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Resumen
En este trabajo se diseña e implementa un procesador con ejecución fuera de

orden siguiendo como modelo el algoritmo de Tomasulo. El procesador es re-
configurable y permite tanto la instanciación de un número variable de unidades
funcionales y recursos como la obtención de diferentes configuraciones, cada una
con una relación prestaciones/recursos distinta. El procesador se está integran-
do en la arquitectura PEAK desarrollada en el Grupo de Arquitecturas Paralelas
(GAP) del Departamento de Informática de Sistemas y Computadores (DISCA)
de la Universitat Politècnica de València (UPV).

El procesador incluye todos los componentes esenciales para su completa ope-
ratividad así como soporte para un conjunto amplio del juego de instrucciones de
la arquitectura MIPS32. Cabe añadir que todos los componentes se han diseñado
e implementado por completo en el marco del presente trabajo.

El trabajo incluye el diseño de tests de prueba y diferentes programas para
verificar y validar cada componente y las diferentes configuraciones finales del
procesador. Por otro lado, se ha sintetizado cada uno de los componentes con el
fin de obtener los recursos que necesita para su implementación en un sistema
FPGA. A lo largo del desarrollo del trabajo se han utilizado herramientas co-
merciales como Vivado de Xilinx, simuladores (QtSpim) y software de control de
versiones (Git).

Palabras clave: procesador, PEAK, FPGA, multinúcleo, parametrizable.

Resum
En aquest treball es dissenya i implementa un processador amb execució fora

d’ordre seguint com a model l’algorisme de Tomasulo. El processador és recon-
figurable i permet tant la instanciació d’un nombre variable d’unitats funcionals
i recursos com l’obtenció de diferents configuracions, cadascuna amb una relació
prestacions/recursos diferent. El processador s’està integrant en l’arquitectura
PEAK desenvolupada en el Grup d’Arquitectures Paral·leles (GAP) del Departa-
ment d’Informàtica de Sistemes i Computadors (DISCA) de la Universitat Poli-
tècnica de València (UPV).

El processador inclou tots els components essencials per a la seua comple-
ta operativitat així com suport per a un conjunt ampli del joc d’instruccions de
l’arquitectura MIPS32. Cal afegir que tots els components s’han dissenyat i im-
plementat per complet en el marc del present treball.

El treball inclou el diseny de tests de prova i diferents programes per a verifi-
car i validar cada component i les diferents configuracions finals del processador.
D’altra banda s’ha sintetitzat cadascun dels components amb la finalitat d’obte-
nir els recursos que necessita per a la seua implementació en un sistema FPGA.
Al llarg del desenvolupament del treball s’han fet servir diverses ferramentes co-
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mercials com ara Vivado de Xilinx, simuladors (QtSpim) i programari de control
de versions (Git).

Paraules clau: processador, PEAK, FPGA, multinucli, parametritzable.

Abstract
This project involves the design and implementation of a processor with out-

of-order execution using the Tomasulo algorithm. The processor is configurable,
allowing a variable number of resources and functional units. Different config-
urations can be created, each with a different performance/resource ratio. The
processor is being integrated into the PEAK architecture developed by the Grupo
de Arquitecturas Paralelas (GAP) del Departamento de Informática de Sistemas
y Computadores (DISCA) de la Universitat Politècnica de València (UPV). PEAK
is a multi-core arquitecture for multi-FPGA development environments and pro-
totyping.

The processor includes all the essential components and is fully operational
along with support for a wide array of the MIPS32 architecture instruction set.
All components have been designed and implemented as part of this project.

A multitude of tests and programs have been designed to verify and validate
each component along with the different configurations of the processor. The
synthesis of each of the components and the processor (in its different configura-
tions) has also been performed with the goal of obtaining the resource usage on a
FPGA system. During the development of this project different commercial tools
have been used such as Xilinx Vivado, simulators (QtSpim) and version control
software (Git).

Keywords: processor, PEAK, FPGA, multicore, configurable.
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Abbreviations

ALU (Arithmetic Logic Unit)

BRANCH (Branch)

BTB (Branch Target Buffer)

BUS (Common Data Bus)

CAS (Controlled Adder Subtractor)

CLA (Carry-Lookahead Adder)

COMMIT (Commit stage)

CPA (Carry Propagation Adder)

CPI (Cycles Per Instruction)

CSA (Carry Save Adder)

DEC (Decoder)

DISCA (Department of Computer Engineering)

EX (Execute stage)

FPGA (Field Programmable Gate Array)

FPU (Floating Point Unit)

GPR (General Purpose Register)

HDL (Hardware Description Lenguage)

HI (High register)

ID (Instruction Decode)

IDE (Integrated Development Environment)

IF (Instruction Fetch)

IPC (Instructions per cycle)

L1 (First Level Cache)

LO (Low register)

MEM (Memory)

RAM (Random Access Memory)

PC (Program Counter)

RB INT (Integer Register Bank)

RB FP (Floating Point Register Bank)

RISC (Reduced Instruction Set Computer)

ROB (Re-Order Buffer)

RR (Round Robin arbiter)

RS (Reservation Station)

WB (Writeback)
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CHAPTER 1

Introduction

The work detailed in this document involves the design and implementation
of a processor with out-of-order execution based on a MIPS architecture.

An important aspect about the implemented processor is that it is quickly and
widely configurable providing the possibility to add and remove resources in
order to create distinct configurations which can later be studied. The processor
has the possibility of being in any one of seven different configurations.

The most complex configuration supported by the processor contains four in-
struction decoders with a configurable size re-order buffer, four buses, four com-
mit units, two arithmetic-logic units, two floating point arithmetic units and mul-
tiple reservation stations for each operator.

Some other notable aspects are that the floating point unit is contained en-
tirely inside the core of the processor. Jumps and conditional branches with pre-
diction are also supported so that more complex algorithms may be executed on
the processor. Finally, memory disambiguation is supported which enables safe
out-of-order execution of read & write operations.

One last thing to consider is that this project was developed by a group of four
students. We have all been involved since the first day and the work has been dis-
tributed such that each member could specialize in certain parts of the designed
processor. Once it was time to validate and evaluate the resulting processor as a
whole, all members worked together to solve bugs and draw conclusions to the
capabilities of the different configurations of the processor.

1.1 Context

The project came about as a continuation of the work being done on the PEAK
architecture created by the Grupo de Arquitecturas Paralelas (GAP) of the Departa-
mento de Informática de Sistemas y Computadores (DISCA) located at the Universitat
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Politècnica de València (UPV). PEAK is a shared memory multicore processor ar-
chitecture. The objective of PEAK is the use of emulation techniques on FPGA
systems for use in investigation and teaching about the design of new multicore
processor architectures. PEAK allows multiple variations of an architecture de-
sign starting with the definition of the cores and then moving on to changes in the
memory hierarchy and the management of resources then finishing by allowing
the use of different memory coherence protocols and defining communication
protocols for accessing the processor from an external system.

The main purpose of defining and using PEAK is to facilitate the investiga-
tion of advanced methods of core & cache memory management in multicore
systems. This is under the concept of capacity computing which defines the use of
partitioned resources (in this case cores and cache memories) of a multicore pro-
cessor where each partition is assigned to a different application. This partition-
ing allows the processor to concurrently execute applications using disjoint sets
of resources while providing security and privacy between applications through
isolation. This means that applications never interact with each other but results
in a more efficient use of the resources provided by the chip. In order to provide
these characteristics PEAK has defined a set of coherence protocols and routing
mechanisms along with the possibility of reconfiguration at the network level
inside of the chip, all of which can be modified from the software control layer.

The latest work being done on the PEAK architecture has the objective of cre-
ating a processor with 256 cores that exhibits the previously mentioned improve-
ments provided by resource partitioning. This work is part of an agreement be-
tween UPV and a Chinese multinational corporation. The project intends to show
off the concept of capacity computing with a large number of cores. Additionally
the PEAK architecture is being used as the starting point in a European project
centered on High Performance Computing (HPC) which will begin in October
2015. In this project the concept of tile that is defined by the PEAK architecture
will be used such that each tile will have specialized cores for different types of
tasks while also having different levels of performance and consumption. As an
example, the processors defined in the work presented in this document can be
used in different tiles and in each of them be configured with a different number
of resources (FPU units, ROB size, etc). The goal of the project is to ensure the use
of the optimum number of resources in each moment so as to achieve the best
performance/resource ratio.

Another important part of the work contained in this document is its relation-
ship with Field Programmable Gate Arrays (FPGAs). By using a programmable
board with its accompanying software we were able to use rapid prototyping and
behavioural analysis of the digital designs we have implemented so as to quickly
and cheaply verify our designs without the need of having to turn to a chip fabri-
cation plant and then physically debug the resulting silicon. This also required us
to learn how to use a hardware description language we had not worked with be-
fore, which is Verilog. This involved adjusting to thinking in a paradigm where
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nothing is sequential, everything is a cable and electricity travels at the speed
of light so great care must be taken when writing code because essentially it all
happens instantly and at the same time.

Finally, the chance to work in a group was a big reason to go ahead with the
project because we knew that by combining each of our skills we could finish
a more expansive and complete body of work while supporting each other and
allowing greater efficiency during it’s development.

1.2 Objectives

The main objective of the work presented in this document is to design and
implement the necessary modules that will form an architecture based on
that of the MIPS32. The development of the architecture will be with the
use of Verilog code and the Xilinx Vivado IDE.

The processor supports different types of instructions: read/write to mem-
ory and registers, arithmetic-logic operations and conditional branches along
with jumps.

Provide rapid reconfiguration of the processor allowing more or less re-
sources to be present in the architecture which could imply for example,
providing multiple arithmetic-logic units or by changing the number of
Reservation Stations (RS) available to each operational unit.

Use pipelined designs for the arithmetic-logic and memory units in order to
support concurrent execution of instructions and memory disambiguation.

Develop a range of test programs written in assembly in order to verify the
correctness of the final implementation with all the modules interconnected
that form the architecture.

Synthesize the project using Vivado and then perform an analysis of the
space that each component of the architecture would occupy on an FPGA.
This part will be performed using several different configurations of the
processor providing more or less resources and observing the variations in
resource usage on the FPGA by the processor.

Make the adjustments necessary to incorporate the project into the PEAK
architecture with the goal to then program the processor onto an FPGA.

1.3 Structure of the Document

This document is made up of seven chapters each of which is briefly intro-
duced below.
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Chapter 1, Introduction: To begin with we explain the motivation and con-
text behind the work produced along with the objectives to complete.

Chapter 2, Prior knowledge: Here we provide the necessary concepts to
better understand the implications and mechanics of the work produced.

Chapter 3, Development tools: In this section we detail the tools used dur-
ing the project along with the advantages they bring and how they are used.

Chapter 4, Overview of the processor: Next we describe the set of compo-
nents required to create a functioning processor along with the tasks they
perform and how they are all interconnected.

Chapter 5, In-depth view of components: Each member of the group was
in charge of the development of certain units. Here these specific modules
of each member are introduced in greater detail.

Chapter 6, Verification and results: A series of tests in order to verify the
developed project are explained while also analysing the resulting efficiency
and resource usage of the final product.

Chapter 7, Conclusion: In this final chapter we detail how each initial ob-
jective was completed and also possible work that could be added in the
future.

