant
is used to solve over and under-segmentation problems related to
the classical watershed, the stochastic watershed (Angulo and Jeulin,
2007). In this transformation, a given number M of marker-controlled-
watershed realizations are performed selecting N random markers in
order to estimate a probability density function (pdf) of image contours
and filter out non-significant fluctuations. Let {fmrki}

M
i=1 be M sets

of N uniform random markers and WSi = WS(%)fmrk i the ith output
image of the marker-controlled watershed imposed by fmrki. The pdf
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of image contours is computed by Parzen window method (Duda and
Hart, 1973) as follows

pdf(x) =
1

M

M∑
i=1

(WSi(x) ∗G(x; s)), (3.9)

where G(x; s) represents a Gaussian kernel of variance σ2 and mean µ
(µ = 0)

G(x; s) =
1

2πσ2
e
−
(
‖x‖2

2σ2

)
. (3.10)

Figure 3.8 illustrates how the pdf is generated. Afterwards, it is
necessary to perform a last marker-controlled watershed on the pdf
obtained.

This type of watershed works better than other marker-based
watershed transformations used previously in the literature. In the
next sections, two different applications of the stochastic watershed will
be explained in detail, one for vessel centerline extraction and other for
optic disk segmentation.

3.3 Vessel segmentation

Retinal vasculature is able to indicate the status of other vessels of
the human body. Indeed, the retina is the only location where blood
vessels can be directly visualized non-invasively in vivo (Patton et al.,
2006). That is the reason why its study is usually included in the
standard screening of any patient with diseases in which the vessels may
be altered. In many instances, preclinical signs are not easily recognized
and often appear as signs or symptoms that are not specific for a
particular disease, but the retina and its blood vessel characteristics
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(a) (b)

(c) (d) (e)

(f) (g) (h)

Figure 3.8: Probability density function: (a) Original image f , (b) Probability
density function of contours computed by Parzen window method for N=5
and M=5, (c-e) Random markers fmrki and (f-h) Corresponding marker-
controlled-watershed realizations WSi. The pdf is generated by combining the
different WSi.

have shown to be a window into several disease processes (Cree and
Jelinek, 2011).

In this section, algorithms for vascular network determination will
be presented, both for extraction of the complete retinal vasculature
and the vessel centerline.
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3.3.1 Vessel extraction

The proposed segmentation method is based on mathematical
morphology and curvature evaluation for the detection of retinal
vascular tree. Although fundus images are RGB images, only
monochrome images obtained from the green band are drawn on because
they provide an improved visibility of retinal blood vessels as shown in
Figure 3.9.

(a)

(b) (c) (d)

Figure 3.9: RGB to gray conversion: (a) Original RGB image, (b) Red
component, (c) Green component and (d) Blue component.

Non-uniform illumination and low contrast are typical and inherent
problems to the image capture technique. Moreover, in the case of
retinal images, both problems are especially pronounced due to the fact
that the retina is a spherical structure and it is necessary the use of a
spotlight to capture the image. So, they should be corrected previously
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to the image processing. In this work, next local transformation for
shade correction (Walter and Klein, 2002) was used:

Γ(f)(t) =


1
2

(umax−umin)

(µf−tmin)r (t− tmin)r + umin if t ≤ µf

− 1
2

(umax−umin)

(µf−tmax)r (t− tmax)r + umax if t > µf ,

(3.11)

where tmin and tmax are the minimum and maximum gray level of the
image respectively, umin and umax are the target levels (typically 0 and
255 respectively), µf is the mean value of the image for all pixels within
a window centered at the current pixel x of the fixed size L, and the
parameter r is used to control the contrast increasing (experimentally
L = 51 and r = 3 for fundus images). The effect of this transformation
can be observed in Figure 3.10. Note that all size parameters used in the
vessel extraction method are optimized for the resolution of the images
belong to DRIVE database (Staal et al., 2004), which will be described
in the material subsection (Subsection 3.7.1).

(a) (b)

Figure 3.10: Image enhancement: (a) Green component and (b) Local shade
correction.

After image pre-processing, the following stages are implemented for
vessel segmentation:
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First, a small opening, using a disk of radius 1 (B1) as structuring
element (SE), is performed on the enhanced green component image to
fill in any gaps of the vessels which could induce errors in segmentation.
See Figure 3.11.

(a) (b)

Figure 3.11: Small opening: (a) Enhanced green component and (b) Opening
using B1 as SE.

Then, principal curvature is calculated as the maximum eigenvalue
(λmax) of the Hessian matrix (Martinez-Perez et al., 2007)

H =

(
∂xxf ∂xyf
∂yxf ∂yyf

)
, (3.12)

where ∂ijf represents the second directional derivatives of an image
f(x, y). The Hessian matrix is calculated at different scales (s =
{0, 2, 8, 14}) by convolving the original image f(x, y) with a Gaussian
kernel G of variance s2,

fs(x, y; s) = f(x, y)⊗G(x, y; s) = f(x, y)⊗ 1

2πs2
e−

x2+y2

2s2 . (3.13)

Finally, the principal curvature fκ is obtained by normalizing each λmax
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by 2s and computing the local maxima over scales:

fκ = max
s

(
λmax(s)

2s

)
. (3.14)

If the principal curvature is directly calculated on the enhanced
image, all structures with high curvature are highlighted, not only the
vessels. The optic disk border has also high curvature but it should
not be detected. This is a typical problem that occurs in most edge
detection methods for vessel segmentation. To solve this problem, a
dual top-hat, with a circular SE larger than the biggest vessel (B2), is
applied with the goal of extracting all of them and eliminating structures
with high curvature that are not vessels, as the optic disk. Figure 3.12
illustrates the difference between calculating the principal curvature
directly on the enhanced image and on the result of the dual top-hat.

(a) (b) (c)

Figure 3.12: Principal curvature computation: (a) Principal curvature of the
enhanced image, (b) Dual top-hat on the enhanced image and (b) Principal
curvature of the dual top-hat.

After that, a reconstruction by dilation is applied to reconstruct
the principal curvature from a supremum of openings (γsupB (f) =∨
i{γBi(f)}). In particular, the openings were calculated using a line

of size 31 as SE every 15◦ (B3 = {B31 , B32 , ..., B3N }, being N the total
number of openings). This operation removes any structure smaller
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than this SE in any orientation obtaining a cleaner background. See
Figure 3.13(a) and 3.13(b).

Finally, to binarize the resulting image a k-means clustering
(MacQueen, 1967) is used with a k value equals to 3, giving rise to
fkm = (f1, f2, f3). Afterwards, a modification of the k-means output
is carried out; two of the three obtained clusters are defined as vessel
(fout = f1 ∪ f2), considering that f3 corresponds to the background.
Three classes are required because thick and thin vessels can be very
different. Figure 3.13(c) depicts the resulting image.

(a) (b) (c)

Figure 3.13: Final vessel segmentation steps: (a) Supremum of openings, (b)
reconstruction by dilation and (c) K-means clustering (segmented image).

Algorithm 3.1 summarizes the main steps of the segmentation
method.

The method presented in this Subsection as the same way as the
method of Zana and Klein et al. (Zana and Klein, 2001) is based on
mathematical morphology and curvature evaluation for the detection of
the vascular retinal tree. However, the operations used for this purpose
are different. Zana and Klein performed a geodesic reconstruction of a
supremum of openings to remove noise from the original image while
preserving most of the capillaries. Then, a sum of top hats is calculated
to improve the contrast of the linear parts. Afterwards, the curvature
is computed by means of the Laplacian operator and the final result
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Algorithm 3.1: Vessel segmentation

Data: Original RGB fundus image f = (fR, fG, fB), Scale vector
s = [0, 2, 8, 14], Gaussian kernel G

Result: Vessel binary mask, fout

initialization: B1, B2,B3 (as main text) ;

fin ← fG Green component selection ;
fenh ← Γ(fin)) Image enhancement ;
fop ← γB1(fenh) Opening ;
fdth ← ρB2(fop) Dual top-hat ;

Principal curvature:
for i← 1 to length(s) do

fsi ← fdth ⊗G(si) ;
Hsi ← H(fsi) ;
λmaxsi ← max{eig(Hsi)} ;

λ′maxsi
←

λmaxsi
2si

;

end
fκ ← maxs

(
λ′maxs

)
;

fso ← γsupB3
(fκ) Supremum of openings ;

frec ← Rδfκ(fso) Reconstruction by dilation ;

fout ←MKM(frec) Modified k-means clustering ;

is obtained with an alternating filter. The proposed method calculates
the curvature of a dual top-hat and then a reconstruction by dilation is
applied to remove noise. The final result is achieved through a k-means
clustering.

3.3.2 Centerline extraction

In general, the detection of retinal vascular network is necessary
before analyzing vessel features. The most common approach in the
literature is a first stage of vessel segmentation, then the skeletonization
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of the detected vessels and finally the analysis of different features on
the vascular skeleton as vessel caliber or bifurcation angles. The major
drawback of this approach is the dependence of the different stages
with the previous ones in addition to computational cost. Based on
these facts, this subsection is focused on obtaining the retinal skeleton
in a direct way avoiding the segmentation stage. Its goal is to reduce
the number of necessary steps in the fundus image processing. As a
consequence, this would also reduce the dependency of previous stages.
Specifically, the method proposed for this purpose is mainly based on
mathematical morphology along with curvature evaluation. Two main
steps are involved: in the first step, the principal curvature is calculated
on the retinal image. In the second step, the stochastic watershed
transformation, presented in Subsection 3.2.2, is applied to extract the
vascular skeleton. The main stages are included in the flowchart shown
in Figure 3.14.

Enhanced 
Green 

Component

Opening 
Operator

Dual Top-Hat 
Filtering

Principal 
Curvature

Stochastic 
Watershed

Frontier 
Extraction

Thresholding Pruning ProcessX

Figure 3.14: Flowchart for skeleton extraction.

The first steps of the method are the same that those included
in the method for vessel segmentation presented in Subsection 3.3.1.
Although fundus images are RGB format (Figure 3.15(a)), only the
green component is used (Figure 3.15(b)). Moreover, this gray image
is enhanced by means of the Equation 3.11. Then, a small opening,
using a disk of radius 1 as SE (B1), is performed on the enhanced
green component image to fill in any gaps in vessels that could provoke
subsequent errors, for example due to brighter zone within arteries.
Next, a dual top-hat, with a SE larger than the widest vessel (B2), is
applied with the goal of extracting all of them and eliminating structures
with high gradient that are not vessels, as occurs with the optic disk
border (Figure 3.15(c)). Afterwards, with the aim of highlighting the
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vessels on the background, principal curvature, fκ, is calculated as the
maximum eigenvalue of the Hessian matrix (Martinez-Perez et al., 2007)
resulting the image shown in Figure 3.15(d).

(a) (b)

(c) (d)

Figure 3.15: First steps of the skeleton extraction process: (a) Original
fundus image, (b) Green component, (c) Dual top-hat filtering and (d)
Principal curvature.

However, the following steps are different from those of the previous
segmentation method and the stochastic watershed is applied to the
curvature image. This transformation uses random markers to build a
probability density function (pdf ) of contours (Figure 3.16(a)), which is
then segmented by a last marker-controlled watershed. The vascular
skeleton is part of the frontiers of the resultant regions as can be
observed in Figure 3.16(b).

In that case, both for pdf obtaining and for last marker-controlled
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(a) (b)

Figure 3.16: Use of the stochastic watershed for vascular skeleton extraction:
(a) Probability density function (pdf) of contours obtained with 10 simulations
and 300 random markers and (b) Watershed frontiers.

watershed, random markers are combined with some controlled markers.
This is due to the morphology of the vascular network which contains
multitude of vessel crossings. In addition to the random markers, it is
forced that there is one marker at least in the area delimited by the
crossing of two vessels (controlled markers). This methodology avoids
that the vessels close to some crossing are not detected by the watershed
transformation. The crossing areas are determined by means of the
residue of the close-hole operator on fκ and then one or more markers
are chosen randomly within these areas giving place to the controlled
markers. This problem is illustrated in Figure 3.17, where only a region
of interest is shown for better visualization.

In order to discriminate which watershed frontiers are significant and
which ones are not and should be filtered out, the frontiers are multiplied
by fκ and then are thresholded (Figure 3.18(a)) using a fixed threshold,
experimentally t = 0.05. Once the skeleton is obtained, a pruning
process is applied to remove possible spurs giving rise to the final result
of the method (Figure 3.18(b) and 3.18(c)).

The implemented pruning process is characterized by removing spur
branches but without altering the main branches. Only the branches
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(a) (b) (c)

(d) (e) (f)

Figure 3.17: Stochastic watershed on the crossing of two vessels: (a)
Enhanced green component, (b) Principal curvature (fκ), (c) Residue of close-
hole operator, (d) Random (blue N) and two controlled (green H) markers, (e)
Result of the stochastic watershed using only the random markers shown in blue
and (f) Result of the stochastic watershed combining random and controlled
markers (blue and green).

(a) (b) (c)

Figure 3.18: Final steps of the skeleton extraction process: (a) Product
between the principal curvature and the watershed frontiers after thresholding,
(b) Pruning and (c) Final result.

whose size is less than a threshold (nmax = 15) are removed while the
other are kept intact (Walter, 2003). The pruning method is based on
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defining a function Υ(S) which assigns to each point from the skeleton
S the number n of thinning sequences needed to remove it from S. The
value of the function Υ(S) is nmax + 1 for the points x ∈ S which are
not removed after nmax thinning processes. Then, making use of the
function Υ(S), it is possible differentiate between the secondary and
the main skeleton branches. A branch is considered as secondary if
Υ(S(x1) − Υ(S(x2)) > 1, being x1 and x2 two adjacent points of the
skeleton branch. Afterwards, the secondary branches are disconnected
from the main branches and a reconstruction by dilation is applied
using this image as reference and being the marker image that defined
by Equation 3.15. This operation manages to reconstruct the original
skeleton but without spur branches. Figure 3.19 shows an example of
the main pruning steps.

mrk =

{
1 if Υ(S(x))) = nmax + 1
0 otherwise

(3.15)

(a) (b) (c)

Figure 3.19: Pruning process: (a) Original skeleton, (b) Skeleton with the
secondary branches disconnected and (c) Pruned skeleton.

