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Abstract: In a recent paper, [4] have developed a scheme for the stochastic implementation
of arbitrary quantum operations on multimode single-photon qudit states by using
reconfigurable linear-optic systems. Based on this idea, we explore the use of phase
modulation for the realization of qubit channels in the frequency basis. Single-photon states
belonging to two different frequency modes differing by the modulator’s driving frequency
represent the input dual-rail qubit states. The channel is implemented by a phase modulator
followed by a fiber Bragg grating, taking advantage of the high degree of reconfigurability
and microwave bandwidth shown by electrooptic modulation technology. The channels are
realized by a combination of three techniques: 1) suitably designed driving waveforms,
which are probabilistically addressed to the modulator; 2) the corresponding addressing
probabilities; and 3) the grating transmittance at the values of the frequency basis. The
proposed scheme results in nonoptimal success probabilities but is shown to allow for a
compact implementation of the conventional qubit random unitary channels and the qubit
amplitude-damping channel.

Index Terms: Quantum information, microwave photonics.

1. Introduction
Identifying and developing versatile technological platforms and key experimental resources for
the practical implementation of quantum processing systems are critical demands in quantum
information science [1]. Quantum optics is one of the technical alternatives [2], which takes
advantage not only on the recent progress on compact single-photon generation and detection but
also on the ability to filter, couple, and route radiation modes using conventional guided-wave
technology.

One of the hallmarks of photonic quantum processing is the possibility of implementing systems
nondeterministically using linear optics [3]. In the same spirit, Piani et al. have recently developed a
scheme for the stochastic implementation of arbitrary quantum operations on multimode qudits [4].
This proposal requires reconfigurable and probabilistically addressed multimode linear-optic
networks and is based on the successive implementation of each of the Kraus operators in the
operator-sum representation of the quantum channel. The action of a single Kraus operator can be
reproduced by a linear system implementing its singular-value decomposition [4]–[6], and thus, a
reconfigurable system is required to provide the complete set of operators. Random switching
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among the different systems’ configurations then stochastically reproduces the channel if the
probabilities of addressing each system’s setting follow a certain design condition, as described in
[4]. Fischer et al. [7] have used this idea to demonstrate optimal single-qubit damping channels in
polarization basis, attaining the optimal success probability calculated in [4] and surpassing the
success probability of an alternative construction [8], [9].

The use of the two key resources, i.e., linear-systems reconfigurability and randomness in ad-
dressing, may impose, however, stringent demands from the experimental point of view depending
on the channel under consideration, qudit dimensionality, and the type of mode profiles defining the
qudits. Once a mode basis has been chosen, it is natural to consider the level of reconfigurability of
the associated linear systems. In [7], for instance, the switching between Kraus operators in po-
larization basis has been performed by use of liquid-crystal retarders at a rate of 10 Hz. In this
regard, the use of the frequency degree of freedom of the optical radiation offers the possibility of
employing standard telecom, highly reconfigurable hardware, to implement at quantum level
procedures involving linear-optic networks. Frequency modes have been used as the natural basis
for frequency-coded quantum key distribution [10], [11] and its SCM/WDM generalizations [12] at
addressing rates in the MHz range, and can also be used to reproduce standard quantum-optical
effects such as two-photon interference [13], [14].

In a recent paper [15], we have shown how phase modulators (PMs) can be operated to con-
ditionally implement qubit unitaries in dual-rail frequency basis. This basis is associated to single-
photon wavepackets of two central frequencies !0 and !1 defining the encoding set and is used
together with fiber Bragg gratings (FBGs) for performing filtering and routing tasks. In this paper, we
show that three basic functionalities of conventional PM and FBG technology can be used to meet
the practical demands of the construction in [4], specifically, the design of modulator’s driving
waveforms to tailor the coupling between different frequency modes, the addressing probabilities
used to sequentially operate the modulator, synchronously with the input state generation rate, and
the design of grating transmittance at the values of the frequency basis. The overall success
probabilities of the implementations presented here are in fact lower than the theoretical optimum
derived in [4] but exemplify, as in [13] and [14], the potential of low-cost FBG and electrooptic
modulation technologies for the implementation of quantum processing tasks.

