
Abstract

Graphics Processing Units (GPUs) have been recently used
as coprocessors capable of performing tasks that are not
necessarily related to graphics processing in order to op-
timize computing resources. The use of GPUs has being
extended to a wide variety of intensive-computation ap-
plications among which audio processing is included. Ho-
wever data transactions between the CPU and the GPU
and vice versa have questioned the viability of GPUs for
applications in which direct and real-time interaction bet-
ween microphone and loudspeaker is required. One of
the audio applications that requires real-time feedback is
adaptive channel identification. Particularly, when the
partitioned Least Mean Squares (LMS) algorithm is used
in the frequency domain, the size of input-data buffers
and filters and how they can be managed in order to suc-
cessfully exploit the GPU resources is an important key in
the design process. This paper discusses the design and
implementation of all the processing blocks of an adap-
tive channel identification system on a GPU, proposing a
GPU implementation that can be easily adapted to any
acoustic scenario, while freeing up CPU resources for
other tasks.

Keywords: Graphics Processing Unit, adaptive channel
identification, LMS algorithm.

1. Introduction

In recent years the number of scientific contributions and
research projects related to the use of Graphics Proces-
sing Units (GPUs) as general purpose computers (GP-
GPU) has significantly increased [1-3]. This phenomenon

has occurred in almost all engineering fields that require
intensive computing, and Signal Processing is not an ex-
ception [4-7]. This fact can be appreciated in the follo-
wing web site [8], where several applications related to
audio signal processing using GPU can be found, such as
[9] and [10]. In [9], it is described how a generalized
audio multichannel system is mapped on the GPU. This
system efficiently exploits the GPU resources when mul-
tiple convolutions are executed concurrently. The second
application consists in designing a crosstalk canceller on
a notebook GPU. Moreover, GPU computing has already
been applied to different problems in acoustics. Theodo-
ropoulos et al. in [11] study the implementation of be-
amforming and wave-field synthesis on GPU. In [12]
Lorente et al. discussed about parallel implementations
of beamforming design and filtering for microphone
array applications. Webb and Bilbo in [13] carried out stu-
dies of computer modeling of room acoustics, as well as
geometric acoustic modeling like ray-tracing [14].

Up to now, the applications where GPU and audio pro-
cessing have been involved consist in convolving multiple
input signals with static filters. However adaptive filter
applications in which real-time signal acquisition, data
transactions among CPU, GPUs and audio cards, and
loudspeaker reproduction could be critical have not yet
been tested on GPU. The purpose of this paper is to des-
cribe how to use GPUs for real-time adaptive audio ap-
plications where the adaptive filter coefficients must vary
over time to reach a target that depends on the applica-
tion. This implies the need of monitoring those signals
that are related to the objective. Furthermore, because
of the inherent capability of parallelization of the GPUs,
not all the adaptive algorithms can run efficiently on
these systems. Adaptive algorithms that work sample by

59Waves - 2012 - year 4/ISSN 1889-8297

Real-time adaptive algorithms using a Graphics
Processing Unit
Jorge Lorente1, Miguel Ferrer1, José A. Belloch1, Gema Piñero1, María de Diego1, Alberto González1, Antonio M. Vidal2.

Instituto de Telecomunicaciones y Aplicaciones Multimedia1 (iTEAM),
Departamento de Sistemas Informáticos y Computación2 (DSIC),
Universitat Politècnica de València,
8G Building - access D - Camino de Vera s/n - 46022 Valencia (Spain)
Jorge Lorente: jorlogi@iteam.upv.es

sample are particularly difficult to optimize in GPUs, so
in this study we have used block algorithms that intro-
duce the disadvantage of higher latency, but optimize the
computational cost of these algorithms in the frequency
domain. In order to illustrate how to overcome the diffi-
culties that appear in the use of GPUs in adaptive
systems, we have implemented a channel identification
system using the block least mean squares (BLMS) algo-
rithm and its computationally efficient version in the fre-
quency domain (FBLMS). Most of the actions described
can be extended to any other adaptive algorithm and/or
similar application.

The rest of the paper is organized as follows. In section 2
we describe the BLMS and the FBLMS algorithms for a
channel identification system. The real-time implementa-
tion of this system is presented in section 3. Section 4 of-
fers the implementation carried out on GPU. Section 5
analyzes the performance of the system based on GPU. Fi-
nally some concluding remarks are reported in section 6.