Algorithm 3.2 summarizes the steps of the vessel centerline extrac-
tion method.
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Algorithm 3.2: Vessel centerline extraction

Data: Original RGB fundus image f = (fR, fG, fB), Scale vector
s = [0, 2, 8, 14], Gaussian kernel G

Result: Vessel centerline, fout

initialization: B1, B2 (as main text) ;

fin ← fG Green component selection ;
fenh ← Γ(fin) Image Enhancement ;
fop ← γB1(fenh) Opening ;
fdth ← ρB2(fop) Dual top-hat ;

Principal curvature:
for i← 1 to length(s) do

fsi ← fdth ⊗G(si) ;
Hsi ← H(fsi) ;
λmaxsi ← max{eig(Hsi)} ;

λ′maxsi
←

λmaxsi
2si

;

end
fκ ← maxs

(
λ′maxs

)
;

fws ←WS(fκ)fmrk Stochastic Watershed with random and
controlled markers ;
fth ← (fκ × fws) < t Thresholding ;
fout ← Υ(fth) Pruning ;

3.4 Significant points

This section presents how to detect one of the main features that
define and characterize the retinal vascular network: its significant
points. The detection of significant points in the retinal vascular tree
will increase the information about the vascular structure allowing its
use for medical diagnosis (Calvo et al., 2011).

In general, the significant points of the vascular network are detected
on vessel centerline. As mentioned in the previous section, the centerline
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can be obtained after a skeletonization process of the vessels previously
segmented or through some method by which the skeleton is directly
obtained as that presented in Subsection 3.3.2.

In the vascular skeleton there are three types of significant points:
terminal, bifurcation and crossing points. All of them must be detected
due to their interest to characterize the relations between the different
branches of the skeleton, i.e., relations between the parent and daughter
branches.

Hit-or-miss transformation (HMT) is a binary morphological opera-
tion which is used for detecting specific patterns in an image (Gonzalez
et al., 2004). Therefore, it can be applied to detect the significant points
on a binary skeleton image. The structuring element (SE) employed in
this operation is called composite structuring element since it contains
two SE. The first, denoted by BFG, defines the set of pixels that should
match the foreground (positive pixel values) while the second, denoted
by BBG, defines the set of pixels that should match the background
(zero pixel values). By definition, BFG and BBG share the same origin
and are disjoint sets, i.e., BFG ∩ BBG = 0. Depending on whether the
origin belongs to BFG or BBG the HMT extracts foreground or back-
ground pixels (Soille, 2003). Figure 3.20 depicts a composite structuring
element B = (BFG, BBG) where BFG is denoted by 1’s, BBG by 0’s and
the rest of values are ignored. In this example, the HMT would detect
the pixels with a neighbor on the left but that up, down and to the
right did not have any. The value of the left diagonals does not matter,
it could be 0 or 1.

0 0

1 1 0

0 0

B

= 1 1

BFG

+

1 1

1

1 1

BBG

Figure 3.20: Example of a composite structuring element.

The HMT of a set X by a composite structuring element B =
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(BFG, BBG) can be written in terms of an intersection of two erosions
(Soille, 2003):

HTMB(X) = εBFG(X) ∩ εBBG(Xc), (3.16)

where Xc is the complement set (i.e., the negative).

3.4.1 Terminal and bifurcation points

The hit-or-miss transformation can be directly applied to the
vascular skeleton to locate terminal and bifurcation points using the
different SE shown in Figure 3.21 and 3.22. It must be remembered
that BFG is denoted by 1’s and BBG by 0’s. Note that these SE must be
used in all their orientations, one each 90◦, so four hit-or-miss iterations
are required for each one.

0 0

1 1 0

0 0

B11

1 0 0

0 1 0

0 0 0

B12

Figure 3.21: Structuring elements used for detecting terminal points.

1

1 1

1

B21

1

0 1

1 0 1

B22

1

1

1 0 1

B23

1

1 1

1

B24

Figure 3.22: Structuring elements used for detecting bifurcation points.

The choice of the SE shape is related to the topology of the point in
question. For example, on the one hand, any terminal point will have
only one neighbor and it will be round by background pixels and, on
the other hand, a bifurcation point will have three neighbors located in
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particular positions. This can be appreciated clearly if the SE defined
in Figure 3.22 are observed.

Retinal skeleton is an one-pixel-thick structure fully 8-connected.
However, when the significant points belonging to the skeleton are being
looked for, it is wanted to avoid the multiple paths that are inherent in
this type of connectivity. Therefore, previously to point detection, it is
necessary to convert the skeleton from 8-connectivity to m-connectivity
so that the multiple paths are removed.

A pixel p has four horizontal and vertical neighbors N4(p) and
four diagonal neighbors ND(p). All these neighbors are called the 8-
neighbors of p, denoted by N8(p). Two binary pixels p and q are 8-
connected if q is in the set N8(p) but they are m-connected if

1. q is in N4(p), or

2. q is in ND(p) and N4(p) ∩N4(q) = 0.

The difference between 8-connectivity and m-connectivity can be
appreciated in Figure 3.23. This conversion is necessary because the
central pixel makes that there is not only a possible path in the skeleton
therefore the detection of significant points and any tracking process
performed later could be erroneous.

(a) (b)

Figure 3.23: 8-connectivity to m-connectivity conversion (a) 8-connected
skeleton and (b) m-connected skeleton.

In the case of the 8-connectivity, the multiple paths are manifested in
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four basic patterns which are shown in Figure 3.24. It can be observed
that the case shown in Figure 3.23 corresponds to the patterns B32 and
B33 .

0 1

1 1

0

B31

1 0

1 1

0

B32

0

1 1

1 0

B33

0

1 1

0 1

B34

Figure 3.24: Structuring elements used to convert an 8-connected skeleton
to m-connectivity.

The HMT allows to detect all these patterns. Then, the central
pixels must be changed to 0 for eliminating the multiple paths. The
conversion from 8 to m-connectivity can be performed through a basic
sequence of morphological steps:

Θ1(X,B31) = X −HMTB31
(X) = X ∩

[
HMTB31

(X)
]c

Θ2(Θ1, B32) = Θ1 −HMTB32
(Y1) = Y1 ∩

[
HMTB32

(Y1)
]c

Θ3(Θ2, B33) = Θ2 −HMTB33
(Y2) = Y2 ∩

[
HMTB33

(Y2)
]c

Θ4(Θ3, B34) = Θ3 −HMTB34
(Y3) = Y3 ∩

[
HMTB34

(Y3)
]c

Θ(X,B3) = Θ4,

(3.17)

where X is the input image that contains the 8-connected skeleton
and Θ the output image with the corresponding skeleton with m-
connectivity.

3.4.2 Crossing points

Due to the fact that the intersections between different branches of
the vascular tree are formed, usually, by a set of pixels, most crossing
points cannot be detected by pattern recognition on skeleton, i.e.,
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through the hit-or-miss transformation. It can only be applied in simple
crossing point detection using the SE shown in Figure 3.25.

0 1 0

1 1 1

0 1 0

B41

1 0 1

0 1 0

1 0 1

B42

Figure 3.25: Structuring elements used for detecting simple crossing points.

However, practically most, if not all crossing points are not simple,
or in other words, the branches do not intersect in only one pixel but
several points can belong to the same intersection. This provokes
that the extremes of the intersection are considered as bifurcation
because both of them have three neighbors and accomplishes some of the
characteristic pattern of the bifurcation points. Figure 3.26 represents
the different types of crossing points. The light gray branch intersects
with other two branches drawn in dark gray giving rise to a simple (X)
and a complex (O) crossing point marked in black.

oo
o

o

x

o

Figure 3.26: Different types of crossing points: simple (X) and complex (O).

Most works of the state of the art consider that the vessel crossing



62 Chapter 3. Retinal structure characterization

points are two bifurcation points very close to each other. So, a fixed-
size circular window is centered on the candidate bifurcations and if
there exist four intersections between the window and the skeleton, the
point is marked as crossing. The problem of this approach is that the
crossing point detection depends on a large degree on the window size.
If the size is too small, the crossings are not detected and if the size is
too big other vessels not belonging to this crossing can intersect with
the window. Moreover, it must be taken into account that the size of
the intersections vary from one case to another.

Retinal vessels have their origin in the optic disk head. From this
center, the vessels bifurcate and constitute the retinal vascular tree.
It is common that arteries and veins intersect in some occasion and
generate the crossing points under consideration (Figure 3.27(a)). This
means that when they intersect, as the vessels have a common origin,
generate a sort of close loop which will be useful to differentiate if one
point is a crossing point or not (Figure 3.27(b)). Based on this idea,
a new algorithm is proposed to analyze all points detected initially as
bifurcation in order to discriminate those that are really crossing points.

(a) (b)

Figure 3.27: Vessel intersection: (a) Intersection between two vessels and
(b) Close loop formed by an intersection.

First, a bifurcation point is considered as candidate to crossing
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point if when a circular window is centered on this point, there are
four or more intersections between the skeleton and this window (W ).
The window radius will be three times the median of the diameter
of the vessels in all points detected initially as bifurcation. This size
was established empirically. Then, if the candidate point is part of a
close loop generated by the skeleton branches, the closest candidate
to crossing point is looked for, and if it is directly connected with
the previous point and is not part of the same loop, both of them
are established as crossing points. Figure 3.28 represents this process.
Terminal and bifurcation points detected by the HMT are marked in
red and green, respectively (Figure 3.28(a)). In Figure 3.28(b) the
candidates to crossing points are highlighted in yellow. The close loops
that contain some candidate point are drawn in Figure 3.28(c). Figure
3.28(d) shows the final result with the crossing points detected in white.

With this type of analysis, the more common intersection extremes
are completely identified. In addition, it should be taken into account
that the pixels between these points are also part of the same
intersection.

Algorithm 3.3 summarizes the complete process of the detection of
the significant points on the retinal vascular skeleton. B1,B2,B3,B4

are the composite structuring elements defined in Figures 3.21, 3.22,
3.24 and 3.25.

3.5 Optic disk segmentation

Optic disk (OD) segmentation is a key process in many algorithms
designed for the automatic extraction of anatomical ocular structures,
the detection of retinal lesions, and the identification of other fundus
features. The following examples can be stood out. The OD
location helps to avoid false positives in the detection of exudates
associated with diabetic retinopathy, since both of them are spots
with similar intensity (Walter et al., 2002). The OD margin can be
used for establishing standard and concentric areas in which retinal
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(a) (b)

(c) (d)

Figure 3.28: Automatic detection of common intersections: (a) Significant
points detected by means of HMT (terminal points in red and bifurcation points
in green), (b) Crossing point candidates, (c) Close loops formed by branches
that contain some candidate point and (d) Crossing points automatically
detected (white).

vessel diameter measurements are performed by calculating some
important diagnostic indexes for hypertensive retinopathy, such as
central retinal artery equivalent (CRAE) and central vein equivalent
(CRVE) (Hubbard et al., 1999; Knudtson et al., 2003). The relation
between the area of the optic disk and the optic cup is used for glaucoma
diagnosis (Liu et al., 2009; Hatanaka et al., 2010). The relatively
constant distance between the OD and the fovea is useful for estimating
the location of the macula (Niemeijer et al., 2009). The center, or even
the border, of the OD also serves as initial point for vessel tracking
algorithms due to the fact that all retinal vessels are originated from
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Algorithm 3.3: Significant point detection

Data: Image of the retinal skeleton f , Circular window W
Result: Image of the terminal points fTP , Image of the

bifurcation points fBP , Image of the crossing points fCP

initialization: B1,B2,B3,B4 (as main text) ;

fm ← ΘB3(f) m-connectivity conversion ;

fTP ← HMTB1(fm) terminal point detection ;
fBP ← HMTB2(fm) bifurcation point detection ;
fCP1 ← HMTB4(fm) simple crossing point detection ;

complex crossing point detection:
for i← 1 to

∑
(fBP ) do

if
∑

(WBPi ∗ fm) ≥ 4 then
if fBPi ∈ close loop then

fBPj ← argmin(fBPi , fBP ) ;
if (fBPiis connected with fBPj ) & (loop(fBPi) 6=
loop(fBPj )) then

fCP2ij
= fBPi + fBPj ;

end

end

end

end

fCP = fCP1 + fCP2 crossing point detection ;

there (Gagnon et al., 2001).

The automatic method proposed for optic disk segmentation is
focused on the stochastic watershed using different operations based
on mathematical morphology on a fundus image to obtain the OD-
contour. Previously, a pre-processing of the original RGB image is
required. The first step of the pre-processing consists of applying PCA
to transform the input image to gray scale. This technique combines
the most significant information of the three components RGB in a
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single image so that it is a more appropriate input to the segmentation
method. After segmentation, a post-processing is also performed to fit
the final region contour by a circumference. In Figure 3.39, the block
diagram of the complete segmentation process is depicted.

Circular approximation

Post-processing

1. PCA
2. Image Enhancement
3. Inpainting

Pre-processing

1. Centroid Calculation
2. Stochastic Watershed
3. Region Discrimination

OD Segmentation

RGB image OD-contour

Figure 3.29: Optic disk segmentation diagram.

3.5.1 Pre-processing

PCA

Generally, an initial gray-scale image is necessary to carry out most
of the segmentation algorithms of the literature. However, in the case
of the OD segmentation, each author considers appropriate a different
intensity image, such as a band of the original RGB image (Niemeijer
et al., 2009; Walter et al., 2002) or a component of other color spaces
(Lowell et al., 2004; Osareh et al., 2002). In this work, the use of a new
gray-scale image is proposed. Specifically, it is calculated by means
of principal component analysis (PCA) because this type of analysis
maximizes the separation of the different objects that compose an image
so that the structures of the retina are better appreciated. In addition,
it is much less sensitive to the existing variability in a fundus image
regarding color, intensity, etc.

The central idea of PCA is to reduce the dimensionality of a data set
consisting of a number of interrelated variables, while retaining as much
as possible of the variation present in the data set. This is achieved by
transforming to a new set of variables, the principal components (PCs),
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which are uncorrelated, and ordered so that the first few retain most of
the variations present in all of the original variables (Jolliffe, 2002).

Suppose that v is a vector of p random variables with a mean equal
to 0, the kth PC, zk, will be a linear function αk

′v of the elements of
v where αk is a vector of p constants αk1 , αk2 , ..., αkp and ′ denotes
transpose

zk = αk
′v = αk1v1 + αk2v2 + ...+ αkpvp =

p∑
j=0

αkjvj . (3.18)

α1
′v will have maximum variance, α2

′v will be uncorrelated with α1
′v

and will have maximum variance, and so on, so that at the kth stage
αk
′v will have maximum variance subject to being uncorrelated with

α1
′v, α2

′v, ..., αk−1
′v.