Because the work detailed in this document was performed as a team com-
posed of Francisco Guaita, Mark Holland, Raúl Lozano and Tomás Picornell, each
member dedicates sections in this document to a more in-depth look at the im-
plications the units they spent most time working with had on the rest of the
architecture.

At the end of the document there is an appendix with the interfaces of the
components seen in chapter 5 along with the testbench source code used in chap-
ter 6

1.4 Use of References

During the development of the project we have made use of multiple biblio-
graphic materials which are detailed here along with their relation to the different
parts of the project.

To situate ourselves in the historical context of the type of architecture our
design is based on, which is that of the MIPS32 microprocessors, we make
use of a Wikipedia article [9] where MIPS processors in general are ex-
plained.
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Because one of the objectives of this project is to construct a processor with
out-of-order execution we base ourselves off of the structures defined in the
books by Hennessy and Patterson about computer architecture [6, 7]. We
also use the official MIPS manual [10] that introduces the MIPS32 architec-
ture.

In order to correctly decode instructions and execute them on our architec-
ture we follow the encoding defined in the official MIPS manuals that cover
the set of instructions supported by the MIPS32 architecture [11, 12].

Another important factor is correctly following the official standard for float-
ing point numbers set by the IEEE organization [8].

For some of the more detailed parts of the arithmetic-logic unit implemen-
tation the reference [16] is used.

Finally, to solve questions related to the use of the chosen development tools
during the creation of this work we consult the official book on Git [5] where
they provide examples of common use cases, the official documentation for
the program PCSPIM that contains all the needed information for its usage
and to end with the user guide for Vivado [18] made available by Xilinx.
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CHAPTER 2

Prior Knowledge

This chapter provides an overview of different technical aspects in order to
better situate the reader in the context that this project is placed. This includes
explanations of the mechanics of some of the components implemented during
the development of this project.

2.1 IEEE Standard for Floating-Point Arithmetic

This standard came about because of the usage of different ways of represent-
ing floating-point numbers on large computers near the end of the 1970s. From
the years 1977 to 1985 a series of meetings were held by the IEEE (Institute of
Electrical and Electronics Engineers) resulting in the publishing of the IEEE 754
standard.

The format defined in IEEE 754 is used to perform operations involving real
numbers in the float and double representations. The support of these repre-
sentations depends on the implementation of the floating point unit (FPU). The
standard also shows how simple precision (32 bits) and double precision (64 bits)
floating point numbers should be represented along with how arithmetic opera-
tions should be performed when using these types of numbers.

The IEEE 754 format allows the representation of a wide range of very large
numbers while using a limited number of bits. For example, a simple precision
floating point number occupies a single word of 32 bits and is made up by the
fields shown in Figure 2.1.

The first bit represents the sign of the number (S), the following 8 bits form
the exponent (E) while the remaining 23 bits are the mantissa (M). A number X
represented in exponential notation can be written in the form:

X = (−1)S × 1.M × 2E−127
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S Exponent Mantissa

31 30 23 22 0

Figure 2.1: Fields of bits that make up a floating point number with simple precision

2.2 The MIPS Architecture

The MIPS (Microprocessor without Interlocked Pipeline Stages) family of mi-
croprocessors developed by MIPS Technologies use a RISC (Reduced Instruction
Set Computing) architecture where instructions are expected to only make use
of an operator once during the execution of an instruction unlike a CISC (Com-
plex Instruction Set Computing) architecture where the instructions may use the
same operating unit multiple times over the course of the execution of a single
instruction.

MIPS processors were initially designed at Stanford University in 1981 by a
research group lead by Dr. John Henessy with the goal of adopting the principles
advocated by the RISC philosphy, pioneered by Henessy, to a working micropro-
cessor. This group later founded the company MIPS Technologies Inc. in 1984
with Henessy as a co-founder. The company’s first product was the R2000 model
which was the first commercial RISC processor and the first to use the MIPS archi-
tecture, it was released in January 1986. The R2000 provided 32 general purpose
registers but certain things taken for granted today, such as floating point oper-
ations, had to be performed by a separate chip, the R2010 floating-point acceler-
ator. A similar thing ocurred with memory operations where four R2020 write
buffer chips were also included on the R2000 chipset to allow the queuing of up
to four pending memory operations and thus freeing up the microprocessor to
continue executing other instructions.

The follow up to the R2000 was released in 1988 and was called the R3000.
The main improvement was the addition of an on-chip cache controller along
with support for cache coherence to ensure data consistency. So although this mi-
croprocessor didn’t yet have any level 1 cache it did support external instruction
and data cache with sizes up to 256 KB and allowed access to both caches in the
same cycle. The R3000 chipset included 32 KB of cache which was later doubled
to 64 KB with the introduction of the R3000A in 1989 that also supported higher
clock frequencies.

The first 64-bit instruction set supporting RISC microprocessor came in 1991
with the MIPS R4000 which used a scalar superpipelined architecture and now
integrated an on-die floating-point operator. Increases in clock frequency and
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attempts for it to replace the CISC microprocessors of the day such as the Intel
i486 weren’t enough and in 1992 SGI acquired MIPS Technologies Inc.

Under SGI, MIPS Technologies Inc. began to license their designs and by the
end of 1999 had consolidated in the MIPS licensing system with the architectures
MIPS32 and MIPS64 (referring to 32 and 64 bit architectures). Licensing use was
quickly adopted and today these architectures can still be found in all types of
embedded systems ranging from portable computers to TV decoders.

The change of ownership allowed heavy investment in new designs and in
1994 the first MIPS superscalar microprocessor was released as the model R8000
which allowed the concurrent execution of two arithmetic-logic operations and
two memory operations in a single clock cycle. This was achieved by introducing
the concept of pipelined operators with the use of an external floating-point oper-
ator called the R8010 which also provided the possibility of out-of-order execution
of instructions by decoupling the integer and floating-point pipeline of the pro-
cessor. Unfortunately, the elevated costs limited its use outside of scientific fields
and it only managed to stay on the market for little over a year.

The successor to the R8000, the R10000, was released in January 1996 and
continued with the idea of out-of-order instruction execution by introducing reg-
ister renaming and a four-way superscalar design that permitted the launching
of up to four new instructions from the cache every cycle. Along with a higher
clock frequency the R10000 incorporated all the necessary components on a sin-
gle chip including the floating-point unit (FPU) that consisted of four functional
units made up by an adder, a multiplier, divide unit and square root unit.

All of the designs that followed would be derivatives of the R10000 that in-
cluded small changes to improve clock speeds and instruction throughput, until
the R18000 that was cancelled during development and thus ending the R series
of MIPS microprocessors.

In Figure 2.2, we can see the complete data path of a pipelined MIPS micro-
processor along with the main operational units and how they are interconnected.
Figure 2.2 also shows the different stages that instructions pass through:

Instruction Fetch (IF): Fetch the instruction from memory.

Instruction Decode (ID): Decoding of the instruction and request for the
operands from the register bank.

Execute (EX): In this step the instruction is executed. The actions performed
depend on the instruction type. If it is arithmetic then the necessary oper-
ation is performed. If it is a memory access then the address is calculated
from the base and shift values. If it is a branch instruction then the des-
tination address is calculated relative to the program counter (PC) and if
necessary the branch condition is calculated.
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Memory Access (MEM): In this stage the load instructions read from mem-
ory while store instructions write their value. Branch instructions update
the value in the PC. Arithmetic instructions continue their course towards
the next stage.

Write Back (WB): In the case that the instruction produces a result then it is
written to the register indicated by the instruction.

Figure 2.2: Datapath of the MIPS architecture

2.2.1. Instruction Format

The MIPS architecture has three different types of instruction formats:

1. I-type: These are immediate operand instructions, it always has a 16-bit
integer immediate value encoded in the instruction. Two other operands
may be used (rs & rt) stored in registers with index rs and rt. There is also
an operation code field that has the binary encoding of the instruction to
perform.

OpCod (6) rs (5)

31 0

rt (5) immediate/shift (16)

Figure 2.3: I-type instruction format
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2. J-type: Used for encoding jump instructions, in order to change the pro-
gram flow, the amount added (or subtracted in the case of a negative num-
ber) to the Program Counter (PC) is provided in the address field and uses
26 bits.

OpCod (6)

31 0

Address (26)

Figure 2.4: J-type instruction format

3. R-type: This format is similar to the I-type except that all operands come
from registers. The three registers to use are encoded in rs,rt & rd. There is
also a function code field that contains the encoded instruction that indicates
the operation to perform.

OpCod (6) rs (5)

31 0

rt (5) rd (5) shamt (5) FuncCod (6)

Figure 2.5: R-type instruction format

2.3 Instruction Scheduling

Historically, program instructions would be executed sequentially one after
the other. If the resources for a following instruction were available the instruc-
tion would still have to wait until the previous one had finished. This way of
designing a data path meant that while one instruction was being executed, the
entire data path would be blocked until the instruction had completely finished.
The downside to this is that in each cycle of the processor, an instruction is us-
ing only one stage of the data path when the next instruction could be using the
stages the previous instruction had already passed through. Dynamic instruction
scheduling solves this inefficiency.

With dynamic instruction scheduling the reordering of instructions is permit-
ted along with multiple instructions being in the datapath at the same time. This
means that subsequent instructions that don’t suffer data dependencies with pre-
vious instructions can begin execution before the previous one has even began its
operations. This allows a much greater throughput of instructions and vastly im-
proves the performance of microprocessors that incorporate this type of schedul-
ing. The introduction of non-blocking execution is of special interest when cache
misses occur that can take many tens of cycles to resolve. With register renam-
ing some data dependencies can be avoided completely allowing initially poorly
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written data-dependent code to be solved at execution time and be run without
any delays.

Now we will explain how the previously mentioned additions provided by
dynamic instruction scheduling can be used to avoid blocking the processor dat-
apath with the use of programs using real MIPS assembly instructions.

div.d $f1, $f2, $f4 # $f0 = $f2 / $f4
add.d $f10, $f1, $f8 # $f10 = $f0 + $f8
sub.d $f12, $f8, $f14 # $f12 = $f8 - $f4

Figure 2.6: Example of a program using MIPS32 insturctions

In the example of Figure 2.6 we can observe how if we were using static
instruction scheduling the sub.d instruction will be delayed because there exists
a data dependency between the two previous instructions even though the sub.d
instruction doesn’t use any of the data involved in the two previous instructions
which results in lost cycles while the add.d is waiting to begin. With out-of-order
execution the sub.d could be placed before the add.d and begin executing. Then,
when the div.d finishes, the pushed back add.d can now begin as the dependency
is no longer a risk.

To support out-of-order instruction execution the instruction decoding stage
must be split into two new stages which are:

1. Issue - Performs instruction decoding and detection of hazards that would
create a dangerous program structure with unknown consequences.

2. Read operands - Waits for all the operands to be ready with their latest
values in order to avoid conflicts leading to incorrect results.

Along with this division, for out-of-order execution to make sense, the proces-
sor must have available multiple operational units of each type so as to allow the
concurrent execution of instructions of the same type that do not have dependen-
cies between them.

