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Abstract 

This Thesis focuses on the study, implementation and characterization of 

chromatic dispersion tailoring employing both optical fiber and photonic 

integrated waveguides. Chromatic dispersion causes that the different 

spectral components of an optical pulse travel at different velocities. This 

effect can be separated into two different fundamental contributions, 

material dispersion and waveguide dispersion. Chromatic dispersion can 

be tailored through the design of the structural parameters of the device 

in order to obtain specific characteristics in the resulting dispersion 

profile such as low values of dispersion and/or zero dispersion at a 

desired wavelength, for example. This approach is very useful in 

dispersion-dependent applications. In this PhD, we investigate chromatic 

dispersion tailoring in two different transmission mediums, photonic 

integrated waveguides and optical fiber. 

In the first case, two different geometries of Silicon-on-Insulator 

(SOI) integrated waveguides, strip and slot, are considered. By varying 

structural parameters such as the cross-section, aspect ratio or fill factor, 

different chromatic dispersion profiles are obtained. In addition, the 

influence of the slot location is evaluated. This study is carried out using 

simulation software in order to obtain the effective refractive index 

profile as a function of wavelength, which is later differentiated to obtain 

the final dispersion values. Besides, chromatic dispersion in both 

waveguide geometries is experimentally measured using an 

interferometer technique.  

In the second case, the chromatic dispersion present in a tapered 

fiber is studied. A tapered fiber consists of a narrow waist located 

between two transition regions and it allows the modification of the 

conventional propagation conditions due to the interference between 

the modes propagating through the waist. This interference between 

modes creates a transmission pattern which depends on the waist length 

and the effective refractive indexes of the modes travelling through the 

waist. By applying stress to the tapered fiber its interference pattern can 

be modified. Chromatic dispersion profile of tapered fibers is obtained, 

tailored and compared with the dispersion profile of conventional single-

mode fibers.  



 
 

Resumen 

Esta Tesis se centra en el estudio, implementación y caracterización del 

control de la dispersión cromática empleando tanto fibra óptica como 

guías integradas fotónicas. La dispersión cromática provoca que las 

distintas componentes espectrales asociadas con el pulso óptico viajen a 

diferentes velocidades. Este efecto puede ser dividido en sus dos 

contribuciones fundamentales, la dispersión del material y la dispersión 

de la guía. La dispersión cromática puede ser controlada a través del 

diseño de los parámetros estructurales del dispositivo para poder 

obtener así determinadas características en el perfil de dispersión 

resultante como por ejemplo bajos valores o localización de la longitud 

de onda de dispersión cero en una longitud de onda deseada. Este 

método es muy útil en aplicaciones dependientes de la dispersión. En 

esta Tesis, investigamos el control de la dispersión cromática en dos 

medios de transmisión diferentes, las guías fotónicas integradas y la 

fibra óptica.  

En el primer caso, se consideran dos geometrías diferentes de guías 

integradas en silicio, las guías convencionales y las guías ranuradas. 

Mediante la modificación de los parámetros estructurales como la 

sección transversal de la guía, su relación de aspecto o el factor de 

llenado, se obtienen diferentes perfiles de dispersión cromática. Además, 

se evalúa la influencia de la situación de la ranura. Mediante software de 

simulación, se obtiene el perfil de índice de refracción efectivo en función 

de la longitud de onda, que posteriormente se deriva y se obtiene el valor 

de la dispersión. Asimismo, se mide experimentalmente la dispersión en 

ambas geometrías utilizando una técnica interferométrica. 

En el segundo caso, se analiza la dispersión cromática que presenta 

una fibra de tipo taper. Esta geometría consiste en una cintura estrecha 

situada entre dos regiones de transición y permite la modificación de las 

condiciones de propagación convencionales debido a la interferencia 

entre los modos que se propagan por la cintura, que crea un patrón de 

transmisión dependiente de la longitud de la cintura y de los índices 

efectivos de los modos. Aplicando tensión sobre la fibra, su patrón de 

interferencia puede ser modificado. La dispersión cromática de las fibras 

taper se obtiene, se modifica y se compara con el perfil de dispersión de 

una fibra convencional.    



 
 

Resum 

La tesi a exposar se centra en l'estudi, implementació i caracterització 

del control de la dispersió cromàtica empleant la fibra òptica i les guies 

integrades fotòniques. La dispersió cromàtica provoca que els distints 

components espectrals associats amb la pols òptica viatgen a diferents 

velocitats.  Aquest pot dividir-se en les dos contribucions fonamentals 

corresponents: la dispersió del material i la dispersió de la guia. La 

dispersió cromàtica pot controlar-se a través del disseny dels 

paràmetres estructurals del dispositiu per poder obtindre aixi 

determinades característiques en el perfil de dispersió resultant, com 

per exemple,  baixos valors o localizació de la longitud d'ona de dispersió 

zero a una longitud d'ona desitjada. No obstant això, aquest mètode és 

molt útil en aplicacions depenents de la dispersió. A més a més, 

investiguem el control de dispersió cromàtica en dos mitjans de 

transmissió diferents, les guies fotòniques integrades i la fibra òptica.  

D'una banda, es consideren dos geometries diferents de guies 

integrades en silici, les guies convencionals i les ranurades. Mitjançant la 

modificació dels paràmetres estructurals com la secció transversal de la 

guia, la relació d'apecte o el factor d'ompliment, obtenim diferents perfils 

de dispersió cromàtica. Fins i tot, s'avalua la influència de la situació de 

la ranura. Mitjançant el programari de simulació, obtenim el perfil 

d'índex de refracció efectiu en funció de la longitud d'ona, que 

posteriorment es derivarà i s'obrindrà el valor de la dispersió. 

Tanmateix, es mesura experimentalment la dispersió en les dos 

geometries utilitzant una tècnica interferomètrica.  

D'altra banda, analitzam la dispersió cromàtica que presenta una 

fibra de tipus taper. Aquesta consisteix en una cintura estreta situada 

entre dos regions de transició que, ens permet la modificació de les 

condicions de propagació convencional com a causa d'una interferència 

entre els modes que es propaguen per la cintura i els índex efectius dels 

modes. Si apliquem tensió sobre la fibra, el seu patró d'interferència 

podria ser modificat. La dispersió d'una fibra cromàtica de les fibres 

taper s'obté, es modific i es compara amb el perfil de dispersió d'una 

fibra convencional. 
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Chapter 1 

 

Introduction  
 

In the mid-twentieth century, several research studies that used optical 

technology were conducted with the aim of increasing the bitrate-

distance product of existing microwaves communication systems. 

However, there were two serious difficulties: there was no appropriate 

optical source at that time [1] and a suitable transmission medium was 

required. The appearance of the first Light Amplification by Stimulated 

Emission of Radiation (LASER) in 1960 provided the ideal method of 

producing coherent light, that is, the generation of monochromatic 

waves where all its photons present the same frequency and phase. The 

next step was to find an adequate transmission medium. To do this, 

several experiments using atmospheric optical channels were carried 

out. Nevertheless, this type of channel presented several disadvantages 

such as limitations due to adverse weather effects or high costs of 

installation and development. Optical fiber was proposed later as a 

medium able to confine and guide light. However, the first fibers used for 

light guiding presented propagation loss values in the range of 1000 
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dB/km [2]. In 1966, as a result of the studies carried out by Kao and 

Hockman [3] and Werts [4], where characteristics such as losses, optical 

mode stability, dispersion and power handling were analyzed, it was 

found that high propagation losses originated from impurities present in 

the material used to produce the fibers. Finally, in 1970, researchers at 

Corning Glass Works managed to reduce losses below 20 dB/km in the 

wavelength region around 1 µm [5], laying the fundamentals for the 

development and evolution of light wave systems.  

At a similar time, in 1960, integrated photonics technology was being 

developed at Bell Laboratories with the fabrication of the first bi-

dimensional waveguide on a planar substrate. In the mid-1970s, several 

materials were investigated and used to fabricate three-dimensional 

waveguides. Lithium niobate, LiNbO3, was employed as a prominent 

material, leading to the development of a variety of functional devices in 

the 1980s. Further investigations resulted in the development of other 

materials suitable for the fabrication of integrated waveguides using 

dielectrics such as glasses, silicon and polymers, or semiconductors such 

as indium phosphide, gallium arsenide and silicon [6, 7].      

 

 

1.1. Optical Communication Systems 

The great development experienced by optical communications systems 

originates from the many advantages that they present with respect to 

conventional electronic systems. These advantages include a 

considerable reduction of the weight, cost and size of the wire, huge 

information transmission capacities, low propagation losses, no need for 

electrical connections which avoids problems associated with 

electromagnetic interferences and increased distances between signal 

repeaters, among others [8]. However, optical communications systems 

also present some issues that must be addressed, such as curvatures in 

the optical fiber that modify the propagation conditions of the light 

introducing losses, the influence of gamma radiation or fragility against 

animal bites (mainly gophers and termites). 

Optical communications make use of very high frequencies typically 

located in the Infrared (IR), which is the range of the electromagnetic 
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spectrum comprising the wavelengths [0.78-1000] µm [9]. Particularly, 

the systems considered in this work are situated in the Near-Infrared 

(NIR), located in the wavelength range of [0.78-3] µm. These in turn are 

centered on the C-Band, comprising the wavelength interval of [1530-

1565] nm [10]. Figure (1.1) shows the electromagnetic spectrum 

emphasizing the wavelengths used in optical communications systems, 

specifically the C-Band. 

Optical communications systems are made of three main elements: 

optical transmitters, optical receivers and transmission channels, as 

shown in Fig. (1.2). The purpose of the system is to transport 

information from the transmission block to the reception block through 

the communication channel while avoiding signal loss or distortion [1].  

○ Optical Transmitter:  

Optical transmitters convert electrical signals into optical ones that can 

be propagated through an optical transmission channel. The transmitter 

is formed by an optical source, a modulator and a channel coupler [1], as 

depicted in Fig. (1.2). 

Most optical systems employ one of these two types of 

semiconductor optical sources: Light Emitting Diodes (LED) and Laser 

Diodes (LD). They differ in characteristics such as wavelength, optical  

 

 

Figure 1.1: Electromagnetic spectrum focused in the C-band. 
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Figure 1.2: Schematic describing an optical communications system. 

 

power, spectral width and output signal waveform. The operating 

principle is based on the mobility of electrons between the two energy 

levels of a semiconductor, the valence band and the conduction band. 

These bands are separated by a space in which there are no energy 

levels, known as the energy bandgap. When no external field is applied to 

the semiconductor all the electrons are located in the valence band, 

which is the one of lowest energy. Through the application of an external 

electrical field some electrons in the valence band are excited and 

acquire the energy required to move to the conduction band, leaving 

holes in the valence band. Conversely, when an electron located in the 

conduction band loses energy, it returns to the valence band emitting the 

lost energy as a photon. Recombination between electrons and holes can 

occur spontaneously, as in the case of LEDs, or stimulated, as in LDs [1, 

11]. In the first case, excited electrons of the conduction band fall to the 

valence band without an external cause, leading to the spontaneous 

emission of a photon. However, when an existing photon hits an excited 

electron, a process of stimulated emission occurs, giving rise to coherent 

light radiation due to the same frequency and phase of the photons 

involved The three basic processes experienced by electrons in light 

emission are illustrated in Fig. (1.3).    

The purpose of modulation in an optical transmitter is to integrate 

information in the light beam that will be subsequently launched into the 

transmission channel. Two types of modulation can be distinguished: 

direct modulation and external modulation [1, 11].  Direct amplitude 

modulation involves applying current to a diode above (‘1’) or below 

(‘0’) its emission threshold level, thereby differentiating the bit to be 

transmitted. This type of modulation is simple and inexpensive but,  
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Figure 1.3: Fundamental processes occurring in the two energy bands of an atom, 

(a) excitation process, (b) spontaneous emission, and (c) stimulated emission.  

 

nevertheless, the output pulses are chirped.  The chirp phenomenon 

causes the frequency and phase of the carrier signal of the transmitted 

pulses to vary with time, resulting in the widening of its spectrum. 

External modulation alleviates the effect of the chirp since the 

modulation is performed by a device which is not part of the optical 

source. The two most common external modulation devices are the 

Electro-Absorption (EAM) and the Mach-Zehnder Interferometer (MZI) 

modulators. In the EAMs, the application of an external voltage decreases 

the energy bandgap leading to the absorption of light in areas where the 

device was previously transparent. Meanwhile, in the MZI-based 

modulators, the application of an external electric field leads to different 

interference conditions at the interferometer output.  

Finally, the last element present in the optical transmitter is a 

channel coupler, whose function is to couple the maximum amount of 

signal from the optical modulator to the transmission channel [1]. Micro 

lens, lensed fibers or fiber tapers, among others, are traditionally 

employed for channel coupling.            

○ Optical Receiver:  

The main function of an optical receiver is to convert the optical signals 

received from the transmission channel into electrical signals that can be 

read and processed using electronics. The common elements of an 

optical receiver are a channel coupler, a photodetector and a 

demodulator [1], as depicted in Fig. (1.2).  
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The channel coupler in the optical receiver performs the inverse 

function of that of the optical transmitter. In this case, it focuses the 

received signal from the transmission medium onto the photodetector. 