For a three-channel image transforming to a principal component
space creates three new channels in which the first (the most significant)
contains the most structural contrast and information. The rank for
each axis in the principal set represents the significance of that axis
as defined by the variance in the data along that axis. Thus, the first
principal axis is the one with the greatest amount of scatter in the
data and consequently the greatest amount of contrast and information,
while the last principal axis represents the least amount of information
such as noise and image artefacts (Russ, 2007). In this case, the PCs
are given by

zk = αk
′f = αkR(fR − f̄R) + αkG(fG − f̄G) + αkB (fB − f̄B), (3.19)

where f(x) = (fR(x), fG(x), fB(x)) represents an RGB image, f̄i is the
mean of each RGB component and k ∈ {1, 2, 3}.
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Specifically, principal-component axes (αk) will be the eigenvectors
of the covariance matrix Σ. This is the matrix whose (i, j)th element is
the covariance between the ith and jth elements of f when i 6= j, and
the variance of the jth element of f when i = j according to

Σ =

 σRR σRG σRB
σGB σGG σGB
σRB σGB σBB

 . (3.20)

Being:

σmn =
1

N

N∑
i=1

(fmi − f̄m)(fni − f̄n), (3.21)

where N is the number of pixels of the image, (m,n) represent the
possible combinations between the RGB components and f̄m and f̄n
determine the mean of the corresponding component, respectively.

Therefore, z1, z2, and z3 are the PCs of the image f so that α1

is the eigenvector corresponding to the largest eigenvalue of Σ, α2

corresponding to the second largest eigenvalue, and α3 corresponding
to the smallest one. Figure 3.30 shows the PCs of a RGB fundus image
where can be appreciated that the first PC contains the most structural
contrast and information.

The first PC is the most significant so, z1 is chosen as the input image
of the method. It must be stressed that to ensure that z1 contains the
most structural contrast and information of the original RGB channels,
it should be verified that the largest eigenvalue represents at least a
90% of the total sum of eigenvalues. In spite of this situation is not
often in the consulted databases, if the largest eigenvalue represents
less than 90%, the components whose sum of eigenvalues get the 90%
must be processed in parallel. Afterwards, the input of the watershed
transformation will be the pixel-wise maximum of the gradient images.
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(a) (b)

(c) (d)

Figure 3.30: Principal components (PCs): (a) Original fundus image, (b)
First PC z1, (c) Second PC z2 and (d) Third PC z3.

The non-uniform illumination of this gray image is corrected by
means of the local transformation (Γ) of the Equation 3.11. Γ is applied
on z1 resulting in an enhanced image

z
′
1 = Γ(z1). (3.22)

Inpainting

Retinal vessels are originated from the OD therefore numerous
vessels cross its border which makes its discrimination difficult. So,
vessel removal of the enhanced image is implemented by an inpainting
technique.

Inpainting algorithms are used in diverse applications, from the
restoration of damaged photographs to the removal/replacement of
selected objects (Guillemot and Le Meur, 2014). These algorithms
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usually try to fill selected parts of an image by propagating external
information so that structure continuity is preserved.

Although there exist numerous inpainting techniques (Liang et al.,
2001; Levin et al., 2003; Telea, 2004; Mairal et al., 2008), a simple
diffusion-based algorithm was implemented in this work. Let a binary
image Ω(x) stand for the region to be inpainted and ∂Ω for its boundary.
For each ∂Ω-pixel, x, the inpainted-pixel value is computed as

P (x) =

n∑
k=1

Pk(x)

lk
n∑
k=1

1

lk

, (3.23)

where Pk denotes the pixel values in a 5 x 5 neighborhood of the pixel
under consideration, n is the number of neighboring pixels, and lk is
the distance between the pixel x and each neighboring pixel. So that
the inpainted image Ψ(f,Ω)(x) of a gray image f(x) is

Ψ(f,Ω)(x) =

{
f(x) if ∂Ω(x) = 0
P (x) if ∂Ω(x) = 255.

(3.24)

After filling ∂Ω with the computed values, the ∂Ω-pixels are removing
from Ω and ∂Ω is recalculated. The process is repeated until the mask
is empty and all pixels are filled.

In particular, the region to be inpainted Ω is a binary mask of
the retinal vessels, which must have been segmented previously. The
method used for vessel segmentation is that proposed in Subsection
3.3.1. Afterwards, a unitary morphological dilation of the segmented
vessels yields the final vessel mask. The purpose of this operation is to
make sure that the vessels will be contained in the mask.
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The aim of applying the inpainting is to extract the OD-boundary
more precisely and to reduce the existing borders within the OD which
increase the risk of under-segmentation. This operation gives place to

z
′′
1 = Ψ(z

′
1,Ω), (3.25)

being z
′
1 the enhanced image (Equation 3.22), Ω the binary image with

the segmented vessels and z
′′
1 the inpainted image.

In Figure 3.31 the pre-processing of the original image, shown in
Figure 3.30(a), can be observed, both the obtaining of the first PC and
its enhancement by means of non-linear transformation Γ and also the
vessel removal. Note that the whole image is processed although only
a region of interest is shown for better visualization.

3.5.2 Processing

Marker selection

As mentioned above, the segmentation method makes use of the
stochastic watershed. This transformation uses random markers to
build a probability density function (pdf) of contours, according to
Equation 3.9, which is then segmented by volumic watershed to define
the most significant regions. However, in the marker definition not only
internal markers (that specify what is the object of interest) are needed,
but also an external marker which limits the area to be segmented.

On the one hand, the chosen external marker, fext, will be a circle of
constant diameter centered on the centroid of the optic disk. The size
of the circle is related to the image size, so that it is approximated by
a 15% of the size of the fundus image (with this size we made sure that
the optic disk is included). The challenge is to be able to find the OD
centroid prior to being segmented. For this purpose, we work with the
centroid of a gray-level image.
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(a) (b) (c)

(d) (e)

Figure 3.31: OD pre-processing: (a) Original image, (b) First PC z1, (c)
Enhanced image z′1, (d) Vessel mask to be inpainted Ω, and (e) Inpainted image
z′′1 .

The centroid of a gray-level image can be calculated based on the
generalized distance function (GDF) (Vincent, 1998). This algorithm is
focused on modifying the classic two-pass sequential distance function
(Rosenfeld and Pfaltz, 1968) so that: (1) edge cost is taken into
account; (2) raster and anti-raster scans of the image are iterated until
stability. Let N+(p) (resp., N−(p)) be the 8-connected neighborhood
of pixel p scanned before p (resp., after p) in a raster scan, and
Cf (p, q) = f(p) + f(q) the associated cost to two neighboring pixels
p and q, the algorithm of GDF to set X in an image f proceeds as
follows:

Initialize result image df : df (p) = 0 if p ∈ X and df (p) = +∞
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otherwise.

Iterate until stability, for each pixel p:

– Scan image in raster order:
df (p)← min{df (p),min{df (q) + Cf (p, q), q ∈ N+(p)}}.

– Scan image in anti-raster order:
df (p)← min{df (p),min{df (q) + Cf (p, q), q ∈ N−(p)}}.

More specifically, the gray-level centroid of an image f can be
obtained as the maximum of the GDF to the image border set B as
follows:

Compute GDF to set B in image f , df (B).

Find the maximal value of df (B), umax.

Threshold df (B) with the umax calculated to define set C as image
centroid.

If C has more than one pixel, compute the centroid of set C as
the maximum edge distance.

This way for calculating the gray-image centroid combines the
centrality of the image with respect to edge distance (i.e. purely
geometric) but penalizing this distance in relation to the intensities.
Thus, note that it cannot be defined as the center of mass of the
intensities or as the center of the brighter and larger zone, since the
two effects are combined. In Figure 3.32 the result of applying the
algorithm on the first principal component of the original image after
inpainting technique can be appreciated.

If Figure 3.32(c) is observed, we can see that the image centroid
does not match with the OD centroid. To obtain the desired result, the
optic disk should be a brighter zone than the background (sufficiently



74 Chapter 3. Retinal structure characterization

(a) (b) (c)

Figure 3.32: Gray-image centroid on z1: (a) First PC (z1) after inpainting
technique, (b) GDF of (a), and (c) Image centroid.

contrasted) and should have a significant size with respect to the
image size. So, to accomplish this condition, the algorithm should be
computed on the residue of a close holes of the original gray image as
shown Figure 3.33.

(a) (b) (c)

Figure 3.33: Gray-image centroid on the residue of close operator: (a)
Residue of close operator of Figure 3.32(a), (b) GDF of (b), and (c) Image
centroid.

On the other hand, the internal markers, fint, will be uniform
random markers generated within the area limited by fext. See Figure
3.34. Hence, the final set of markers fm (external and internal) is the
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logical OR of both of them,

fm = fint ∨ fext. (3.26)

(a) (b)

Figure 3.34: Final markers: (a) Centroid image and (b) Uniform random
markers limited by an external circle centered on the image centroid.

Stochastic watershed transformation

In particular, the pdf is built from 15 marker-controlled-watershed
realizations, as showed in Subsection 3.2.2, using as input the gradient
of the inpainted image %(z

′′
1 ) (Figure 3.35(a)). Therefore, in that case,

the ith watershed output WSi = WS(%(z
′′
1 ))fmi , being fmi the final set

of markers used in the corresponding simulation. fint is generated for
each simulation while fext is the same in all of them. The number of
internal markers used is N = 100.

Obtaining a pdf of the contours of the watershed regions (Figure
3.35(b)) facilitates the final segmentation, providing robustness and
reliability since the arbitrariness in choosing the markers is avoided.
Afterwards, the pdf can be combined with the initial gradient in order to
reinforce the gradient contours which have a high probability resulting
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a probabilistic gradient (Angulo and Jeulin, 2007),

ρ(z
′′
1 )(x) = (1− λ)%(z

′′
1 )(x) + λpdf(x), (3.27)

with λ = 0.5 the results are in general satisfactory.

(a) (b)

Figure 3.35: Probability density function: (a) Gradient image %(z
′′

1 ) and (b)
Probability density function of contours using 15 simulations and 100 internal
markers.

Finally, a last marker-controlled watershed is applied to ρ(z
′′
1 )(x) us-

ing a new set of markers fm′ , giving rise to the image Π(WS(ρ(z
′′
1 )fm′ )),

which is shown in Figure 3.36(b), where the different obtained regions
Π can be appreciated. In this case, stratified markers are employed in-
stead of random markers as shown Figure 3.36(a). The reason for using
this type of markers is to make sure that every pixel within the area in
question belongs to a watershed region. Due to the fact that there are
markers located outside the OD, not all regions obtained by the water-
shed transformation are wanted. If each region of Π(WS(ρ(z

′′
1 )fm′ )) is

named as Πi, the next stage of the proposed method is to discriminate
which Πi are significant and which ones are not and should be filtered
out.
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(a) (b)

Figure 3.36: Last marker-controlled watershed: (a) Stratified markers, and
(b) Watershed regions Π(WS(ρ(z

′′

1 )fm′ )).

Region discrimination

The discrimination between the significant and non-significant
regions is based on the average intensity of the region. The value of
each region will be equal to

µΠi =
1

Ni

∑
xεΠi

z
′′
1 (x), (3.28)

being Ni the number of pixels of the corresponding region Πi and z
′′
1

the inpainted image. Figure 3.37(a) represents the image µΠ where
the intensity of each region is equal to µΠi . The regions belonging
to the optic disk will be light regions around darker regions therefore
the residue of a close-hole operator is calculated on µΠ to obtain the
regions that accomplish this condition (Figure 3.37(c)). Afterwards, a
threshold is applied on the resulting image to select the valid regions.
This operation leads to the final OD segmentation (Figure 3.37(d)).
The value of the threshold is u = m− 2s, being m and s the mean and
the standard deviation of the residue of the close-hole operator.
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(a) (b)

(c) (d)

Figure 3.37: Region discrimination: (a) Average intensity of the watershed
regions µΠ, (b) Close-hole operator, (c) Residue of close-hole operator, and
(d) Thresholding.

3.5.3 Post-processing

Once the region of interest is obtained, the result must be fitted
to eliminate false contours, which are detected due generally to the
blood vessels that pass through the OD. The inpainting technique was
performed to remove most of them, as previously mentioned, however
some irregularities can still be appreciated in the final region contour
(Figure 3.38(a)).

In this work, the OD-contour is estimated as a circle in the same
way that in (Aquino et al., 2010; Niemeijer et al., 2009; Lalonde
et al., 2001) although an elliptical shape could also be chosen. The
main reason to fit the OD by a circle is because this algorithm will



3.6. Application to pathology detection: Hypertensive risk 79

later be used to establish a zone of the retina concentric to the OD-
margin according to a standard protocol with the aim to perform vessel
diameter measurements (Wong et al., 2004). The fit is performed
by means of Kasa’s method (Corral and Lindquist, 1998) which lets
calculate the center and the radius of the circle that better is adapted
to a binary region through least squares. Figure 3.38 shows the contour
of the final region obtained by the proposed method and its circular
approximation.

(a) (b)

Figure 3.38: OD post-processing: (a) Contour of the obtained region, and
(b) Circular approximation of the OD contour.

3.6 Application to pathology detection: Hy-
pertensive risk

Most attempts to automate the process of interpretation of retinal
vascular imaging are focused on a specific disease, diabetic retinopathy,
a disease of high incidence and a significant risk of blindness that
occupies a very important part of the medical-surgical activity of the
ophthalmologic resources (Goatman et al., 2011; Abràmoff et al., 2010).
In some of these studies, it was possible to relate the evolution of the
disease and the positive or negative response to treatment with retinal
vessel caliber (Nguyen et al., 2007; Rogers et al., 2008; Cheung and
Wong, 2008). However, there is not too much experience in the use of
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these methods to evaluate other types of vascular pathology although
fundus photography allows also the determination of cardiovascular risk
factors (Abràmoff et al., 2010). Vascular changes produced in systemic
diseases usually induce particular modifications in the vessels, such as
changes in the angle of intersection between arteries and veins, and
changes in the vessel calibers, but the existing solutions only focus on
determining the caliber changes (Ruggeri et al., 2007; Muramatsu et al.,
2010; Tramontan et al., 2008; Niemeijer et al., 2011; Ortega et al., 2010).
Based on these facts, a system capable of detecting the retinal vessels
and measuring several geometrical properties from a fundus image was
developed. The goal of this software is to assist ophthalmologists in
diagnosis and disease prevention, helping them to establish objective
relations between the different vessels, to determine cardiovascular risk
or other diseases where the vessels can be altered, as well as to monitor
the pathology progression and response to different treatments. This
tool was applied in a clinical study in order to evaluate sensitivity,
specificity and reproducibility of the developed system to discriminate
between a normal vascularization and cardiovascular pathology in
contrast to the opinion of an expert ophthalmologist obtained through
visual inspection of the fundus image.