With register renaming we can also solve an additional type of dependency
called an anti-dependency. An anti-dependency, also known as write-after-read
(WAR), happens when an instruction saves its result to a location that is used in
a previous instruction so if the later instruction is re-ordered and finishes before
the previous instruction then the programs structure has been changed and will
provide an incorrect result.
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div.d $f0, $f2, $f4 # $f0 = $f2 / $f4
add.d $f6, $f0, $f8 # $f6 = $f0 + $f8
s.d $f6, 0($t1) # MEM[0+$t1] = $f6
sub.d $f8, $f10, $f14 # $f8 = $f10 - $f14
mul.d $f6, $f10, $f8 # $f6 = $f10 * $f8

Figure 2.7: Example of a program using MIPS32 instructions that has an
anti-dependency data hazard

In the program of Figure 2.7 there is an anti-dependency between the sub.d
and add.d instructions, the later instruction stores its result in $f8 while the ear-
lier add.d instruction uses that same register as an operand. So if the sub.d were
to finish before the add.d through out-of-order execution then the add.d would be
using incorrect data as an operand. By using register renaming we can remove
this anti-dependency by renaming the $f8 register used in the sub.d instruction
to, for example, $f9 then if the sub.d were to occur before the add.d they no
longer share the same register and the dependency has been eliminated.

2.3.1. Tomasulo Algorithm

The most well known and widely used method of dynamic scheduling is the
Tomasulo algorithm developed by Robert Tomasulo while working at IBM in
1967. This algorithm introduced the concepts of register renaming and reser-
vation stations along with a common data bus (BUS) to allow all the operational
units to register their results in the corresponding reservation station if necessary.
To allow out-of-order instruction execution, the Tomasulo algorithm makes use of
a re-order buffer (ROB) to ensure that even though the calculations of instructions
may occur in a dynamic order, instructions must finish and write their result in
a new final stage – the commit stage – where the instructions enter this stage in
the original order of the source code. Reservation stations are used as an inter-
mediate store for the resulting value of an instruction that is used in a following
instruction as an input operand, thus eliminating the delay caused by waiting for
the instruction producing the result to have committed its result to a register.

With these new structures, the Tomasulo algorithm completely eliminates write-
after-read (WAR) and write-after-write (WAW) dependencies through register re-
naming and allows optimum use of the processors resources with the re-order
buffer while also reducing delays for the latest operands with reservation sta-
tions. The Tomasulo algorithm saw greater use from the 1990s when cache mem-
ory was more feasible because of the cost penalty reduction of cache misses that
the algorithm provides along with branch speculation that will now be intro-
duced to the reader.
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2.3.2. Dynamic Branch Prediction

With the Tomasulo Alogrithm we have seen how different types of data de-
pendencies can be eliminated and thus avoid the hazard of incorrect results in
programs run on a processor. But there is a different type of hazard, the so
called control hazard. Control hazards occur when a program makes use of con-
ditional branch instructions, these instructions allow the control of the program
flow. There are two methods that can increase the IPC (instructions per cycle)
of branch instructions: static branch prediction which occurs at program com-
pile time and dynamic branch prediction which occurs in the processor while the
program is executing. This project uses speculative execution of branches with
dynamic branch prediction.

Dynamic branch prediction involves keeping a record of all the conditional
branches executed in a program along with a prediction of whether the branch
will be taken or not taken and whether this prediction was correct the last time the
branch instruction was executed. The prediction is usually calculated by the use
of a deterministic automaton that allows multiple incorrect predictions before it
changes its prediction for the following branch instructions.

As soon as a conditional branch instruction is decoded the prediction is made
and in the next cycle the instructions that are decoded will be the ones following
this prediction. Once the branch instruction has the result of its condition calcu-
lated and is then later confirmed, if the prediction was correct then execution can
continue as normal and multiple cycles have been saved. But if it turns out that
the branch prediction was incorrect then all the instructions after the branch must
be cancelled. Thanks to the commit stage of the Tomasulo algorithm, even though
incorrect instructions were being executed, data will not be corrupted as no in-
struction after the branch can enter the commit stage, where results are written,
until the branch has entered this stage. At which point the commit stage has dis-
covered the incorrect prediction and launched a flush of the incorrect instructions
already in execution including their operands and any temporary calculation.

2.3.3. Memory Disambiguation

We have contemplated how to enable out-of-order execution of instructions but
in the case of memory operations such as reads and stores there is an extra level
of complexity involved which is known as memory disambiguation. This more
advanced technique is used to detect dependencies between memory operations,
the most important of which is what’s known as true dependencies. Resolving
this type of dependency involves correctly detecting when a load operation has a
conflict with a previous store operation.
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addi $t0, $0, 0 # $t0 = $t0 + 0
add $t0, $t0, $0 # $t0 = $t0 + $0
sw $t1, 0($t0) # MEM[0+$t0] = $t1
lw $t2, 0($0) # $t2 = MEM[0+$0]

Figure 2.8: Example of a program using MIPS32 memory access instructions that has a
data hazard

In the example of Figure 2.8 we can quickly observe that the lw operation has
a conflict with the previous sw operation and must wait until the value in $t1 has
finished being stored in the first memory entry before loading the fresh data into
register $t2. Another important part of memory disambiguation is storing write
operations in a buffer so that they may be executed speculatively, this is needed
should a conditional branch fail in its prediction and forces all following instruc-
tions to be cancelled. By using speculative stores, if a store is cancellled it only
will have written to the store buffer and not to the external memory and con-
sequently data correctness is assured and write-after-read and write-after-write
dependencies are eliminated.
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CHAPTER 3

Tools

In this chapter we describe the main tools (external to the project) that were
used to help complete the body of work presented in this document, along with
what function each of them serves.

3.1 Xilinx Vivado

The most important tool used during the project is a development environ-
ment called Vivado provided by the company Xilinx. We choose this particular
product provided by Xilinx because the FPGA boards that the architecture will
later run on are provided and supported by Xilinx. Vivado is an IDE that pro-
vides all the tooling needed to design, implement and integrate a design onto an
FPGA.

This provides us with a single program where we can:

1. Design the modules that form the architecture by writing Verilog code in
the integrated editor.

2. Use static analysis for finding syntax errors in the Verilog code and inco-
herencies in the design.

3. Write testbench code for each module that creates an instance of the module
and then sends valid binary signals to the various inputs of each module in
different instances of time. This is later used with the integrated simulator.

4. Run the simulation of the design using the previously created testbench
modules and then observe the resulting timetable of output and register
signals over a period of time in order to verify that each module’s imple-
mentation is correct and eventually the architecture as a whole.
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5. Synthesize the design observing statistics related to the cost of different con-
figurations of the architecture as if it were to be implemented on an FPGA.

6. Implement the final design on the FPGA.

Figure 3.1: Screen capture of the Vivado IDE while editing a module

In Figure 3.1 we can see how the Vivado IDE is split up into different sections
providing an overview of all the modules in the project in a hierarchy that in-
cludes the submodules that some modules are made up of and also a text editor
for the writing of Verilog code. On the far left we can see all the different steps
from design to programming an FPGA, all of which can be carried out using Vi-
vado.
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3.2 QtSpim

Spim is a simulator for running MIPS32 programs. Because our architecture
is implemented following this instruction set we can use the Spim simulator to
test our programs written in assembly and view the correct result. Then when
running the same assembly programs on our simulated architecture in Vivado
we can compare the results and ensure the architecture is correct. QtSpim is the
most recent version of Spim and utilizes the Qt UI framework allowing QtSpim
to be cross-platform which means that everyone can use the same program for
checking their assembly code.

QtSpim also provides a useful feature as can be seen in Figure 3.2 in that
it displays the encoding of the assembly instructions in hexadecimal. We take
advantage of this by having the instruction cache of our architecture directly ac-
cept this encoding, which allows us to quickly pass from MIP32 assembly code
to hexadecimal values that our architecture can decode and run. These encoded
programs are used in testbench code in order to verify that the processor works
correctly.

Figure 3.2: Example of execution of a program using QtSpim
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3.3 Git

The work presented in this document, as has already been mentioned, has
been developed in parallel as a team of four people and as such requires a great
deal of synchronisation and care when designing and implementing the architec-
ture. For this to be feasible it is necessary to use some kind of version control
for the actual files with the code of the project. We choose Git because the team
members were already familiar with it and it suits our needs. The University has
provided us with a server so that we can have a remote repository accessible from
wherever each team member may be working at any particular time.

The workflow used with git can be observed by a snippet of the project in
Figure 3.3 and involved creating new git branches for each new feature or bug fix,
thus allowing time for proper code review and verification before incorporating
new code into the main development trunk.

Figure 3.3: A small list of commits in descending order showing how they diverge into a
new branch and are later merged
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3.4 log2timetable

To facilitate faster conclusions from the test programs run on the processor
we implement a set of python and bash scripts that when combined allow a quick
overview of the program execution in the form of a timetable. A bash script is
used that takes as input the vivado.log file generated by Xilinx Vivado during a
simulation run on the architecture. In this input we have specially crafted logged
text from the Verilog code that contains the stage each instruction from the re-
order buffer is in for each program cycle. The script cleans up this log file and
then passes it to a python program that parses our special timetable logs and
then prints out a timetable of the execution of each instruction.

This final output allows us to quickly check if the programs were functioning
as expected and to detect improvements between configurations. An example of
a resulting timetable is in Figure 3.4 and these outputs will be used extensively
in chapter 6. The x-axis shows the time measured in clock cycles. Each row of
the table is a instruction and by following the x-axis it can be seen how each
instruction passes through the different execution stages and in which cycles.

instr/cycles 2 3 4 5 6 7 8 9
addi $8, $0, 10 DEC ADD ADD WBK COM
addi $9, $0, 20 DEC ADD ADD WBK COM
addi $10, $0, 30 DEC ADD ADD WBK COM
addi $11, $0, 40 DEC ADD ADD WBK COM

Figure 3.4: An example timetable output from log2timetable
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CHAPTER 4

Overview of the Processor

In this chapter we provide a general overview of the processor created so that
the reader may better understand how certain parts of the architecture work.

4.1 Datapath

In Figure 4.1 there is a diagram with a general overview of the processor that
has been developed. It is important to note that this diagram does not contain
the entirety of the design due to its complexity, as such it only shows the most
important modules in order to provide a brief overview while detailing how the
units are interconnected. Even so, some less crucial connections are missing in
order to provide a cleaner diagram.

In the previously detailed Figure 4.1, it can be seen how the datapath is made
up of several different groups of modules (remarked in grey boxes). Each group
will be detailed in-depth before passing on to the next one.

Starting from the left we will begin by looking at the group made up by:

Program Counter (PC): This is nothing more than a 32-bit register that holds
a pointer to the current program line being executed.

Branch Target Buffer (BTB): The BTB provides the possibility of predicting
the result of conditional branch instructions, that is, whether the branch is
taken or not. Internally it contains a register table of configurable size where
each entry represents a branch instruction of the program being executed,
adding the entry as each branch instruction is first executed. Each branch
instruction has an entry in the table that saves the destination address if the
branch is taken, the PC of the branch instruction and a set of bits that repre-
sent the latest prediction and if it was correct. The prediction is updated by
the use of an automaton with four states. If the BTB predicts a branch will
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Figure 4.1: The general structure of the datapath that forms the processor along with the
different operational units

be taken, it also provides the new destination address for the branch along
with updating the corresponding entry in the internal table of the BTB.