2. Algorithms description

Figure 1 shows the general scheme of an adaptive chan-
nel identifier, where ‘system’ represents the channel we
want to identify. Signal x[n] is the reference signal, and
d[n] is the result of exciting the ‘system’ with x[n]. Varia-
ble w[n] is the adaptive Finite Impulse Response (FIR) filter
that must fit the ‘system’, and y[n] is the adaptive output.
Finally, e[n] is the error signal.

Considering that the block labeled with ‘system’ is an
electroacoustic system, it is described by an impulse res-
ponse between two points in space (usually located in a
room). In this case, the system is excited with a broad-
band signal x[n]. The error signal is defined as: e[n]=d[n]-

y[n]. The target is the cancellation of the error signal,
which would mean that the coefficients of the adaptive
filter fit those of the unknown system. Adaptive algo-
rithms minimize the error signal e[n] or some function of
this signal, such that w[n] at steady state is a good esti-
mation of the impulse response of the system to identify.

The LMS algorithm [15] is one of the most commonly
used adaptive algorithms for its high performance, sim-
plicity and robustness. The LMS equation for updating
the L filter coefficients is given by:

[1]

where xL[n] is a vector with the last L samples of x[n], �
is a positive constant that controls the speed of conver-
gence and w[n] is the L coefficient vector. The filter out-
put is expressed as:

[2]

In equation (1) filter coefficients w [n] are adapted sample
by sample. However, because of the type of data mana-
gement imposed by GPUs, we have to work with blocks
of samples, thus, using the block LMS algorithm (BLMS)
[16] instead of the LMS. Assuming that each data block
is composed by M samples, filter coefficients are adapted
according to:

[3]

and the algorithm generates M output samples (y[n] va-
lues) as follows:

[4]

Where equations (3)-(4) perform a total of (2L+1)M mul-
tiplications for each block of M samples.

The BLMS algorithm has been efficiently implemented in
the frequency domain providing the frequency BLMS
(FBLMS) algorithm. Thus, a computational cost reduction
is achieved with respect to the BLMS in time domain by
efficiently computing the Discrete-time Fourier Transform
(DFT) with the Fast Fourier Transform (FFT). To this end,
we have used an FFT of 2M points and the data blocks
of time-signal x[n] have been arranged as follows:

Thus, input signal samples are placed in two blocks of M
samples each so the oldest samples are placed in the first
block and the most recent ones in the second. Let us call
x2M[n] to this data arrangement of the input signal,
equation (2) could be rewritten using the transformed
domain as:

[5]

60 ISSN 1889-8297/Waves - 2012 - year 4

Figure 1. Adaptive channel identification scheme.

Figure 2. Reordering of the data input blocks.

w [n]=w [n-1]+�x
L
[n]e[n]

y[n]=wT[n]x
L
[n]

w [n]=w [n-M]+� x
L
[n-i]e[n-i]

i=0
M-1

�

y[n-i]=wT[n]x
L
[n-i], i=0,...,M-1

yM[n] = IFFT FFT w [n] FFT (x
2M

[n])
0

where the first M elements of the vector on the left-hand
side of the equality are discarded, and the vector with the
coefficients of the adaptive filter is padded with zeros until
reaching a length of 2M samples. The coefficients w[n] in
time domain are the first M samples of the Inverse FFT

(IFFT) of the vector in the frequency domain. Therefore, the
coefficients are updated in frequency domain as follows:

[6]

where � M[n] are the first M elements of the IFFT of the
estimated cross-correlation vector between the error signal
and the vector of the reference signal, calculated as follows:

[7]

where symbol * denotes the conjugate and e[n] is a vector
with the last M elements of the signal e[n]. In this case, the
algorithm, equations (5)-(7), performs 4·M·(log2(2·M)+1)

multiplications for each data block of M samples.

One limitation of the above algorithm is that it can iden-
tify any acoustic system as long as its impulse response
can be approximated by a FIR system with a maximum
of M coefficients, which in turn imposes certain cons-
traints when setting the sizes of data blocks (M) on the
GPU. One solution to estimate larger response systems is
to split up the adaptive filter coefficients into blocks.
Thus, the algorithm should work simultaneously with all
the partitions of size M that have to be adapted accor-
dingly. Given that the GPU is specifically designed to
work in parallel, this solution could efficiently exploit the
GPU resources. The resulting implementation is called the
partitioned FBLMS (PFBLMS) algorithm.