The computer-aided diagnosis software presented in this section
is based on digital fundus image processing for the determination
of hypertensive risk. In general, systemic diseases produce vascular
changes in our blood system and usually induce specific modifications
in the retinal vessels; hence, the system is focused on vessel detection
and the measurement of some of their features to characterize any
retinal morphological change. So, the main stages involved in the
system are: firstly, vessel segmentation process; secondly, retinal tree
labelling to identify the pixels that correspond to each vessel and the
existing relationship between the branches; and thirdly, performing
characteristic measurements on the retinal tree, using the previous
information, to quantify significant changes in the vascular network.
These data will be used to classify an image as belonging to a healthy
subject or to other with cardiovascular risk. The mentioned stages can
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be observed in the block diagram of the Figure 3.39 where the entire
image processing carried out by the proposed system is illustrated.

Figure 3.39: Block diagram of the presented tool.

3.6.1 Pre-processing

Generally, based on a standard protocol, the measurement of retinal
vessel calibers is focused on a specific region of interest (ROI) of the
fundus image (Wong et al., 2004; Knudtson et al., 2003; Hubbard et al.,
1999). This area is concentric to the optic disk and it is related to its
diameter. So, for that reason, in first place, the proposed system detects
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the optic disk (OD) in an automatic way in order to be able to determine
the ROI where all measures will be performed. The method used for the
extraction of the optic disk is explained in the previous section (Morales
et al., 2013).

Once the ROI is established, although original fundus images are
RGB images, the system is only drawn on the green band because
this band provides an improved visibility of retinal blood vessels.
Afterwards, an image enhancement (Walter and Klein, 2002) is applied
to improve even more, if it is possible, their visibility (Equation 3.11).

3.6.2 Processing

The segmentation method used by the system is based on mathe-
matical morphology, curvature evaluation and k-means clustering for
the detection of a vascular tree (Morales et al., 2012) that is explained
in Subsection 3.3.1.

After vessel detection, the vessels must be labelled. Retinal vascular
tree labelling is focused on obtaining the skeleton of the vascular tree,
detecting significant points and a tracking process (Morales et al., 2012).
They are necessary steps to perform later the desired measures.

The skeleton of the vascular tree is obtained by a thinning process
from the segmented binary image (Soille, 2003). Next, a pruning process
is applied to eliminate possible spurs (Walter, 2003). Significant points
(terminal, bifurcation and crossing points) are detected by the method
proposed in Section 3.4.

The tracking purpose is to analyze the direction of every pixel of the
skeleton and to identify which pixels belong to each branch. The method
used is proposed in (Martinez-Perez et al., 2002). The algorithm is able
to specify the direction of any skeleton point from a starting point and,
therefore, it lets identify the parent and daughter branches.

Note that the method used for vessel segmentation and the later
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skeletonization could be replaced by the algorithm for vessel centerline
extraction presented in Subsection 3.3.2.

3.6.3 Post-processing

Certain geometric measurements of blood vessels can help to
establish whether they have undergone morphological changes over
time and facilitate disease diagnosis. The remaining parameters were
chosen due to the fact that they have particular interest for the early
hypertension detection:

Bifurcation angle: Angle formed by the daughter branches for each
bifurcation point. The branches are fitted for straight lines by least-
squares into a circular window centered on these points and then the
angle α between them is calculated as

α = arccos

(
| u1 · v1 + u2 · v2 |√
u1

2 + u2
2 ·
√
v1

2 + v2
2

)
, (3.29)

being u = (u1, u2) and v = (v1, v2) the direction vectors of these lines.
See Figure 3.40 and 3.41.

Vessel caliber : It is estimated as two times the average of the
distance transform value (Soille, 2003) on the skeleton points of the
corresponding vessel. The distance transform is an operator applied to
binary image. The result of the transform is a gray-level image whose
intensity represents the distance from each pixel to the closest boundary.
So that the caliber of a vessel Vi is

CVi =
1

N

∑
p∈Si

dVi(p), (3.30)

being dVi the distance transform of the vessel Vi, Si the skeleton of this
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(a) (b)

Figure 3.40: Bifurcation angle measurement: (a) Vessel bifurcation, and
(b) Measurement process. A circular window (yellow) is centered on the
bifurcation point (green cross) and the daughter branches are fitted for straight
lines (cyan). The angle between these lines is directly calculated from their
direction vectors.

Figure 3.41: Bifurcation angles measured on two different image areas.

vessel and N the number of pixels of Si. Figure 3.42 shows a vessel
binary mask and its corresponding distance transform.

As a summary, Figure 3.43 includes the main stages of the image
processing performed by the developed software: ROI determination,
vessel segmentation and angle and caliber measurement.
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(a) (b)

Figure 3.42: Vessel caliber measurement: (a) Vessel binary mask, and (b)
Distance transform.

(a) (b)

(c) (d)

Figure 3.43: Image processing performed by the developed software: (a)
Original fundus image, (b) ROI determination, (c) Vessel segmentation, (d)
Bifurcation angles (up) and vessel calibers (down).
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3.7 Results

In this section, the performance of the methods presented in this
chapter is detailed along with a description of the databases used for
that purpose.

3.7.1 Material

Different public and private databases were used to validate the
methods proposed in this chapter. Next, a description of each of them
is included.

DRIVE

DRIVE (Digital Retinal Images for Vessel Extraction) (Staal et al.,
2004) is a public database established to enable comparative studies
on retinal vessel segmentation.1 The database is formed by 40 retinal
images (768 x 584) belonging to diabetic subjects between 25-90 years
of age. 33 do not show any sign of diabetic retinopathy and 7 show
signs of mild early diabetic retinopathy.

For each image, a mask image that delineates the field of view is
provided as well as manual segmentations of the blood vessels. The
images are divided into a training and a test set, both of 20 images.
For the training images, only a single manual segmentation is available.
For the test cases, two manual segmentations are included.

STARE

STARE (STructured Analysis of the Retina) database (Hoover et al.,
2000) is designed for blood vessel segmentation.2 This dataset consists

1www.isi.uu.nl/Research/Databases/DRIVE/
2www.ces.clemson.edu/~ahoover/stare/probing/index.html

www.isi.uu.nl/Research/Databases/DRIVE/
www.ces.clemson.edu/~ahoover/stare/probing/index.html
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of 20 retinal images (700 x 605). For each image, vessel network is hand
labelled by two experts.

DRIONS

DRIONS (Digital Retinal Images for Optic Nerve Segmentation)
Database (Carmona et al., 2008) is a public database for benchmarking
optic nerve head segmentation from retinal images.3 The database
consists of 110 retinal images (600 x 400) whose optic disk is manually
segmented by two specialists. The mean age of the patients was 53.0
years (S.D. 13.05), with 46.2% male and 53.8% female and all of
them were Caucasian ethnicity. 23.1% patients had chronic simple
glaucoma and 76.9% eye hypertension. Some of the 110 images
contain visual characteristics related to potential problems that may
distort the detection process of the contour of the optic disk: light
artefacts (3 images), some of rim blurred or missing (5 images),
moderate peripapillary atrophy (16 images), concentric peripapillary
atrophy/artefacts (20 images), and strong pallor distractor (6 images).

DIARETDB1

DIARETDB1 database (Kauppi et al., 2007) is a public database
for diabetic retinopathy detection.4 The database is formed by 89
color fundus images (1500 x 1152). 84 of them contain at least mild
nonproliferative signs (microaneurysms) of the diabetic retinopathy,
and five are considered as normal which do not contain any signs of
the diabetic retinopathy according to all experts who participated in
the evaluation. Four medical experts marked the areas related to the
microaneurysms, hemorrhages, and hard and soft exudates.

3www.ia.uned.es/~ejcarmona/DRIONS-DB.html
4www.it.lut.fi/project/imageret/diaretdb1/

www.ia.uned.es/~ejcarmona/DRIONS-DB.html
www.it.lut.fi/project/imageret/diaretdb1/
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MESSIDOR

MESSIDOR database, kindly provided by the Messidor program
partners, was established to facilitate studies of diabetic retinopathy
detection.5 It contains 1200 eye fundus color images of the posterior
pole. The images were captured using 8 bits per color plane at different
resolutions (1440 x 960, 2240 x 1488 and 2304 x 1536). 800 images were
acquired with pupil dilation and 400 without dilation. For each image,
two diagnosis were provided: retinopathy grade and risk of macular
edema.

ONHSD

ONHSD (Optic Nerve Head Segmentation Dataset) contains 99
fundal images (640 x 480) taken from 50 patients randomly sampled
from a diabetic retinopathy screening program; 96 images have
discernable optic nerve head (Lowell et al., 2004). The subjects are
from various ethnic backgrounds; 19 have type 2 diabetes mellitus,
while the diabetes status was unavailable for the remaining 31. In
this database there is considerable quality variation in the images, with
many characteristics that can affect segmentation algorithms. The optic
nerve head center is marked up a clinician, and four clinicians marked
the optic nerve head edge where it intersects with radial spokes (at 15
angles) radiating from the nominated center.6

FOMDB

The Fundación Oftalmológica del Mediterráneo (Spain) provided us
a private dataset of 67 fundus images (2048 x 1536) for hypertensive risk
determination. The images belong to 67 subjects between 33 and 73
years old. Among them, a group without previous known pathology and
a group of hypertensive patients were established. The first group was

5http://messidor.crihan.fr/download-en.php
6http://reviewdb.lincoln.ac.uk/ImageDatasets/ONHSD.aspx

http://messidor.crihan.fr/download-en.php
http://reviewdb.lincoln.ac.uk/Image Datasets/ONHSD.aspx
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formed by 38 healthy controls and the second group by 29 hypertensive
patients previously diagnosed and treated or not for more than 5 years
of evolution. Both groups were established based on the disease history
of their members.

3.7.2 Retinal vessel segmentation

To validate the vessel segmentation, the results of the method of
Subsection 3.3.1 were compared with the hand-segmented images from
DRIVE database (Staal et al., 2004). The first-observer images were
taken as reference (gold standard) to calculate similarity degree between
them and our segmentation.

The performance of the method was evaluated based on three
concepts: accuracy (Ac) and true positive (TPF ) and false positive
(FPF ) fractions. Accuracy (Ac) is determined by the sum of correctly
classified pixels as vessel and non-vessel divided by the total number
of pixels in the image. True positive fraction (TPF ), also known
as sensitivity, is established by dividing the correctly classified pixels
as vessel by the total number of vessel pixels in the gold standard.
False positive fraction (FPF ) is calculated by dividing the misclassified
pixels as vessel by the total number of non-vessel pixels in the gold
standard. In Table 3.1 these results can be observed. The images
manually segmented by the second observer were also compared with
the gold standard in order to note that there are differences between
both experts. In summary, the average values obtained by the proposed
method were: Ac = 0.9417, TPF = 0.6570 and FPF = 0.0166. Table
3.2 displays the true positive/negative and false positive/negative pixels
used to calculate the measures of the Table 3.1.
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Table 3.1: Comparison between the results of the method proposed in
Subsection 3.3.1 and the 2nd observer of DRIVE database (average values and
standard deviations) regarding the gold standard.

Ac TPF FPF

Proposed method 0.9417 (0.0076) 0.6570 (0.0668) 0.0166 (0.0093)

2 nd observer 0.9473 (0.0048) 0.7757 (0.0596) 0.0275 (0.0083)

Table 3.2: True positives/negatives and false positives/negatives (TP, TN,
FP and FN). Average values and standard deviations.

TP TN FP FN

Proposed
method

18,945
(2,309)

194,740
(3,557)

3,284
(1,842)

9,938
(2,294)

2 nd observer 22,374
(2,389)

192,570
(3,083)

5,453
(1,685)

6,508
(1,895)

Figure 3.44 depicts some vessel segmentation results. The first two
rows show good segmentation results where only the very thin vessels
are not detected. In the last two rows, in addition to the non-detection
of the very thin vessels, a bit of over-segmentation can be observed in
some areas of the images.

On the other hand, in (Niemeijer et al., 2004) a study about the
accuracy of different vessel segmentation methods was carried out on
the same database. This study compared several approaches: matched
filter (Chaudhuri et al., 1989), scale-space analysis and region growing
(Martinez-Perez et al., 1999), mathematical morphology and curvature
estimation (Zana and Klein, 2001), verification-based local thresholding
(Jiang and Mojon, 2003) and pixel classification (Niemeijer et al., 2004).
Table 3.3 shows a comparison between the aforementioned methods and
ours. Our method achieved a higher accuracy ratio and its false positive
fraction is, even, lower than the second observer fraction.
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(a) (b) (c)

Figure 3.44: Some vessel segmentation results on DRIVE database: (a)
Original fundus images, (b) Results of the method proposed in Subsection 3.3.1,
and (c) Ground truth images.
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Table 3.3: Accuracy (average and standard deviation) of several methods on
DRIVE database.

Ac

Proposed method 0.9417 (0.0076)

2nd observer 0.9473 (0.0048)
Niemeijer et al. (Niemeijer et al., 2004) 0.9416 (0.0065)
Zana and Klein (Zana and Klein, 2001) 0.9377 (0.0077)
Jiang and Mojón (Jiang and Mojon, 2003) 0.9212 (0.0076)
Mart́ınez-Pérez et al. (Martinez-Perez et al., 1999) 0.9181 (0.0240)
Chaudhuri et al. (Chaudhuri et al., 1989) 0.8773 (0.0232)

In addition to improving the accuracy ratio, it must be stood out
that the optic disk edge is not detected as vessel unlike the most edge
detection methods. Figure 3.45 shows our method along with the
proposed in (Martinez-Perez et al., 2007). The non-detection of this
feature is crucial to avoid multiple errors in any tracking process.

(a) (b) (c)

Figure 3.45: Vessel segmentation comparison: (a) Method proposed in
Subsection 3.3.1, (b) Method proposed in (Martinez-Perez et al., 2007) and
(c) Manually segmented image belonging to the DRIVE database.

After the study performed by Niemeijer et al. (Niemeijer et al.,
2004), other methods about retinal vessel segmentation were published.
As far the author knows, the best results on DRIVE database were
presented by Mendonça and Campilho (Mendonça and Campilho, 2006)
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and Ricci and Perfetti (Ricci and Perfetti, 2007). Although these
works achieved a slightly higher accuracy than the proposed method,
Ac = 0.9463 and Ac = 0.9595, respectively; the border of the optic disk
was still detected as vessel.

To evaluate the effect of the input image in the segmentation method,
different tests were performed. The use of the red and green component
and PCA were compared, being the green component which obtained
the best results as can be appreciated in Figure 3.46.