Optical-to-electrical conversion is performed on the photodetector 

or photodiode, which is a device made of semiconductor materials that 

generates a current, usually referred to as photocurrent, which is 

proportional to the incident optical power. Photodetectors must meet 

certain requirements including good sensitivity to the desired 

wavelength, fast response to be able to operate at high frequencies, low 

noise to reduce errors, low sensitivity to temperature changes, efficient 

conversion of photons to electrons and long operating lifetimes [1, 11]. 

The three types of photodetectors most widely used in optical receivers 

are p-n junction photodiodes, p-i-n junction photodiodes and avalanche 

photodiodes, as illustrated in Fig. (1.4). In the first case, the 

photodetector is formed by a p-n junction separated by an area devoid of 

free charge carriers. The p-i-n photodiode structure is similar to that of 

the p-n junction photodiode, with the difference that in this case the 

depletion area is bigger because an un-doped material layer is inserted 

therein. Finally, the avalanche photodetector provides an internal 

current gain, making them suitable for optical receivers in low powered 

optical links.  

The basic operating principle is based on the photoelectric effect, in 

which an incident photon on the semiconductor material forming the  

 

 

Figure 1.4: Typical configurations of optical photodetectors, (a) p-n photodiode, 

(b) p-i-n photodiode, and (c) avalanche photodiode. 



7 
 

photodiode is absorbed by electrons in the valence band, causing the 

electrons to move to the conduction band. If an external voltage is 

applied to the semiconductor, the electron-hole pairs generate the 

photocurrent Ip, which is directly proportional to the incident optical 

power Pin [1]: 

𝐼𝑝 = 𝑅 ∙ 𝑃𝑖𝑛     (1.1) 

where R is the responsibility, the parameter which indicates the 

photocurrent produced by each unit of optical power and is given by the 

expression: 

𝑅 =
𝜂𝑞

ℎ𝑣
     (1.2) 

where η is the quantum efficiency or electron-hole pairs number 

generated per incident photon with energy given by hv and q is the 

electron charge. It is worth mentioning that optical receivers often 

present an amplification step to facilitate the detection of the received 

signal. 

Finally, the last element in the optical receiver is the demodulator, 

whose operating principle depends on the type of modulation employed. 

The demodulator extracts the information sent through the optical 

channel by detecting parameters such as the amplitude and phase of the 

electrical signal provided by the photodetector and comparing it with a 

set of thresholds [1].  

○ Transmission Mediums:  

The conventional transmission channel of an optical communication 

system is typically formed by optical fiber. Long distance links usually 

contain optical amplifiers and regenerators to compensate for losses and 

distortions introduced by the channel.  

The importance of optical fibers as basic elements used in 

communications systems lies in its many advantages over conventional 

technologies, such as low transmission losses and huge bandwidth, small 

size and weight, immunity to electromagnetic interference, electrical 

isolation, elimination of spark hazards and increased security, among 

others [1]. 
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Optical fiber is a dielectric waveguide able to confine 

electromagnetic energy and to guide it along its longitudinal axis. The 

propagation of light inside of the fiber can be described by two different 

approaches: guided electromagnetic waves called modes or geometrical 

optics. 

Figure (1.5) schematically illustrates light propagation using 

geometrical optics. This approach considers that a light beam traveling 

through a medium characterized by a refractive index n1 impinges on 

another medium with a lower refractive index n2. The refractive index is 

a dimensionless parameter that describes the optical properties of a 

material and is determined by: 

𝑛 =
𝑐

𝑣
     (1.3)  

where c is the speed of light in vacuum and v is the speed of light in the 

considered medium. Differences between the two refraction indexes 

cause a portion of the incident beam to be transmitted to the second 

medium and another part of the beam to be reflected back into the first  

 

 

Figure 1.5: Geometrical optics describing the propagation of light, (a) reflection 

and refraction of an incident ray, (b) total internal reflection (TIR) mechanism, 

and (c) light propagating through TIR in an optical fiber. 
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medium. Snell’s law describes the relation between the incident beam 

angle in the first medium and the refracted beam angle in the second 

medium [1, 10]: 

𝑛1 𝑠𝑖𝑛(𝜃1) = 𝑛2 𝑠𝑖𝑛(𝜃2)   (1.4)   

where θ1 is the angle formed in the first medium by the incident ray with 

respect to the normal line and θ2 is the refracted ray angle formed in the 

second medium also considering the normal line. When the angle of the 

incident beam exceeds a certain value, known as the critical angle or  θc, 

the incident ray is completely reflected in the first medium. This 

phenomenon is known as Total Internal Reflection (TIR). The value of 

the critical angle is defined by: 

𝜃𝑐 = 𝑎𝑟𝑐 𝑠𝑖𝑛
𝑛2

𝑛1
    (1.5)   

Considering these concepts, and taking into account that the optical 

fiber is composed of an inner region called core characterized by a 

refractive index n1 higher than that presented by other outer region 

called cladding, with refractive index n2, it can be concluded that light 

propagates confined through the fiber due to a series of total internal 

reflections occurring between the core and the cladding [1, 10]. The 

scheme of light propagation inside an optical fiber by TIR mechanism is 

shown in Fig. (1.5.c). 

The second description considered here of light propagation in an 

optical fiber is performed using the mode theory. Modes are the 

distribution of electric and magnetic fields of the electromagnetic waves 

through the fiber. The electric and magnetic components of each mode 

are always orthogonal to each other and both are also orthogonal to the 

wave propagation direction. Electric and magnetic fields are interrelated 

and their relationship given by Maxwell’s equations. In general, 

expressions describing electric and magnetic fields are complicated 

functions in both time and space. However, as the Maxwell equations are 

linear expressions, the time dependence can be separated from the 

spatial dependence by substituting those fields by a set of harmonic 

modes and then taking the real part of them. The harmonic modes of 

both electric and magnetic fields can be expressed as: 

𝐻⃗⃗ (𝑟, 𝑡) = 𝐻⃗⃗ (𝑟) 𝑒𝑗𝜔𝑡    (1.6) 



10 
 

𝐸⃗ (𝑟, 𝑡) = 𝐸⃗ (𝑟) 𝑒𝑗𝜔𝑡    (1.7) 

where ω is the angular frequency. The wave equations that are derived 

from Maxwell’s equations for harmonic modes are:  

∇2𝐸⃗ (𝑟) = 𝜀(𝑟) (
𝜔

𝑐
)
2

𝐸⃗ (𝑟)   (1.8) 

∇2𝐻⃗⃗ (𝑟) = 𝜀(𝑟) (
𝜔

𝑐
)
2

𝐻⃗⃗ (𝑟)   (1.9) 

In homogeneous mediums, the relative dielectric constant ε takes a 

constant value. Thus, the previous equations can be simplified as follows 

[12]:  

∇2𝐸⃗ (𝑟) + 𝑘2𝐸⃗ (𝑟) = 0                (1.10) 

∇2𝐻⃗⃗ (𝑟) + 𝑘2𝐻⃗⃗ (𝑟) = 0                (1.11) 

where k is the wave number, linearly related to ω according to the 

following expression: 

𝑘 = 𝑛 
𝜔

𝑐
                  (1.12) 

Equation (1.12) is known as the dispersion relation and is related to 

the considered homogeneous medium through its refractive index. The 

general solution of the simplified wave equations for the harmonic 

waves given by Eq. (1.10) and Eq. (1.11) is a set of plane waves whose 

simplest solution for the electric field is given by: 

𝐸⃗ (𝑟) = 𝐸0 𝑒
𝑗𝑘𝑟                (1.13) 

where E0 is a complex value that describes the amplitude and phase of 

the plane wave. Each of the solutions of Eq. (1.10) and Eq. (1.11), such as 

the one described in its general form in Eq. (1.13), correspond to 

different propagating modes for each of the two possible field 

polarizations, Transverse Electric (TE) and Transverse Magnetic (TM) 

modes, respectively. Two important parameters that characterize these 

modes are their cutoff frequency, this is the minimum frequency from 

which the mode begins to propagate, and its effective refractive index. 

Basically, the concept of effective refractive index of a mode is related to 
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the refractive index of the mode when it is propagating along the 

waveguiding structure [12]. 

The number of modes that can propagate within the optical fiber is 

given by the expression [1, 10]: 

𝑉 =
2𝜋𝑎

𝜆
√𝑛1

2 − 𝑛2
2                (1.14) 

where V is the normalized cutoff frequency, a is the core radius and λ is 

the operating wavelength. If V < 2.405, only one mode propagates inside 

the fiber while for values exceeding this number several modes travel 

along the fiber. Optical fibers are classified as single-mode or multimode 

according to this criterion.  

Optical fibers can also be classified according to the refractive index 

profile along their cross-section. Step-index fibers are those whose 

refractive index in both core and cladding presents a constant value that 

does not vary with respect to the radial axis of the fiber, as shown in Fig. 

(1.6). Step-index multimode fibers experience Multipath Interference 

(MPI), which leads to signal distortions. In order to reduce MPI in this 

type of fibers, multimode graded-index fibers were developed, where the 

refractive index changes gradually along the radial axis, reaching the 

maximum value at the center of the fiber [1, 10].  

Otherwise, the rapid advancement of information technology and 

communications systems made it necessary to develop devices capable 

of operating at higher speeds with enhanced processing capacities.  In 

this context, integrated photonic technology offers high bandwidth and 

low power consumption as opposed to electronic technology systems. 

Many of the optical components currently used consist of a 

semiconductor material of III-V groups of the periodic table, which 

implies a higher cost and difficulties in the device integration because 

assembly and packaging processes are complex and delicate. The 

successful employment of silicon, Si, as a semiconductor in 

microelectronic devices has aroused great interest in its possible use in 

applications oriented to optical communications and signal processing.  
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Figure 1.6: Different optical fibers depending on their refractive index 

distribution and size, (a) step-index multimode fiber, (b) graded-index 

multimode fiber, and (c) step-index single-mode fiber. 

 

 

1.2. Chromatic Dispersion Fundamentals 

Chromatic dispersion is defined as variations in the refractive index of a 

medium as a function of wavelength. It is usually modeled through the 

expansion of the propagation constant, β, in Taylor series around a 

central frequency ω0 as [13]: 

𝛽(𝜔) = 𝑛(𝜔)
𝜔

𝑐
= 𝛽0 + 𝛽1(𝜔 − 𝜔0) +

1

2
𝛽2(𝜔 − 𝜔0)

2+…      (1.15) 

being 

𝛽𝑚 = (
𝑑𝑚𝛽

𝑑𝜔𝑚)
𝜔=𝜔0

     (1.16) 
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with m=0,1,2… . The parameters β1 and β2 are related to the effective 

refractive index n(ω) and its derivatives through the  expressions: 

𝛽1 =
1

𝑣𝑔
=

𝑛𝑔

𝑐
=

1

𝑐
(𝑛 + 𝜔

𝑑𝑛

𝑑𝜔
)  (1.17) 

𝛽2 =
1

𝑐
(2

𝑑𝑛

𝑑𝜔
+ 𝜔

𝑑2𝑛

𝑑𝜔2)   (1.18) 

where ng is the group index and vg is the group velocity, expressed as 

[13]: 

𝑣𝑔 = (
𝑑𝛽

𝑑𝜔
)
−1

    (1.19) 

𝑛𝑔 = 𝑛 + 𝜔 (
𝑑𝑛

𝑑𝜔
)    (1.20) 

The coefficient β2 in Eq. (1.18) is called the Group Velocity Dispersion 

(GVD) parameter and is the main responsible for pulse broadening in a 

first order approximation. According to Eq. (1.19), the group velocity is 

expected to depend on the frequency. Considering a single-mode optical 

fiber with length L, a component of frequency ω reaches the output end 

of the fiber after a time delay given by: 

𝜏𝑔(𝜆) = 𝐿 𝑣𝑔(𝜆)⁄     (1.21) 

By expressing the group velocity in terms of the propagation constant, 

the relationship between group velocity and group index can be found: 

𝑣𝑔 = 𝑐 𝑛𝑔⁄     (1.22) 

Consequently, the frequency dependence of the group velocity causes 

pulse spreading since different spectral components do not reach the 

end of a given fiber reel simultaneously, as shown in Fig. (1.7) where 

longer wavelengths travel faster. The broadening experienced by the 

pulse after its propagation through a fiber of length L can be expressed 

as:  

Δ𝑇 =
𝑑𝑇

𝑑𝜔
Δ𝜔 =

𝑑

𝑑𝜔
(

𝐿

𝑣𝑔
) Δ𝜔 = 𝐿

𝑑2𝛽

𝑑𝜔2 Δ𝜔 = 𝐿 ∙ 𝛽2 ∙ Δ𝜔  (1.23) 

where Δω is the spectral pulse width. In terms of wavelength, the pulse 

broadening is: 
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Δ𝑇 =
𝑑

𝑑𝜆
(

𝐿

𝑣𝑔
) Δ𝜆 = 𝐷 ∙ 𝐿 ∙ Δ𝜆      (1.24) 

where 

𝐷 =
𝑑

𝑑𝜆
(

1

𝑣𝑔
) =

−2𝜋𝑐

𝜆2 𝛽2                (1.25) 

is the dispersion parameter, D, which is usually expressed in units of 

ps/(nm*km). The wavelength dependence of D is governed by the 

frequency dependence of the effective index as follows [13]:  

𝐷 =
−2𝜋𝑐

𝜆2

𝑑

𝑑𝜔
(

1

𝑣𝑔
) =

−2𝜋

𝜆2 (2
𝑑𝑛

𝑑𝜔
+ 𝜔

𝑑2𝑛

𝑑𝜔2)  (1.26) 

The dispersion parameter can be expressed as: 

𝐷 = 𝐷𝑀 + 𝐷𝑊                  (1.27) 

where DM is the material dispersion and DW is the waveguide dispersion. 