New_PC_addr: This unit takes the address calculated by the BTB and cor-
rectly updates the pointer in the PC so that the program flow will continue
correctly after the execution of a branch.

Instruction cache (l1I): This contains the set of MIPS32 instructions rep-
resented in hexadecimal that make up the program to be executed by the
processor.

Next up in the pipeline we have the set of instruction decoders (DEC) the
number of which can be configured allowing more or less instructions to enter
the pipeline in a single cycle. The decoders are in charge of interpreting the bi-
nary code that represents operations on the processor and consequently gives
orders to the rest of the modules in the architecture so that the expected opera-
tion is performed as indicated by the current instruction being decoded. In order
to achieve this, the decoders must be made aware of the data flow in nearly all
of the modules that make up the processor so that they can act as control units
making decisions and giving orders to each module with how they should pro-
cede. All control in the processor is centralized in the decoders and as such any
performance bottleneck in the processor is usually blamed on the decoders.
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The register banks (RB INT & RB FP) take on the task of holding data dur-
ing the execution time of programs on the processor. The register banks provide
the input data to operations and a location to store the result of said operations.
The architecture has two register banks: one for integer and one for floating point
numbers. The integer register bank contains 34 registers ($0,...,$33) each of which
holds a 32-bit length piece of data. The $0 register contains a hardwired value
of 0 while registers $32 and $33 provide LO and HI registers to facilitate opera-
tions that have a 64 bit result, such as integer divisions and multiplications. The
floating point register bank has 32 registers ($f0,...,$f31) and no hardwired 0. It
also doesn’t include the LO and HI registers that the integer register bank has.
A choice was made to provide a simpler architecture design by having all of the
registers wired to the decoder. This allows instructions to quickly move from
the decoding stage to the execution stage without having to make requests to the
register banks.

The next module enables the implementation of Tomasulo’s algorithm, this
means the pipeline requires a re-order buffer (ROB) so that we can make use
of the out-of-order execution of instructions. The ROB is in charge of storing all
the instructions as they are decoded and later executed as a first in first out (FIFO)
queue so that instructions can’t change the state of any data before any instruction
that come before have done so first. With this we ensure the correct execution of
programs. When an instruction is decoded it is added to the first available entry
in the ROB. Once the instruction has finished its execution by receiving the result
of the operation from the bus and setting its corresponding write back bit in the
ROB, it then waits in the ROB until it is the oldest entry at which point it moves
on to the commit stage where it saves its result to a register bank or memory. The
ROB can support a configurable number of commit stages that allows multiple
completed instructions to be committed and removed from the ROB in the same
cycle.

Another important module to allow the correct out-of-order execution of in-
structions is the set of Reservation Stations (RS). Each operator has a config-
urable number of reservation stations assigned to them. A reservation station
contains the operands of instructions that are waiting to be executed. If an operand
isn’t available then the reservation station will store a mark indicating where the
operand will come from in order to capture it from the bus when it is made avail-
able.

To end with the group of modules that bring support of the Tomasulo algo-
rithm to the processor we have the commit module, which, as previously men-
tioned can be replicated to allow multiple concurrent instructions to pass to the
commit stage. This unit has strong ties to the ROB and provides order with what
to do with each instruction contained in the ROB and even gives the order to flush
the ROB which involves removing all of the entries in its table of instructions. A
flush occurs when a branch prediction failed (or an exception occurred) and in-
structions that shouldn’t have been executed have started their way through the
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pipeline and must be cancelled, freeing up the processor for the correct instruc-
tions that will come next.

Now that we’ve got all the modules needed to supply the instructions, de-
coded them and prepared their operands in the correct reservation stations, pro-
vided the mechanisms so that instructions can be executed and committed out-of-
order, we next have the operators which provide the results from executing each
instruction. To start with we have arguably the most important operators: the
Arithmetic-Logic Unit (ALU) that operates with integers and the Floating Point
Unit (FPU) for operations using real numbers represented using the IEEE 754
standard. These units follow a combinational logic design but are contained in-
side a wrapper with a gated output register so as to correctly regulate data flow
inside the processor. Following with the high configurability of previously pre-
sented modules, the processor can be configured to have multiple instances (up
to two of each) of both the ALU and the FPU as can be seen in Figure 4.1. This in-
creases the capacity to have concurrent execution of instructions in the datapath
that involve the use of an ALU or FPU. Both the ALU and the FPU are themselves
made up of smaller sub modules contained inside the wrapper, some of which are
pipelined providing an optimum use of resources. Continuing with configuration
capabilities the ALU provides three different types of adder modules that can be
easily chosen when configuring the processor. Multiplications and divisions are
also contained in their own submodules along with logic and type conversion
operators. When it comes to the FPU, great care had to be taken with this more
complex unit as there are multiple extra operations to perform before and after
the actual calculation takes place. Working with numbers represented in IEEE 754
requires checks on the operands before their usage to ensure compatibility for the
operation, and if not, perform the corresponding conversions to make compati-
ble operands available. After the calculation has been performed if any of the
operands have been converted then the result may need a final conversion before
sending the result to the common data bus (BUS).

Moving on to a different type of operator, we have the memory unit (MEM)
which allows for the execution of more complicated programs that process large
amounts of data, some of which we will see in chapter 6. The memory unit in
the processor of this project has 1024 entries each of which stores a 32 bit wide
datum. The MEM is pipelined in two separate stages: first the address calculation
stage and second the memory operation. By pipelining the MEM we can bring
forward the address calculation of an instruction whose data to store won’t be
available until an unknown number of cycles later. This delay could be caused
by data dependencies between the instructions of the program. Seperating the
address calculation and memory operation will reduce the memory operation
time once the data to store is available in the corresponding reservation station.
The memory operator supports three types of read/write operations which are
byte, half and word. The type is used when calculating the address so as to ensure
that the result is valid for the memory operation type. In the case of an invalid
address being calculated, an exception is raised, sent to the common data bus
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(BUS) and the memory operation is cancelled. The MEM (like the ALU and FPU)
is contained in a wrapper with a gated output register. Inside this wrapper there
is extensive logic that provides support for memory disambiguation that allows
safe out-of-order execution of stores and reads.

The last operator to introduce is the branch operator that enables the proces-
sor to execute programs with complicated data flow sequences. The processor
in this document supports speculative execution which allows instructions after
a branch to be issued before the branch has been confirmed. The operation per-
formed by this module is nothing more than a small calculation that provides a
logical result indicating whether the branch should be taken or not.

The last piece to the pipeline has been mentioned multiple times when intro-
ducing the rest of the modules and that is the common data bus (BUS). The BUS
is in charge of managing all the results of the different operators and sending
them to the next stage with the use of a round-robin algorithm. The number of
instances of the BUS can be configured providing a greater throughput of data
leaving the operators.

4.2 Dataflow

Now that we’ve seen an overview of the different modules that make the pro-
cessor, we will move on to an example of the dataflow that occurs while the pro-
cessor is in execution.

Everything begins at the instruction cache (l1I) because this is where the pro-
gram that we want to run is stored as MIPS32 instructions in hexadecimal rep-
resentation. The next stage is to decode an instruction which will be the one
situated in the cache at the address given by the PC register, which has the data
calculated by the New_PC_address module. This module calculates the address
of the instruction in the cache to be executed in the following cycle.

The instruction is sent to the instruction decoder (DEC) which checks the dif-
ferent fields of the instruction and decides what resources will be required and
also what operands need to be transmitted to the different operators that might be
involved in this particular instruction. The decoder also adds a new entry to the
re-order buffer (ROB) and sends the available operands to a reservation station
so that out-of-order execution will be correctly supported.

Once all the operands are ready in the reservation station, the dataflow moves
onto the operator for the instruction being executed. When it finishes calculating,
the result this is sent to the common data bus (BUS) so that the rest of the modules
can check to see if they were waiting for this result to be available.

Finally, now that the instruction has completed all of its operations and pro-
vided a result, it moves on to the commit stage; releasing its entry in the ROB and
writing the operation result in one of the register banks or the memory unit.
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Figure 4.2: An overview of how data flows between different modules of the processor

In Figure 4.2 we can see a brief overview of how data flows from left-to-right
and top-to-bottom between the modules as an instruction is executed. Missing
from the diagram are the connections from the common data bus to the modules
so that they may retrieve the data they are waiting for.

4.3 Processor Configurations

Previously, we have seen that multiple parts of the processor datapath can be
configured to add modules and increase the complexity of these modules. The
technique we use to achieve this is by using preprocessor macros so that different
sections of our code are conditionally compiled. All the possible configurations
are available in our code, we just hide parts of it by using the macros: ‘ifdef x
and ‘endif where x will have to be added to a global header file for the project
if we want that section of the code to be compiled. This is accomplished with the
‘define macro. An example of macro usage in the source code can be found in
the listing 4.1 along with the corresponding entry in the global header file so that
the display sentence will be compiled.

// Ths i s in the source code
‘ i f d e f codeBlockA

$display ( " code block A i s executed " ) ;
‘ e n d i f
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// This i s in the header f i l e
‘ d e f i n e codeBlockA

Listing 4.1: Macro usage example

Finally, in listing 4.2 there is an example of how the processor is configured
by using macros. The example represents the simplest of the configurations that
will be seen in chapter 6.

‘ i f d e f CORE_1way_1op_1rs
‘ d e f i n e DEC0
‘ d e f i n e num_ROB_entries 16 // Number of ROB e n t r i e s
‘ d e f i n e log_num_ROB_entries 4 // log of number of ROB e n t r i e s
‘ d e f i n e BUS0
‘ d e f i n e COMMIT0
‘ d e f i n e RB_INT
‘ d e f i n e RB_FP
‘ d e f i n e ALU0
‘ d e f i n e ALU0_RS0
‘ d e f i n e FPU0
‘ d e f i n e FPU0_RS0
‘ d e f i n e FPU
‘ d e f i n e ALU
‘ d e f i n e FPU_RS0
‘ d e f i n e ALU_RS0
‘ d e f i n e CLA_level2_2stages
‘ d e f i n e MEM0
‘ d e f i n e MEM0_RS0
‘ d e f i n e BRANCH0
‘ d e f i n e BRANCH0_RS0
‘ e n d i f

Listing 4.2: Processor configuration using macros
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CHAPTER 5

Specific Components

This chapter contains a detailed look at the modules that the author spent
most time working with and consequently is the most capable to provide an in-
depth look at the inner workings of each of these units of the processor. A dia-
gram showing all the inputs and outputs for each module will be shown along
with a description of why the module is included in the architecture and how it
delivers on its requirements.

5.1 32-bit Register Bank

Microprocessors were created to fulfill the wish of automating lengthy cal-
culations. All calculations work with data, the type of data may vary but all
operations will use some data as an input to a calculation which will then pro-
duce a new piece of data, the result. Now you could design a computer where
every piece of data has to be provided by human interaction as it is needed by the
processor but a much more powerful solution is to allow the processor to store
and retrieve enough data so as not to require any interaction while it performs
its operations. This capability to store and retrieve data can be achieved by using
components that are implemented using different types of storage technology.
Each of these technologies will have different speeds at which they can manip-
ulate data but they will also have a trade-off in that faster storage will generally
have a higher monetary cost. The balancing act between speed and cost leads to
the so called memory hierarchy where different components using different storage
technologies are connected in a top-down fashion with the fastest at the top. It
only makes sense to use the fastest available storage mechanism when directly
providing data to the internal units of the processor. This function is performed
by a register bank. The register bank will be tightly coupled and contained in
the datapath of the processor and will retrieve and store data in a single cycle.
The architecture designed in this project has two register banks so as to support
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Figure 5.1: The fields that a register contains

two types of data, integer numbers and real numbers in IEEE 754 floating point
representation.