3. System overview

The detailed implementation of a channel estimator on
a GPU is depicted in Figure 3. The CPU controls the data

transfer between the audio card and the transducers (mi-
crophone and loudspeaker), and between the audio card
and the GPU. In our experiment the CPU is an Intel Core
i7 (3.07 GHz) with 8 Gb of RAM. The GPU is a Geforce
GTX 580 with 2.0 CUDA capability and 16 multiproces-
sors of 32 cores each (Fermi architecture) [17]. The audio
card is a MOTU 24 I/O [18] that uses the ASIO (Audio
Stream Input/Output) [19] driver to communicate with
the CPU. The ASIO driver provides input/output buffers;
the input buffers are connected to the microphones and
the output buffers to the loudspeakers. Table 1 summa-
rizes the main GPU characteristics.

The audio car allows working at two sampling rates (fs):
44.1 and 48 kHz. The 44.1 kHz sampling rate has been
chosen as it is a quite high rate for the sounds involved.
Regarding the block size, and considering the wide range
of block sizes that the MOTU audio car offers, we have
used values between M=128 and 2048.

4. Real-Time Implementation

In real-time audio acquisition, once the input-data buffers
are filled, they are transferred through the PCI-Express bus
to the GPU where all the processing is carried out. Once
the execution on GPU ends, audio samples are saved in

61Waves - 2012 - year 4/ISSN 1889-8297

Table 1. Characteristics of the GPU (GTX-580M).

Figure 3. GPU implementation.

This work analyzes the viability of the use of GPUs for
real-time adaptive applications.

FFT w [n] = FFT w [n-1] +�FFT �M [n]

00 0

�[n]=IFFT FFT e[n]
FFT (x

2M
[n])*

0

CUDA Architecture Fermi

CUDA Capability 2.0

Number of SMs 16

Number of cores per SMs 32

Maximum number of threads per block 1024

Overlap transfer with computations yes

output-data buffers that are subsequently sent back to
the CPU in order to be reproduced by the loudspeakers.
In adaptive applications this process is repeated at each
iteration. The system shown in Figure 3 is composed by
one input-data buffer and one output-data buffer.

The designed application will work in real-time if the fo-
llowing condition is satisfied: tproc<tbuff, where tbuff is the
time spent to fill the input-data buffer and is equal to M/fs,
and tproc is the execution time measured from the moment
the input-data buffer is sent to the GPU to that the out-
put-data buffer comes back to the CPU, including transfer
times CPU↔GPU and the buffer processing in the GPU.
The times tproc and tbuff allow us to calculate two important
parameters on audio signal processing: latency and
throughput, that will be analyzed in section 6.3.

5. GPU implementation

As commented in section 3 we have implemented a
channel identification algorithm by partitioning the
adaptive filter. This occurs when the filter size is longer

than the input-data buffer or in applications where the
latency time requires minimizing the input-data buffer.
The main goal of partitioning the filter is to obtain the
best performance from the resources of the GPU ma-
king use of the “SIMD (Simple Instruction Multiple Data)
GPU architecture”. Considering a filter size of L, and a
block size of M, the filter is uniformly partitioned in
P=L/M blocks of M samples. If L is not a multiple of M,
the last block is padded with zeros. Figure 4 illustrates
the partition of the filter.

Once the filter coefficients are arranged as in Figure 4,
the channel estimation is carried out through the PFBLMS
algorithm described in Table 2 which is explained below.
Additionally, the GPU uses the kernels described in Table

Step 1) The algorithm build an input data matrix x of
size 2MxP in order to fit the element-wise multiplication
when filtering by W. Matrix x is formed at each iteration
filling one of the P columns with the input-data buffer.
As it is shown in Figure 5, column x1 of size 2M is filled
with M zeros followed by the M input-data buffer of ite-
ration 1, column x2 is formed with the M input-data
buffer of iteration 1 followed by the M input-data buffer
of the iteration 2, and so on. After P iterations all co-
lumns are filled. Then, at iteration P+1 the column filled
in iteration 1 is rewritten using the current input data
buffer.

62 ISSN 1889-8297/Waves - 2012 - year 4

Adaptive algorithms that work sample by sample are
particularly difficult to optimize in GPUs, so in this study
we have used block algorithms.