Material dispersion arises from the dependency of the silicon and silica 

refractive indices on the optical frequency. It originates from 

characteristic resonance frequencies at which the material absorbs 

electromagnetic radiation. Far from these resonances the refractive 

index n(ω) can be approximated through the Sellmeier Equation: 

𝑛2(𝜔) = 1 + ∑
𝐴𝑗∙𝜔𝑗

2

𝜔𝑗
2−𝐵𝑗

2
𝑀
𝑗=1                 (1.28) 

Figure 1.7: Schematic showing the fundamentals of chromatic dispersion and its 

effect on the time arrival for different wavelengths. 
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where ωj defines the different resonance frequencies and Aj and Bj are the 

Sellmeier coefficients. These coefficients are shown in Table 1.1 [14] for 

silicon and silica. Fig. (1.8) shows the wavelength dependence on the 

refractive index for both materials extracted from the Sellmeier Equation 

as well as its material dispersion profile. 

Material dispersion relates to the group index slope as follows: 

𝐷𝑀 = 𝑐−1 (
𝑑𝑛𝑔

𝑑𝜆
)                 (1.29) 

Moreover, the specific wavelength that satisfies: 

𝑑𝑛𝑔

𝑑𝜆
= 0                (1.30) 

is known as the Zero Dispersion wavelength, λZD, as DM = 0 is obtained 

when λ = λZD. The range of wavelengths where D < 0 (β2 > 0), is called the 

Normal Dispersion regime. In the normal dispersion regime, the higher 

frequency components of the optical pulse travel slower than the lower 

frequency components. Conversely, for wavelengths that satisfy D > 0, a 

situation of Anomalous Dispersion is met in which β2 < 0. 

Waveguide dispersion depends on the geometry and dimensions of 

the structure. As known, the mode inside the optical fiber propagates 

along both core and cladding. The effective refractive index value is 

therefore between the refractive index of the core and that of the 

cladding, closer to one or the other depending on the amount of power  

 

Coefficient Silicon (Si) Silica (SiO2) 

A1 10.6684293 0.663472443 

A2 0.00304347484 0.440647918 

A3 1.54133408 0.899007061 

B1 0.301516485 0.0665176613 

B2 1.134755115 0.115015076 

B3 1104 9.90316809 

 

Table 1.1: Sellmeier coefficients of Silicon and Silica [14]. 
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Figure 1.8: Refractive index dependence with wavelength according to the 

Sellmeier equation and material dispersion profile of (a) silicon and (b) silica. 

 

that propagates through each one (i. e. higher effective refractive indices 

are expected for highly-confined modes travelling through the core). As 

the mode power distribution between the core and the cladding depends 

on the refractive index, which depends on the wavelength, the mode 

power distribution becomes frequency-dependent. Accordingly, 

waveguide dispersion exists even for materials with no dispersion at all.  

Even at zero dispersion wavelength, the optical pulses experience 

broadening due to higher order dispersive effects. This feature can be 

understood by considering that D cannot be zero at all wavelengths 

contained in the spectrum of the pulse centered at λZD. Although the β2 

contribution is usually the dominant dispersion component, in some 
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applications such as transmission of short pulses in high bit rate systems 

or terahertz spectroscopy it is necessary to include the third order 

dispersion effects. The higher order dispersive effects are governed by 

the dispersion slope given by [13]:   

𝑆 =
𝑑𝐷

𝑑𝜆
                (1.31) 

The S parameter, known as the Differential Dispersion Slope parameter, 

can be expressed as: 

𝑆 = (
2𝜋𝑐

𝜆2 )
2

𝛽3 + (
4𝜋𝑐

𝜆3 ) 𝛽2                (1.32) 

where 

𝛽3 =
𝑑𝛽2

𝑑𝜔
≡

𝑑3𝛽

𝑑𝜔3                (1.33) 

 is the Third Order Dispersion (TOD) parameter. When λ = λZD is satisfied, 

β2 = 0 is met and S is proportional to β3. 

Once established the theoretical fundamentals of chromatic 

dispersion, the next step will be to review the experimental methods 

related to the measurement of the aforementioned parameters. The 

techniques capable of measuring chromatic dispersion in optical fibers 

are mainly three [15]: the Time-Of-Flight (TOF) method, the Modulation 

Phase Shift (MPS) method and the Interferometry method. TOF and MPS 

are techniques largely used commercially, unlike Interferometry, whose 

main use has been found in research [16].  

○ Time-of-Flight Method (TOF): 

In the TOF technique, the dispersion parameter can be determined by 

measuring the time delay between pulses at different wavelengths, as 

shown in Fig (1.9.a), or by measuring the experienced broadening itself 

[17, 18]. The relative time delay between pulses at different wavelengths 

is measured to determine the group velocity, which is subsequently used 

to obtain the dispersion parameter by means of Eq. (1.24).  

The technique involves injecting high power optical pulses into a 

section of Standard Single Mode Fiber (SSMF), where additional 

wavelengths are generated due to the nonlinear optical process of 

Stimulated Raman Scattering (further discussed in Section 3.3.4 of this 
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work).The individual wavelengths are selected by an optical filter and 

then injected into a section of test fiber. Time delays experienced in the 

test fiber are compared with those obtained in a reference fiber, as 

shown in Fig. (1.9.b). After that, pulses are photo detected and displayed 

on a high resolution oscilloscope.  

One of the main problems of the TOF technique is that it generally 

requires several kilometers of fiber to accumulate a significant time 

delay between the pulses at different wavelengths. Another aspect to be 

considered in relation to this technique when the pulse broadening is 

directly observed are the changes experienced in the pulse shape. This 

leads to variations in the pulse width which results in measurement 

errors [16]. 

○ Modulation Phase Shift Method (MPS): 

In the MPS technique, a wide spectrum source is modulated by a 

Radio Frequency (RF) sinusoidal signal, and the dispersion parameter 

determined by measuring the relative phase shift experienced by the 

 

 

Figure 1.9: Time-Of-Flight method (a) fundamentals and (b) schematic diagram. 
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optical carriers at different wavelengths [19, 20].The operating principle 

of the MPS technique is shown in Fig (1.10.a). The phase shift ϕ(λ) 

produced is related to the group delay τg(λ) given by Eq. (1.21) according 

to the following expression [21]: 

𝜙(𝜆) = 2𝜋𝑓𝜏𝑔(𝜆)                             (1.34) 

where f stands for the frequency of the sinusoidal modulated signal. 

Fig (1.10.b) shows the experimental arrangement used to measure 

dispersion according to this method. A LED source is modulated by the 

frequency tone provided by a signal generator. The signal is filtered after 

traveling through the fiber under test and an attenuator placed at the 

output of the optical filter to compensate for the attenuation of the fiber. 

Once the signal is photo detected and amplified, a vector voltmeter reads 

the phase of the output signal relative to the electrically modulated input 

signal.  

The MPS technique is, similarly to TOF, a dispersion measurement 

method that requires long lengths of fiber. Although it is an expensive 

 
 

Figure 1.10: Modulation Phase Shift method (a) fundamentals and (b) schematic 

diagram. 
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solution due to the need for RF components it is a reliable and accurate 

procedure which has become extensively used in the characterization of 

chromatic dispersion [16]. 

 

○ Interferometry Method: 

Interferometry techniques are based on the injection of white light 

into an interferometer, with one arm being used as the reference path, 

formed by either a Variable Optical Delay Line (VODL) or an air path, and 

the other being the fiber or device to be characterized [22, 23]. The 

different propagation distances cause a phase shift between the signals 

traveling through the two arms of the interferometer. Once the two 

signals are recombined at the output of the interferometer, a sine-like 

interference pattern is generated. The maximum and minimum values in 

the resulting pattern correspond to constructive and destructive 

interferences, respectively, and the relative phase value between two 

adjacent extremes is equal to π. The value of the group index can be 

extracted from the resulting interference pattern by using the following 

expression [24, 25]: 

 

𝑛𝑔 =
𝜆𝑚𝑖𝑛∙𝜆𝑚𝑎𝑥

2∙Δ𝐿∙Δ𝜆
                 (1.35) 

where λmin and λmax are the spectral positions of a minimum and a 

maximum in the interference pattern, ΔL is the length difference 

between the two arms of the interferometer and Δλ is the spectral 

distance between two adjacent extremes.  

The fundamentals of the Interferometry technique are illustrated in 

Fig. (1.11.a), where a fiber-based Michelson interferometer is being used 

as shown in Fig. (1.11.b). Light emitted by a halogen lamp is chopped to 

increase the Signal to Noise Ratio (SNR) before being optically filtered. In 

the all-fiber configuration a single-mode coupler is used instead of a free-

space beam splitter, sending part of the signal to the fiber under test and 

the rest to the VODL. The interference fringes at the output of the lock-in 

amplifier can be determined by sweeping the length of the reference arm 

by means of the VODL. 

Different methods for the experimental characterization of 

chromatic dispersion have been developed over the years. Those  
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Figure 1.11: Interferometry method (a) fundamentals and (b) schematic 

diagram. 

 

techniques based on relative frequency shifts or time delays between 

signals at different wavelengths cannot be employed to determine the  

chromatic dispersion of short pieces of optical fiber because the relative 

delay or shift experienced between the signals is not large enough to be 

resolved. As interferometric techniques provide increased resolution 

when compared to the previous methods, they can be used to 

characterize the dispersion not only of short lengths of fiber but also of 

some photonic integrated circuits.     

 

 

1.3. Dispersion Management 

Chromatic dispersion plays a critical role in the propagation of optical 

signals because it causes diverse spectral components to travel at 

different speeds [26, 27]. This is especially detrimental in the 

propagation of wideband signals such as optical pulses, which are 

broadened thus degrading the quality of the system [28]. For example, 

dispersion not only increases the noise level in analogical 

communication systems but can also introduce errors in digital systems. 
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In an optical communications digital system, information is 

transmitted using a codified sequence of pulses whose width is 

determined by the bit rate B of the system. Considering an optical pulse 

presenting a Gaussian distribution, the broadening factor can be 

expressed as [1]: 

𝜎2

𝜎0
2 = 1 + (1 + 𝑉𝜔

2) (
𝛽2𝑧

𝜎0
2 )

2

+
1

2
(1 + 𝑉𝜔

2)2 (
𝛽3𝑧

4𝜎0
3)

2

   (1.36) 

where σ is the width of the pulse, σ0 is the initial pulse width, z is the 

propagation direction and Vω is given by: 

𝑉𝜔 = 2𝜎𝜔𝜎0     (1.37) 

with σω being the spectral width of the source. Assuming that β3 can be 

neglected and Vω>>1, the resulting pulse width expression is [1]: 

𝜎 = [𝜎0
2 + (𝛽2𝐿𝜎𝜔)2]1 2⁄ = [𝜎0

2 + (𝐷𝐿𝜎𝜆)
2]1 2⁄  (1.38)    

where σλ is the spectral width of the source expressed in wavelength 

units. An often used relation between σ and B can be extracted 

considering that the broadened pulse must be confined within its own 

bit slot TB. In this case, if the expression 4𝜎 < 𝐵 is satisfied 95 % of the 

Gaussian pulse energy remains inside the bit slot, leading to: 

4𝐵𝜎 < 1    (1.39)    

Assuming σ0<<σ, Eq. (1.39) can be expressed as [1]: 

4𝐵𝐿|𝐷|𝜎𝜆 < 1    (1.40) 

Therefore, signal degradation due to chromatic dispersion depends 

on the bit rate of the signal and on the modulation used to encode the 

digital information [29]. In systems operating at low bit rates, dispersion 

does not produce severe pulse broadening so the pulses can be correctly 

differentiated at the receiver and the information from each bit properly 

extracted. However, for higher data rate signals, pulses are shorter and 

closer to each other. Hence, Inter-Symbol Interference (ISI) may occur 

making the bit differentiation at the receiver troublesome as illustrated 

in Fig. (1.12). 

From Eq. (1.40), it can be extracted that chromatic dispersion 

becomes a severe limitation in long-distance high bit rate systems if no 
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appropriate acquisition or dispersion compensation techniques are 

employed. A critical issue related to chromatic dispersion is the 

appearance of nonlinear effects when the optical communications 

system operates at the zero dispersion wavelength or around it. 