Internally, each register is made up of 74 bits and contains multiple fields
that can be seen in Figure 5.1. The rob_entry and rob_valid fields represent
whether this register is currently associated with an instruction in the re-order
buffer (ROB). This will be used in order to know whether data on the common
data bus (BUS) corresponds to this register and should be retrieved. The value
field will contain the 32-bit value of the register while the last_value field is used
to store the result that will be written to the register by the latest instruction that
reserved it. That instruction has reached the writeback (WB) stage but it has not
committed yet. The usage of the last_value field provides support for register re-
naming and speculation without requiring to access the ROB to retrieve the last
confirmed but not consolidated value of a register.

Register Bank
…

fromDEC

toDEC

clk

rst

fromCOMMIT0

fromCOMMITX

…

fromBUS0

fromBUSX

Figure 5.2: The connections to the RB unit

In Figure 5.2 we can see the different inputs and outputs that both register
banks utilize. The register banks are two separate modules and as such it is pos-
sible to configure the processor to have both register banks or one or the other.
The register banks are synchronous modules so will require the global clock sig-
nal of the processor along with a reset signal which will trigger the erasing of all
the stored data. The current design of the architecture has a trade off which is that
because the instruction decoder is not pipelined it is necessary to provide the data
in the register bank in an asynchronous way solely to the decoder so that the rest
of the pipeline will remain in sync when decoding instructions. This is achieved
by having two very large buses on each bank that lead to and from the instruction
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decoder and carries the entire contents of the register banks so that instructions
can be decoded in a single cycle. This connection also allows the decoder to up-
date the associated entries of the re-order buffer (ROB) to the registers that will
be used by each instruction. Updates to the values in the register banks are all
carried out in a synchronous manner. The banks retrieve values from the com-
mon data bus (BUS) when the re-order buffer (ROB) entry of the data on the BUS
coincides with that of the rob_entry field of a register in either bank. This value
is assigned to the last_value field of the register rather than the value field. It
isn’t until a signal comes from a commit module indicating that an instruction
has been confirmed that the respective register will have the definitive value in
its value field copied.

We have seen an example of how the register banks function; data is retrieved
from the bus, the final value of the data will come from the commit module once
the instruction has been cofirmed. But it is important to note that following with
the general idea of the project which is to provide a configurable processor, the
register banks can be configured to support a variable number of buses and also
commit modules. This means that in a single cycle either register bank can store
the temporary or final value for multiple registers.

The increased complexity of allowing multiple buses and commit modules
in the architecture also introduces some new edge cases that must be correctly
treated. The first of which occurs when there are multiple instructions in the con-
firm phase and they are sending their final values to one of the register banks. But
what if it turns out the destination register of more than one of those instructions
coincides. The decision of which commit module to listen to is actually quite
simple. Each commit module has an instance ID associated and this is tied to
the instruction decoders that also have instance IDs, this means that the instruc-
tions will be confirmed by different commits but in order of decodification. So
if we ensure that we always take the value from the highest instance ID commit
module when multiple commits want to store to the same value we will have the
most recently decoded instruction and in consequence the most recently updated
value.

Another case is when an update to the latest value field of a register comes
from the bus but at the same time the instruction decoder is changing the associ-
ated re-order buffer entry for this same register. In this case the DEC has priority
and will write the new ROB entry but the register bank must also invalidate its
latest value field.

The last case is when a flush is being performed on the register bank in order to
erase all of its unconfirmed values but a new value is ready to be retrieved from
the BUS. In this case the value coming from the BUS is ignored and the flush is
performed as normal.

To end we will see the differences between the two types of register banks.
The integer register bank (RB_INT) contains 34 registers each of which stores a 32
bit value. The first 32 registers are for general use except for the register $0 which
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is hardwired to always contain the value 0 and cannot be changed. The remaining
registers, $32 and $33 correspond to the registers LO and HI and provide support
to instructions that produce results of upto 64 bits in size. Turning to the floating
point register bank (RB_FP), its differences with respect to the RB_INT are that it
only has 32 registers in total and the register $0 can be modified.

The register bank was one of the first completed modules of the project and
underwent a wide range of isolated tests to ensure its functionality was correct.
Even so, as the architecture became more complicated and as the project pro-
ceeded it was necessary to return to the register banks and make slight changes
to its internal logic so as to continue supporting the rest of the datapath.

5.2 Branch Target Buffer

For the architecture designed in this document we have chosen to use dy-
namic branch prediction (see Section 2.3.2) which allows the avoidance of control
hazards and improves the instructions per cycle rate (IPC) of programs with con-
ditional branch instructions. In order to implement the mechanisms that support
dynamic branch prediction we have used a Branch Target Buffer (BTB).

BTB
…

…

…

address
address BTB

fromCOMMIT0

fromCOMMITX

clk

rst

enable0

enableX

predict0

predictX

Figure 5.3: The connections to the BTB unit

We will begin by looking at the connections that the BTB module requires,
all of which can be seen in Figure 5.3. The BTB is a synchronous module as it
must make a prediction in time with the rest of the pipeline. This means that it is
necessary to have the global clock signal of the processor which is provided as an
input. As we will see, the BTB also stores data internally in registers so a reset sig-
nal is also used so as to erase the contents of these registers when necessary. Next,
the module requires the address the program counter (PC) is currently pointing
at, this will be used internally to identify the instructions. The last input signal
comes from the commit module and has the necessary information to identify
a conditional branch instruction that already had a prediction and will contain
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whether the branch was taken or not allowing the BTB to know if its prediction
was correct.

The outputs from the BTB include two signals for each of the possible instruc-
tion decoder present in the current configuration (up to four). The first signal for
the decoders is the prediction of the current instruction. The second is an enable
signal that is set to low level when a previous instruction to this one has set its pre-
diction bit or when a flush command is received from the commit unit, this means
the decoder must stop decoding intructions for a cycle. The last output from the
BTB is the address of the next instruction to be executed when the BTB predicts
that a conditional branch will be taken and will be used by the New_PC_Address
module to correctly set the PC in the following cycle.

58 33 0

valid
1 bit

State
2 bits

34

tag
24 bits

57 12

dest_address
32 bits

Figure 5.4: The fields that a BTB table entry contains

Internally, the BTB contains a variable size register table. Each register of this
table contains several different fields which can be seen in Figure 5.4. Each entry
in the BTB table represents a conditional branch instruction that has been decoded
along with a valid bit to show the validity of the entry. In the dest_address field
the destination address of the branch is stored. The tag field is used as an index to
associate the instruction with its address in the program. The last field is the state
the instruction is currently in. By state we mean the state of the automaton that
the BTB uses to decide whether a branch is taken or not depending on whether the
previous prediction was correct or not. This automaton can be seen in Figure 5.5
and shows the four states that a branch instruction can be in. States 00 and 01
imply a prediction that the branch will not be taken and the states 10 and 11
provide a prediction that the branch will be taken. The arcs of the automaton are
used when the result of whether the branch was actually taken or not arrives at
the BTB. By using four states we can allow one misprediction when in a strong
state (00 or 11) before changing the future predictions. The default state when
an instruction is first added to the BTB table can be configured externally to the
module.
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Figure 5.5: The automaton used by the BTB to change its branch prediction

With the branch target buffer module we can greatly improve the IPC of pro-
grams that make heavy use of loops with many iterations, examples of the BTB
being used will be seen in chapter 6.

5.3 Memory Access Unit

We have seen the unit at the top of the memory hierarchy with the register
banks (see Section 5.1), now we will see a module situated directly below the
processor registers. This module is the memory access unit (MEM) situated in-
side the processor pipeline. For the project detailed in this document the MEM
contains its own internal memory but it can easily be modified so as to connect
to data stores external to the processor. The bulk of the module is the logic neces-
sary to support the different types of read/write operations while also perform-
ing them out-of-order in a safe manner. This logic is split into two units inside of
the MEM which can be seen in Figure 5.6 and will be explained in detail later on.
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Figure 5.6: The connections to the MEM unit

To begin with the necessary input and output signals required by the mem-
ory access unit we have a global clock and reset input signals that allow the unit
to stay in sync with the rest of the modules in the pipeline and to erase its con-
tents when necessary. The other input required by the MEM is a bus for each
MEM reservation station that contains all the information necessary to perform
the memory operations related to the instructions associated with each reserva-
tion station. The fields that make up this bus can be consulted in Appendix A.5.

The outputs from the memory access unit are all connected to the common
data bus (BUS). First we have two signals that are used to control the access to
the BUS from MEM. The request signal is sent by the MEM to the BUS when it has
a result ready to be sent to another unit of the processor. Next, the grant signal
comes from the BUS and indicates that MEM can discard data at its output and
proceed with the next one. This data is sent through the output data out of the
MEM and contains a 32-bit datum or in the case of an exception having ocurred
then an additional field contains the exception code. The final field of data out is
the ID of the entry in the re-order buffer so that the other modules of the processor
can detect whether the data on the BUS is for them or not.

Moving on to the internal structure of the memory access unit, which is also
detailed in Figure 5.6, we have two units that provide the support to separate
memory operations into two phases (pipelining). The first is the address calcula-
tion module (ADDR) which is in charge of taking the destination address and shift
values sent by a reservation station and then using these to calculate the actual
address to access from memory.

There are four types of read/write memory operations supported by the mem-
ory access unit and the differences are associated with the length of the datum to
be manipulated. These sizes are: byte (8 bits), half (16 bits) and word (32 bits).
Because of these different sizes, when the address is calculated the ADDR must
check whether the resulting address is valid for the type of instruction associated
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with this particular address calculation. For example, if an instruction wishes
to access a 32 bit datum then the address calculated must be a multiple of four
because data types can’t be split up between different rows in memory. It is a
multiple of four because we use 32-bit wide memory locations and there are four
bytes in 32 bits, also each memory address points to a single byte. If the address
is invalid then an exception is raised and sent to the BUS, no more memory oper-
ations will occur for this instruction.

When an address is calculated, a set of four bits are constructed called byte
enable bits, Figure 5.7 gives a view of what will be explained next. These byte
enable bits represent which type of data the instruction is using, if all the bits are
set to 1 then it is a word data type because it occupies all four bytes of the memory
slot. Data type of size half can either have a byte enable value of 0011 or 1100 which
represents that the address points to the lower or upper half of the memory slot.
For byte sized data any one of the byte enable bits can have value 1 but only one
of them, which one is enabled represents which byte of the memory slot the data
is in. If after this process all the byte enable bits still have value 0 then the address
was invalid for the type of data size this instruction uses.