Figure 4. Partition of the adaptive filter.

Table 2. PFBLMS algorithm implemented on GPU.

STEP CHANNEL ESTIMATION PSEUDO CODE

1 Build input data matrix x

2 Perform an element-wise matrix multiplication: OUT=X•W, where X=FFT(x)

3 Reduce sum of all columns of matrix OUT to one column

4 Carry out an IFFT of size 2M of the result obtained in step 3; discard the first M samples and save the last

M samples as output vector y

5 Calculate the M elements of the error signal: e=d-y.
6 Perform an FFT of the error signal after filling its first M elements with zeros: E=FFT(0 e).

7 Calculate the inverse FFT of the autocorrelation between the error vector and the reference signal:

�=FFT(E•X*)

8 Discard the last M elements of each column of matrix � and fill it with zeros. Then perform an FFT of the

resulting matrix to obtain the step variable for updating the filter coefficients: step=FFT(�M 0).

9 Update the filter coefficients: W=W+�•step

Step 2) Once the matrix x is arranged, it must be filtered.
For this purpose, an FFT of size 2M of each column of
matrix x is performed; then, an element-wise multiplica-
tion in frequency domain between matrix X (obtained as
the FFT of the corresponding columns of matrix x) and
filter coefficients W is carried out. W is a 2MxP matrix
whose columns are the FFT of size 2M of the P blocks
of M time-coefficients padded with M zeros. The FFT of
the NVIDIA CUFFT library [20] has been used since this
library allows to carry out multiple one-dimensional FFTS

simultaneously. When the P FFTS have been carried out,

the element-wise multiplication is performed launching
a CUDA kernel (kernel 1 in Table 3).

Figure 6 illustrates two schemes of the complex element-
wise matrix multiplication. Scheme A shows the natural
implementation of the algorithm where the input-data
matrix is ordered in such a way that elements of i-th co-
lumn of matrix X are element-wise multiplied by ele-
ments of i-th column of matrix W. This scheme has the
disadvantage that all columns except one of the matrix
X are moved in each iteration, so there are 2 M (P-1) ele-

63Waves - 2012 - year 4/ISSN 1889-8297

Figure 5. Example of input-data matrix when P=3.

Figure 6. Two different schemes of element-wise matrix multiplication when P=3.

ments copied in GPU memory at each iteration. The co-
pied data are represented in blue, and the current input
data are represented in red. On the other hand, scheme
B of Figure 6 shows an optimized procedure to perform
the multiplication, where no ordering is done and GPU
memory transactions are avoided. This is achieved by re-
defining the thread access to GPU memory.

Step 3) Once the multiplication is carried out, a sum of
all the components of the partitioned output is needed,
reducing all columns to a single one. See Figure 7 and
kernel 2 in Table 3.

Step 4) Next step consists in performing a one-dimen-
sional IFFT of size 2M of the vector obtained in step 3,
and saving only the last M samples which correspond to
the output signal of the adaptive filter. As in step 2, the
IFFT is carried out using the CUFFT library.

Step 5) Vector y is used to calculate the error vector of
size M: e[n]=d[n]-yM[n]. Kernel 3 implements this sub-
traction.

Step 6) An FFT of size 2M of the error vector previously
padded with zeros is performed resulting in vector E

(E=FFT([0T eT]T)).

Step 7) Next step computes the Inverse FFT of the co-
rrelation between the error vector and the reference sig-
nal: �[n]=IFFT(E•X*). Kernel 4 is implemented to
perform the 2M element-wise multiplication of the vector
E with matrix X*.

Step 8) The last M elements of each column of matrix �
are discarded and filled with zeros. Then, an FFT of the
resulting matrix is performed: step=FFT .

Step 9) Finally kernel 5 in Table 3 is implemented to up-
date the filters (W=W+�•step).

6. Results

In this section we analyze the performance of the real-
time implementation from three points of view:

- Algorithm behavior.
- Implementation aspects: latency and throughput
times.
- Analysis of the maximum number of channels that
could be identified by our implementation in a mul-
tichannel application.

6.1 Algorithm behavior
Figure 8 shows the estimated channel and the residual
error obtained when a block size of M=128 and a channel
length of L=4096 are used. The residual error shows the
speed of convergence of the algorithm (note that it can
be adjusted varying the step parameter �). Since the elec-
troacoustic channel to be estimated is composed by the

�M

0

64 ISSN 1889-8297/Waves - 2012 - year 4

Figure 7. Representation of the CUDA operation that
carries out the reduction sum of each row.