(a)

(b) (c) (d)

(e) (f) (g)

Figure 3.46: Effect of the input image in the segmentation method: (a)
Original RGB image, (b)Red component, (c) Green component, (d) First
component of PCA, (e) Result of the method proposed in Subsection 3.3.1
on the red component, (f) Result of the method proposed in Subsection 3.3.1
on the green component and (g) Result of the method proposed in Subsection
3.3.1 on the first component of PCA.
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3.7.3 Retinal vessel centerline

The validation of the vessel centerline extraction method, that was
presented in Subsection 3.3.2, was carried out on 2 public databases
widely used: DRIVE (Staal et al., 2004) and STARE (Hoover et al.,
2000). Although, in both databases, manual segmentations are
included, the complete vasculature was detected, not only the vessel
centerline which is the goal of our work. For that reason, the homotopic
skeleton (Soille, 2003) associated to the manual segmentations was
obtained for future comparisons. In Figure 3.47, the results of the
proposed method on two images of DRIVE and STARE databases can
be observed.

(a) (b)

Figure 3.47: Skeleton results of the method proposed in Subsection 3.3.2: (a)
DRIVE image (‘19 test’) and (b) STARE image (‘im0255’).

The validation was performed in two ways. One of them is based
on comparing the results of this work with methods that first segment
the vessels and after perform a skeletonization process and the other
compares it with algorithms that directly obtain the skeleton.

On the one hand, regarding methods that require a previous
segmentation, the presented algorithm was compared with two methods
previously published. The first compared method uses the local maxima
over scales of the magnitude of the gradient and the maximum principal
curvature of the Hessian tensor in a multiple pass region growing
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procedure (Martinez-Perez et al., 2007). The other compared method is
that explained in Subsection 3.3.1. As mentioned before, both methods
of the Subsection 3.3.1 and 3.3.2 are based on mathematical morphology
and curvature evaluation although the morphological operations used
are different as well as the obtained result. In the same way as explained
above, the homotopic skeleton was performed after the segmentation
process in both cases. On the other hand, as for the methods that
obtain directly the retinal vessel centerline, the analysis was focused
on other two approaches based also on the watershed transformation
(Walter and Klein, 2002; Bessaid et al., 2009). In Figures 3.48 and 3.49,
the strengths and weaknesses of the proposed method can be observed
in two examples of both databases.

Avoiding complete vessel segmentation supposes an improvement in
the automatic fundus processing since the skeleton is not dependent of
a previous stage and the computational cost is reduced by decreasing
the number of required steps. Apart from this fact, it must be stressed
that an important advantage of the proposed method is its performance
in pathological images or with large changes in illumination, as was
observed in Figures 3.47, 3.48 and 3.49. In those cases, the presented
algorithm works properly and reduces over-segmentation problems
which can be found in methods based on a previous segmentation
(Martinez-Perez et al., 2007; Morales et al., 2012). With regard to other
methods that obtain the skeleton in a direct way and use the watershed
transformation (Bessaid et al., 2009; Walter and Klein, 2002) instead
of the stochastic watershed, the proposed work achieves a more robust
detection and decreases the number of spurs. Despite good results, it
must be mentioned that the main disadvantage of the method is that
some vessels can lose their continuity if some part of them is not detected
and it should be corrected in a post-processing stage.

3.7.4 Optic disk

The performance of the OD-segmentation method proposed in
Section 3.5 was evaluated based on different concepts. Jaccard’s
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(a) (b) (c)

(d) (e) (f)

Figure 3.48: Comparison between different methods on DRIVE image
(‘23 training’): (a) Original image, (b) Method proposed in Subsection 3.3.2,
(c) Martinez et al. method (Martinez-Perez et al., 2007), (d) Method presented
in Subsection 3.3.1 (Morales et al., 2012), (e) Bessaid et al. method (Bessaid
et al., 2009) and (f) Walter and Klein method (Walter and Klein, 2002).

(JC) and Dice’s (S) coefficients describe similarity degree between two
compared elements being equal to 1 when segmentation is perfect.
Accuracy (Ac) is determined by the sum of correctly classified pixels as
OD and non-OD divided by the total number of pixels in the image.
True positive fraction (TPF) is established by dividing the correctly
classified pixels as OD by the total number of OD pixels in the gold
standard. False positive fraction (FPF) is calculated by dividing the
misclassified pixels as OD by the total number of non-OD pixels in the
gold standard. Finally, in order to be able to compare with more other
authors’ works, another measure was calculated: the mean absolute
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(a) (b) (c)

(d) (e) (f)

Figure 3.49: Comparison between different methods on STARE image
(‘im0001’): (a) Original image, (b) Method proposed in Subsection 3.3.2, (c)
Martinez et al. method (Martinez-Perez et al., 2007), (d) Method presented
in Subsection 3.3.1 (Morales et al., 2012), (e) Bessaid et al. method (Bessaid
et al., 2009) and (f) Walter and Klein method (Walter and Klein, 2002).

distance (MAD) (Chalana et al., 1996), whose aim is to measure the
accuracy of the OD-boundary,

MAD(A,B) =
1

2

{
1

n

n∑
i=0

d(ai,B) +
1

n

n∑
i=0

d(bi,A)

}
, (3.31)

where A and B are two curves corresponding to the border of the
segmented OD and the border of the OD considered as ground truth,
respectively. They are represented as set of points A = {a1,a2, ...,an}
and B = {b1,b2, ...,bn} and d(ai,B) is the distance to the closest point
for point ai on the curve B.
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In Table 3.4 the results on 5 public databases can be observed:
DRIONS (Carmona et al., 2008), DIARETDB1 (Kauppi et al., 2007),
DRIVE (Staal et al., 2004), MESSIDOR, and ONHSD (Lowell et al.,
2004). Note that all these measures are indicators of the segmentation
quality but in different way, i.e. a database can have a higher value of a
measure than other database but this does not mean that this tendency
must be followed by the rest. For example, the MAD can be equal in
a case of under-segmentation and in other of over-segmentation if the
distance between the boundary of our result and the ground truth (GT)
is the same. As the OD is fitted by a circle, this situation may occur
if our result and the ground truth were two concentric circles as shown
in Figure 3.50. Although the MAD was equal, the rest of the measures
could be different. Table 3.5 displays the true positive/negative and
false positive/negative pixels used to calculate all measures of Table
3.4.

Table 3.4: Results (average values and standard deviations) obtained
by the method proposed in Subsection 3.5 on DRIONS, DIARETDB1,
DRIVE, MESSIDOR, and ONHSD databases. Jaccard’s (JC) and Dice’s (S)
coefficients, accuracy (Ac), true positive (TPF) and true negative fractions
(FPF), and mean absolute distance (MAD).

JC S Ac

DRIONS 0.8424 (0.1174) 0.9084 (0.0982) 0.9934 (0.0051)
DIARETDB1 0.8173 (0.1308) 0.8930 (0.0913) 0.9957 (0.0039)
DRIVE 0.7163 (0.1880) 0.8169 (0.1712) 0.9903 (0.0134)
MESSIDOR 0.8228 (0.1384) 0.8950 (0.1056) 0.9949 (0.0050)
ONHSD 0.8045 (0.1175) 0.8867 (0.0776) 0.9941 (0.0042)

TPF FPF MAD

DRIONS 0.9281 (0.1177) 0.0040 (0.0041) 4.1098 (3.4684)
DIARETDB1 0.9224 (0.1058) 0.0028 (0.0029) 9.6759 (8.4836)
DRIVE 0.8544 (0.1938) 0.0061 (0.0085) 7.9981 (9.9957)
MESSIDOR 0.9300 (0.1239) 0.0035 (0.0041) 5.8387 (6.5215)
ONHSD 0.9310 (0.1046) 0.0043 (0.0042) 4.4826 (3.0962)
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Figure 3.50: Sub and over-segmentation case: (a) Under-segmentation and
(b) Over-segmentation. GT (in blue) is the ground truth in both cases and R1
(in orange) and R2 (in green) the result of our segmentation in each case. R1
is characterized by not having false positives (FP=0) and R2 by not having
false negatives (FN=0). Moreover, the number of true positives (TP) will be
greater in (b) than in (a) in contrast to the true negatives (TN). Although the
MAD was equal for both cases, these variations could provoke that the rest of
the measures were different.

Table 3.5: True positives/negatives and false positives/negatives (TP, TN,
FP and FN). Average values and standard deviations.

TP TN FP FN

DRIONS 6,701 (1,392) 185,870 (3,467) 753 (763) 517 (877)
DIARETDB1 4,448 (875) 243,970 (1,087) 681 (705) 380 (542)
DRIVE 4,394 (1,252) 220,380 (2,867) 1,340 (1,869) 869 (1670)
MESSIDOR 9,773 (4,434) 427,450 (168,890) 1,415 (1,757) 804 (1,529)
ONHSD 4,667 (1,048) 196,240 (1,262) 846 (828) 345 (516)

On the one hand, in order to analyze the results on DRIONS
database, the first observer images of this database were taken as
reference (gold standard) to calculate similarity degree between them
and our segmentation. Regarding MESSIDOR database, the OD rim
of these 1200 images was hand segmented by the University of Huelva
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(Spain) and it is currently available online to facilitate performance
comparison between different methods.7 Concerning ONHSD dataset,
the average of the edges marked by the four experts was used to generate
the reference images. On the other hand, neither DIARETDB1 nor
DRIVE databases have the OD segmented publicly available. In those
cases, we compared our results with the same ground truth used in
(Welfer et al., 2010), where the contour of each image was labelled by
four ophthalmologists, and then, only the mean of those contours is
considered as ground truth.

Apart from quantifying the accuracy in the OD boundary detection
(Table 3.4), the accuracy in the disk localization was also measured.
The performance of the optic disk localization is shown in Table 3.6.
An automatically detected OD was considered correct if there exist
intersection between it and the OD marked manually.

Table 3.6: Success rate in the optic disk location.

Location performance (%)

DRIONS 100
DIARETDB1 100
DRIVE 97.50
MESSIDOR 95.83
ONHSD 100

Some examples of good, fair and bad OD segmentation results on
the different databases analyzed are shown from Figure 3.51 to Figure
3.55).

7www.uhu.es/retinopathy/muestras.php

www.uhu.es/retinopathy/muestras.php
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(a) (b)

Figure 3.51: Some OD segmentation results on DRIONS database: (a)
Original fundus images, (b) Results of the method proposed in Section 3.5
(OD contour in red and circular approximation of the OD contour in black).
Top row: good segmentation. Middle row: fair segmentation. Bottom row:
poor segmentation.
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(a) (b)

Figure 3.52: Some OD segmentation results on DIARETDB1 database: (a)
Original fundus images, (b) Results of the method proposed in Section 3.5 (OD
contour in red and circular approximation of the OD contour in black). Top
row: good segmentation. Middle row: fair segmentation. Bottom row: poor
segmentation.
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(a) (b)

Figure 3.53: Some OD segmentation results on DRIVE database: (a)
Original fundus images, (b) Results of the method proposed in Section 3.5
(OD contour in red and circular approximation of the OD contour in black).
Top row: good segmentation. Middle row: fair segmentation. Bottom row:
poor segmentation.



104 Chapter 3. Retinal structure characterization

(a) (b)

Figure 3.54: Some OD segmentation results on MESSIDOR database: (a)
Original fundus images, (b) Results of the method proposed in Section 3.5 (OD
contour in red and circular approximation of the OD contour in black). Top
row: good segmentation. Middle row: fair segmentation. Bottom row: poor
segmentation.
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(a) (b)

Figure 3.55: Some OD segmentation results on ONHSD database: (a)
Original fundus images, (b) Results of the method proposed in Section 3.5
(OD contour in red and circular approximation of the OD contour in black).
Top row: good segmentation. Middle row: fair segmentation. Bottom row:
poor segmentation.



106 Chapter 3. Retinal structure characterization

As was mentioned in Section 3.1, most OD segmentation methods
are divided into morphological algorithms, template-based methods,
and deformable models. The proposed algorithm was compared with
several methods of each category. Most works were selected due to the
fact they use some of the analyzed databases, and thereby, the current
and future comparison is facilitated.

The presented method versus other morphological algorithms

On the one hand, Table 3.7 analyses further DRIONS database at
the same time that the performance of our work is contrasted with
the performance of other method based on mathematical morphology.
So, first, the segmented images by the second observer were also
compared with the gold standard to obtain inter-expert differences,
and secondly, other existing technique based on marker-controlled-
watershed transformation (Walter et al., 2002) was implemented and
compared with ours.

Table 3.7: Comparison of the parameters of Table 3.4 achieved by the method
proposed in Section 3.5, by the 2nd observer and by other marker-controlled-
watershed algorithm on DRIONS database.

JC S Ac

Proposed method 0.8424 (0.1174) 0.9084 (0.0982) 0.9934 (0.0051)

2nd observer 0.9202 (0.0455) 0.9578 (0.0265) 0.9970 (0.0017)
Walter et al. (Wal-
ter et al., 2002)

0.6227 (0.3695) 0.6813 (0.3854) 0.9689 (0.0492)

TPF FPF MAD

Proposed method 0.9281 (0.1177) 0.0040 (0.0041) 4.1098 (3.4684)

2nd observer 0.9498 (0.0537) 0.0012 (0.0009) 1.8887 (1.1455)
Walter et al. (Wal-
ter et al., 2002)

0.6715 (0.3980) 0.0210 (0.0417) 29.064 (48.058)
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On the other hand, the concepts of Jaccard’s coefficient (also known
as area overlap) and the MAD included in Table 3.4 allow us to compare
with the method proposed in (Welfer et al., 2010) as well as with other
state-of-the-art algorithms that were analyzed in it. Table 3.8 compares
the results of the method presented in Section 3.5 with the method that
achieves the best results in (Welfer et al., 2010) on the same databases
(DIARETDB1 and DRIVE).

Table 3.8: Comparison of the method proposed in Section 3.5 with the work
presented in (Welfer et al., 2010) based on Jaccard’s coefficient (JC) and mean
absolute distance (MAD) on DIARETDB1 and DRIVE databases.

DIARETDB1
JC MAD

Proposed method 0.8173 (0.1308) 9.6759 (8.4836)
Welfer et al. (Welfer et al., 2010) 0.4365 (0.1091) 8.3100 (4.0500)

DRIVE
JC MAD

Proposed method 0.7163 (0.1880) 7.9981 (9.9957)
Welfer et al. (Welfer et al., 2010) 0.4147 (0.0833) 5.7400

According to these data, the method of the Section 3.5 obtains a
mean overlap greater than 70% for the five databases which significantly
improves the results of the compared methods. As for MAD values, the
results of Welfer et al. are slightly better. As the ground truth images
of DIARETDB1 were resized from 1500 x 1152 pixels to 640 x 480, our
results were also resized to have the same spatial resolution of ground
truth and make the comparison possible.