This paper is organized as follows: In Section 2, we briefly introduce the formalism describing
conditional linear-optic quantum operation on single photons, which is the basis for the construction
of Piani et al. [4] reviewed in Section 3. Here, we also study nonoptimal implementations of this
construction in terms of success probabilities. In Section 4, we sketch the construction of dual-rail
frequency-encoded qubit unitaries presented in [15], which is used to explore the success pro-
bability of random unitary channels in Section 5. Finally and using the same techniques as in [15],
we present in Section 6 the conditional realization of the archetypal nonunitary qubit channel, the
amplitude-damping channel, and end in Section 7 with our conclusions.

2. Conditional Single-Photon Linear Quantum Operations
Let us consider, as depicted in Fig. 1, an input quantum system composed of K bosonic modes.
This mode set is decomposed in two subsets K ¼ I [ I associated to the product Hilbert space
HK ¼ HI �HI . Input states � are entirely contained in the first set of modes I, whereas the com-
plementary set I describes an ancillary space in the vacuum state j0ih0j. The total input �� j0ih0j

Fig. 1. Scheme of a linear multimode system. The input state � is contained in the I modes (thick lines),
whereas the modes I are in the vacuum state (thin lines). After the interaction output modes J are
filtered (dotted lines followed by a box) and �0 is the reduced output state.
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undergoes a unitary evolution S and is subsequently reduced to mode set J ðK ¼ J [ JÞ leading to
an output �0

�! �0 ¼ trJ S �� j0ih0jð ÞSþ½ �: (1)

We assume that the dimensions jIj and jJj of the input and output mode sets are finite but not
necessarily equal. Additionally, we assume that the input state is composed of a single photon and
that the interaction S is linear and therefore preserves the photon number. The restriction of ope-
rator S to one-photon states is thus defined over the direct sum of one-photon subspaces attached
to each of the K modes. Single-photon input states are of the form �� j0ih0j ¼

P
m;n2I �mnj1mih1nj

with j1ni ¼ aþn j0i being the n-mode one-photon state and, after the interaction, Sð�� j0ih0jÞSþ ¼P
m;n2K �mnj1mih1nj. The partial trace in (1) involves both the vacuum state and one-photon states in

HJ and leads to a trace-preserving quantum operation given by

�! �0 ¼ 1� p0succ
� �

j0ih0j þ p0succ~� (2)

where j0ih0j and ~� are now states of HJ representing the absence of output or the actual exit of the
photon in the J modes, respectively, which is explicitly given by

~� ¼ 1
p0succ

PJS �� j0ih0jð ÞSþPJ ¼
1

p0succ

X
m;n2J

�mnj1mih1nj: (3)

Here, PJ ¼
P

n2J j1inh1j � j0iJh0j is the projector over the one-photon subspace of modes J and
p0succ ¼ tr ½PJSð�� j0ih0jÞSþ� ¼

P
n2J �nn is the success probability of the conditional generation of

state ~�.
A convenient matrix representation of (2) can be constructed as follows. We define the matrix

elements Smn of operator S in the single-photon subspace as Skj ¼ h1k jSj1ji [15] so that, for a pure
single-photon pure input state j�i in HI

PJS j�i � j0iI
� �

¼ PJS
X
n2I

cnj1ni
 !