Table 3. GPU kernel descriptions.

Kernel 1 This kernel launches M•P threads divided into a grid of P blocks of M threads each block. The kernel
uses each thread for processing each sample, so each thread will make a complex multiplication between
an element of matrix X and its corresponding component of matrix W.

Kernel 2 This kernel uses one-dimensional blocks and will be configured by 2M threads in total. Each thread
carries out P sums. The result is a column vector of 2M elements, each element containing the reduction
sum of each row.

Kernel 3 This kernel is launched with M threads divided in one-dimensional blocks. Each thread performs a sub-
traction between a complex vale of vector d and other from vector y.

Kernel 4 It is launched as kernel 1, using the access to memory positions of matrix X explained in scheme B. The
difference is that in this case E is a vector, so each column of matrix X is element-wise multiplied by the
same vector E. Also note that before the element-wise multiplication, the kernel carries out a conjuga-
tion of the elements of matrix X.

Kernel 5 It has the same thread configuration as kernel 1, but each thread performs a sum instead of a multipli-
cation.

channel between loudspeaker and microphone and the
audio card characteristics, although the estimated channel
should be independent of the buffer size, the audio card
introduces a delay that depends on the buffer size. More
specifically this delay is equal to the buffer size+22 sam-
ples. So at the end, the result of the estimated channel is

the channel between the loudspeaker and microphone
plus the delay introduced by the audio card, which makes
the result be variable with M. Figure 9 shows the same
channel estimated with different buffer sizes.

6.2. Implementation aspects
Table 4 shows the latency time and throughput for diffe-
rent thread configuration and different sizes of the input-
data buffer. The best thread configurations are
highlighted for each buffer size M. Latency time is the
time from which the processing starts until an output res-
ponse is given and is calculated as tproc+tbuff. The through-
put is defined as the number of input samples processed
per second (throughput=M/Latency). Table 4 shows that
the throughput does not vary significantly and this is be-
cause tproc is much shorter than tbuff. The maximum
throughput is achieved when the size of the input-data
buffer is 512 and 256 threads per block are used, achie-
ving a peak value over 45.000 samples per second.

6.3. Multichannel performance
Figure 10 shows that a multi-channel extension (1 louds-
peaker and N microphones) from the single channel im-
plementation can be easily obtained through data
arrangement. The same reference signal is used to calcu-
late the paths between the loudspeaker and the different
microphones. In the multi-channel implementation,

65Waves - 2012 - year 4/ISSN 1889-8297

It can be stated that GPUs are suitable for audio adap-
tive systems working as co-processors, and that they are
capable of managing multiple channels without overlo-
ading the CPU.

Table 4. Latency time and throughput obtained for different input-data buffer size.

Figure 9. Estimations of the same channel for different
input-data buffer size.

Figure 8. Estimated channel and residual error for M=128 and L=4096.

128 128 2.9025 0.4412 3.3437 3.8289·104

256 128 5.8050 0.5412 6.3462 4.0339·104

256 0.4597 6.2647 4.0863·104

128 0.4531 12.0631 4.2445·104

512 256 11.6100 0.4307 12.0407 4.5224·104

512 0.4631 12.0731 4.2408·104

128 0.6801 23.9001 4.2845·104

1024 256 23.2200 0.5692 23.7892 4.3044·104

512 0.5162 23.7362 4.3140·104

1024 0.6145 23.8345 4.2962·104

128 0.6019 47.0418 4.3536·104

2048 256 46.4399 0.5412 46.9811 4.3592·104

512 0.6051 47.0450 4.3533·104

1024 0.7051 47.1450 4.3440·104

Input-data Threads tbuff (ms) tproc (ms) Latency (ms) Throughput
buffer size (M) per block Buffer filling Processing (samples/s)

time time

input-data matrix becomes a three-dimensional matrix
where each channel occupies a plane of the matrix.
These three-dimensional data matrices can be handled
by the GPU through CUDA SDK 4.0, which let the user
to configure tridimensional grids of threads. Moreover,
the same kernels of Table 3 can be used but launched
with different grid configuration.