The presented method versus template-based methods

The validation on MESSIDOR database was performed through the
comparison with a circular template-based method and four elliptical
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template-based approaches (Aquino et al., 2010). The methods
analyzed in this work can be compared in based on Jaccard’s coefficient.
Three of the elliptical template-based variants were based on minimizing
the algebraic distance (achieving a JC ' 0.66), and one was based on
minimizing the geometric distance (JC = 0.67). Our method improves
the performance of all elliptical approaches and achieves comparable
results with the circular template-based method (JC = 0.86).

The presented method versus deformable models

Our method was also tested on ONHSD database in order to compare
with the tree approaches based on deformable models evaluated in
(Lowell et al., 2004). In addition, with the aim of achieving a rigorous
comparison, the same metric used in this work was calculated. A
subjective perception of quality, which is based on four categories, was
defined as a way of classifying the performance. For that, they defined

the discrepancy as δj =
∑
i

|mji−µ
j
i |

σji+ε
, where µji and σji summarize the

clinician’s choice of rim location on spoke i of image j. Division by σ
compensates for uncertainty in rim position; ε = 0.5 is a small factor
to prevent division by zero where the clinicians are in exact agreement.
Each image is classified as Excellent, Good, Fair, or Poor depending on
the discrepancy value (up to one, two, five, or more, respectively).

Table 3.9 summarizes the performance of our method on the
subjective classification of the ONHSD dataset so that it is directly
comparable with the results presented in (Lowell et al., 2004). While
the best approach of this work has Excellent-Fair performance in 83%
of cases, our method obtains it in 94%.
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Table 3.9: Subjective classification of performance on ONHSD dataset.

Excellent Good Fair Poor Excellent-Fair

Proposed method 28% 36% 31% 6% 94%
TemploralLock
(Lowell et al., 2004)

42% 31% 10% 17% 83%

Simple (Lowell
et al., 2004)

9% 8% 30% 53% 47%

DV-Hough (Lowell
et al., 2004)

39% 22% 20% 19% 81%

In addition to the comparison with other methods, different
experiments were performed to demonstrate the robustness of the
proposed algorithm:

1. The variability between fundus images in color, intensity, size,
the presence of artefacts, etc. makes each state-of-the-art method
uses a different input image: green (Lalonde et al., 2001; Eswaran
et al., 2008; Niemeijer et al., 2009) and red (Walter et al., 2002;
Hajer et al., 2008; Welfer et al., 2010) band of the original RGB
image, or even a combination of both of them (Aquino et al.,
2010; Lu, 2011), intensity component extracted from the HSI
representation (Lowell et al., 2004) and lightness channel of the
HLS space (Osareh et al., 2002). However, due to this fundus
image variability, they do not always provided the desired results.
Therefore a PCA, able to maximize the separation between the
different objects of the image, was proposed as a more appropriate
input image. For example, in Figure 3.56, PCA is compared
with the use of the red component on a specific image. It can
be observed that while the red component is completely over-
saturated, PCA obtains a gray image where the OD could be
segmented. Specifically, in Table 3.10 a quantitative analysis
about the use of those two color planes can be observed concluding
that the employment of PCA improves the final results.
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(a) (b) (c)

Figure 3.56: Advantages of PCA: (a) Original RGB fundus image, (b) Red
component and (c) Image obtained by PCA.

Table 3.10: Comparison between the use of PCA versus the use of the red
component on DRIVE database.

PCA Red Component

JC 0.7163 (0.1880) 0.4106 (0.3926)
S 0.8169 (0.1712) 0.4674 (0.4256)
Ac 0.9903 (0.0134) 0.8979 (0.2044)
TPF 0.8544 (0.1938 0.5607 (0.4368)
FPF 0.0061 (0.0085) 0.0994 (0.2343)
MAD 7.9981 (9.9957) 72.741 (87.216)

2. As for the improvements achieved by the proposed method in
relation to others which use watershed transformation must also
be highlighted. In particular, the different steps of our method
help to avoid under-segmentation problems, as occurs in Figure
3.57 where the original image was segmented using only one
internal marker located in the geodesic center of its largest and
brightest object (Walter et al., 2002). It can be seen that
there exist under-segmentation although the vessels were removed
before applying the watershed transformation. Two different
methods were used for vessel removal: a morphological closing
and the inpainting technique presented in Subsection 3.5.1.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.57: Under-segmentation problem produced in other marker-
controlled-watershed method: (a) Original RGB image, (b) Watershed result
of the method proposed in Section 3.5, (c) Circular approximation of (b), (d)
Grayscale image, (e) Vessel removal through a morphological closing, (f) Vessel
removal through inpainting technique, (g) Internal and external marker, (h)
Watershed region obtained on the gradient of (e) using the markers shown in
(g) and (i) Watershed region obtained on the gradient of (f) using the markers
shown in (g).
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3. Referring to the databases employed, most of the images included
in them are pathological and therefore can distort the OD
detection. For example, the images of patients with diabetic
retinopathy may contain exudates which are of similar intensity
to the OD or patients with glaucoma can suffer from peripapillary
atrophy. Concretely, Figure 3.58 shows the robustness of the
method in presence of exudates. However, if the lesion is as big
as the optic disk and brighter, it is true that the method may fail.

(a) (b) (c)

Figure 3.58: Robustness of the gray-image centroid in presence of exudates:
(a) Original image, (b) First PC (z1) after inpainting technique with the
centroid in black, and (d) Result of the proposed method.

3.7.5 Computer-aided diagnosis software for hyperten-
sive risk determination

For the system validation presented in Section 3.6, a set of 67
fundus images was used. These images belong to a private database
of the Fundación Oftalmológica del Mediterráneo (FOMDB). The
implemented system was installed in this organization in order to be
used by its clinicians in their daily practice and be able to carry out
a clinic validation of the developed software based on a double-blind
study. The fundus images were evaluated twice. Once, by qualified
ophthalmologists who determined the presence or absence of vascular
alteration through visual inspection of the original image, and another
time using the developed system. A patient was considered hypertensive
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if the clinician detected in their fundus at least one sign of pathological
arteriovenous crossing. The same three ophthalmologists rated the
entire dataset with and without the software. A minimum period of
one month was established between both rates to avoid the effect of the
repeated exposure to the images. The final expert rates were obtained
taking the majority vote among the three clinicians.

With the implemented tool, bifurcation angles, inside of an existing
region of the original image concentric to the optic disk, were measured
along with the caliber of a vein and an artery manually selected and
situated at the same distance from the optic disk. Subsequently, a
statistical analysis on different variables, extracted from data provided
by the system, was conducted to see if any of them were able to
discriminate whether a patient belonged to the group of hypertensive
patients or to subjects without cardiovascular disease. Statistical
Package for the Social Sciences (SPSS, IBM SPSS Data Collection)
version 17.0 was used for this purpose.

Two parallel statistical studies were performed, one analyzing the
variables related to the caliber and other analyzing those related to the
bifurcation angles. The reason for the distinction was that only fundus
images with at least five measured bifurcation angles were considered
valid for this specific study. In both, the comparison between control
and study groups was conducted using one-way ANOVA, where the
dependent variables were each of the parameters calculated from the
data provided by the software (vein caliber, artery caliber, relative
caliber of the vein and artery (A/V ratio), average, median, deviation
and variance of the branching angles, minimum and maximum angle and
difference between the maximum and minimum angle) and the factor
was the group formed by the subgroup without known disease and the
subgroup of hypertensive patients.

Previous to the analysis, the normality of the calculated parameters
was checked using the Kolmogorov-Smirnov test. From the obtained
values, it can be concluded that only the caliber of the artery
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(F (1; 66) = 4.471; p < 0.05) and the ratio between the caliber of the
vein and the artery (F (1; 66) = 4.161; p < 0.05) show statistically
significant differences between both subgroups. Afterwards, using
only these parameters, the optimal threshold to separate both classes
was established and then the sensitivity, specificity and accuracy of
the system to discriminate between healthy subjects and patients
and with hypertensive pathology were calculated. Sensitivity and
specificity measures the proportion of positives and negatives cases
(pathological and healthy) which are correctly identified, respectively
(Sens = 56.41% and Spec = 67.86%). Accuracy is the proportion of
true results (both true positives and true negatives) among the total
number of cases examined (Ac = 61.19%).

If the proportion of true results of the analyzed population is
taken into account (i.e. the system accuracy), ophthalmologist visual
diagnoses agreed with patient history 42% of the time without the
computer assistance and that value increases up to 61% with the
computer assistance. Their sensitivity and specificity are also improved
from 38% and 50% to 56% and 68%, respectively. Therefore, it can
be concluded that the use of this computer-aided diagnosis software
provides an improvement of almost 20% in hypertension detection.

Thanks to the software validation, it was demonstrated that the
caliber of the arteries and the relative caliber of the veins and arteries
show significant differences when patients are classified either healthy
or hypertensive. Despite these results, it cannot be concluded that
bifurcation angles are not significant for this purpose because only 54%
of the fundus of the dataset could be analyzed due to the fact that the
remainder contains less than 5 angles per image. Thus, the region where
the measures are taken, should be enlarged or the database increased
to repeat the same analysis.

Although the values of accuracy, sensitivity and specificity of the
system are not too much high in the hypertension discrimination,
it must be stressed that the results achieved by clinicians by visual
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inspection of the fundus are improved almost 20%.

With regard to the obtained measures, they are accurate and reliable
but also dependent on a correct skeleton detection and significant point
classification.

3.8 Conclusions

In this chapter, several methods related to the detection and
characterization of the retinal vessels and optic disk from a fundus image
have been presented.

The method proposed in Subsection 3.3.1 for vessel segmentation
is based mainly on morphological operators but also used principal
curvature information, allowing an enhanced detection of the vessels
on to the background of the image. This algorithm was compared with
several methods and, apart from being among the best of the state of
the art (Ac = 0.9417), the optic disk edge is not detected as vessel,
which facilitates a later vessel tracking process.

Subsection 3.3.2 deals with a method for vascular skeleton determi-
nation. This work proposes a new approach based on mathematical
morphology and curvature evaluation and makes use of the stochastic
watershed to extract the vessel centerline in a direct way. A correct ves-
sel skeleton detection is usually required to analyze different vessel fea-
tures that can indicate the presence of several diseases. Avoiding com-
plete vessel segmentation supposes an improvement since the skeleton
is not dependent of a previous stage at the same time that works prop-
erly in pathological images or with large changes in illumination and
reduces over-segmentation problems of state-of-the-art methods based
on a previous segmentation. With regard to other methods that obtain
the skeleton in a direct way and use the marker-controlled watershed
transformation, the stochastic watershed achieves a more robust detec-
tion and decreases the number of spurs.
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In Section 3.5, a new approach for the automatic detection of the
optic disk was introduced. First, it is focused on the use of a new
gray image as input obtained through PCA which combines the most
significant information of the three RGB components. Secondly, several
operations based on mathematical morphology are implemented with
the aim of locating the OD. For that purpose, both stochastic and
stratified watershed as well as geodesic transformations, such as gray
level distance and gray level close holes, were used. The algorithm was
validated on 5 different public databases obtaining promising results and
improving the results of other methods of the literature (JC = 0.8200,
S = 0.8932, Ac = 0.9947, TPF = 0.9275, FPF = 0.0036, and
MAD = 5.9060). These values correspond with the weighted average of
the results of the proposed method, i.e., they are calculated according
to the number of images of each analyzed database.

Making use of the aforementioned methods, a computer-aided
diagnosis software for hypertensive risk determination was presented in
Section 3.6. From a fundus image, the tool automatically detects blood
vessels and allows measurement of bifurcation angles and selection of
branches to determine their caliber. These data facilitate expert medical
diagnosis and study of the progression of the disease. In particular,
the software was used by expert ophthalmologists to help them
to discriminate between a normal vascularization and cardiovascular
pathology. The accuracy, sensitivity and specificity of the hypertension
detection achieved by direct visual inspection of the fundus were
improved by almost 20%.



Chapter 4

Retina background
characterization

This chapter focuses on analyzing the texture of the fundus images by
means of local binary patterns to differentiate between pathological and
healthy images. In particular, its goal is to distinguish between diabetic
retinopathy (DR), age-related macular degeneration (AMD) and nor-
mal fundus images analyzing directly the retina background texture and
avoiding a previous lesion segmentation stage. Chapter 4 arose from a
research stay in the University of Stavanger under the supervision of
Prof. Kjersti Engan.

The information contained in this chapter was included in a journal
paper that is currently under revision:

Morales, S., Engan, K., Naranjo, V., Colomer, A. (2015). Retinal
Disease Screening through Local Binary Patterns. IEEE Journal of
Biomedical and Health Informatics.
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4.1 Introduction

Diabetic retinopathy (DR) and age-related macular degeneration
(AMD) are nowadays two of the most frequent causes of blindness
and vision loss (World Health Organization, 2010a). In addition,
these diseases will experience a high growth in the future due to
diabetes incidence increase and aging population in the current society.
Based on these facts, a computer-aided diagnosis software capable of
discriminating, through image processing, between a healthy fundus
(without any pathology) and DR and AMD patients is presented in this
chapter. Specifically, the aim of the proposed software is to carry out an
automatic screening of these diseases facilitating the at-risk population
assessment.

DR and AMD can be characterized by the presence of specific types
of retinal lesions such as microaneurysms, exudates or drusen, among
others, as was seen in Section 2.2. Figure 4.1 depicts some examples
of these diseases in comparison with the fundus image from a healthy
subject.

Drusen

(a) (b) (c)

Figure 4.1: Fundus images. (a) Healthy, (b) DR (with microaneurysms and
exudates) and (c) AMD (with drusen).