¼
X

m2J ;n2I
Smncnj1mi (4)

and therefore, ~� in (3) is determined by the jJ j � jIj submatrix Lmn ¼ Smn. In terms of matrix L, (2)
can be presented as

�! �0 ¼ 1� tr ðL�LþÞ½ �j0ih0j þ L�Lþ: (5)

Success probabilities p0succ ¼ tr ðL�LþÞ depend, in general, on the input state �, with a maximum
value that depends on the spectral norm of matrix L, kLk1. The prime in p0succ is to explicitly signal
the dependence on the input. Both observations follow after introducing the singular value decom-
position of L : L ¼ VDWþ with V and W unitaries and D being a diagonal jJj � jIj matrix with
N ¼ minðjIj; jJjÞ singular values �1 � �2 � � � � � �N � 0. Then

p0succ ¼ tr ðL�LþÞ ¼ tr ðDWþ�WDþÞ ¼
XN
q¼1

�2qðWþ�W Þqq � �21
XN
q¼1
ðWþ�W Þqq (6)

where we have used that ðWþ�W Þqq � 0 since � is a positive operator. From the expression before
the inequality, it is clear that p0succ depends, in general, on the input state � through the values of
ðWþ�W Þqq . Now, from 1 ¼ tr ð�Þ ¼ tr ðW�WþÞ ¼

PjIj
i¼1ðW�WþÞii with jIj � N , it follows that p0succ �

�21. This bound is reached by pure states in the direction of the right singular vector of L corre-
sponding to the maximum singular value �1, and therefore

max
�

p0succ ¼ max
q

�2q

n o
¼ �21 ¼ kLk

2
1 � 1: (7)
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The squared norm kLk21 ¼ �21 is thus the maximum attainable success probability. In (7), kLk1 ¼
maxj ikLj ik ¼ �1 is the spectral norm of matrix L, and the maximum is taken over normalized one-
photon states j i inHI . The last inequality in (7) follows because the action of unitary S over j i can
be decomposed in orthogonal subspaces, Sj i ¼ Lj i þ L0j i, where these vectors are one-photon
sates in HJ and HJ , respectively. From this, we get 1 ¼ kLj ik2 þ kL0j ik2, so that kLj ik � 1, and
thus, kLk1 � 1.

Finally, we briefly describe the cascade association of conditional linear transformations of the
form (5) associated to matrices La and Lb. Referring to the two configurations in Fig. 2 and noticing
that linear systems Sa and Sb leave invariant the vacuum state, it is straightforward to show that
both schemes lead to a transformation of the form (5), where, now, L ¼ LbLa, so that the cascade
association implies matrix multiplication with p0succ;ba ¼ tr ðL�LþÞ ¼ tr ðLbLa�Lþa Lþb Þ.

3. Random Conditional Realization of Qudit Quantum Channels
In this section, we introduce the construction of quantum channels for qudit states � proposed by
Piani et al. [4]. Given a quantum operation in a certain Kraus form

�! �0 ¼
X
n

An�Aþn
X
n

Aþn An ¼ 1 (8)

the objective is to construct a conditional realization of this channel of the form

�! �0 ¼ ð1� psuccÞj0ih0j þ psucc
X
n

An�Aþn (9)

for a certain success probability 0 G psucc � 1 independent of the input state �, in contrast to general
linear one-photon transformations of the form (2). Equation (9) can be interpreted as the result of
passing the deterministic channel (8) through a beamsplitter with transmittance psucc in every output
mode and subsequently reducing the output to J modes.

The proposal in [4] provides a realization based on probabilistic switching between conditional
linear transformations of the form (5). A certain reconfigurable linear system sequentially com-
mutes between different Ln values, which are chosen to be proportional to Kraus operators
An ðLn / AnÞ and randomly operated with probabilities pn ð

P
n pn ¼ 1Þ. Then, each time the linear

system is addressed, it conditionally realizes a single Kraus operator. The channel implemented
this way is

�! �0 ¼ 1�
X
n

pntr Ln�Lþn
� � !

j0ih0j þ
X
n

pnLn�Lþn (10)

where tr ðLn�Lþn Þ is the success probability of the conditional realization of the (unnormalized) state
Ln�Lþn . This success probability, in general, depends on the input � as analyzed in Section 2.
However, if probabilities pn are found such that

ffiffiffiffiffi
pn
p

Ln ¼ �ei�nAn (11)

Fig. 2. Schemes of the cascade association of two conditional linear transformations differing in the
ancillary spaces of each subsystem. In the right plot, intermediate discarded modes are not reused in
the second interaction, and therefore only a unique filtering stage is necessary.
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for arbitrary phases �n and a common constant 0 G � � 1, it is immediate to show that (10) provides
a conditional realization of (8) of the form (9) with psucc ¼ �2 independent of input state �.