Table 5 shows an estimate of the number of channels
that the algorithm could identify for different block sizes.
Taking into account that the time tproc is the time used
to estimate one channel, and the time tbuff is the maxi-
mum processing time to achieve real-time condition, the
ratio tbuff /tproc could be a good estimate of the number
of channels that the application could be able to identify.
Moreover, considering the parallel properties of the GPU
and taking into account that adding more channels to
the processing means increasing the size of the matrices,
the processing time to identify X channels should be less
than X-times the single-channel processing time. Then,
this estimation could be even greater.

7. Conclusions

This work analyzes the viability of the use of Graphics Pro-
cessing Units (GPUs) for real-time adaptive applications. To
this end, a single channel identification system has been
implemented. A MOTU audio card has been used as the
interface between the computer and the micropho -

ne/loudspeaker, so the electroacoustic channel involves the
audio card acquisition delay plus the actual channel bet-
ween the loudspeaker and the microphone. A partitioned
BLMS algorithm in the frequency domain called PFBLMS
algorithm has been implemented in order to exploit the
SIMD (Simple Instruction Multiple Data) GPU architecture.
For this purpose, each CUDA kernel has been designed se-
eking the most efficient implementation avoiding memory
copies in GPU. Some CUDA characteristics as both the
number of threads per block and the distribution of thre-
ads within the blocks have been also analyzed.

The evaluation test shows a good performance of the al-
gorithm implemented over GPU in real time. Table 4 has
shown that it is important to carry out an analysis of
CUDA aspects before configuring a grid of threads, due
to the distribution of the threads inside the block and
these ones inside the grid. Once CUDA parameters have
been set, a multichannel study demonstrates that depen-
ding on the input-data buffer sizes the application can
identify up to about 85 channels simultaneously. As a re-
sult of the good performance offered by the GPU imple-
mentation, it can be stated that GPUs are suitable for
audio adaptive systems working as co-processors, and
that they are capable of managing multiple channels wi-
thout overloading the CPU.

Finally, this study opens a research line on GPU implemen-
tations of computationally complex adaptive algorithms
such as the multichannel active noise control algorithms.

66 ISSN 1889-8297/Waves - 2012 - year 4

Figure 10. Extension of the GPU channel estimator to a multi-channel system.

Input-data buffer tbuff (ms) tproc (ms) Multichannel
size (M) Buffer filling time Processing time estimation (tbuff/ tproc)

128 2.9025 0.4412 6
256 5.8050 0.4597 12
512 11.6100 0.4307 26
1024 23.2200 0.5162 44
2048 46.4399 0.5412 85

Table 5. Estimation of the number of channels that the system could identify for different input-data buffer sizes.

Acknowledgements

This work has been financially supported by the Spanish
Ministerio de Ciencia e Innovación TEC2009-13741, Uni-
versitat Politècnica de València through “Programa de
Apoyo a la Investigación y Desarrollo (PAID-05-11)” and
Generalitat Valenciana through project PROME-
TEO/2009/013 and GV/2010/027.

References

[1] David Patterson, “The Trouble with Multi-Core”, IEEE
Spectrum, Vol. 47, Issue 7, pp. 28–32 and 52–53,
Juny 2010.

[2] J.D. Owens, M. Houston, D. Luebke, S. Green, J.E.
Stone and J.C. Phillips, “GPU computing”, Proc. Of
the IEEE, vol. 96, no. 5, pp. 879–899, May 2008.

[3] Paul R. Dixon, Tasuku Oonishi, Sadaoki Furui, ”Fast
Computations using Graphics Processors”, ICASSP
2009.

[4] M.D. McCool, “Signal processing and general-pur-
pose computing and GPUs”, IEEE Signal Processing
Maga-zine, vol. 24, no. 3, pp. 109–114, May 2007.

[5] A. Gonzalez, J. A. Belloch, F. J. Martinez, P. Alonso, V.
M. Garcia, E. S. Quintana-Orti, A. Remon, A. M. Vidal,
“The Impact of the Multi-core Revolution on Signal
Processing”, Waves, vol. 2, pp. 74-85, 2010.

[6] A. Gonzalez, J. A. Belloch, G. Piñero, J. Lorente, M. Fe-
rrer, S. Roger, C. Roig, F. J. Martinez, M. de Diego, P.
Alonso, V. M. Garcia, E. S. Quintana-Orti, A. Remon, A.
M. Vidal, “Application of Multi-core and GPU Architec-
tures on Signal Processing: Case Studies”, Waves, vol.
2, pp. 86-96, 2010.