This chapter focuses on investigating the discrimination capabilities
in the fundus texture to differentiate between pathological and healthy
images. In particular, the main focus lies in exploring the performance
of Local Binary Patterns (LBP) as a texture descriptor for retinal
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images. LBP is a technique used for describing textures that has
been given a lot of attention in recent years (Ojala et al., 2001; Ojala
et al., 2002). It is based on looking at the local variations around
each pixel, and assigning labels to different local patterns. Thereafter,
the distribution of the labels is evaluated and used in the classification
stage. There are many examples of the success of LBP used to describe
and classify textures in general (Ahonen et al., 2006; Heikkil 2009;
Liao et al., 2009; Yang and Ai, 2007) and also in the case of medical
imaging (Kotu et al., 2012; Oppedal et al., 2012; Nanni et al., 2010).
However, regarding fundus image processing, LBP has not been widely
used. Most state-of-the-art works that use the LBP technique on fundus
images focus on the segmentation of the retinal vessels (Zabihi et al.,
2010; Dhanushkodi and Vasuki, 2013) rather than on a full diagnosis
system, although some examples can be found in this direction (Garnier
et al., 2014; Mookiah et al., 2013). Garnier et al. deal with the
AMD detection using LBP. The texture information on several scales
is analyzed through wavelet decomposition and the LBP histogram
is found from the wavelet coefficients. Linear Discriminant Analysis
(LDA) is used for feature dimension reduction using the values of the
entire LBP histogram as input features. Image classification on a
set of 45 images is evaluated with a leave-one-out validation method
(Garnier et al., 2014). Mookiah et al. extract abnormal signs from
fundus images to detect normal fundus and two DR stages. Thirteen
features, such as the area of hard exudates, the area of blood vessels,
bifurcation points, textures and entropies, fed three different classifiers
(Probabilistic Neural Network (PNN), Decision Tree C4.5 and Support
Vector Machine (SVM)). The textures are found by LBP and Laws
energy. A previous segmentation of the exudates, optic disk and
blood vessels is needed for feature extraction. The experiments were
conducted on 156 subjects and the PNN was chosen as the best classifier
with three-fold cross validation (Mookiah et al., 2013).

The goal of this chapter is to distinguish between DR, AMD and
normal fundus images at the same time and avoiding any previous
segmentation stage of retinal lesions. The texture of the retina
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background is directly analyzed by means of LBP, and only this
information is used to differentiate healthy patients and these two
pathologies. A comprehensive study about what type of classifier
obtains the best results is also undertaken. The performance of Logistic
Regression, Neural Networks, SVM, Naive Bayes, J48, Rotation Forest,
Random Forest and AdaBoost M1 is compared. This approach is
different from previous works. Mookiah et al. require the segmentation
of exudates in addition to segmentation of main structures (optic
disk and vessels) for feature extraction and, although three different
classes are identified, they only focus on DR detection. Garnier
et al. do not need previous segmentations but only handle with
AMD diagnosis. Both works use directly the information of the LBP
histograms. However, in this work, LBP values are combined with a
contrast measure and, instead of using directly the histograms values,
different statistics are calculated from them.

The rest of the chapter is organized as follows: in Section 4.2
theoretical background is included and in Section 4.3 the proposed
method is presented. Section 4.4 shows how system validation was
performed and as well as the obtained results. Finally, Section 4.5
provides conclusions and some future areas for work.

4.2 Theoretical background

As Section 3.2, this section is intended as a guide to the reader about
the main tool used in the chapter: local binary pattern theory.

Local binary pattern (LBP) is a powerful gray-scale texture operator
used in many computer vision applications because of its computation
simplicity (Ojala et al., 2001; Ojala et al., 2002). The first step in LBP
is to produce a label for each pixel in the image where the label is found
based on the local neighborhood of the pixel which is defined by a radius,
R, and a number of points, P . The neighboring pixels are thresholded
with respect to the gray value of the central pixel of the neighborhood
generating a binary string or, in other words, a binary pattern. The
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value of a LBP label is obtained for every pixel by summing the binary
string weighted with powers of two. It can be represented as follows:

LBPP,R =
P−1∑
p=0

s(gp − gc) · 2p, s(x) =

{
1 if x ≥ 0
0 if x < 0.

(4.1)

where gp and gc are the gray values of the neighborhood and central
pixel, respectively. P represents the number of samples on the
symmetric circular neighborhood of radius R. The gp values are
interpolated to fit with a given R and P . The values of the labels depend
on the size of the neighborhood (P ). In Figure 4.2 two neighborhoods
with different radii, but the same number of samples, are drawn.

R=2 R=1 R=2 R=1

(a) (b)

Figure 4.2: LBP neighborhoods: (a) R = 1 and P = 8. (b) R = 2 and P = 8.

2P different binary patterns can be generated in each neighborhood.
However, the bits of these patterns must be rotated to the minimum
value to achieve a rotation invariant pattern. For example, the binary
patterns 01110000, 10000011 and 00111000 are different rotations of
the same pattern and correspond to the normalized string 00000111.
In the case of P = 8, only 36 of the 2P possible patterns are rotation
invariant, i.e., LBP8,R can have 36 different values. Figure 4.3 shows
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how LBP is calculated for a circular neighborhood of radius 1 (R = 1)
and 8 samples (P = 8).
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Figure 4.3: LBP computation: (a) Gray values of a circular neighborhood
of radius 1 and 8 samples. (b) Thresholding between the gray value of the
neighborhood and the central pixel. The rotation invariant local binary pattern
generated is 00101101 (the arrows indicate the order in which the string
is formed). Specifically, the LBP label is obtained as follows LBP8,1 =
0× 20 + 0× 21 + 1× 22 + 0× 23 + 1× 24 + 1× 25 + 0× 26 + 1× 27 = 180.

When LBP is used for texture description, it is common to include a
contrast measure by defining the rotational invariant local variance as
follows:

V ARP,R =
1

P

P−1∑
p=0

(gp − µ)2, µ =
1

P

P−1∑
p=0

gp. (4.2)

The LBP and VAR measures are complementary and are combined
to enhance the performance of the LBP operator. The implementation
of both measures is publicly available online.1

1www.ee.oulu.fi/~gyzhao/LBP_Book.htm

www.ee.oulu.fi/~gyzhao/LBP_Book.htm
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4.3 Application to pathology detection: Dia-
betic retinopathy and age-related macular
degeneration

Using the technique explained above, an algorithm able to distin-
guish between healthy retinal images and images belonging to patients
with diabetic retinopathy and age-related macular degeneration was
developed.

4.3.1 General description

The algorithm proposed for classification of retina images does not
need a prior segmentation of suspicious lesions. Manual segmentation
of lesions are time consuming and automatic segmentation algorithms
might not be accurate, thus removing the need for lesion segmentation
can make the classification more robust. The algorithm is based on
the study of the retina background. Hence, the main structures of the
fundus (the vascular network and the optic disk), which are not related
to the diseases under study, should not be taken into account when the
texture of the fundus is analyzed. If these predominant structures were
included in the image texture analysis, they could mask the difference
between healthy and pathological images because their aspect in both
cases would be similar.

4.3.2 Feature extraction

The LBP and VAR operators described above are used to charac-
terize the texture of the retina background. They are calculated for
each pixel of the RGB images using P = 8 and different values of R
(R = {1, 2, 3, 5}). Due to the fact that the images under study belong
to different databases, the size of the images varies. As the LBP and
VAR depend on the radius of the neighborhood, the images must be
resized to a standardized size to obtain comparable texture descriptors.
The images are resized using the length of the horizontal diameter of
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the fundus as reference (Zhang et al., 2012). Bicubic interpolation is
used for resizing; the output pixel value is a weighted average of pixels
in the nearest 4-by-4 neighborhood.

The red, green and blue components of each image are independently
analyzed. One example of the aspect of the LBP and VAR images of an
AMD fundus is represented in Figure 4.4. Only the pixels of the retina
background are considered significant for the texture analysis. Thus the
LBP and VAR values corresponding to pixel positions of the vessels,
the optic disk or outside the fundus should not be taken into account.
The vascular network and the optic disk are detected by the methods
presented in Subsection 3.3.1 and Section 3.5 and, subsequently, the
LBP and VAR labels are removed according to the pixel position of
the optic disk and the vascular network. The external mask is directly
obtained by thresholding.

The resulting LBP and VAR images provide a description of the
image texture. After masking the optic disk and vessel segments,
the LBP and VAR values within the external mask of the fundus
are collected into histograms, one for each color (RGB). Different
statistical information is extracted from these histograms to use it as
features in the classification stage. Concretely, the calculated statistical
values are: mean, standard deviation, median, entropy, skewness and
kurtosis. To sum up, 6 statistical values are calculated from each LBP
and VAR histogram, giving place to 12 features for each radius used.
Consequently, the total number of features is equal to 144 (12 features
x 4 radius x 3 components). Figure 4.5 depicts the feature extraction
flowchart and Algorithm 4.1 summarizes the steps to be followed.

4.3.3 Classification

The dataset analyzed was divided into two subsets, one for training
and testing by cross validation (model set) and other purely for testing
(validation set).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.4: Feature extraction using P = 8 and R = 5. (a) AMD fundus
image, (b) External mask, (c) Optic disk and vessel mask, (d-f) LBP images
calculated on R , G and B components, respectively. Optic disk and vessel
segments are removed (black). (g-i) VAR images calculated on R , G and B
components, respectively. Optic disk and vessel segments are removed (white).

Once the features are extracted, the data of the model set must be
preprocessed before the classification stage. In the preprocessing, two
tasks are carried out: data normalization and data resampling. The first
one because the range of values of raw data varies widely and the second
one because the dataset is clearly unbalanced and most machine learning
algorithms would not work properly. In particular, the method used for
the normalization is to standardize all numeric attributes in the given
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STATISTICS

MAIN STRUCTURE 
SEGMENTATION

TEXTURE 
DESCRIPTORS

COMPONENT 
SELECTION

Original fundus 
image

Rescaling
Optic Disc 

Segmentation

Vessel 
segmentation

Structure Mask

R

Feature Set 144 features

G

B

Masking

LBP P,R

VAR P,R

LBP P,R

VAR P,R

LBP P,R

VAR P,R

mean
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entropy
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External Mask

Figure 4.5: Feature extraction flowchart. First, the original fundus image is
rescaled based on its horizontal diameter. Secondly, LBP and VAR measures
are performed on the three RGB components using P = 8 and R = {1, 2, 3, 5}.
Then, the external mask of the fundus is determined and the optic disk
and vessels are segmented generating a structure mask. Both, external and
structure masks, are used for masking the result of the texture descriptors.
The final feature set is formed by the statistical values of all texture descriptors
after masking.

dataset to have zero mean and unit variance and, for the resampling,
the Synthetic Minority Oversampling TEchnique (SMOTE) (Chawla
et al., 2002) is applied. This technique over-samples the minority class
creating synthetic minority class examples to balance the dataset.

Afterwards, external cross validation (CV), also called nested CV
(Scheffer, 1999; Dudoit and van der Laan, 2005), is performed on the
model set so that the dimensionality of the data is reduced by feature
selection before being passed on to a classifier. 10 folds are used in
the external loop and 5 folds in the internal loop. The purpose of the
internal loop is to select a feature subset and the used technique is
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Algorithm 4.1: Feature extraction

Data: Original RGB fundus image f(fr, fg, fb), External mask Mext,
Optic disk mask MOD, Vessel mask Mv

Result: Feature vector, F

initialization: P,R ;

rescaling:
f ′(f ′r, f

′
g, f
′
b)← resize(f(fr, fg, fb)) ;

M ′ext ← resize(Mext) ;
M ′OD ← resize(MOD) ;
M ′v ← resize(Mv) ;

mask computing:
M ← and(M ′ext)

c, (M ′OD)c, (M ′v)
c) ;

texture descriptors:
for i = {r, g, b} do

for j ← 1 to length(R) do

fLBP ij ← LBPP,Rj (f ′i) ;
fV ARij

← V ARP,Rj
(f ′i) ;

statistics:
Fij1 ← mean(fLBP ij (M > 0)) ;
Fij2 ← std(fLBP ij

(M > 0)) ;
Fij3 ← median(fLBP ij

(M > 0)) ;
Fij4 ← entropy(fLBP ij

(M > 0)) ;
Fij5 ← skewness(fLBP ij (M > 0)) ;
Fij6 ← kurtosis(fLBP ij (M > 0)) ;
Fij7 ← mean(fV ARij

(M > 0)) ;
Fij8 ← std(fV ARij

(M > 0)) ;
Fij9 ← median(fV ARij

(M > 0)) ;
Fij10 ← entropy(fV ARij (M > 0)) ;
Fij11 ← skewness(fV ARij (M > 0)) ;
Fij12 ← kurtosis(fV ARij

(M > 0)) ;

end

end

a wrapper method (Kohavi and John, 1997) with forward (best first)
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selection. The same type of classifier is used in both the internal and
external loops. The external loop divides the set into 10 non-overlapping
pairs of training (90%) and test (10%) sets. For each fold of the external
CV, the training set is further divided into 5 non-overlapping sets by
the internal CV loop. The internal loop is done first to select the
feature subset of this particular fold of the external loop. Thereafter,
the external loop trains the classifier using this subset, and tests it on
the remaining 10%. This is repeated for every fold. Notice that the
feature set might vary with each external fold of the CV scheme. Thus
doing an external or nested CV gives a measure of how well the method
works for this dataset, where the method includes the feature subset
selector and the choice of classifier. Figure 4.6 shows how the external
CV is performed for the first fold.

EXTERNAL CV

INTERNAL CV
(FEATURE SELECTION)

Model Set
Training 
classifier

Subset M1

Subset M2

Subset M3

Subset M4

Subset M9

Subset M10

...

Subset T1

Subset T2

Subset T5

Subset T3

Subset T4Training
Subset

T

Selected 
Features 
after 5 

Internal 
Folds

Test 
classifier

Test Subset

Model 1

M

Sensitivity
Specificity

External Fold #1

F1

Figure 4.6: External cross validation flowchart. The process is repeated
iteratively for the 10 folds of the external loop.

Finally, a final classifier is made using the whole model set for feature
subset selection and thereafter the whole model set is used for training
the classifier. The validation set is tested on the final classifier. The
process is summarized in Figure 4.7. The normalization parameters
from the model set are saved as a part of the classifier, such that the
validation set is normalized using these same parameters.

Both, data preprocessing and classification, were carried out with
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Model Set
Training 
classifier

Feature 
Selection 

Test classifier Results

Validation Set

M  Model

 F       

V

Figure 4.7: Final validation flowchart.

Weka (Hall et al., 2009; Witten et al., 2011).

4.4 Results

This section describes the material used and the experiments
designed for method validation.

4.4.1 Material

The material used in this work are images previously diagnosed as
normal (without known pathology), DR or AMD. The dataset was
composed of images from 4 different databases which included some
of the categories under study:

ARIA

ARIA database (Farnell et al., 2008; Zheng et al., 2012) is formed
by 143 color fundus images (768 × 576 pixels), which are organized
into three classes: age-related macular degeneration (AMD) subjects
(n=23), healthy control-group subjects (n=61), and diabetic subjects
(n=59).2 Trained image analysis experts traced out the blood vessels,
and also the optic disk and fovea where relevant.