The paper by Piani et al. [4] is mainly concerned with the optimal realization of this construction,
i.e., with the proper choice of the set of Kraus operators fAng and addressing probabilities pn for
maximizing the success probability psucc. They first showed that the maximal psucc associated to a
given set fAng is

psucc fAngð Þ ¼ 1P
n kAnk21

(12)

which is reached with operators Ln with kLnk1 ¼ 1 and addressing probabilities pq ¼
kAqk21=

P
n kAnk21 (Theorem 1 in [4]). From our characterization in (7), condition kLnk1 ¼ 1 implies

that, for all operators Ln, there exist at least one input state (which can be different for each n) for
which the success probability of the n-addressing is maximal. Subsequently, they studied the
optimization psucc;opt ¼ maxfAngpsuccðfAngÞ over different sets of Kraus operators fAng by using
entanglement measures.

In summary, once the optimal set of Kraus operators fAng are determined, it is required a
reconfigurable linear-optic device to realize, perhaps conditionally, and address probabilistically a
collection of operators Ln / An with kLnk1 ¼ 1. As noticed in the introduction, these requirements
may be experimentally challenging, so it is natural to pose the problem in a weaker form, i.e.,
searching for suboptimal realizations associated to operators Ln / An with kLnk1 � 1. In this re-
gard, there are two practical observations that are worth analyzing.

First, given an n-reconfigurable linear system with Ln / An where, in general, kLnk1 � 1, the
proportionality can be always resolved as (11), i.e., there exist addressing probabilities
pqð
P

q pq ¼ 1Þ and a common constant 0 G � � 1ðpsucc ¼ �2Þ verifying (11). As for the addressing
probabilities, the solution is simply

pq ¼
kAqk21=kLqk

2
1P

n kAnk21=kLnk
2
1

(13)

and from this, since (11) implies pnkLnk21 ¼ psucckAnk21, the success probability must be
given by

1
psucc

¼
X
n

kAnk21
kLnk21

: (14)

To show finally that psucc � 1, we use a bound based on the triangle inequality (cf. Observation 1
in [4])

X
n

kAnk21
kLnk21

�
X
n

kAnk21 ¼
X
n

Aþn An

�� ��
1�

X
n

Aþn An

�����
�����
1

¼ k1k1 ¼ 1 (15)

where we have used kLnk1 � 1 and (8). Therefore, proportionality Ln / An is sufficient to con-
struct a conditional but, in general, nonoptimal realization of the channel. Note that, since
kLnk1 � 1, psucc in (14) is maximized by operators kLnk1 ¼ 1 and given by (12); this is the content
of Theorem 1 in [4].

The second observation is that it is possible to construct a simple bound for the departure of psucc
form the optimal value psucc ðfAngÞ in terms of the departure of kLnk1 from 1. First, from (13)–(15),
we get

psucc
psucc fAngð Þ ¼

X
n

pnkLnk21 (16)
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and from minnkLnk1 � kLnk1 � maxnkLnk1, we obtain

min
n
kLnk21 �

psucc
psucc fAngð Þ � max

n
kLnk21 (17)

which shows that the relative success probability is not higher (resp., lower) than the higher
(resp., lower) maximal success probability associated to the conditional realization of each Kraus
operator.