[7] V. M. Garcia, A. Gonzalez, C. Gonzalez, F. J. Martinez-
Zaldivar, C. Ramiro, S. Roger, A. M. Vidal, ”The impact
of GPU/Multicore in Signal Processing: a quantitative
approach”, in Waves, vol. 3, pp. 96-106, 2011.

[8] CUDA ZONE http://www.nvidia.co.uk/object/cuda_ap
ps_flash_new_uk.html#state=home

[9] J.A. Belloch, A. Gonzalez, F. J. Martinez-Zaldivar and
A. M. Vidal, "Real-time massive convolution for audio
applications on GPU", Journal of Supercomputing,
vol. 58, no. 3, pp. 449-457, 2011.

[10] J.A. Belloch, A. Gonzalez, F. J. Martinez-Zaldivar and
A. M. Vidal, “A real-time crosstalk canceller on a no-
tebook GPU”, in Proc. ICME 2011, Barcelona, July
2011.

[11] Dimitris Theodoropoulos, Georgi Kuzmanov, Georgi
Gaydadjiev, ”Multi-core Platforms for Beamforming
and Wave Field Synthesis”, IEEE Transactions on Mul-
timedia, Issue:99, December 2010.

[12] J. Lorente, G. Piñero, A. M. Vidal, J. A. Belloch, A.
Gonzalez, “Parallel Implementations Of Beamforming
Design And Filtering For Microphone Array Applica-
tions”, EUSIPCO 2011, August 2011.

[13] C.J. Webb and S. Bilbo, “Computing room acoustics
with CUDA – 3FDTD schemes with boundary losses
and viscosity”, in Proc. ICASSP 2010, Prague, May
2011.

[14] N. Rober, U. Kaminski, and M. Masuch, “Ray acous-
tics using computer graphics technology”, in Proc.
DAFx-07, Bourdeaux, June 2011.

[15] B. Widrow and, S. D. Stearns, Adaptive Signal Pro-
cessing, Prentice-Hall Signal Processing Series, 1985.

[16] S. Haykin, Adaptive Filter Theory. Prentice-Hall, 4th
edition, 2002.

[17] NVIDIA Next Generation: FERMI, online at http://www.
nvidia.com/object/fermi_architecture.html

[18] MOTU Audio 24I/O interface, available online at:
http://www.motu.com/products/pciaudio/24IO.

[19] Audio Streaming Input Output (ASIO) 2.2, Steinberg
Media Technologies GmbH, available online at:
http://www.steinberg.net/en/company/developer.html.

[20] NVIDIA Library CUFFT, online at:
http://developer.download.nvidia.com/compute/Dev-

Zone/docs/html/CUDALibraries/doc/CUFFT_Library.pdf

Curriculum vitae

Jorge Lorente was born in Alge-
mesí, Spain in 1985. He received
the Ingeniero Técnico de Telecomu-
nicación degree from the Universi-
dad Politécnica de Valencia, Spain,
in 2007 and the MSc. degree in Te-
lecommunication Technologies in
2010. Currently, he is a PhD grant
holder from the Universitat Politèc-

nica de València under the FPI program and is pursuing
his PhD degree in Electrical Engineering at the Institute
of Telecommunications and Multimedia Applications
(iTEAM). His research focuses on adaptive algorithms and
audio signal processing onto the CUDA environment.

Miguel Ferrer was born in Alme-
ría, Spain. He received the Inge-
niero de Telecomunicacion degree
from the Universidad Politécnica de
Valencia (UPV) in 2000, and the
Ph.D degree in 2008. In 2000, he
spent six months at the Institute of
aplicated research of automobile in
Tarragona (Spain) where he was in-

volved in research on Active noise control applied into in-
terior noise cars and subjective evaluation by means of
psychoacoustics study. In 2001 he began to work in
GTAC (Grupo de Tratamiento de Audio y Comunicacio-
nes) that belongs to the Institute of Telecommunications
and Multimedia Applications. He is currently working as
assitan professor in digital signal processing in commu-
nications Department of UPV. His area of interests inclu-
des efficient adaptive algorithm and digital audio
processing.