Therefore, the aim of dispersion compensation methods is to achieve low 

average dispersion values on the fiber link as a whole while the 

dispersion of each section is large enough to avoid the nonlinearities to 

arise. The dispersion compensation condition can be expressed as: 

𝐷1𝐿1 + 𝐷2𝐿2 = 0   (1.41) 

whereL1 is the fiber length of the link section considered, L2 is the 

compensation fiber length and D1 and D2 are its respective dispersion 

value [1]. This condition can be satisfied by inserting a fiber module 

which presents the opposite value of the accumulated dispersion of the 

fiber section considered. 

The most common method to implement all-optical compensation 

for the dispersion of a SSMF is to employ Dispersion Compensating Fiber 

(DCF) [30]. In these fibers, zero dispersion wavelength is shifted to 

above 1550 nm leading to a dispersion value of -100 ps/nm*km at that 

wavelength, which makes it capable to compensate for the dispersion of 

a SSMF [13]. Other types of fibers designed to modify the conventional 

dispersion characteristics of SSMF include Dispersion-Shifted Fibers 

 

 

Figure 1.12: Chromatic dispersion effects in a (a) low data rate transmission 

system and (b) high data rate transmission system. 
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 (DSF) or Non-Zero Dispersion-Shifted Fibers (NZDSF) [31]. DSF zero 

dispersion wavelength is located at 1550 nm, resulting in the 

cancellation of chromatic dispersion but facilitating the arising of 

nonlinear effects. The use of NZDSF reduces these effects by shifting the 

zero dispersion wavelength around 1510 nm and maintaining dispersion 

level low. Modifications in the dispersion profile of all these different 

types of fibers are carried out by varying the index difference between 

the fiber core and cladding and the size of the core diameter [29]. Fig. 

(1.13) shows refractive index profiles of SSMF, DCF, DSF and NZDSF. 

Traditionally, chromatic dispersion compensation in the optical 

domain is implemented by means of DCF located in different points 

along the transmission link. However, DCF fibers insert additional 

attenuation to the system, which makes necessary to insert several 

amplifiers along the link to compensate for the loss of each section [32]. 

Therefore, by alternating SSMF sections with compensation modules 

including DCF and amplifiers, dispersion compensation can be 

performed in long-distance transmission links. In order to enhance the 

efficiency of the system, different schemes depending on the placement 

of the compensation fiber have can be distinguished. In pre- 

 

 

Figure 1.13: Examples of refractive index profile of a (a) Standard Single Mode 

Fiber(b) Dispersion Compensating Fiber (c) Dispersion-Shifted Fiber and (d) 

Non-Zero Dispersion-Shifted Fiber. 
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compensation schemes, DCF is located before the SSMF to compensate 

for, while in post-compensation the compensation unit is placed after it. 

Both arrangements are used at the same time in the pre- and post-

compensation scheme [33]. Fig. (1.14) illustrates the arrangements used 

in all-optical compensation together with the evolution of chromatic 

dispersion along the distance for each scheme.  

In multi-wavelength optical systems, together with chromatic 

dispersion value management, dispersion slope compensation is 

required [29]. Dispersion slope is the parameter that represents the 

quantity of change in chromatic dispersion value per unit of wavelength. 

If no slope compensation is considered, only the designed wavelength 

will be correctly compensated, leading to distortions in the transmission 

over the uncompensated wavelengths. Fig. (1.15) shows the dispersion 

distribution over the distance with slope compensation and without 

slope compensation. 

Next generation systems operating at higher bit rates will require 

more advance techniques than the use of DCF due to its losses and cost. 

In this context, several types of optical adaptive compensators have been 

developed, employing different structures such as Fiber Bragg Gratings 

(FBG), Gires-Tournois interferometers or Virtually Imaged Phased Array 

(VIPA). FBG are reflection-based devices whose response is configured 

by the modulation of the refractive index of the fiber core. Dispersion 

management is achieved by applying a voltage to the grating, which 

results in an effective index variation [34]. In this context, its main 

characteristics are bandwidth and low losses, together with tuning high 

resolution and low velocity. VIPA systems employ mirrors and lenses to 

adjust the optical propagation wavelength, leading to a variation in the 

angular dispersion [35]. Its characteristics include bandwidth channel-

based response, tuning high resolution and moderate velocity and high 

insertion losses. Finally, Gires-Tournois interferometers present a 

tunable periodic time delay dependent of the distance between the 

interferometer mirrors. Dispersion management is carried out by 

varying the light input angle to the interferometer [36]. This method 

presents high insertion losses. 
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Figure 1.14: Different chromatic dispersion compensation schemes (a) Pre-

compensation (b) Post-compensation and (c) Pre- and Post- compensation. 

 

 
Figure 1.15: Dispersion over distance for (a) dispersion slope compensation and 

(b) no dispersion slope compensation. 
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In the field of silicon photonics, dispersion management consists of 

the design of waveguide dispersion in order to obtain certain dispersion 

properties. Therefore, dispersion tailoring is carried out by the 

appropriate design of the waveguide geometrical parameters such as its 

thickness H, its etch depth h and its width W [24, 37, 38], as shown in the 

rib waveguide illustrated in Fig. (1.16). By means of dispersion tailoring 

of the considered structure, several processes and functionalities can be 

enhanced, such as nonlinearities [39], soliton generation [40] or 

broadband optical parametric gain [41], among others. 

     

1.4. Motivation and Outline 

The objective of this Thesis is to investigate chromatic dispersion 

tailoring in the two transmission mediums mainly used in optical 

communications systems, photonic integrated waveguides and optical 

fibers. In this context, the tailoring is carried out through modifications 

in the geometry of both structures. In the case of integrated waveguides, 

different parameters are varied and its effect in the dispersion profile is 

analyzed. Likewise, dispersion tailoring has been realized in a 

modification of conventional optical fiber known as tapered fibers 

bymeans of a stretching process. Furthermore, other functionalities of 

tapered fibers have been investigated. To do this, results obtained by 

carrying out several experiments, supported by theoretical calculations 

when required, are shown. 

 

 

Figure 1.16: Geometrical parameters employed for dispersion tailoring in a SOI 

rib waveguide.  
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According to the university regulations, the format for this thesis is a 

compilation of articles together with a theoretical introduction to 

provide the framework of the presented work as well as a discussion of 

the results obtained. The thesis is organized in five chapters. Chapter 1 

has presented the required background in optical communications 

systems and chromatic dispersion fundamentals, as well as the necessity 

of dispersion management in order to avoid signal degradation in the 

transmission medium. Chapter 2 introduces photonic technology and 

studies chromatic dispersion tailoring in integrated waveguides. In 

addition, it describes the experimental dispersion measurements carried 

out in this work for this type of waveguides. Chapter 3 provides an 

investigation of chromatic dispersion tailoring in tapered fibers, 

providing both theoretical and experimental analysis. Moreover, 

different tapered fiber-based experiments showing several 

functionalities such as pulse shaping, sensing, mode conversion and 

nonlinearities are presented. Chapter 4 provides a general discussion of 

the results obtained throughout this thesis and, finally, Chapter 5 

summarizes the main conclusions of this work.           

 

 

 

 

 

 

 

 

 



29 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



30 
 

 

 

 

 

Chapter 2 

 

Integrated Photonics  
 

The advantages of using silicon-based optical devices instead of 

traditional electronics include a potential decrease in size due to the high 

integration of different opto-electronic components on a single substrate 

and full compatibility with Complementary Metal Oxide Semiconductor 

(CMOS) fabrication processes used in the microelectronic industry [42]. 

Silicon is a dielectric material which is mainly characterized by a high 

refractive index and an absorption coefficient which is negligible in the 

wavelength range from 1.11 µm to 7 µm, making it suitable for optical 

systems in the second and third telecommunication windows. The use of 

silicon presents, however, some disadvantages such as high propagation 

losses due to roughness in the walls of the waveguide, low electro-optical 

coefficient, low light emission efficiency and high losses when carrying 

out fiber coupling due to large differences between the mode areas [43]. 

Nevertheless, recent progress in nanofabrication techniques has allowed 

the creation of a large number of high performance photonic 

components based on silicon that have successfully overcome their 

initial limitations as a material for the optical band.  
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One of the most developed silicon-based platforms is the Silicon-On-

Insulator technology, well established in the microelectronics industry. 

This technology leverages the high refractive index of silicon, n=3.47 at 

λ=1.55 µm [14], and the low refractive index of silica, SiO2, n=1.44 at 

λ=1.55 µm [14], to introduce a high index contrast and thus favor light 

propagation and increased integration density. Furthermore, SOI wafers 

are affordable and show excellent crystalline quality. A conventional SOI 

wafer comprises a thin silicon layer with a thickness of about 200 – 250 

nm, deposited on a SiO2 layer of approximately 1 – 3 µm thick whose 

main function is isolation. They are deposited on a thicker substrate 

layer of about 700 µm, also made of silicon that adds mechanical 

resistance to the structure. Figure (2.1) illustrates the different layers 

which form a standard SOI structure. Nevertheless, the market offers SOI 

wafers of a variety of thicknesses and sizes depending on the 

manufacturer.  

One of the main challenges of this technology has been the 

manufacturing of optical waveguides with low propagation losses. 

Optical waveguides are used to confine and guide light from one side of 

the chip to the other and for efficient interconnection among optical 

devices. In addition, the waveguides may face an optical fiber in case one 

is required to inject and/or extract light from the integrated circuit. 

Nevertheless, high light confinement implies higher field intensities on 

the waveguide walls and, consequently, higher propagation losses due to 

surface roughness.  This issue has already been addressed and low-loss 

SOI waveguides having propagation loss of 0.3dB/cm are currently 

available [44]. To sum up, SOI technology makes it possible to 

 

 

Figure 2.1: SOI wafer diagram showing its different layers. 
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manufacture integrated optical waveguides and devices with low losses 

and high light confinement, enabling the design of high integration 

density circuits with extremely compact dimensions of the order of 

nanometers [43].  

The propagation characteristics of an optical waveguide mainly 

depend on its geometry, material properties and light polarization and 

wavelength. Fig. (2.2) shows some geometries usually employed in the 

manufacturing of integrated optical waveguides [27, 43]. In a single-

mode waveguide, all of the power traveling through the waveguide is 

confined in one mode, which is usually desirable in communications 

systems in order to avoid modal dispersion and obtain higher 

bandwidth-distance products. The fundamental mode, TE0 or TM0 

depending on the dominant polarization, shows no nulls in the entire 

cross-section of the waveguide, contrary to what happens in higher 

order modes. Usually, when the waveguide is small enough it presents a 

single-mode behavior while for increasing dimensions lead to the 

gradual appearance of higher order modes [24]. 

As in the case of optical fiber, the analysis of the guided light inside 

the optical waveguide follows Maxwell’s electromagnetic theory. There is 

 

 

Figure 2.2: Different geometries of SOI integrated waveguides. (a) Planar 

waveguide, (b) Buried channel waveguide, (c) Rib waveguide, (d) Ridge 

waveguide, and (e) slot waveguide.  
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often no need for a rigorous study of Maxwell’s equations and simpler 

models like geometrical optics can be used. However, the direct 

modelling and simulation of light propagating through a SOI waveguide 

becomes difficult when using current software methods due to high 

computational requirements. One possible solution is the so-called 

effective index method, which transforms the three-dimensional 

structure into a two-dimensional model [12] in order to reduce the 

computational load. Considering that the propagation constant β is 

related to the effective index neff according to the expression 

𝛽 = 𝑘0 𝑛𝑒𝑓𝑓                 (2.1) 

the method is based on approximating the propagation constants of  

two- and three-dimensional structures by replacing the refractive index 

of the waveguide by the effective index of the structure. Taking into 

account this effective index, it is considered that the propagation 

constant of the two-dimensional solution is equal to the propagation 

constant of the original three-dimensional structure. Since the 

waveguide thickness in the removed dimension is considered in the 

effective index value no information is lost and accurate results are 

obtained.    

 

2.1. Dispersion Tailoring in Integrated 

Photonics 

Chromatic dispersion in integrated photonic waveguides is 

investigated in Paper A. Two different geometries are considered, 

symmetrical and asymmetrical vertical slot waveguides, depending on 

the location of the slot. The mode propagation along the waveguides is 

simulated by means of the Beam Propagation Method (BPM) using the 

commercial Software RSoft [45] and the wavelength dependent effective 

refractive index of the fundamental mode is extracted. Dispersion 

profiles in a broad bandwidth centered at ∼1.5 µm are obtained using 

Eq. (1.26).  Results are analyzed, showing two different dispersion 

regimes that depend on the geometrical parameters of the waveguides. 

Moreover, dispersion tailoring is proposed showing that the waveguide 

dispersion profile can be tuned through design of its geometrical 
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parameters. Applications that are influenced in any way by the 

dispersive properties of photonic integrated waveguides are expected to 

benefit from this work by using it as a guideline when designing the 

dimensions of the nanowire.  Characteristics such as zero dispersion 

wavelength location or dispersion profile shape must be designed for 

applications such as nonlinear generation and ultrashort pulse 

propagation.  

 

2.2. Experimental Dispersion 

Measurements 

Dispersion in integrated optics is often characterized using the 

Interferometry technique. To do this, a Mach-Zehnder Interferometer 

configuration is commonly employed [24, 37, 46, 47,48].  