4. Conditional Frequency-Encoded Qubit Linear Operations
The construction of conditional qubit unitaries in [15] is based on the use of both PM and FBG to mix
and filter single-photon wavepackets at two central frequencies !0 and !1, which define the dual-rail
basis for qubit representation. From the classical point of view, PM can be described as a
transformation of the optical envelope at central frequency ! given by

AðtÞexpð�i!tÞ ! AðtÞexp �i!t � ixðtÞ½ � ¼ AðtÞ
X1

k¼�1
Ckexpð�i!t � ik�tÞ (18)

where we have assumed that the modulation function xðtÞ is periodic with angular frequency � in
the microwave range, as is the usual driving regime of PM, and Ck are the corresponding Fourier
coefficients. From the quantum point of view [16], single-photon wavepakets at a certain central
optical frequency !0 undergo shifts in frequency by k�, Ck being the probability amplitude for such
a process of sideband generation. To be amenable to manipulation, photons are to be organized
in frequency channels, i.e., the spectral spread �! of single-photon wavepackets is to be lower
than �.

Frequency-encoded dual-rail qubits are defined by referring to a basis composed of single
photons at an optical frequency !0 and at its first sideband, !1 ¼ !0 þ �, which is the most
favorable situation in terms of probability amplitudes [15]. As described in this reference, current
commercial electrooptic modulators feature bandwidths up to several tens of GHz, and therefore, �
may lie in the microwave or mm-wave range. According to the observation in the previous
paragraph, this requires photon wavepackets of duration 1=�! of the order of nanoseconds. The
basic setup for the conditional implementation of frequency-encoded qubit linear operations is
depicted in Fig. 3 and uses standard modulation and filtering techniques from microwave photonics.
The spectral filtering is performed by a FBG with total reflectivity at frequencies !0 and !1, so that a
detector at the transmission FBG end fires when the photon exits the encoding set f!0; !1g. The
circulator directs the backreflected waves to the physical out port. This setup implements operators
of the form

L ¼ C0 C1

C�1 C0

� �
(19)

which can be tailored by an appropriate choice of xðtÞ. In [15], it was shown that the use of simple
driving voltages such as single-tone xðtÞ ¼ �sinð�t þ �Þ, with � is the modulation index, or two-tone

Fig. 3. Circuit layout for the conditional implementation of 2 � 2 linear transformations.
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in the triple frequency xðtÞ ¼ �1sinð�t þ �Þ þ �3sinð3�t þ 3�Þ lead to a family of qubit unitaries of
the form

L ¼
ffiffiffiffiffiffiffiffiffiffi
psucc
p ffiffiffiffiffiffiffiffiffiffiffiffi

1� �
p

ei� ffiffiffi
�
p

�e�i� ffiffiffi
�
p ffiffiffiffiffiffiffiffiffiffiffiffi

1� �
p

� �
: (20)

For single-tone modulation, the probability amplitudes in the Fourier expansion (18) are given by
Ck ¼ ei�kJk ð�Þ, Jk being the Bessel function of first kind and order k . The corresponding success
probabilities and coupling constants are

psucc ¼ J0ð�Þ2 þ J1ð�Þ2 � ¼ J1ð�Þ2

J0ð�Þ2 þ J1ð�Þ2
: (21)

In particular, the success probabilities associated to the realization of the standard basis
f	k ; k ¼ 0; . . . ; 3g, where 	0 is the identity matrix and 	k ðk ¼ 1; 2; 3Þ are the Pauli matrices, can be
computed as follows. Under single-tone modulation, ðstÞ	0 is realized in form (20) with a null driving
voltage � ¼ 0, which implies � ¼ 0. For � ¼ 2:44 ð� ¼ 1Þ, we can proportionally realize the first two
Pauli matrices 	1 and 	2 by adjusting the driving phase �, Lð� ¼ 1; � ¼ 0Þ 	 L	1 / 	1, and
Lð� ¼ 1; � ¼ 
=2Þ 	 L	2 / 	2. The maximal success probabilities are

psuccð	0; stÞ ¼ kL	0k
2
1 ¼ 1; psuccð	1; stÞ ¼ kL	1k

2
1 ¼ psuccð	2; stÞ ¼ kL	2k

2
1 ¼ 0:27: (22)