BYTE 0BYTE 1BYTE 2BYTE 3

BYTE BE = 1000 BE = 0100 BE = 0010 BE = 0001

HALF BE = 1100 BE = 0011

WORD BE = 1111

031

Figure 5.7: The byte enable bits are used to access the correct memory location

As can be seen in Figure 5.6 there are two more values that leave the ADDR
module, these are two bits that are used to indicate if an instruction is a conditional
store or a linked load. These instructions are not currently supported by the rest of
the processor and will be talked about in Section 7.2.

The data that leaves the ADDR module is sent to a set of registers, one for
each MEM reservation station, where the calculated address is stored and allows
memory operations to be queued in the case that the operation is for data to be
stored but that data is not yet available in the reservation station. This is the
base of the support for memory disambiguation and the allowance of out-of-order
execution of instructions that use the memory access unit.

In the case of store operations, once the data is available and has been sent
from a reservation station then the stored address along with the data is sent to
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the internal MEM unit which will perform the actual store operation. By using
the byte enable bits, the internal MEM unit will be able to save the correct part of
the input data depending on the size of the data to be stored. This also occurs
with load operations, the value is retrieved from the correct position inside the
memory slot pointed to by the calculated address and is then sent to the output
register of the memory access unit at which point a request is made for the data
to be sent to the BUS.

There is one last piece of internal logic to the memory access unit and that is
to detect data hazards of type read-after-write (RAW). Because the processor sup-
ports out-of-order execution it can occur that a load instruction is being performed
before a preceding store operation has updated its value in memory. This means
that the load operation will retrieve stale data and the program will produce in-
correct results. This is solved by having the logic to detect if there is a conflict by
which the address to load from coincides with that of a store instruction in any
of the other reservation stations alloted to the memory access unit. The way this
is detected is by having a set of four bits for each reservation station that will be
used as a counter. These bits are referred to as least recently used (LRU) bits and
are incremented every cycle that the reservation station wasn’t accessed but any
other reservation station was. When a reservation station is accessed, its LRU
bits are set to 0 which indicates it is the most recently used. The logic involved
in the increments of the LRU bits are carried out by the instruction decoder. On
the other hand, if a reservation station is reset and any of the other reservation
stations haven’t been used for longer than this one (their LRU is higher) then they
have their LRU bits decremented by one. This is to avoid overflow of the LRU
counter and is carried out by the reservation station itself. By knowing when a
reservation station was last used we can detect whether a store that is waiting
to be executed is an older instruction than the load we wish to resolve first, in
this case we delay the load until the store has finished. A detailed example of
detecting previous store conflicts will be seen in Section 6.1.2.

To conclude, the memory access unit allows the execution of programs on the
processor that use an effectively unlimited amount of data while doing so in a
optimum manner through the use of memory disambiguation.
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CHAPTER 6

Results

This chapter covers how the implemented architecture has been verified and
also some observations we have made when synthesizing different modules and
the processor as a whole. Verification involves running a range of programs on
the processor designed to produce the different hazards that our architecture
must eliminate. We also implement a set of programs that performs extensive
data processing, these allow us to draw conclusions on the performance of our
processor. Graphs and timetables created by log2timetable (see Section 3.4) are
used extensively to quickly and easily draw conclusions. The programs all pro-
duce data that must be checked to see if they are correct. In this text these checks
will not be shown and it is supposed that the programs gave the correct results.
Regarding the generated timetables, during the first two cycles the processor per-
forms a reset of all modules. These cycles will not be shown in the timetables and
will begin with the first cycle when instructions are being decoded.

6.1 Design Verification

The processor implemented has the capability to configure different parts of
its architecture. Some modules can be duplicated up to four times allowing the
concurrent execution of different instructions. These modules are the following:
the instruction decoder, the common data bus, the commit module and the reser-
vation stations for the ALU, FPU, MEM and Branch operators. Another config-
urable part is the table size in the re-order buffer and branch target buffer units.
Seven different processor configurations have been chosen for running tests on
and they are detailed in Table 6.1.

The number of instruction decoders (DEC), common data buses (BUS) and
commit (COMMIT) units is the same because if we can insert more instructions
per cycle into the pipeline it makes sense that we can receive more results and
confirm more instructions per cycle so as to avoid a natural bottleneck in the
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Config. DEC, BUS &
COMMIT units

ALU/FPU
units

MEM/BRANCH
units

RS per
operator

ROB
entries

A 1 1/1 1/1 1 16
B 1 1/1 1/1 4 32
C 2 1/1 1/1 2 16
D 2 1/1 1/1 4 32
E 2 2/2 1/1 2 16
F 2 2/2 1/1 4 32
G 4 2/2 1/1 4 32

Table 6.1: Breakdown of components included in each processor configuration

pipeline. Also, it is important to note that even though the complexity of the
processor is increased as we go down the table, in the case of configuration E the
size of the re-order buffer (ROB) is set to 16 so as to better compare the difference
that adding an extra ALU and FPU unit to the datapath provides.

6.1.1. Superscalar

To start with we see the results of executing a simple program that contains
four arithmetic instructions, we then compare running the same program with
a different core configuration. Finally we slightly modify the program so as to
insert a data hazard and observe the changes in the timeline.

addi $8, $0, 10 # $8 = $0 + 10
addi $9, $0, 20 # $9 = $0 + 20
addi $10, $0, 30 # $10 = $0 + 30
addi $11, $0, 40 # $11 = $0 + 40

Figure 6.1: Arithmetic program 1 that executes four arithmetic instructions

The program in Figure 6.1 performs adding operations and stores the result
in four different registers and uses four different immediate operands. We begin
by using configuration A and in the timetable of Figure 6.2 we can see how the
instructions pass through the different stages of execution. Because this is us-
ing configuration A, which has a single DEC then only one instruction enters the
pipeline in each cycle. Even so, throughput is optimum as there are no depen-
dencies between instructions. All of the instructions pass through the following
stages: the instruction decoding stage (DEC), multiple stages in the arithmetic-
logic unit (ADD), sending the result on the common data bus (WBK) and finally
confirming the instruction (COM).
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instr/cycles 2 3 4 5 6 7 8 9
addi $8, $0, 10 DEC ADD ADD WBK COM
addi $9, $0, 20 DEC ADD ADD WBK COM
addi $10, $0, 30 DEC ADD ADD WBK COM
addi $11, $0, 40 DEC ADD ADD WBK COM

Figure 6.2: Timetable when executing arithmetic program 1 using configuration A of the
processor

Next, in Figure 6.3 we see the same program but when being run with the
processor in the most complicated configuration which is: configuration G. To
begin with, we can quickly see that overall program execution time has been
reduced by two cycles.

instr/cycles 2 3 4 5 6 7
addi $8, $0, 10 DEC ADD ADD WBK COM
addi $9, $0, 20 DEC ADD ADD WBK COM
addi $10, $0, 30 DEC ADD ADD WBK COM
addi $11, $0, 40 DEC ADD ADD WBK COM

Figure 6.3: Timetable when executing arithmetic program 1 using configuration G of the
processor

Also, because of the four decoders this configuration has available, all of the
instructions of the program are decoded in just one cycle. Even so, because we
only have two ALU units, in the following cycle only the first two instructions
begin their operations. The ALU is pipelined so operations take two cycles to
complete but this also means that in cycle four all of the program instructions
are inside the ALU, but in different stages. In the fifth cycle the result of the
first two instructions is sent to the BUS and in the sixth cycle both instructions
are confirmed and have been completed. Even though we have the capability to
confirm four instructions in a single cycle, because of the constrain incurred by
only having two ALU units, the last two instructions are confirmed one cycle later
than the first two. With this particular program we have seen a 77% increase in
performance by evolving from configuration A to configuration G. In the section
on design synthesis we will see how this improved configuration influences the
complexity of the implementation on an FPGA.

The program in Figure 6.4 is almost identical to the previous one and is run
using the same configuration G as the previous example. What has changed is
that the third instruction is now an addition of the values in two registers rather
than a register and immediate value. The registers used in this addition have
been chosen carefully so as to introduce a data hazard between instructions two
and three. Instruction two produces the value for register $9 but instruction three
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consumes the value stored in this same register. In order to avoid the dependency,
execution of instruction three must wait for the value to be correctly stored in
register $9.

addi $8, $0, 10 # $8 = $0 + 10
addi $9, $0, 20 # $9 = $0 + 20
add $10, $9, $9 # $10 = $9 + $9
addi $11, $0, 40 # $11 = $0 + 40

Figure 6.4: Arithmetic program 2 that executes four arithmetic instructions and has a
data hazard

In the timetable of Figure 6.5 we have the execution of this new program when
running on the processor with the most extensive configuration, which is config-
uration G.

instr/cycles 2 3 4 5 6 7 8 9
addi $8, $0, 10 DEC ADD ADD WBK COM
addi $9, $0, 20 DEC ADD ADD WBK COM
add $10, $9, $9 DEC ADD ADD WBK COM
addi $11, $0, 40 DEC ADD ADD WBK COM

Figure 6.5: Timetable when executing arithmetic program 2 using configuration G of the
processor

The significant changes to the timetable involve the third instruction, the one
that was modified. Now, instead of entering the first stage of the ALU in the
fourth cycle as before, the instruction waits until the sixth cycle when it is safe
to use register $9 that is being updated by the second instruction (via resolving
the data hazard through the RS). Even though the third instruction now takes
longer because of the delay caused by the data hazard, the fourth instruction
is unaffected and performs its operations in the same cycles (out of order). All
except for the commit stage which must be performed in the correct order of the
program sequence of instructions, this means that the fourth instruction must
wait until the previous delayed instruction is finished and at which point it can
also be confirmed.

6.1.2. Memory Disambiguation

The next program that will be used is related to memory operations. This
program was executed using the configuration G of the processor. The program
involves a read-after-write dependency and will show how the processor cor-
rectly avoids any errors in the program results by delaying any load instructions
that read from the same memory location as a previous store instruction.
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addi $8, $0, 10 # $8 = $0 + 10
addi $9, $0, 20 # $9 = $0 + 20
sw $8, 0($0) # MEM[0+$0] = $8
lw $10, 0($0) # $10 = MEM[0+$0]

Figure 6.6: Memory access program 1 that contains a data hazard

The third instruction of the program in Figure 6.6, a store word, saves the value
in $8 to the first addressable location in memory. But the next instruction, a load
word, accesses this same memory location. The processor must ensure that the lw
instruction doesn’t execute its memory operation until the previous sw has been
confirmed and its value written to memory.

instr/cycles 2 3 4 5 6 7 8 9 10 11
addi $8, $0, 10 DEC ADD ADD WBK COM
addi $9, $0, 20 DEC ADD ADD WBK COM
sw $8, 0($0) DEC ADR TWB WBK COM MEM
lw $10, 0($0) DEC ADR MEM WBK COM

Figure 6.7: Timetable when executing memory access program 1 using configuration G
of the processor

The timetable in Figure 6.7 shows the program running on configuration G of
the processor. All four instructions are decoded in the first cycle as per normal
and both arithmetic instructions begin their operations in the following cycle.
While the arithmetic operations are being performed in cycles three and four the
memory operations can calculate their corresponding memory address, in the
new stage (ADR), as no dependencies exist for these values. To maintain short
timetables an example showing this possible dependency has not been included.
As there is only one address calculation module inside the memory unit the ADR
stage occurs in separate cycles for each of the memory instructions. In the fifth
cycle the value that will be stored to memory is sent to the BUS which means that
the sw instruction can now take this value and prepare for the memory operation.
In the sixth cycle both arithmetic instructions are confirmed so this means that
the memory module can send to the BUS the message that it now has all the
data it needs and has queued the store operation. This message is sent because
memory accesses can take a long time on external hardware, by queueing the
store operation in a buffer the sw instruction can be considered completed and be
removed from the re-order buffer. In cycle 8 we see how the store operation is
performed in the (MEM) stage following the confirmation of the instruction. This
whole time the last instruction, the lw, has been patiently waiting for the store to
have completed so as to correctly load the fresh data. In the ninth cycle of the
program the lw begins its load operation from memory and in the last two cycles
sends the loaded value to the BUS and then ends by confirming its completion.
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There is one inefficiency in this result that could be fixed in future work. The
load word instruction is waiting to read the value stored in memory by the un-
yet completed sw. Rather than perform two memory operations when the value
needed by the lw is already inside the memory unit, a shortcut could be provided
allowing the load operation to take the value straight away and skip going to
memory for it. However, this was decided not to be implemented as would add
more complexity.