Fig.(2.3.) shows two different interferometry configurations used in 

chromatic dispersion experimental measurements. In Fig. (2.3.a) a basic 

interferometry diagram can be observed, similar to that used to measure 

dispersion of short lengths of fiber, wherein the reference path can be 

constituted by a free-space propagation path or by an arm containing a 

VODL. In this case, part of the signal emitted by a broadband source is 

injected into the reference path while the rest is injected and collected 

from the sample by means of lensed fibers. The state-of-polarization of 

the light injected into the sample is adjusted using a polarization 

controller and a polarizer. Finally, the output spectrum is monitored 

using an Optical Spectrum Analyzer (OSA). Fig. (2.3.b) shows the 

fundamental blocks of the aforementioned scheme. As in the fiber-based 

MZI configuration, an OSA allows viewing of the interference pattern.  

Chromatic dispersion and group index in silicon nanophotonic 

waveguides have been experimentally measured in Paper B. Two 

different waveguide geometries were considered, strip waveguide and 

slot waveguide. The measurement technique is based on a fiber-based 

Mach-Zehnder Interferometer wherein a counter-propagating reference 

beam is introduced. The main advantage of this method lies in the 

cancellation of the thermal fluctuations present in the system, which 

provides greater stability to the resulting interference pattern. 



35 
 

Theoretical calculations for both dispersion and group index are carried 

out for comparison purposes and found to agree with the experiments. 

The theoretical chromatic dispersion is obtained by calculating the 

effective refractive index as a function of wavelength employing the 

commercial software RSoft and Eq. (1.26), while the theoretical value of 

the group index is extracted from Eq. (1.20). 

 

 

Figure 2.3: Interferometry method in Integrated Optics with (a) fiber-based MZI 

and (b) integrated MZI. 
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Chapter 3 

 

Tapered Fibers 
 

 

Tapered fibers have emerged as a promising device due to their 

advantageous characteristics, such as relatively low loss, high optical 

confinement, intense evanescent fields and tunable waveguide 

dispersion [49]. In addition, the tapered fiber fabrication process is 

relatively simple, based on stretching and heating a standard single-

mode fiber. Its working principle is based on the transformation 

experienced by the core fundamental mode to a cladding mode in its 

propagation along the optical tapered fiber [50]. All this has allowed 

tapered fibers to be widely used in multiple applications. 

A tapered fiber is formed by a stretched fiber section, a waist, 

allocated between two transition regions as shown in Fig. (3.1). Tapered 

fibers are geometrically characterized by three parameters: taper region 

length Tt, waist length Lw and waist diameter ρ. In addition, the 

geometric profile of the transition regions must be well determined. 

Several fabrication processes have been developed in recent years [51].  
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Figure 3.1: Tapered fiber profile with its main geometric parameters. 

 

For example, by introducing the fiber into a micro furnace formed by a 

sapphire capillary tube heated by a carbon dioxide (CO2) laser, clean and 

reproducible tapered fibers can be obtained [52]. Another method 

employed is to use an electric stripe heater accurately designed to 

preserve heat and stabilize the temperature distribution during the 

manufacturing process [53]. Furthermore, a fabrication     technique that 

reduces the surface corrugations based on the use of a micro-droplet of 

hydrofluoric acid (HF) for etching the tapered fiber is presented in [54]. 

However, one of the most popular and simple methods to 

manufacture tapered fibers is the so-called Flame Brushing Technique 

[49, 55]. This technique consists of uniformly heating a fiber section 

while it is being stretched. For this purpose, a small flame formed by a 

mixture of butane and oxygen is mounted in a three axis translation 

stage which allows precise positioning of the flame along with controlled 

oscillation over a desired distance with constant speed. This distance 

will determine the waist length of the tapered fiber. Thus, the flame can 

be accurately placed and displaced, thereby ensuring that the flame 

heats the fiber uniformly. The fiber coating is removed and the fiber is 

placed horizontally on a linear stage by two fiber holders. When the 

flame begins to heat the fiber, the latter is stretched in opposite 

directions by means of the displacement of the linear stage driven by 

stepper motors [55]. Moreover, the transmission spectrum of the 

tapered fiber during the process is monitored using an Amplified 

Spontaneous Emission (ASE) source and an OSA. Fig. (3.2) shows the 

experimental setup of the flame brushing technique, which allows the  
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Figure 3.2: Experimental setup of flame brushing technique used in tapered 

fibers fabrication. 

 

fabrication of tapered fibers with precise length of the waist and 

constant diameter.   

Transition regions can present a multitude of geometric profiles such 

as linear, exponential or parabolic, among others, depending on several 

parameters related to the fabrication process. Transition can be 

represented by a model that relates its shape with the elongation length 

and the length of the hot-zone, i.e. the fiber segment being heated [49, 

50]. In an instant t, the equivalent length of the hot-zone delimited by the 

ends A and B is given by L and the fiber diameter is denoted by ρ, as 

shown in Fig. (3.3). After a short period of time δt, the heated fiber is 

subjected to a stretching process in which its length becomes L+δx and 

the value of its diameter becomes ρ+δρ. The model is based on the idea 

of the volume conservation of the fiber before and after the heating and 

stretching step, so the following expression must be satisfied [49, 50]: 

𝜋(𝜌 + 𝛿𝜌)2(𝐿 + 𝛿𝑥) = 𝜋𝜌2𝐿  (3.1)  

After mathematical operations and integration of Eq. (3.1), the radius 

profile function is given by: 

𝜌(𝑥) = 𝜌0 𝑒𝑥𝑝 (−
1

2
∫

𝑑𝑥

𝐿
)   (3.2)   

where ρ0 is the initial radius of the fiber. The tapered fiber profile can be 

obtained by specifying the shape required for the transition regions.  For 

this purpose, it is necessary to relate the length of the hot-zone with the  
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Figure 3.3: Schematic diagrams of a SMF (a) before heating, (b) a short while 

after heating and stretching. 

 

elongation length during the fabrication process. As an example, a linear 

function is considered: 

𝐿(𝑥) = 𝐿0 + 𝛼𝑥    (3.3) 

where L0 is the initial length of the hot-zone and α is a constant which 

can range from -1 to 1. Then, the expression of the waist diameter is: 

𝜌(𝑥) = 𝜌0 (1 +
𝛼𝑥

𝐿0
)
−1 2𝛼⁄

   (3.4) 

As can be gathered from Fig. (3.4), the distances before and after the 

heating and stretching process satisfy the relationship: 

2𝑧 + 𝐿 = 𝑥 + 𝐿0    (3.5) 

Therefore, if we substitute Eq. (3.5) in Eq. (3.4): 

𝜌(𝑧) = 𝜌0 (1 +
2𝛼𝑧

(1−𝛼)𝐿0
)
−1 2𝛼⁄

  (3.6) 

Giving different values to the parameter α, different geometric shapes for 

the transition regions can be obtained.  
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Figure 3.4: Schematic diagrams of the tapered fiber section (a) at the start of 

tapering and (b) at a time t during tapering.   

 

In the wave propagation along the tapered fiber, the field 

distribution is modified due to the size differences experienced by core 

and cladding in the transition regions. If the size reduction is slow 

enough, most of the propagating power remains in the fundamental 

mode and suffers no coupling to higher order modes. In this context, it is 

said that the tapered fiber meets the Adiabaticity criteria [56]. The 

profile of an adiabatic tapered fiber is shown in Fig. (3.5.a). However, if 

the transition region presents an abrupt change in the diameter of the 

fiber, Fig. (3.5.b), mode conversion takes place. As a result, power is 

transferred from the fundamental core mode 𝐿𝑃01
𝑐𝑜𝑟𝑒  to the two nearest 

cladding modes, the fundamental mode 𝐿𝑃01
𝑐𝑙𝑎𝑑𝑑𝑖𝑛𝑔

 and a higher order 

mode 𝐿𝑃0𝑚
𝑐𝑙𝑎𝑑𝑑𝑖𝑛𝑔

 [57]. These two modes interfere with each other in the 

output taper due to their different propagation constants giving rise to 

an interference pattern, as that shown in Fig. (3.6). The phase difference 

Δϕ between these two modes can be expressed as: 

Δ𝜙 =
2𝜋Δ𝑛𝑒𝑓𝑓𝐿

𝜆
    (3.7) 
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Figure 3.5: (a) Adiabatic and (b) Non-adiabatic tapered fiber. 

 

 

Figure 3.6: Transference function of a Non-Adiabatic Tapered Fiber. 

 

where Δneff is the effective refractive index difference between the two 

propagating modes, L is the interference length and λ is the operating 

wavelength. Therefore, by varying any of the parameters involved in Eq. 

(3.7), the spectral response of the tapered fiber can be modified. When 

higher order modes reach the waist, they cannot be guided inside the 

fiber anymore and they are diffracted as radiating modes. Furthermore, 

when the refractive index of the external medium is higher than that of 

the cladding, the mode is lost by scattering and absorption [57]. 

Subsequently, in the output transition region, the beating modes power 

is recombined in the core fundamental mode [49, 51, 58]. 
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3.1. Dispersion Tailoring in Tapered 

Fibers 

Tapered fibers are widely employed in many applications. An example 

can be found in the use of tapered fibers in dispersion compensation. 

This is due to the fact that it presents a large anomalous dispersion value 

in the waist that can compensate for normal dispersion in the system. 

Dispersion tailoring in tapered fibers is therefore possible by means of 

the variation of the effective indexes difference of the modes propagating 

along the waist, on one hand, and the waist shape on the other hand, as 

can be extracted from Eq. (3.7).  

A common way to introduce changes in the effective indexes 

difference is to modify the refractive index of the surrounding medium. 

In this context, the dispersion characteristics of the tapered fiber can be 

tailored by immersing the structure in different liquids. Dispersion 

tailoring in different fluids such as acetonitrile, pentane and hexane [59] 

or even heavy water [60] has been demonstrated.   

Regarding to the waist shape, dispersion engineering can be carried 

out by modifying the waist geometrical parameters, such as its length 

and diameter. Initially, when considering single mode fibers with 

diameter values of 125 µm, tapered fibers present normal dispersion. 

However, as waist diameter decreases in the tapering process, the 

amount of anomalous dispersion in the tapered fiber increases. 

However, it is important to note that loss increase with the waist 

reduction, thus a careful design taking into account these considerations 

is required [61]. Furthermore, the zero dispersion wavelength of the 

tapered fiber is shifted to shorter wavelengths when the waist is 

decreased, being able to present even a second zero dispersion 

wavelength [62]. Also, the pump wavelength influence must be 

considered when designing the desired dispersion profile [63]. Finally, 

dispersion engineering by variations in the taper length is analyzed in 

the next paper presented in this work and explained in the next 

paragraph.     
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3.2. Experimental Dispersion 

Measurements 

Chromatic dispersion tailoring in a nonadiabatic tapered fiber is 

experimentally obtained and analyzed in Paper C. First, by using an 

Optical Network Analyzer (ONA), transmission response, group delay 

and chromatic dispersion in function of wavelength are acquired for a 

single-mode fiber and a tapered fiber with the same length and 

characteristics. Results for both fibers are compared in order to analyze 

the influence of the fiber taper. Subsequently, dispersion tailoring is 

carried out in the tapered fiber by stretching it into three different points 

of elongation. As known, the transmission response of the tapered fiber 

depends on the waist length and the effective refractive indexes of the 

propagating modes. Therefore, by stretching the tapered fiber, its 

propagation characteristics can be modified in a dynamic and very 

simple way leading to the fine tuning of the resulting dispersion profile. 

Furthermore, coarse dispersion tailoring is obtained by the modification 

of the surrounding medium of the tapered fiber, which results in local 

maximum dispersion values of 700 ps/nm*km, more than 40 times the 

conventional dispersion value of 17 ps/nm*km at 1550 nm present in a 

SSMF.    

 

3.3. Tapered Fiber Applications 

Tapered fibers can be used in the generation of the so-called effect 

SuperContinuun (SC), based on the nonlinear spectral broadening 

experienced by the pulses of a narrow band source, resulting in a 

spectrally continuous output response in a very wide bandwidth [64]. SC 

generation is a nonlinear process which depends on several parameters 

such as the fiber length, the dispersion profile, nonlinearities generated 

or the input pump wavelength, among others. In addition to the 

possibility of easily tailor the dispersion profile and shift the zero 

dispersion wavelength, the use of tapered fibers in supercontinuum 

generation presents the advantage of not affecting the coherence of the 

generated supercontinuum spectrum, as can happen when using other 

devices such as PCF for this purpose [62, 65].     
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Another application where tapered fibers can be satisfactorily used 

is in the optical power coupling to microresonators. Microresonators are 

very interesting devices that are widely utilized in processes such as 

filtering, sensing, nonlinear optics or Cavity Quantum Electrodynamics 

(QED), among many others [66]. In order to carry out the optical 

coupling, the propagating constant of the mode travelling through the 

coupling structure must match the propagation constant of the desired 

mode inside the cavity. Besides the use of tapered fibers, other two main 

methodologies are developed for light coupling into and out of the 

microresonator based on prisms and side-polished fibers, respectively. 