Finally, we obtain 	3 as the cascade 	3 ¼ �i	1	2, resulting in

psuccð	3; stÞ ¼ k �iL	1L	2k
2
1 ¼ kL	1k

2
1kL	2k

2
1 ¼ 0:272 ¼ 0:07: (23)

These success probabilities can be increased in two-tone ðttÞ modulation by optimizing the
modulation indices �1 and �3 [15]. In the case of the Pauli basis

psuccð	0Þ ¼ 1; psuccð	1; ttÞ ¼ psuccð	2; ttÞ ¼ 0:37; psuccð	3; ttÞ ¼ 0:372 ¼ 0:14: (24)

With these values and (14), it is immediate to explore the success probabilities that can be
reached with PM for qubit random unitary channels, as will be done in the next section. However, it
is clear that the construction of conditional qubit linear operators is not exhausted by unitaries, as
the matrix (19) can be tailored by more complex driving voltages. The construction of the amplitude
damping channel below provides an example of this general approach.

5. Realization of Random Unitary Qubit Channels
As a first application we explore the attainable success probability of the conditional realization of
random unitary qubit channels using PM. These channels are defined as convex combinations of
unitary transformations, which, in the case of qubits, can be presented as

�! �0 ¼
X3
n¼0

qn	n�	n
X
n

qn ¼ 1: (25)

The standard bit, phase, and bit-flip channels, together with the depolarizing channel, belong to
this category [1]. For the first three channels, the standard parametrization involves two nonnull qn
in the sum (25): q0 ¼ p is common to the three channels, the other being q1 ¼ 1� p for bit,
q2 ¼ 1� p for phase, and q3 ¼ 1� p for bit–phase flip, where 1� p stands for the corresponding
flip probability. The depolarizing channel, in turn, involves the four matrices with q1 ¼ q2 ¼ q3 	 q
and q0 ¼ 1� 3q ð0 � q � 1=3Þ. In either case, the Kraus operators in (25) are An ¼

p
qn	n, and the

optimal success probability given by (12) is unity.
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With nonoptimal operators Ln / An with kLnk21 � 1, of course, the success probability is lower.
For bit, phase, and phase-flip channels, equation (14) yields

1
psucc

¼
X
n

qn
kL	nk

2
1
¼ p þ 1� p

kL	kk
2
1

(26)

where kL	kk
2
1 represents the success probability of the realization of Pauli unitary 	k ðk ¼ 1; 2; 3Þ

as given by (22) and (23) in single-tone modulation or by (24) in two-tone modulation. For the
depolarizing channel, we obtain

1
psucc

¼
X
n

qn
kL	nk

2
1
¼ 1� 3q þ q

1

kL	1k
2
1
þ 1

kL	2k
2
1
þ 1

kL	3k
2
1

 !
: (27)

The resulting success probabilities are depicted in Fig. 4. It is observed that psucc decreases as
the corresponding flip probability 1� p or depolarization parameter q increases, as the construction
demands a higher addressing rate of Pauli matrices f	1; 	2; 	3g with suboptimal values kL	nk

2
1 G 1.

The upper bound in (17) is equal to 1 and is attained in these curves for p ¼ 1 and q ¼ 0. The lower
bound is reached in the left plot in Fig. 4 for p ¼ 0. In turn, the minimum value for the depolarizing
channel ðq ¼ 1=3Þ is psucc ¼ 0:14 for single-tone modulation and psucc ¼ 0:24 for two-tone modu-
lation. In this case, the lower bound in (17) is not reached because this bound involves a single
Kraus operator, the one having the lower success probability of generation.

6. Realization of the Amplitude Damping Channel
The amplitude damping qubit channel is described by the following set of Kraus operators:

A0 ¼
0

ffiffiffi
�
p

0 0

� �
A1 ¼

1 0
0

ffiffiffiffiffiffiffiffiffiffiffiffi
1� �
p

� �
(28)

where � is the damping parameter. From (12), the optimal success probability is

psucc fAngð Þ ¼ 1
� þ 1

(29)

and it can be shown that this success probability is also optimal among all possible set of Kraus
operators representing the channel [4].