67Waves - 2012 - year 4/ISSN 1889-8297

José Antonio Belloch was born in
Requena, Spain, in 1983. He recei-
ved the degree in Electrical Engine-
ering from the Universidad
Politécnica de Valencia, in 2007
and MSc. Degree Master in Parallel
and Distributed Computing in
2010. In 2008, he worked for the
Company Getemed (Teltow, Ger-

many) as a software developer through multithreading
platforms. His interest in applying parallel programming
for Signal processing led him to enroll in a PhD program
in 2009 with the Audio and Communications Signal Pro-
cessing Group (GTAC). Currently, he works towards his
PhD degree on multichannel Audio-Signal Processing
onto the CUDA environment.

María de Diego was born in Valen-
cia, Spain, in 1970. She received the
Telecommunication Engineering de-
gree from the Universidad Politec-
nica de Valencia (UPV) in 1994, and
the Ph.D degree in 2003. Her disser-
tation was on active noise confor-
mation of enclosed acoustic fields.
She is currently working as Associate

Professor in digital signal processing and communications.
Dr. de Diego has been involved in different research pro-
jects including active noise control, fast adaptive filtering
algorithms, sound quality evaluation, and 3-D sound re-
production, in the Institute of Telecommunications and
Multimedia Applications (iTEAM) of Valencia. She has pu-
blished more than 40 papers in journals and conferences
about signal processing and applied acoustics. Her current
research interest include multichannel signal processing
and sound quality improvement.

Antonio M. Vidal receives his M.S.
degree in Physics from the “Univer-
sidad de Valencia”, Spain, in 1972,
and his Ph.D. degree in Computer
Science from the “Universidad Po-
litécnica de Valencia”, Spain, in
1990. Since 1992 he has been in
the Universidad Politécnica de Va-
lencia, Spain, where he is currently

a full professor in the Department of Computer Science.
He is the coordinator of the project “High Performance
Computing on Current Architectures for Problems of
Multiple Signal Processing", currently developed by
INCO2 Group and financed by the Generalitat Valen-
ciana, in the frame of PROMETEO Program for research
groups of excellence. His main areas of interest include
parallel computing with applications in numerical linear
algebra and signal processing.

Alberto González was born in Va-
lencia, Spain, in 1968. He received
the Ingeniero de Telecomunicacion
degree from the Universidad Politec-
nica de Catalonia, Spain in 1992,
and Ph.D degree from de Universi-
dad Politecnica de Valencia (UPV),
Spain in 1997. His dissertation was
on adaptive filtering for active con-

trol applications. From January 1995, he visited the Insti-
tute of Sound and Vibration Research, University of
Southampton, UK, where he was involved in research on
digital signal processing for active control. He is currently
heading the Audio and Communications Signal Processing
Research Group (www.gtac.upv.es) that belongs to the Ins-
titute of Telecommunications and Multimedia Applications
(i-TEAM, www.iteam.es). Dr. González serves as Professor
in digital signal processing and communications at UPV
where he heads the Communications Department
(www.dcom.upv.es) since April 2004. He has published
more than 70 papers in journals and conferences on signal
processing and applied acoustics. His current research in-
terests include fast adaptive filtering algorithms and mul-
tichannel signal processing for communications, 3D sound
reproduction and MIMO wireless systems.

Gema Piñero was born in Madrid,
Spain, in 1965. She received the
Ms. in Telecommunication Engine-
ering from the Universidad Politéc-
nica de Madrid in 1990, and the
Ph.D. degree from the Universidad
Politecnica de Valencia in 1997,
where she is currently working as
an Associate Professor in digital sig-

nal processing. She has been involved in different rese-
arch projects including array signal processing, active
noise control, psychoacoustics and wireless communica-
tions in the Audio and Communications Signal Processing
(GTAC) group of the Institute of Telecommunications and
Multimedia Applications (iTEAM) of Valencia. She has le-
aded several projects on sound quality evaluation for the
automotive and toy industry, and she has also been in-
volved in several projects on 3G wireless communications
supported by the Spanish Government and big industries
as Telefonica. She has also published more than 60 con-
tributions in journals and conferences. Her current rese-
arch interests include array and distributed signal
processing and its parallel implementation on graphic
processing units. During September to November 2011
she was a visiting scholar at Prof. Andrew C. Singer's
group at University of Illinois Urbana-Champaign.

68 ISSN 1889-8297/Waves - 2012 - year 4