In the former case, the evanescent field present in the surface of the 

prism is composed of several free-space modes which are coupled to the 

desired mode in the cavity. In the case of the side-polished fibers, the 

propagation constant of the mode traveling through the fiber is much 

more similar to the mode inside the cavity than in the case of prism 

coupling. However, this method is limited by the size of the 

microresonator [67]. The use of tapered fibers for light coupling into and 

out of microresonators is shown to have a higher coupling efficiency 

than the previous two methods, as well as lower insertion loss.  

Together with the already mentioned applications, tapered fibers 

can be employed in many others. Among them, processes such as pulse 

shaping, sensing, mode conversion and nonlinear generation will be 

described a little more in depth in the following sections of this work.   

 

3.3.1. Pulse Shaping 

In some contexts, the modification of different characteristics of the 

optical pulse such as amplitude, phase and polarization state is required. 

The set of techniques that allows the generation of nearly any user 

defined pulses is called Pulse Shaping [68, 69]. In this work, the Fourier 

transform pulse shaping is considered, as it is the most commonly used 

technique for pulse shaping purposes. To this end, an optical pulse 

defined by functions in time and frequency domains denoted ein(t) and 

Ein(ω), respectively, passes through a pulse shaper which presents a 

spatial mask M(x), as can be seen in Fig. (3.7). The transference function 

of the pulse shaper is a complex function representing both intensity and 
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phase filtering given by M(αω), where α is the spatial dispersion at the 

masking plane [68]: 

𝛼 =
𝜕𝑥

𝜕𝜔
       (3.8) 

Therefore, the field at the output of the pulse shaper is given by 

multiplying the spectrum of the input pulse by the spectral response of 

the pulse shaper as follows: 

𝐸𝑜𝑢𝑡(𝜔) = 𝑀(𝛼𝜔) ∙ 𝐸𝑖𝑛(𝜔)               (3.9) 

In order to obtain the field at the output of the pulse shaper in the time 

domain, the inverse Fourier transformation of Eout(ω) must be 

performed: 

𝑒𝑜𝑢𝑡(𝑡) = 𝑒𝑖𝑛(𝑡) ∗ 𝑚(𝑡 𝛼⁄ )               (3.10) 

where 

𝑚(𝑡 𝛼⁄ ) =
1

2𝜋
∫𝑀(𝛼𝜔)𝑒𝑗𝜔𝑡  𝑑𝜔               (3.11) 

is the spectral resolution impulse response function. As shown in Fig. 

(3.7), a signal function of both space and time is obtained at the pulse 

shaper output. This is due to spatial variations and diffraction in the 

mask, that lead to different frequencies leaking in different locations of 

the mask and experiencing different spatial reshaping. Therefore, the 

output signal of the pulse shaper must traverse a spatial filter to remove 

this dependency. Whereas the spatial filter isolates a Gaussian spatial 

mode, the output field expressions in the time and frequency domains 

are given by [68]:  

𝐸𝑠ℎ𝑎𝑝𝑒𝑑(𝜔)~[∫ 𝑑𝑥 𝑀(𝑥) 𝑒𝑥𝑝[−2(𝑥 − 𝛼𝜔)2 𝑤0
2⁄ ]] 𝐸𝑖𝑛(𝜔) (3.12)   

𝑒𝑠ℎ𝑎𝑝𝑒𝑑(𝑡)~𝑒𝑖𝑛(𝑡) ∗ [𝑚(𝑡 𝛼⁄ ) 𝑒𝑥𝑝(−𝑤0
2𝑡2 8𝛼2⁄ )]   (3.13) 

where w0 is the Gaussian field radius.  

The operation principle of a pulse shaper based on optical Fourier 

transformations between time and frequency domains is shown in Fig. 

(3.8). First, a decomposition of the incident pulse into its spectral  
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Figure 3.7: Operation principle of pulse shaping. 

 

Figure 3.8: Schematic of 4f Fourier-transform pulse shaping arrangement. 

 

components is conducted by a spectral disperser, such as a grating. Then, 

the spectral components are focused by a lens of focal length f. The 

spectral components are modulated as they pass through the spatially 

patterned mask. Subsequently, these components are recombined by 

means of a focusing element and a spectral disperser. Finally, the optical 

pulse is reconstructed using a mirrored setup consisting of an identical 

focusing element and spectral disperser, resulting in an output pulse 

whose shape is the Fourier transform of the pattern transferred from the 

mask to the frequency spectra of the input pulse. This configuration, 

without the mask, is called 4f pulse shaping arrangement because it 

introduces no temporal dispersion if the 4f condition is met [68, 69]. 

The ability of a pulse shaper to generate a wide range of different 

waveforms is called programmability. The most popular arrangements of 
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programmable Fourier transform pulse shapers are based on the use of 

different types of modulators to conform the mask. Fig. (3.9) shows three 

typical configurations of modulator-based pulse shapers: Liquid Crystal 

Spatial Light Modulator (LC-SLM), Acousto-Optic Modulator (AOM) and 

Acousto-Optic Programmable Dispersive Filters (AOPDF) [68, 69].  

LC-SLMs rest on the spatial dispersion and modification of the 

refractive index value of the wavelength components of the incident 

pulse inside the pulse shaper [70]. The refractive index variation is 

carried out by applying voltages to the electrodes of the modulator, 

resulting in a delay of some wavelength components over others. LC-SLM 

is a widely used device in phase-only pulse shaping. As seen in Fig. 

(3.9.a), LC-SLM is formed by a thin region of a liquid crystal material 

located between two glass plates.  In turn, the liquid crystal material is 

formed by a set of long and thin molecules that do not present 

translational order but have orientation order. When no voltage is 

applied to the modulator, the alignment of the molecules along the y 

direction provides a higher refractive index to the light polarized in that 

direction than that of the light polarized along the x direction. 

Conversely, when an electric field is applied to the LC-SLM, the molecules 

tilt along the longitudinal direction z, modifying the phase of the light 

polarized along the y direction. 

AOM pulse shapers present a similar configuration to the 4f Fourier-

transform pulse shaping depicted in Fig. (3.8). However, in the AOM 

arrangement the grating and lens are positioned displaced to account for 

the beam deflection caused by the acousto-optical modulation, as can be 

seen in Fig. (3.9.b). An acousto-optic modulator fed by a RF arbitrary 

waveform generator is used as mask generator [71]. In the modulator, 

the RF electrical signal drives a piezoelectric transducer, which 

generates an acoustic wave. Modulation of the incident pulse in the pulse 

shaper occurs due to the diffraction experienced by the light due to the 

refractive index changes that the acoustic wave produces during its 

propagation. Programmability in this type of pulse shaper is achieved if 

the RF signal is modulated, as the acoustic wave profile is a scaled and 

delayed version of the RF signal.   

Fig. (3.9.c) shows the simplified operation principle of the third type 

of pulse shaper considered in this work, AOPDF pulse shapers [72]. As in 

the AOM pulse shapers, a programmable RF signal drives the 
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piezoelectric transducer creating an acoustic wave which replicates 

spatially the temporal shape of the RF signal. The incident pulse in the 

AOPDF propagates with certain polarization along one of the major axes 

of a photo elastic crystal until it encounters a crossed polarizer that 

extinguishes the signal. This occurs when the incident pulse suffers no 

interaction along its propagation through the AOPDF. However, if an 

acoustic wave propagating collinearly with the incident pulse is 

launched, the interaction of the two signals causes a change in the 

birefringence which leads to a light coupling from the input polarization 

to its orthogonal polarization. In this latter state of polarization, the 

signal can propagate through the crossed polarizer. If the RF signal is a 

single tone, the described arrangement results in an optical band pass 

filter whose center frequency can be tuned by varying the RF signal 

frequency. 

Due to the large number of different waveforms that can be obtained  

[73], pulse shaping technique for ultrashort pulses is widely used in 

many applications such as spectroscopy, microscopy, signal processing, 

dispersion compensation, nonlinear optics, spectral phase encoding and 

decoding, filtering and biomedical imaging, among others  [68, 74]. 

Although pulse shaping methods based on Fourier transform are the 

most widely used, some other pulse shaping alternatives have been 

developed by means of nonlinear frequency mixing [75] or LFBG [76], 

among others. In fact, a pulse shaper can be considered as a filter which 

can emulate any linear combination of pulses and, therefore, devices 

such as Michelson or Mach-Zender interferometers can be contemplated 

as pulse shapers too. Thus, devices such as tapered fibers can be also 

considered for pulse shaping applications, as their operating principle is 

similar to that of a MZI.              

A method for femtosecond pulse shaping by using tapered fibers is 

proposed and demonstrated in Paper D. An in-line combination 

consisting of one fixed and one tunable tapered fiber is considered. By 

introducing a stretching in the tunable tapered fiber, the optical 

response of the combination experiences a spectral shift due to the 

variation in the interference conditions between the tapered fibers. 

Therefore, different numbers of pulses with distinct amplitudes are 

observed in the output optical autocorrelation when considering 

different elongation points for the tunable tapered fiber. In addition, the 

effect of uncompensated chromatic dispersion in the experimental setup  
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Figure 3.9: (a) Liquid crystal spatial light modulator (LC-SLM), (b) acousto-optic 

modulator (AOM), and (c) acousto-optic programmable dispersive filters 

(AOPDF) pulse shaper configurations. 
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is analyzed for both normal and anomalous values.  Results show the 
generation of a train of pulses due to the pulses overlapping which 
depends on the quantity of uncompensated dispersion present in the 
system.       
 

3.3.2. Sensing 

An optical sensor is a device based on optical technology capable of 

detecting a variation in the monitored medium. This variation causes a 

change in the sensor response that can be quantified and processed later. 

Optical sensors have many advantages such as electrical passiveness, 

Electromagnetic Interference (EMI) immunity, resistance to hostile 

environments such as high temperatures or chemical reagents, 

integration capabilities and mass production, high degree of 

biocompatibility, high resolution and sensitivity and remote operation 

capability, among others. Optical sensors are of widespread use in 

different fields such as industry, environmental control, physics, 

chemistry, medicine and biology [77].  

Optical sensors can be used to detect different measurands such as 

temperature, pressure, displacement, refractive index, strain, vibration, 

rotation, acceleration, humidity, velocity and many more. To do this, 

optical sensors are designed in two possible configurations depending 

on where the interaction between the propagating light inside the fiber 

and the medium to be sensed is performed. In the so-called intrinsic 

optical sensors, the internal structure of the fiber converts the detected 

changes in the monitored medium into intensity, phase, frequency or 

polarization variations of the light propagating inside the fiber.  

Conversely, in the extrinsic optical sensors the detection and signal 

variation take place outside the fiber. Then, the modified signal is 

recoupled again inside the fiber [78]. In addition, optical sensors can be 

classified into three types depending on the surface used to interact with 

the medium under test as point sensor, distributed sensor and quasi-

distributed sensor [79]. Optical sensors of point type perform sensing in 

a particular location, such as a fiber tip, as shown in Fig. (3.10.a). On the 

other hand, distributed sensors employ a larger detection surface, such 

as a long length of fiber, as depicted in Fig. (3.10.b). Finally, the third type 

of sensor is the quasi-distributed optical sensor, which consists of a 

combination of the above two types. In this case, some specific sections 

located along the optical fiber are used in the sensing process.  
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Figure 3.10:  Classification of optical sensors depending on the sensing surface: 

(a) point sensor, (b) distributed sensor, and (c) quasi-distributed sensor. 

 

An optical sensor is characterized by several parameters that 

quantify the sensor operation. The main parameters are the sensitivity, 

resolution, detection limit, response time, range operability and 

repeatability [80]. The sensitivity S is defined as the spectral change 

experienced by the sensor response per unit of change. The resolution R 

of a sensor is given by the smallest variation that can be accurately 

detected. From the relation between these two parameters, the detection 

limit DL of the sensor, i.e. the minimum variation in the sensed medium 

that can be detected by the sensor, can be expressed as: 

𝐷𝐿 =
𝑅

𝑆
                  (3.14)  

Moreover, the response time τ can be defined as the time required for 

the sensor output to change from the initial state to 90% of the final 

value. The operating range is the interval between the maximum and the 

minimum value of the parameter to be sensed that can be measured. 

Finally, the repeatability is the parameter that indicates the variation 

produced between two equal measures at different time instants.  

In recent years, many structures have been widely studied and 

demonstrated for different types of sensing measurements. The main 

developed devices are based on the use of optical fibers, photonic 

crystals, surface plasmon resonances, interferometric techniques and 

optical ring resonators [81], among others. Obviously, depending on the 

desired characteristics for the sensor, the technology to be employed 

must be carefully chosen.  
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In optical fiber based sensors the main device used to carry out 

sensing measurements is a Fiber Bragg Grating, written inside the optical 

fiber. This periodic structure reflects a specific pulse component at 

wavelength λB, determined by [79, 82]:     

 𝜆𝐵 = 2𝑛𝑒𝑓𝑓Λ             (3.15) 

where λB is named Bragg wavelength, neff is the effective refractive index 

of the core and Λ is the grating pitch.  Therefore, the operation principle 

of a FBG-based sensor lies in the detection of a spectral shift of the Bragg 

wavelength component as a function of the parameter to be measured, as 

seen in Fig. (3.11). 