The proposed realization is based on two modes at frequencies !G and !E representing the
ground and excited states (GS/ES) of a two-level system. We modify the scheme in Fig. 3, where,
now, the FBG shows total reflectivity at the GS frequency !G, Rð!GÞ ¼ 1, and partial reflectivity

Fig. 4. (Left, blue) Success probabilities of bit flip and phase flip channels, (left, red) bit–phase flip
channel, and (right) the depolarizing channels using phase modulation. In each case, dotted curves
correspond to single-tone modulation and continuous curves to two-tone modulation.
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1� � at the ES frequency !E, Rð!EÞ ¼ 1� �. The PM will be used to couple these frequencies, so
we set !G ¼ !E þ �, i.e., the GS frequency is represented by the first sideband of the ES frequency.
The FBG thus provides two functionalities: first, to filter all frequencies but the dual-rail encoding set
f!G; !Eg and, second, to selectively attenuate the ES mode with respect to the GS mode. The
damping parameter � can be tuned by standard FBG technology, and in basis f!G; !Eg, the action
of the FBG is simply given by

LFBG ¼
1 0
0

ffiffiffiffiffiffiffiffiffiffiffiffi
1� �
p

� �
(30)

which coincides with Kraus operator A1 in (28).
The possibility of random commutation between the two operators in (30) is provided by two

settings in the PM, LPM;0, and LPM;1. For LPM;1, we set a null driving voltage in the modulator, so that
the PM action is trivial, LPM;1 ¼ 1. The action of the PM þ FBG cascade is L1 ¼ LFBGLPM;1 ¼ A1, so
the second Kraus operator (30) is realized with kL1k1 ¼ 1.

On the other hand, comparison of A0 in (28) with (19) suggest designing a driving PM waveform
xðtÞ yielding C0 ¼ C�1 ¼ 0 and C1 6¼ 0. The existence of a simple two-tone periodic waveform
producing these couplings can be justified as follows. From (20), we observe that the use of a single
modulating tone can realize 2 � 2 antidiagonal operators with equal magnitude in its components
and adjustable relative phase. Denoting this single tone as x1ðtÞ ¼ �1sinð�t þ �1Þ, this setting
corresponds to � ¼ 1 or to a modulation index �1 ¼ 2:404, which is the index that nullifies
C0 ¼ J0ð�1Þ. In fact, the realization of Pauli matrices 	1 and 	2 in Section 4 are based on this
setting. Let us arbitrarily choose �1 ¼ 
=2. Using Cn ¼ expði�1nÞJnð�1Þ, it is immediate to observe
that this choice forces 
n sidebands to be in phase since J�nð�1Þ ¼ ð�1ÞnJnð�1Þ. Then, the
modulation impinged by this single tone is

AðtÞexp �i!t � ix1ðtÞ½ � ¼ AðtÞ iJ1ð�1Þ e�ið!��Þt þ e�ið!þ�Þt
� 	

� J2ð�1Þ e�ið!�2�Þt þ e�ið!þ2�Þt
� 	

þ � � �
h i

(31)

where the dots stand for higher order sidebands. Now, let us design a second single-tone driving
voltage x2ðtÞ ¼ �2sinð2�t þ �2Þ at double frequency. In this case, we set �2 ¼ 1:126, which corre-
sponds to a transformation with � ¼ 0:5 for which J0ð�2Þ ¼ J1ð�2Þ. We also set �2 ¼ 0, so C0 ¼
C1 ¼ �C�1, i.e., the þ1 sideband at double frequency is in phase with the carrier and the �1
sideband is in opposition. Then

AðtÞexp �i!t � ix2ðtÞ½ � ¼ J0ð�2ÞAðtÞ e�i!t þ e�ið!þ2�Þt � e�ið!�2�Þt þ � � �
h i

: (32)