6.1.3. Conditional Branches

In order to process large amounts of data with simply structured code it makes
sense to use loops and iterate over data sets. In order to perform loops in MIPS32,
support for conditional branches is required. In the case of the processor of the
present document it also supports dynamic branch prediction (see Section 2.3.2)
which is especially useful with loops so that the next iteration may begin before
the actual branch instruction has even been confirmed. Two main cases occur
when working with a branch predictor, both of which will be explained with the
use of two example programs.

It is important to note that the Branch Target Buffer (BTB) used in this project
is configured to have a default prediction of a branch not being taken.

The program in Figure 6.8 is a simple example of the branch predictor making
a correct prediction of a branch not being taken. The condition in the second
instruction will always be false so the bne instruction will never be taken. Because
this is the first time the BTB has seen this branch instruction, it assigns the default
prediction of not taken.

loop:
addi $8, $0, 1 # $8 = $0 + 1
bne $8, $8, loop # if ($8 <> $8) then PC = loop
addi $8, $0, 2 # $8 = $0 + 2
addi $9, $8, 2 # $9 = $8 + 2
addi $10, $8, 4 # $10 = $8 + 4

Figure 6.8: Branch program 1 that contains a control hazard

As can be seen in Figure 6.9, the instructions after the bne immediately enter
the decoding phase because the BTB has predicted that these instructions will be
executed. Once the BTB reaches the COM stage and confirms that the predic-
tion was correct the following instructions are unaffected because efectively, the
branch is not taken. It is also worth observing the presence of multiple data haz-
ards in this program all of which are successfully treated so as to avoid errors in
the program result.
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instr/cycles 2 3 4 5 6 7 8 9 10 11
addi $8, $0, 1 DEC ADD ADD WBK COM
bne $8, $8, loop DEC BCH WBK COM
addi $8, $0, 2 DEC ADD ADD WBK COM
addi $9, $8, 2 DEC ADD ADD WBK COM
addi $10, $8, 4 DEC ADD ADD WBK COM

Figure 6.9: Timetable when executing branch program 1 using configuration G of the
processor

To explain the opposite possibility, when a BTB doesn’t correctly predict the
outcome of a branch instruction, we have the program in Figure 6.10. This pro-
gram has a small change which is the swapping of the bne instruction for a beq
instruction. This change means that the condition that before was always false
will now always be true and because our BTB predicts that a branch won’t be
taken, this prediction will be incorrect.

loop:
addi $8, $0, 1 # $8 = $0 + 1
beq $8, $8, loop # if ($8 == $8) then PC = loop
addi $8, $0, 2 # $8 = $0 + 2
addi $9, $8, 2 # $9 = $8 + 2
addi $10, $8, 4 # $10 = $8 + 4

Figure 6.10: Branch program 2 that contains a control hazard

Looking at the timetable in Figure 6.11 we can see how program execution
is identical up until the eigth cycle when the branch instruction is confirmed and
the processor realizes that the BTB had made an incorrect prediction. The en-
tire pipeline must be flushed (FLU) which involves all instructions in execution
being cancelled and all associated data in the reservation stations being deleted
including their entries in the re-order buffer.

instr/cycles 2 3 4 5 6 7 8 9 10 11
addi $8, $0, 1 DEC ADD ADD WBK COM
beq $8, $8, loop DEC BCH WBK COM
addi $8, $0, 2 DEC ADD ADD WBK FLU
addi $9, $8, 2 DEC ADD ADD FLU
addi $10, $8, 4 DEC ADD FLU
addi $8, $0, 1 DEC ADD
beq $8, $8, loop DEC
addi $8, $0, 1 DEC
beq $8, $8, loop DEC

Figure 6.11: Timetable when executing branch program 2 using configuration G of the
processor
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Effectively, the three instructions after the bne are cancelled in the eighth cy-
cle when the branch instruction is confirmed. Next, an empty cycle appears as
instruction decoding is halted so that all the necessary registers in the pipeline
can be erased. Then in the tenth cycle the first two instructions are decoded again
because the branch has changed the program counter (PC) to point to the first
instruction of the program. Although the behaviour in this example isn’t very
useful it is important to note that in the eleventh cycle the first two instructions
are again decoded, this is because the BTB failed it’s prediction and it has now
changed its prediction for this instruction to be taken. This prediction will stay
the same until it fails a prediction, which in the case of this program, will never
happen.

With these examples we have seen a brief overview of the methods that were
used to check the processor works correctly. This was the main goal of the project,
to provide a base processor that can be analyzed and discover possible optmiza-
tions to improve instruction throughput.

6.1.4. Benchmarks

Next, we show the results when running two benchmarks on the processor
and provide the calculated Instructions Per Cycle (IPC) value. Each of the pro-
grams are run using all the different configurations of the processor.

These two programs are designed to make heavy use of all the operators of
the processor while executing a large number of loops. The source code of these
two progams can be found in Appendix B. The first of these is an implementation
of the well known axpy algorithm which involes iterating over two vectors and
performing the following operation on each set of elements. z = a × x + y. In our
program the vectors have 64 elements each meaning that on some processor con-
figurations the total number of cycles for the program is over 1000. All arithmetic
operations are carried out by using floating point operations.
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Figure 6.12: Instructions per cycle obtained when executing the axpy benchmark on
different configurations of the processor

In Figure 6.12 we can observe a pattern of improved performance as we in-
troduce more complex configurations. All except in the case of configuration E
which is caused by a reduction in the size of the re-order buffer (ROB) so as to
better observe the difference when moving to a processor with two ALU units
and two FPU units. In this particular benchmark, adding more ALU/FPU units
doesn’t improve instruction throughput. This is caused by the nature of the axpy
algorithm, each addition has to wait for the previous multiplication to have been
completed and then storing the current iterations result also waits for all the cal-
culations to have been completed. So even though there are more operators being
used, all of them suffer continuous delays from the the heavily data dependent
code that makes up the axpy algorithm. It isn’t until we increase the size of the
ROB that we see an improvement over configuration D with configuration F and
more so with configuration G that represents the most complex configuration of
the processor. Overall, with the axpy benchmark we can observe a speedup be-
tween configuration G and A of 1.88. For such heavily data dependent code that
is the axpy benchamark these results are more than satisfactory.

Moving on to the next benchmark, this one involves performing iterations in
order to approximately calculate the pi number. The algorithm chosen makes use
of a infinite series called the Nilakantha series [13]. The program performs 100
iterations of the series and involves extensive use of FPU operations.
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Figure 6.13: Instructions per cycle obtained when executing the pi benchmark on
different configurations of the processor

In Figure 6.13 we can see a similar tendency as with the axpy benchmark,
adding more resources to the processor configuration in general improves in-
struction throughput. Between configuration B & C we see a drop in through-
put, this is caused by the reduction in reservation stations made available to each
operator in configuration C. The pi benchmark involves many subsequent float-
ing point operations so providing more reservation stations to the FPU will al-
ways improve throughput. Between configuration D & E we don’t see a drop
in performance even though the number of reservation stations has been halved.
This is because in configuration E we have doubled the number of FPU units
which results in providing enough additional resources to maintain an identi-
cal throughput to configuration D with this particular benchmark. Even so, we
still aren’t seeing better performance than configuration B, it isn’t until we start
adding more reservation stations that we see an improvement with a large jump
in throughput. In configuration G we see a slight improvement from allowing
four instructions to be decoded per cycle. In terms of concrete improvements be-
tween configurations, the speedup going from configuration A to configuration
G is 3.35. Considering the perfect speedup by increasing to four the number of
instructions capable of being decoded per cycle is also four, the value obtained
by the current architecture is more than promising.

6.2 Design Synthesis

We have successfully verified that the processor implemented functions cor-
rectly. Next we can take a look at how this architecture might look on an FPGA.
This can be achieved by performing the synthesis step available with the Vivado
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program (see Section 3.1). This step will give us the usage percentage of the dif-
ferent resources available on a specific FPGA. In the case of this project we work
with an FPGA by Xilinx and in particular the Virtex-7 XC7VX485T [17] model.

The analysis involves the use of graphs and compares all the different con-
figurations of the processor when synthesizing the entire processor as a whole.
Later, each module is separately synthesized when used in two different proces-
sor configurations.

An FPGA provides multiple types of resources that can be used when pro-
gramming the board. Here we see the amount used of two different resources.
These are Look Up Tables (LUTs) and registers (REGS). LUTs make up the logic
of a module while those that store data or are synchronous have a certain number
of registers.

2 4 6 8 10

L1I
DEC
ROB

COMMIT
RBINT

RBFP
ALU

RS
FPU
BTB

BRANCH
MEM

BUS
NEW_PC

% LUT tables

Figure 6.14: Percentage of LUTs used on the FPGA by each module when synthesizing
configuration G

Figure 6.14 shows the results of synthesizing all the modules of the processor
when using configuration G. The highest usage is from the re-order buffer (ROB)
and Branch Target Buffer (BTB) modules. This is because these modules have
the most complex internallogic and also have a large number of ports that can be
read from and written to by the other units of the processor. This increases the
amount of control logic requiered by these modules. The opposite occurs with
the instruction cache (L1I) and memory access unit (MEM) even though these
modules have large amounts of internal storage that can be accessed by the rest
of the processor. The reason these two modules don’t have as high a LUT usage is
because they are optimized with the use of block ram (BRAM). BRAM is a type of
resource available directly on the FPGA and as such drastically reduces the logic
overhead when using registers and LUTs. In the future we hope to optimize the
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ROB and BTB modules with the use of BRAMs. We also observe other modules
with minimal LUT usage such as the COMMIT and BRANCH modules. This is
because these units use very simple logic to function which leads to an almost
nonexistent LUT usage on the FPGA.
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Figure 6.15: Percentage of registers used on the FPGA by each module when
synthesizing configuration G

Next we look at the percentage of registers used by the different modules of
the architecture when synthesizing configuration G. The results can be seen in
Figure 6.15. The modules that use the smallest percentage of registers available
on the FPGA are the instruction decoder (DEC) and common data bus (BUS).
These modules are purely combinational and as such have zero register usage.
The ROB and BTB use the largest percentage because they are essentially tables
of registers. The same happens with the reservation stations and register banks
but on a smaller scale as these modules provide less storage space. These modules
are not yet optimized, if they were to use the onboard block rams (BRAMs) of the
FPGA they would not have such high register usage. The L1I is already optimized
with the use of BRAMs as can be seen by its low register usage in Figure 6.15.