2www.eyecharity.com/aria_online.html

www.eyecharity.com/aria_online.html
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STARE

STARE database (Hoover et al., 2000; Hoover and Goldbaum, 2003)
is a full set of 402 images (700 × 605 pixels) where thirteen different
diagnoses were considered.3 From this dataset, three subsets were
generated: age-related macular degeneration (n=47), normal (n=37),
and diabetic retinopathy (n=89).

E-OPHTHA

E-OPHTHA (Decencière et al., 2013) is a database of fundus images
especially designed for diabetic retinopathy screening.4 It contains
257 images with no lesion, 47 images with exudates and 148 with
microaneurysms or small hemorrhages making a total of 174 images
with diabetic retinopathy.

DIAGNOS

DIAGNOS (Garnier et al., 2014) is a private database, property of
DIAGNOS Inc., composed of 45 fundus images, 22 afflicted with AMD
and 23 healthy.

Both E-OPHTHA and DIAGNOS have a range of different image
resolutions. The four databases experience a significant variability in
color, illumination, resolution, quality, etc. both within and, even more,
among the databases. Some representative images of each database are
shown in Figure 4.8.

All images of the resulting dataset must comply with certain quality
criteria. The following causes were considered reasons for exclusion:

Images with artefacts, for example bright and circular spots
produced by some dust in the camera lens.

3www.ces.clemson.edu/~ahoover/stare/
4www.adcis.net/en/Download-Third-Party/E-Ophtha.html

www.ces.clemson.edu/~ahoover/stare/
www.adcis.net/en/Download-Third-Party/E-Ophtha.html
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(a) (b)

(c) (d)

Figure 4.8: Fundus images belonging to the different used databases. (a)
ARIA, (b) STARE, (c) E-OPHTHA and (d) DIAGNOS.

Images affected by a relative large amount of impulsive noise (salt
and pepper noise).

Images where the vascular network is largely over-segmented by
the method presented in Subsection 3.3.1.

Images with a doubtful diagnosis.5

Images with highlights around the vessels associated with young
retinas. 6

Tessellated images due to the fact there are lesser amounts of
pigment in the retinal pigment epithelium.6

5Based on second opinion from a medical doctor.
6This situation dramatically changes the images, thus they are not included

here. However they should be regarded separately in future studies since it is highly
desirable to be able to include these types of subjects.
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Figure 4.9 depicts some of these cases. Most of these choices were done
to determine if LBPs were able to discriminate between healthy and
pathological images in a normal situation or, in other words, without the
presence of distracting elements. When this hypothesis was confirmed,
particular cases will be included in the analysis.

(a) (b)

(c) (d)

Figure 4.9: Excluded images. (a) With artefacts, (b) Noisy, (c) With
highlights and (d) Tessellated.

After exclusion, the resulting dataset used in this work is formed
by a total of 251 images. In Table 4.1, the number of images of each
database after the exclusion criteria is detailed. As mentioned before,
this dataset was divided into two subsets, one for training and testing by
cross validation (model set) and other, completely independent, purely
for testing (validation set). The model set contains 80% of the images
and the validation set the remaining 20%. Table 4.2 shows the contents
of each subset.
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Table 4.1: Content of each database.

ARIA STARE E-OPHTHA DIAGNOS Total

AMD 9 23 0 17 49
DR 8 35 37 0 80
NORMAL 30 13 79 0 122

Total 47 71 116 17 251

Table 4.2: Content of the model and validation sets.

Model set
ARIA STARE E-OPHTHA DIAGNOS Total

AMD 7 18 0 14 39
DR 6 28 29 0 63
NORMAL 24 10 63 0 97

Total 37 56 92 14 199

Validation set
ARIA STARE E-OPHTHA DIAGNOS Total

AMD 2 5 0 3 10
DR 2 7 8 0 17
NORMAL 6 3 16 0 25

Total 10 15 24 3 52

4.4.2 Experiments

Five experiments were conducted and validated with the procedure
proposed in this chapter:



4.4. Results 135

AMD - Normal

DR - Normal

Pathological (including AMD and DR) - Normal

AMD - DR

3 class problem (AMD - DR - Normal)

For each experiment, different classifiers were tested: Logistic
Regression (Cessie and van Houwelingen, 1992), Neural Networks
(Hecht-Nielsen, 1990), SVM (Chang and Lin, 2011), Naive Bayes (John
and Langley, 1995), C4.5 (Quinlan, 1993), Rotation Forest (Rodriguez
et al., 2006), Random Forest (Breiman, 2001), and AdaBoost (Freund
and Schapire, 1996). The performance of the algorithms was evaluated
based on two concepts: sensitivity or true positive rate (TPR) and
specificity or true negative rate (TNR). Sensitivity and specificity
measure the proportion of positive and negative cases which are
correctly identified as such, respectively. Tables 4.3 and 4.4 detail the
sensitivity and specificity obtained on the model and validation sets
in all the experiments with the different classifiers. In the case of the
three-class problem, the average sensitivity and specificity are shown.
In Table 4.3, the best results of each experiment are highlighted in bold.
The metrics computed after external cross validation are additive over
the folds, i.e. the correctly or incorrectly classified cases are summed
over the folds and divided by the total number of instances.
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Table 4.3: Results of the different experiments on the model set (external
CV).

AMD-Normal DR-Normal Path.-Normal
TPR TNR TPR TNR TPR TNR

Logistic Regression 0.948 0.990 0.732 0.814 0.843 0.861
Neural Networks 0.866 0.979 0.722 0.773 0.833 0.832
SVM 0.938 0.959 0.773 0.876 0.784 0.842
Naive Bayes 0.990 0.959 0.588 0.794 0.647 0.782
C4.5 0.969 0.938 0.897 0.804 0.853 0.851
Rotation Forest 0.938 0.959 0.835 0.866 0.892 0.881
Random Forest 0.959 0.959 0.876 0.866 0.843 0.861
AdaBoost 0.979 0.959 0.897 0.814 0.824 0.772

AMD-DR AMD-DR-Normal
TPR TNR TPR TNR

Logistic Regression 0.873 0.937 0.835 0.918
Neural Networks 0.905 0.921 0.842 0.921
SVM 0.841 0.968 0.852 0.926
Naive Bayes 0.857 0.952 0.777 0.888
C4.5 0.889 0.937 0.849 0.924
Rotation Forest 0.921 0.937 0.883 0.942
Random Forest 0.921 0.921 0.907 0.954
AdaBoost 0.921 0.968 0.808 0.904

With regard to the obtained results after external CV (Table
4.3), the experiment with the best performance is “AMD-Normal”
achieving a sensitivity and specificity greater than 0.95. The rest of the
experiments let show that the lower values correspond to the detection
of the DR. This is because the lesions of the DR are usually smaller
than those of the AMD and, therefore, they are more difficult to detect
through texture analysis. Even so, the results are promising in the
three-class diagnosis.
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Table 4.4: Results of the different experiments on the validation set.

AMD-Normal DR-Normal Path.-Normal
TPR TNR TPR TNR TPR TNR

Logistic Regression 1.000 0.920 0.412 0.960 0.815 0.920
Neural Networks 1.000 1.000 0.647 0.960 0.704 0.960
SVM 0.800 0.920 0.412 0.920 0.778 0.920
Naive Bayes 1.000 0.960 0.353 0.920 0.556 0.800
C4.5 1.000 0.960 0.824 0.880 0.741 0.880
Rotation Forest 0.900 0.920 0.706 0.840 0.815 0.880
Random Forest 1.000 0.920 0.471 0.920 0.667 0.840
AdaBoost 1.000 0.960 0.647 0.920 0.778 0.880

AMD-DR AMD-DR-Normal
TPR TNR TPR TNR

Logistic Regression 0.900 0.882 0.769 0.878
Neural Networks 0.900 0.882 0.808 0.875
SVM 1.000 0.824 0.750 0.812
Naive Bayes 1.000 0.882 0.712 0.816
C4.5 1.000 0.882 0.808 0.874
Rotation Forest 1.000 0.941 0.808 0.857
Random Forest 1.000 0.824 0.808 0.892
AdaBoost 0.900 0.824 0.769 0.886

Besides the results of the external CV, an independent set of
52 images (validation set) was saved to test the proposed method.
The validation results follow the same trend shown in the CV, i.e.
the “AMD-Normal” experiment is the one which achieves the best
performance.

The proposed method was also compared with other state-of-the-art
algorithms which are based on fundus image texture analysis (Garnier
et al., 2014; Mookiah et al., 2013). As mentioned in the introduction,
Garnier et al. use the LBP histogram calculated after a wavelet
decomposition as input of a linear classifier validated by means of the
leave-one-out method. Mookiah et al. combine the LBP information
with other features (the area of hard exudates, the area of blood vessels,
bifurcation points, etc.) in a probabilistic neural network. To the best
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of the author’s knowledge, there is no other system that analyses the
texture of the retina background and detects AMD and DR at the same
time, therefore, it was only possible to compare the results from two-
class diagnosis, see Tables 4.5 and 4.6. The results of the proposed
method shown in these tables are those achieved on the model set
because the other compared works do not test their algorithms on an
independent dataset. Note that the obtained results are not directly
comparable because the dataset used in each case is different.

Table 4.5: AMD-Normal comparison on different databases.

TPR TNR Features Classifier Validation #images

Garnier et
al.

0.913 0.955 Wavelet trans-
form and LBP

LDA Leave-one-
out

45

Proposed
method

0.979 0.959 LBP AdaBoost 10-fold
external CV

136

Table 4.6: DR-Normal comparison on different databases.

TPR TNR Features Classifier Validation #images

Mookiah et
al.

0.963 0.961 Blood vessel
area, exudates
area, bifurcation
points, texture
and entropy

PNN 3-fold
CV

156

Proposed
method

0.876 0.866 LBP Random
Forest

10-fold
external
CV

160
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4.5 Conclusions

In this chapter, a new approach for AMD and DR diagnosis has been
presented. It is based on analyzing texture discrimination capabilities in
fundus images to discriminate healthy patients from images with AMD
or DR. The performance of LBP with different classifiers was tested.

Many more AMD or DR detection techniques exist in the literature
but most of them focus on lesion segmentation instead of a direct
study of the retina background. This fact makes the accuracy
of the classification stage dependent on the accuracy of the lesion
segmentation. Lesion segmentation involves a series of uncertainties
and a non-accurate segmentation may provoke important errors in the
classification. The main advantage of the proposed procedure is that
it gets a good performance without having to search different types
of lesions. The only segmentation needed in the presented approach
is to mask the significant structures (vessels and optic disk) but their
accuracy has little influence on the final result.

The obtained results, a sensitivity and specificity greater than 0.96
for AMD detection, greater than 0.87 for DR detection and greater than
0.91 for three-class diagnosis, demonstrate that LBP is a good texture
descriptor for fundus images and can be used in a diagnosis aid system
for retinal disease screening.

As for future work lines, more images could be added to the database
and the analysis could be repeated. Moreover, some work should be
carried out to develop strategies that enable the analysis of the type of
images that were excluded from the initial database, such as tessellated
fundus, images with highlights or typical artefacts.
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Conclusions

As was indicated in Chapter 1, the main objective of this thesis was to
develop and implement algorithms for retina characterization from the
analysis of fundus images. In particular, the retina was characterized
through advanced image processing techniques in two different ways.
First, the main retinal structures, blood vessels and optic disk, were
detected and subsequently analyzed to obtain some of their significant
features. This information was used in a computer-aided diagnosis
software for hypertensive risk determination. This was addressed in
Chapter 3. Secondly, the texture of the retina background was studied
in order to classify an image as belonging to a healthy or pathological
subject, as was seen in Chapter 4. Diabetic retinopathy and age-
related macular degeneration were detected by this procedure. Its main
advantage is to avoid the need for segmentation of each type of retinal
lesion.

On the one hand, Chapter 3 demonstrated that the performance
of mathematical morphology and stochastic watershed, a variant of
the watershed transformation, allows us to apply these methods for
clinical purposes as the segmentation of the retinal structures. On the

141
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other hand, Chapter 4 stood out that local binary pattern operator is
a good texture descriptor for fundus images and can be used for retinal
disease screening, above all for the diagnosis of age-related macular
degeneration.

The methods presented in this thesis will be incorporated in an
only automatic screening system to discriminate between a normal
and pathological retina taking into account different pathologies at the
same time. This system will have to be more robust than the existing
solutions and to have enough specificity and sensitivity to be applied
in clinical practice. Nowadays, there are some initiatives focused on
glaucoma or diabetic retinopathy detection but they have very low
specificity and, therefore, low screening effectiveness. The development
of this screening system is being funded at the present time by the
Spanish government under the project ACRIMA (TIN2013-46751-R).
It is expected to have a first version of the system at the end of 2016. In
this project, new prognostic markers that are currently used in clinical
diagnosis, such as blood pressure, age or family history, will be combined
with those provided by the fundus image processing with the aim of
improving the robustness and increasing the sensitivity and specificity
of the automatic screening system. From a perspective of a screening
tool, all developments presented in this thesis should be validated by
comparing the results achieved by the tool with the diagnosis made by
an expert.

In future works, three main research lines will be carried out. First,
to segment other retinal structures such as the macula or the optic cup.
The location of the macula is important for the diagnosis of age-related
macular degeneration, as its name suggests. The area of the optic cup
is directly related to glaucoma prediction, as was seen in Chapter 2.
Secondly, to perform an in-depth study of the retina background. More
texture descriptors will be evaluated and their results will be compared
with those presented in Chapter 4. Finally, to consider the heterogeneity
of the clinical databases. The parameters used in the developed methods
which are related to the image size will be generalized. The diverse
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types of normality that exist in fundus images, as the tessellated images,
will have to be taken into account to not reduce the specificity of the
classification, which is increasingly important.
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Ojala, T., Pietikäinen, M., and Maenpää, T. (2002). Multiresolution gray-
scale and rotation invariant texture classification with local binary
patterns. Pattern Analysis and Machine Intelligence, IEEE Transactions
on, 24(7):971–987. 2 citations in pages 120 and 121.



Bibliography 161

Oppedal, K., Engan, K., Aarsland, D., Beyer, M., Tysnes, O. B., and Eftestol,
T. (2012). Using local binary pattern to classify dementia in MRI. In
Biomedical Imaging (ISBI), 9th IEEE International Symposium on, pages
594–597. One citation in page 120.

Ortega, M., Barreira, N., Novo, J., Penedo, M., Pose-Reino, A., and Gómez-
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