A modification realized on this structure that has attracted attention 

is the so-called Long Period Gratings (LPG), where the period is three or 

four orders of magnitude greater than in traditional FBGs. In LPG, the 

light propagating in the core mode is coupled into the cladding modes of 

the fiber for a particular wavelength given by [79]: 

𝜆𝐿𝑃𝐺 = |𝑛𝑐𝑜𝑟𝑒 − 𝑛𝑐𝑙𝑎𝑑𝑑𝑖𝑛𝑔| Λ               (3.16) 

where ncore and ncladding are the effective indexes of the core and the 

cladding, respectively. In this case, the sensitivity of the sensor is 

increased because the detection of the parameter under test is easier due 

to the increase in the field intensity. Moreover, Photonic Cristal Fibers 

(PCF) have also been used in the sensor fabrication because they exhibit 

advantageous characteristics such as high light confinement, which 

results in a high sensitivity value or the possibility to easily adjust the 

geometrical parameters of the structure in order to tailor the defect 

mode wavelength [83]. PCFs are periodic dielectric structures that give 

rise to a photonic bandgap. When a light beam impinges on the PCF, the 

spectral components whose wavelength is within the photonic bandgap 

are not propagated and therefore the PCF response presents a wide 

bandgap. However, if a defect is introduced into the core of the fiber, a 

transmission peak in the bandgap can be achieved, whose spectral 

position is very sensitive to changes in the external medium. Thus, 

sensing can be performed by the monitoring of the frequency shift 

experienced by the transmission peak.  
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Figure 3.11: Operation principle of an optical fiber sensor based on Fiber Bragg 

Gratings. 

 

Surface Plasmon Resonance (SPR) sensors are based on the 

detection of a change in the metal-dielectric interface of a structure by 

characterizing the spectral position of the resonances of the evanescent 

field propagating through the interface. These surface waves are called 

Surface Plasmon Waves (SPW) [81, 83]. There are four basic 

configurations in the SPR-based sensing: prism coupling, waveguide 

coupling, fiber coupling and grating coupling. These four methods are 

represented schematically in Fig. (3.12). In prism coupling, if the light 

propagating through the prism impinges at the metal-prism interface 

with a greater angle than the critical angle, it is totally reflected, thus 

generating an evanescent field that penetrates the metal layer. 

Waveguide coupling configuration presents a similar operation principle, 

wherein the light propagating through the waveguide generates an 

evanescent field at the waveguide-metal interface. This is also the case of 

fiber coupling, where the prism is replaced by a fiber where a small 

section is removed and then coated with a layer of metal. Lastly, grating 

coupling configuration occurs when light impinges in a metallic grating.  
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Figure 3.12: Configurations of surface plasmon resonance-based optical sensors 

(a) prism coupling, (b) waveguide coupling, (c) fiber coupling, and (d) grating 

coupling. 

 

If the diffracted light parallel to the grating surface has the same 

propagation constant as the surface plasmon, light will be coupled to the 

SPW [81, 83].   

Another technique employed in the realization of optical sensors is 

interferometry. Different types of interferometers have been used for 

sensing applications, such as Young interferometers or Hartman 

interferometers [81]. However, the most commonly used structure in 

interferometric based sensing is the Mach-Zehnder interferometer. In 

this type of device, a light beam is injected into the input waveguide and 

then is split at the Y-junction. One branch of the device is used as a 

reference, so that the light propagating along that path does not interact 

with the outer medium. However, the light propagating through the 

other arm of the interferometer interacts with the external medium 

through a window made in the simple cover, as shown in Fig. (3.13).  
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Figure 3.13: Mach-Zehnder interferometer-based sensor.  

 

After that, the signals from both arms of the interferometer are 

recombined in the Y-junction located at the output waveguide generating 

an interference pattern whose changes depend on the optical phase 

variations detected in the sensing arm of the device. 

The optical ring resonators based sensors make use of the 

Whispering Gallery Modes (WGM) or modes propagating inside the 

resonator, which have an evanescent field at the surface of the ring. 

When the evanescent field interacts with the outer medium, the   

response of the ring experiences a variation, as depicted in Fig. (3.14), 

because the resonance wavelength of the structure depends on the 

refractive index of the WGM as follows [81, 84]: 

𝜆𝑟𝑒𝑠𝑜𝑛𝑎𝑛𝑐𝑒 =
2𝜋𝑟𝑛𝑒𝑓𝑓 

𝑚
                (3.17)     

where r is the radius of the ring, neff is the effective index experienced by 

the resonant mode and m is an integer. The effective interaction length of 

the ring with the surrounding medium is given by: 

𝐿𝑒𝑓𝑓 =
𝑄𝜆𝑟𝑒𝑠𝑜𝑛𝑎𝑛𝑐𝑒

2𝜋𝑛
                 (3.18) 

where Q is the quality factor and n is the refractive index of the ring. The 

interaction length is related to the sensitivity of the ring sensor. Two  
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Figure 3.14: Optical ring resonator based optical sensor.  

  

other main geometries of optical resonators based on the same 

operation principle have been widely implemented and studied: disk-

shaped resonators and microtoroid-shaped resonators [81, 84]. 

Low-cost refractive index and strain sensing by means of an in-line 

combination of two tapered fibers is presented in Paper E. Several 

surrounding mediums such as air, deionized water and 2%, 4% and 6%   

ethanol concentration in deionized water are considered in the 

refractive index sensing measurements. Strain measurements are 

realized by stretching one tapered fiber. The cost reduction in the setup 

is achieved by using a broadband source and a power meter instead of 

the tunable laser pumping at the maximum slope point used in 

traditional approaches. Although this affordable configuration can lead 

to lower sensitivity values, this disadvantage is overcome by using the 

cascaded combination. Both refractive index and strain sensing 

measurements using a tunable laser are also presented for comparison 

purposes. In addition, power stability in the tapered fiber response is 

analyzed when using the broadband source and the tunable laser, 

showing a higher stability in the case of the broadband source approach.  
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   Paper F provides a manipulation guideline when tapered fibers are 

used in refractive index and sensing measurements. Several aspects 

required in order to not alter the results in an inappropriate way or 

break down the tapered fiber are taken into account. The main 

consideration in refractive index measurements is related to the 

placement of the tapered fiber. As the evanescent field present in the 

fiber interacts with the surrounding medium and modifies the device 

response, an adequate location of the tapered fiber must be chosen to 

avoid undesired influences in the sensor response. Other issues such as 

the location of the fiber anchor points or the creation of bubbles in the 

container are also considered. Modifications in the tapered fiber 

transmission when an improper bending is introduced in the device are 

analyzed for strain sensing applications.  

 

3.3.3. Mode Conversion 

Mode conversion in an optical fiber consists of power coupling from one 

mode to another due to variations in the fiber geometry or imperfections 

in its refractive index distribution. Mode coupling is widely used in 

devices and applications such as directional couplers, wavelength 

multiplexors, fiber amplifiers, Mach-Zehnder interferometers or micro 

resonators, among others. This effect is usually analyzed by means of the 

Coupled-Mode Theory (CMT), a technique that splits light into a known 

number of modes propagating through the ideal structure and 

subsequently calculates the coupling relations between modes when the 

variation in the waveguide geometry or refractive index is introduced 

[85]. 

In this work, power conversion between modes is realized by 

considering the introduction of a curvature in the optical fiber. The main 

consequence of the presence of the bend in the light propagation 

through the optical fiber is the transformation from guided modes to 

radiated modes. In the resolution of the equations related to the energy 

distribution inside the bent fiber the weak guidance approximation is 

typically used, which approximates the weakly guided fiber modes by 

linearly polarized electric fields, leading to a simplification in the 

resolution of the equations due to a scalar solution [86]. These equations 

are expressed in a system of cylindrical polar local coordinates r, ϕ, z, as 



59 
 

shown in Fig. (3.15). Therefore, the transverse field component E must 

be a solution of the wave equation given by: 

𝜕2𝐸

𝜕𝑟2 +
1

𝑟

𝜕𝐸

𝜕𝑟
+

1

𝑟2

𝜕2𝐸

𝜕𝜙2 +
𝜕2𝐸

𝜕𝑧2 + 𝑛2[1 + 2(𝑟 𝑅⁄ )𝑐𝑜𝑠𝜙]𝑘2𝐸 = 0 (3.19)        

where n is the refractive index, R is the radius of the curvature and k is 

the free space propagation constant. In Eq. (3.19), the effect of the bend 

is contained in the term describing the effective refractive index: 

𝑛𝑒𝑓𝑓 = 𝑛[1 + (𝑟 𝑅⁄ )𝑐𝑜𝑠𝜙]                (3.20) 

The solution of the wave equation describing the field distribution in a 

curved optical fiber is obtained by solving Eq. (3.19): 

𝐸 = 𝑒−𝑖𝛽𝑔𝑧 ∑ 𝐴𝜐𝜌  𝐽𝜐(𝜎𝜐𝜌𝑟)
∞
𝜐 𝜌=1 𝑐𝑜𝑠𝜐𝜙  (3.21) 

where βg is the propagation constant of the guided mode, A are the 

expansion coefficients of the method, J represents the Bessel functions 

and ν and ρ are the azimuthal and radial number mode, respectively [86, 

87].  

Once the modal field distribution is calculated, bend loss can be 

obtained as follows: 

2𝛼 =
4|𝐼1|2

𝜋3 2⁄ 𝛾1 2⁄ 𝑅3 2⁄ 𝐼2|𝐻𝜇
(2)

(𝜉)|
2                (3.22) 

with 

𝐼1 = ∫ 𝐸(𝑧)𝑑𝑧
𝑟0
0

                (3.23) 

𝐼2 = ∫ 𝑑𝜙 ∫ |𝐸|2𝑟 𝑑𝑟
𝑟0
0

2𝜋

0
                (3.24) 

   𝛾 = √𝛽𝑔
2 − 𝑛2

2𝑘2                 (3.25) 

where µ is the order number, n2 is the refractive index of the material 

surrounding the core fiber and H takes part in the expansion in term of 

Hankel functions. In the bending loss analysis in optical fibers, two 

different regions can be identified, the transition region and the pure 

bend region.   
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Figure 3.15: Local coordinates in a curved optical fiber.  

 

 

 

Figure 3.16: Transmission loss dependency on the curvature of the optical fiber.  

 

In the transition region, losses are due to conversion from the mode 

propagating through the straight fiber to the curved mode. Moreover, in 

the pure bend region losses are due to the uniform curvature [88]. A 

scheme of the two different areas that contribute to the transmission 
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loss distribution in a curved fiber can be shown in Fig. (3.16). When the 

phase velocity of the mode propagating guided within the fiber equals 

the speed of light, the guided mode becomes a radiated mode. Such 

radiation, which is emitted in the transverse direction of the curve,   

appears as discrete tangential rays varying as a function of the radius 

curvature [89]. As depicted in Fig. (3.16), the transition region presents 

oscillatory behavior, which is due to a forward and backward mode 

coupling between the guided mode and the leaky and cladding modes. 

Once the pure bend region is reached, beams progressively broaden and 

the radiated power becomes more uniform [90]. Also, note that the 

conversion between the transition region and the pure bend region 

depends on the radius of the curvature, resulting in shorter transition 

regions when considering smaller bend radii, since the leaky mode 

radiates faster. Furthermore, the energy distribution in a curved optical 

fiber differs from the typical energy distribution in a straight fiber as in 

the curved case the energy is shifted towards the outer boundary of the 

fiber [89, 91]. 

Mode conversion in a tapered fiber is presented in Paper G. 

Transformation between guided modes and radiating modes is forced by 

introducing a curvature in the fiber and the evolution of the energy 

distribution when considering different surrounding mediums such as 

air, deionized water and 5% ethanol concentration in deionized water is 

analyzed. The splitting of modes in a straight tapered fiber is obtained 

and exposed for comparison purposes. In addition, refractive index and 

strain measurements are carried out by using the curved tapered fiber 

arrangement. RI sensing measurements are realized in the outer 

mediums mentioned above and strain sensing is carried out by 

stretching the tapered fiber. The proposed sensor is based on measuring 

the radiation loss provided by the curvature instead of conventional 

approaches which monitor the spectral shifts of the sensor response; this 

results in a simpler and cheaper sensor.     

 

3.3.4. Nonlinearities 

Nonlinear optics refers to the study of the interaction of intense laser 

light with matter, which leads to a variation in the optical properties of 

the material [92]. Nonlinear effects in optical fiber present both 
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advantages and disadvantages. On the negative side, in Wavelength 

Division Multiplexing (WDM) communication systems, if the power 

threshold is exceeded, nonlinearities arise and can lead to the 

degradation of the signal [93]. However, the use of nonlinearities in 

many applications such as amplification, multiplexing and 

demultiplexing, wavelength conversion and regeneration, among others, 

has been extensively studied and characterized [94]. 