Now, if we compose these two modulations, i.e., xðtÞ ¼ x1ðtÞ þ x2ðtÞ, we obtain

~AðtÞ ¼AðtÞexp �i!t � ix1ðtÞ � ix2ðtÞ½ �

¼AðtÞJ0ð�2Þ 2iJ1ð�1Þe�ið!þ�Þt � J2ð�1Þ e�ið!þ2�Þt þ e�ið!�2�Þt
� 	

þ � � �
h i

(33)

thus yielding the desired coupling. Of course, this argument is not exact but shows that a good
guess for an optimization seed of a driving two-tone waveform xðtÞ is that given by two in-
quadrature tones with modulation indices �1=2
 ¼ 0:383 and �2=2
 ¼ 0:179. The result of an
optimization forcing C0 ¼ C�1 ¼ 0 and maximizing C1, obtained with the procedure described in
[15], is shown in Fig. 5. The optimal values are �1=2
 ¼ 0:391 and �2=2
 ¼ 0:175, resulting in
jC1j2 ¼ 0:46. This probability can be increased by use of additional tones at k�, but this seems
increasingly hard from the experimental point of view.

The optimized waveform in Fig. 5, left, shows a strong similarity to a sawtooth profile. This can be
explained as follows: as apparent from (33), the modulator exp½�ixðtÞ� should ideally operate as a
frequency shifter AðtÞexpð�i!t � i�tÞ, transforming frequency !E into !G ¼ !E þ � and forcing !G

to leave the encoding set f!G; !Eg. A periodic xðtÞ generating the targeted couplings is thus the
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(wrapped) periodization of a linear phase, �xðtÞ ¼ ��t ¼ �2
t=T in the fundamental period
jt j G T =2, as approximated in Fig. 5 left.

The final matrix describing the PM action is thus

LPM;0 ¼ ei�
ffiffiffiffiffiffiffiffiffiffi
0:46
p 0 1

0 0

� �
(34)

and using (30) and (34), the cascade PM þ FBG operates as

L0 ¼ LFBGLPM;0 ¼ LPM;0 / A0 (35)

and therefore realizes the first Kraus operator in (28) with kL0k21 ¼ 0:46. Finally, using (14), we
obtain

1
psucc

¼
X
n

kAnk21
kLnk21

¼ 1þ �

0:46
: (36)

This success probability is compared with the optimal value (29) in Fig. 6. The suboptimal
character of this realization, consequence of norm kL0k1 G 1, is clearly shown at the minimum
value of 0.315 for � ¼ 1, as compared with 0.50 of the optimal realization. If we compare (36) with

Fig. 6. Success probabilities for the proposed suboptimal realization [red, (36)] and the optimal
realization [blue, (29)].

Fig. 5. (Left) Optimized two-tone driving waveform implementing A0 over two driving periods: blue
continuous curve, tone at � ¼ 2
=T ; dashed red curve, tone at 2�; black continuous curve, total
waveform. (Right) Transition probabilities jCn j2 for coupling to sideband n.

IEEE Photonics Journal Realization of Single-Photon Qubit Channels

Vol. 4, No. 6, December 2012 Page 2083



the alternative realization of the amplitude-damping channel in polarization basis [8], [9], which
shows a uniform success probability of 0.50 for any value of �, we observe that (36) provides an
improvement for low or moderate values of the damping parameter, � G 0:46.

7. Conclusion
We have explored the conditional realization of single-qubit quantum channels in frequency basis
by using current optical phase modulation and FBG technology, adapting a recent proposal by
Piani et al. [4] for the implementation of arbitrary qudit quantum operations. The use of electroop-
tical modulation techniques, together with dual-rail qubits based on frequency modes, has been
shown to be a practical alternative to meet the demands required by the original proposal. Phase
modulators have been used for proportionally realizing each of the Kraus operators in the channel’s
operator-sum decomposition and have been subsequently stochastically addressed to condition-
ally implement the full channel structure. The resulting realizations do not reach the optimal bounds
found in [4] but allow for implementations of qubit channels and show the versatility of frequency-
encoded qubits for the practical implementation of quantum information tasks.
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