We have seen the resource usage of the different modules when synthesizing
a single configuration that is configuration G. Now we consider the results when
synthesizing the processor as a whole and comparing all the different configura-
tions of the processor shown in Table 6.1.
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Figure 6.16: Percentage of LUT usage by each configuration of the processor

Figure 6.16 shows how as the complexity of the architecture is increased and
more modules are added to the datapath then the LUT usage also increases up
until the configuration G where more than 30% of the LUTs available on the FPGA
are in use.
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Figure 6.17: Percentage of register usage by each configuration of the processor

In Figure 6.17 we can see that the register usage between processor configu-
rations is very different to that of LUT usage. The register usage is largely depen-
dent on the variation of the number of reservations stations per operator and in



54 Results

small part the size of the re-order buffer (ROB). The difference between configu-
rations F & G is minimal because even though the number of instruction decoders
is duplicated, these modules are purely combinational. The only increase in regis-
ters are from other modules that may need to add some more in order to support
the extra decoders.

In this chapter we have seen how the processor correctly functions and the
mechanisms it uses to avoid and mitigate data dependencies along with a brief
performance analysis. We have also seen the amount of usage that our design
has of the resources that an FPGA provides and thus will be able to predict which
FPGAs can be used with our project.



CHAPTER 7

Conclusion

This last chapter will serve as a brief revisiting of the work completed along
with the problems that appeared during its development and how they were
overcome.

7.1 Outcome

To begin with it seems necessary to reiterate the fact that this work was car-
ried out as a group of four people and as such the resulting achievements are
the sum of these four students. This allowed the undertaking of a project with a
much wider scope than that which an individual would embark on. During the
development of the project all members of the group were able to learn how to
better work as a team along with overcoming the inherent problems related to
a lack of synchronization that often occurs when multiple minds are simultane-
ously working on the same areas of a project. But by the end of the coding phase
the whole team had learnt how to think as one and to forsee problems before they
arose. This allowed a vast quantity of objectives to be completed along with some
new ones that hadn’t previously been contemplated.

Initially, we discovered that in order to use the Vivado IDE (see Section 3.1)
we required a license from Xilinx, owners of the software. We had to make a
formal request to the GAP so as to provide us with a valid license in order to gain
complete access to all the features of Vivado.

Some examples of modules that were found necessary after the design stage
had been completed and coding was well under way are: The field_comp sub-
module belonging to the decoder, the New_PC_addr module and a module that
implements the round robin algorithm. This last improvement came about once
we had an initial design that could be simulated and correctly execute programs
but we quickly saw that operator starvation was occurring because of the static
priorities we had assigned to each operator when entering the common data bus
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(BUS). So by developing an arbiter that implemented the round-robin algorithm
we were able to share the BUS in a fairer way by using a time-sharing scheduler.

During the design phase it had been decided that only a small subset of the
instruction set would be supported. But later on it was deemed necessary to
provide extra instructions so as to support more complex programs and better
measure the performance of the processor.

Once the design had been implemented (along with the necessary modifica-
tions discovered during its development) it was of utmost importance to take
great care when verifying the validity of the completed product. By simulat-
ing the processor and running different programs that contain hazards it was
possible, through timetable analysis, to see how our architecture was correctly
eliminating the hazards. Also, by running common benchmarks we were able
to calculate the efficiency of the core and compare how different configurations
altered the performance.

During the verification phase we quickly saw how our design wasn’t perfect
and we were forced to adapt fast to changes while ensuring all members of the
team were made aware of the latest updates. Repeatedly testing different changes
in the design allowed us to achieve an in-depth knowledge of the dataflow inside
the processor and taught us what to look out for when trying to fix an error in
the implementation. We also created a set of tools using bash and python that
facilitated the drawing of conclusions as to whether a program was executing
correctly on the processor.

Finally, once we had a working design we were able to synthesize the different
modules that make up the core by using the Vivado IDE. We also synthesized
the processor (as a whole and with different configurations) allowing us to draw
conclusions on how efficient our design is at using the resources provided on the
actual FPGA. This step also showed us how our implementations of the ROB &
MEM could be optimized to use the onboard BRAMs of the FPGA and greatly
reduce their resource usage.

7.2 Extensions and future work

The first step is to perform exhaustive validation and evaluation of the proces-
sor. New, more complex programs must be implemented along with additional
tools for resource usage analysis. The objective is to find weak points in the pro-
cessor along with the most efficient configurations.

The next step is to integrate the processor into the PEAK architecture on an
FPGA system. There has actually been performed an intital test of this adaption.

Many of the developed modules of the processor support exceptions and
launch them when necessary. However, the architecture is missing support to
perform the corresponding actions to recover and return to normal program flow
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following the emergence of an exception. This would involve creating a new
module that would centralize the decision making tasks required to recover from
an exception in the processor.

The possibility of abandoning the MIPS32 architecture has also been discussed.
This is because its licensing model would impede any commercialization of the
processor designed in this project. The architecture could be adapted to use a dif-
ferent instruction set like OpenRISC [14], which provides a more open licensing
agreement.

Several of the modules have been split into a pipeline. The instruction de-
coder module could also be adapted to a pipelined design. This would allow the
removal of the very large buses connecting both register banks to the decoder
module by adding a new request phase. The request phase would request and
receive the needed values from the register bank one at a time rather than having
access to all of the registers as in the current architecture. Pipelining the decoder
would also require changes in the register banks to support receiving data re-
quests and sending data to the common data bus (BUS).

Currently, Reservation Stations (RS) have different internal structures and in-
terfaces depending on the operator they belong to. A possible improvement
would be to use the same structure as the re-order buffer (ROB) and have a
generic RS module that can be used by any operator. This would lead to opti-
mum use of the reservation stations.

A small change to the ROB could be done that involves reducing its use of the
FPGA register resources. This would be done by switching to use the memory
block (BRAM) resources of the FPGA instead.

Although the architecture has very complex and configurable arithmetic-logic
and floating point units, support for double precision wasn’t able to be included
during the project timeline. Providing support for double precision operations
would allow a greater range for representing operands and results.

To end with the last operator, the memory module has the beginning of sup-
port for two extra instructions which are the conditional store (SC) and the linked
load (LL). If the processor were capable of executing these instructions it would
provide the mechanisms necessary to safely run alongside other cores while using
shared memory. The SC and LL instructions provide the base on which methods
of memory-safe concurrency run on and would allow the implemented processor
to be used in a multi-core scenario.
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APPENDIX A

Datapath buses

This section contains diagrams with the fields that make up the buses con-
nected to the different units the author of this document was assigned and were
seen in chapter 5.

A.1 Register Banks
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A.2 Branch Target Buffer
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A.3 Memory Access Unit
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Benchmark source code

This section contains the assembly source code of the two programs used as
benchmarks when studying the performance of the processor.

B.1 axpy

The following source code is from the testbench program that implements the
axpy algorithm.

#; #z = a * x + y
#; #Vector size: 64 words
#; #Vector x

.globl x

.data 0x10000000
x:

.float 0.0,1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0

.float 10.0,11.0,12.0,13.0,14.0,15.0,16.0,17.0,18.0,19.0

.float 20.0,21.0,22.0,23.0,24.0,25.0,26.0,27.0,28.0,29.0

.float 30.0,31.0,32.0,33.0,34.0,35.0,36.0,37.0,38.0,39.0

.float 40.0,41.0,42.0,43.0,44.0,45.0,46.0,47.0,48.0,49.0

.float 50.0,51.0,52.0,53.0,54.0,55.0,56.0,57.0,58.0,59.0

.float 60.0,61.0,62.0,63.0

.globl y
#; #Vector y

y:
.float 100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0
.float 100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0
.float 100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0
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.float 100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0

.float 100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0

.float 100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0

.float 100.0,100.0,100.0,100.0

#; #Vector z
#; #64 elements occupy 256 bytes

.globl z
z: .space 256

#;# Scalar a
.globl a
a: .float 1.0

.text 0x00400000
.globl start
start:
la $t1, x

la $t2, y
la $t3, z
la $t0, a
lwc1 $f0, 0($t0)
addi $t4,$0,64

.globl loop
loop:

lwc1 $f2, 0($t1)
lwc1 $f4, 0($t2)
mul.s $f6, $f2, $f0
add.s $f6, $f6, $f4
swc1 $f6, 0($t3)
addi $t1, $t1, 4
addi $t2, $t2, 4
addi $t3, $t3, 4
addi $t4, $t4, -1
bnez $t4, loop
.end

B.2 pi

The following is the assembly source code from the benchmark program pi
that aproximates the value of pi by using the Nilakantha series.

.text 0x00400000
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.globl start
start:
addi $10, 100
li $2, 2 # $2 = 2
mtc1 $2, $f2 # $f2 = 2
cvt.s.w $f2, $f2 # $f2 = 2.0

li $3, 3 # $3 = 3
mtc1 $3, $f3 # $f3 = 3
cvt.s.w $f3, $f3 # $f3 = 3.0

li $4, 4 # $4 = 4
mtc1 $4, $f4 # $f4 = 4
cvt.s.w $f4, $f4 # $f4 = 4.0

li $5, 2 # $5 = 2
mtc1 $5, $f5 # $f5 = 2
cvt.s.w $f5, $f5 # $f5 = 2.0

li $6, 3 # $6 = 3
mtc1 $6, $f6 # $f6 = 3
cvt.s.w $f6, $f6 # $f6 = 3.0

li $7, 4 # $7 = 4
mtc1 $7, $f7 # $f7 = 4
cvt.s.w $f7, $f7 # $f7 = 4.0

li $8, 0 # $8 = 0
mtc1 $8, $f8 # $f8 = 0
cvt.s.w $f8, $f8 # $f8 = 0.0

li $9, 0 # $9 = 0
mtc1 $9, $f9 # $f9 = 0
cvt.s.w $f9, $f9 # $f9 = 0.0

add.s $f8, $f8, $f3 # $f8 = 3.0

bucle:
mul.s $f9, $f5, $f6 # $f9 = 2 * 3
mul.s $f9, $f9, $f7 # $f9 = 2 * 3 * 4
div.s $f9, $f4, $f9 # $f9 = 4/(2*3*4)
add.s $f8, $f8, $f9 # $f8 = 3.0 + 4/(2*3*4)

add.s $f5, $f5, $f2 # $f5 +2
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add.s $f6, $f6, $f2 # $f6 +2
add.s $f7, $f7, $f2 # $f7 +2

mul.s $f9, $f5, $f6 # $f9 = 4 * 5
mul.s $f9, $f9, $f7 # $f9 = 4 * 5 * 6
div.s $f9, $f4, $f9 # $f9 = 4/(4*5*6)
sub.s $f8, $f8, $f9 # $f8 = $f8 - 4/(4*5*6)

add.s $f5, $f5, $f2 # $f5 +2
add.s $f6, $f6, $f2 # $f6 +2
add.s $f7, $f7, $f2 # $f7 +2
addi $10, -1
bne $10, $0, bucle
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