The core size and length of optical fiber make it ideal for applications 

governed by nonlinearities as they improve the nonlinearity in a factor 

given by [94, 95]: 

(𝐼0𝐿𝑒𝑓𝑓)
𝑓𝑖𝑏𝑒𝑟

(𝐼0𝐿𝑒𝑓𝑓)
𝑏𝑢𝑙𝑘

=
𝜆

𝜋𝜔0
2𝛼

                 (3.26) 

where I0 is the intensity (power per area unit), Leff is the effective length, 

λ is the wavelength, ω0 is the radius of the fiber core and α is the fiber 

loss. Eq. (3.26) is fulfilled when the optical fiber is long enough to satisfy 

αL >> 1 where L is the length of the fiber. As can be seen from Eq. (3.26), 

assuming the radius of the core to be small and low loss, nonlinearity 

efficiency can be improved considerably. Other parameters involved in 

dealing with nonlinearities in optical fiber are the core effective area, Aeff, 

the fiber effective length, Leff, and the group velocity dispersion, GVD 

[94]. The core effective area is the area that the core should have if the 

optical intensity were uniformly distributed within the nucleus and zero 

outside.  The fiber effective length is the real length of the region where 

the optical intensity I0 can be maintained. The effective length is loss - 

and fiber length – dependent. In relation to the GVD, in order to operate 

at a low loss point and satisfy the phase matching condition, dispersion 

must be accurately designed and controlled.  

The nonlinear optical response of a material to an applied optical 

field can be described by expressing the polarization as a series 

dependent on the electrical field [92]: 

𝑃̃(𝑡) = 𝜒(1)𝐸̃(𝑡) + 𝜒(2)𝐸̃2(𝑡) + 𝜒(3)𝐸̃3(𝑡) + ⋯ (3.27) 

where χ(n) is the n-th order susceptibility at optical frequencies. A 

medium is optically isotropic when the refractive index is constant for 

any light transmission direction through the medium. Because glass 

presents optical isotropy, the second-order susceptibility is usually zero. 
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As a result, in an isotropic medium, the nonlinear response only depends 

on χ(3). In addition, the nonlinear response of the material is assumed to 

depend instantaneously on the applied field.  

There are many nonlinear optical processes associated with the 

third-order susceptibility. The real part of this susceptibility corresponds 

to the refractive index and the imaginary part corresponds to the phase 

delay in the response of the material. Depending on the origin of the 

nonlinearity, two groups of nonlinearities can be distinguished. On one 

hand, nonlinearities arising from the scattering and, on the other, 

nonlinearities arising from optically induced variations in the refractive 

index. 

Scattering nonlinearities are those that occur due to vibrational 

dynamics in the glass. Therefore, in this type of nonlinearities, energy 

and momentum conservation laws of light and lattice must be satisfied 

[94]: 

Ω = 𝜔𝐿 − 𝜔𝑆                 (3.28) 

𝑞 = 𝑘⃗ 𝐿 − 𝑘⃗ 𝑆                 (3.29) 

where L and S refer to the laser and scattered signals respectively, ω and 

k are the light frequency and wave vector and Ω and q are the lattice 

phonon frequency and wave vector. The two scattering nonlinearities 

most common are Stimulated Brillouin Scattering (SBS) and Stimulated 

Raman Scattering (SRS).  

○ Stimulated Brillouin Scattering:  

In spontaneous Brillouin process, a photon from the incident light wave 

becomes a photon and a scattered phonon [96]. The scattered wave, 

called Stokes wave, experiences a spectral shift to lower frequencies. The 

scattered light inside the fiber propagates both in forward and backward 

direction. However, Brillouin scattering in the forward direction is very 

weak and therefore the Stokes wave mainly propagates in the opposite 

direction in relation to the pump direction.  When the pump power 

reaches a threshold value, the spontaneous process becomes a 

stimulated process, which is characterized by an energy conversion from 

the incident light to the scattered wave. In SBS, the backscattered Stokes 

wave interferes with the pump and generates  
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an acoustic wave because of the electrostriction phenomenon that 

generates a density variation in the medium due to the interaction with 

light [97]. When the intensity of the Stokes wave rises, the interference 

pattern becomes more pronounced and the amplitude of the acoustic 

wave increases. The acoustic wave propagating in the forward direction 

acts as a Bragg grating and scatters light in the backward direction. A 

schematic of the Brillouin scattering process is shown in Fig (3.17). SBS 

is used in different applications such as remote sensing and ultranarrow 

linewidth lasers.   

○ Stimulated Raman Scattering:  

In the Raman spontaneous effect, a light beam illuminates a material 

generating scattered light that presents different frequency components 

from those of the excitation source. The scattered components of lower 

frequency are denominated Stokes components, as in SBS effect, while 

the higher frequencies ones are called anti-Stokes components. Stokes 

components are typically several orders of magnitude higher than the 

anti-Stokes components. The Stimulated version of Raman scattering 

occurs when incident light comes from an intense light beam. In this 

case, approximately 10% of the energy from the incident wave is 

converted to Stokes frequencies [92]. Furthermore, stimulated Raman 

effect can be observed both in forward and backward directions 

although it is slightly higher in the forward direction. Moreover, both the 

generation power threshold and the frequency shift of the Stokes 

components are much larger than in SBS effect [94]. Fig. (3.18) shows a 

schematic describing Raman scattering. SRS phenomenon is used in 

many applications such as fiber amplifiers, lasers, optical modulation, 

switching and wavelength conversion, among others [94].   

The other type of nonlinear effects considered in this work are the 

χ(3) nonlinearities which arise from nonlinear changes in the refractive 

index due to the light incidence on the material. In this case, the 

refractive index can be expressed as [94]: 

𝑛 = 𝑛0 + 𝑛2𝐼                 (3.30) 

where n0 is the linear index, n2 is the nonlinear index and I is the optical 

intensity. The third-order susceptibility is related to the nonlinear 

coefficient by the following expression: 
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Figure 3.17: (a) Spontaneous and (b) Stimulated Brillouin Scattering. 

 

Figure 3.18: (a) Spontaneous and (b) Stimulated Raman Scattering. 

 

𝑛2 =
3

8𝑛0
𝑅𝑒(𝜒(3))                (3.31) 

The resulting effect of the χ(3) nonlinearities is to introduce a nonlinear 

phase shift in the propagating light. The generated shift can be expressed 

as [94]: 

 

𝜙𝑁𝐿(𝑧) = 𝛾𝑃0𝑧                 (3.32) 
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where P0 is the peak input power and γ is the nonlinear coefficient given 

by: 

𝛾 =
2𝜋

𝜆

𝑛2

𝐴𝑒𝑓𝑓
                (3.33) 

As the optical power depends on both space and time, χ(3)  

nonlinearities can vary the mode-field distribution, as well as modify the 

pulse shape in the time domain and the spectral content in the frequency 

domain. Three different χ(3) nonlinearities are explained in this work: 

Self-Phase Modulation (SPM), Cross-Phase Modulation (XPM) and Four-

Wave Mixing (FWM). 

○ Self-Phase Modulation:  

In the self-phase modulation phenomenon, intensity modulation of an 

optical beam results in the modulation of its own phase due to the 

modulation experienced by the refractive index of the medium [94]. The 

resulting time dependent change, or phase modulation, leads to a 

spectral broadening or a frequency chirping because the different pulse 

components experience different phase shifts, as can be seen in Fig. 

(3.19). The nonlinear spectral broadening can be either compensated or 

amplified by the chromatic dispersion of the fiber [98]. Thus, SPM 

depends on the temporal and spectral characteristics of the initial pulse, 

the chirp and the chromatic dispersion, among others. Self-phase 

modulation effect is widely used in temporal and spectral pulse 

compression, soliton generation and pulse regeneration [94]. 

○ Cross-Phase Modulation:  

Cross-phase modulation effect is a similar phenomenon to SMP. 

However, in this case, the propagation of two optical beams overlapped 

in time and space is required [99]. Besides, when propagating optical 

pulses they must present similar GVD values for XPM to arise. The 

fundamentals of the cross-phase modulation effect are based on the 

intensity modulation of one beam, which results in a phase modulation 

in the other beam, leading to a frequency modulation that generates a 

spectrum broadening. As in SPM, fiber dispersion affects considerably 

the XPM effect. XPM can be used in many all-optical applications in 

communications networks such as wavelength conversion, 

demultiplexing or switching. However, this effect can cause serious 
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Figure 3.19: Self-Phase Modulation. 

 

problems of crosstalk between channels in WDM communications 

systems [94].   

○ Four-Wave Mixing:  

In the four-wave mixing effect, three waves interact coherently between 

them to form a fourth one. Thus, the energy of two pumps at frequencies 

ω1 and ω2 is transferred to signal and idler waves. In addition to high 

enough power levels to generate the nonlinearity, FWM requires the 

phase-matching between the waves involved in the effect, i.e. their phase 

velocities are equal. Phase-matching condition must be verified over the 

sum of the wave vectors of the four waves that form the process as [13]:  

𝑘1 + 𝑘2 = 𝑘3 + 𝑘4                (3.34) 

Moreover, energy conservation must be satisfied: 

𝜔1 + 𝜔2 = 𝜔3 + 𝜔4                (3.35) 

When ω1 ≠ ω2 is met, it is called non-degenerated FWM. A special case of 

four wave mixing is the so called degenerated FWM, wherein ω1 = ω2.  

Fig. (3.20) shows the non-degenerated and degenerated FWM schematic 

[100]. The main applications of the four-wave mixing effect are 

wavelength conversion, wavelength exchange, parametric amplification 

and optical regeneration, among others. 

The Nonlinear Schrödinger Equation (NLSE) describes the 

propagation of optical ultrashort pulses in single-mode fibers. The 

generalized formulation of the expression is given by [13]: 

𝜕𝐴

𝜕𝑧
+

𝛼

2
𝐴 +

𝑖𝛽2

2

𝜕2𝐴

𝜕𝑇2 −
𝛽3

6

𝜕3𝐴

𝜕𝑇3 = 𝑖𝛾 (|𝐴|2𝐴 +
𝑖

𝜔0

𝜕

𝜕𝑇
(|𝐴|2𝐴) − 𝑇𝑅𝐴

𝜕|𝐴|2

𝜕𝑇
)   (3.36)       
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Figure 3.20: Four-Wave Mixing effect. 

 

where A is the complex field envelope, α is the fiber loss, β2 and β3 the 

second-order and third-order dispersion terms, γ is the nonlinear 

coefficient and ω0 is the spectrum central frequency. Moreover, T and TR 

can be expressed as follows [13]: 

𝑇 = 𝜏 −
𝑧

𝑣𝑔
                (3.37) 

 𝑇𝑅 = ∫ 𝑡𝑅(𝑡)
∞

−∞
𝑑𝑡                 (3.38) 

with τ being the physical time, vg being the group velocity and R(t) being 

the response function. Considering pulses of width higher than 5 ps and 

neglecting several terms that become quite small, the nonlinear 

Schrödinger equation can be expressed in its simplified formulation as: 

𝑖
𝜕𝐴

𝜕𝑧
+

𝑖𝛼

2
𝐴 −

𝛽2

2

𝜕2𝐴

𝜕𝑇2 + 𝛾|𝐴|2𝐴 = 0   (3.39) 

In most cases, NLSE cannot be solved analytically because it is a four-

dimensional second-order partial differential equation. Therefore, a 

numerical method must be employed in order to approximate the vector 

equation to a scalar form. The two main resolution techniques are the so- 

called Finite Difference Methods (FDM) and the Pseudo spectral Methods 

[13, 101]. FDM is based on solving the wave equations of Maxwell in the 

time domain by the paraxial approximation [102], which considers that 

the light propagation direction slightly deviates from the propagation 

axis. On the other hand, in pseudo spectral methods the spatial 

derivatives are represented in the spectral domain by means of a set of 

basis functions. Due to this spectral treatment, the pseudo spectral 

methods require a lower computational cost, being thus faster resolution 
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methods. The Split Step Fourier Method (SSFM) is one of the most 

important pseudo spectral techniques because of its easy 

implementation [13, 101, 103]. In this method, the terms corresponding 

to the dispersion operator and the nonlinearity operator are decoupled 

and treated separately in the NLSE, which can be expressed as: 

𝜕𝐴

𝜕𝑧
= (𝐷̂ + 𝑁̂)𝐴                (3.40) 

where dispersion and nonlinearity operators are respectively given by: 

𝐷̂ = −
𝑖𝛽2

2

𝜕2

𝜕𝑇2 +
𝛽3

6

𝜕3

𝜕𝑇3 −
𝛼

2
   (3.41) 

𝑁̂ = 𝑖𝛾 (|𝐴|2 +
𝑖

𝜔0

1

𝐴

𝜕

𝜕𝑇
(|𝐴|2𝐴) − 𝑇𝑅

𝜕|𝐴|2

𝜕𝑇
)  (3.42) 

The operating principle of SSFM is shown in Fig. (3.21). Propagation 

along the fiber is evaluated in steps of length h, where it is assumed that 

the dispersion and nonlinearity operators act independently. First, 

nonlinearity is calculated in the midpoint of the step assuming 𝐷̂ = 0. 

Subsequently, dispersion is obtained considering that the nonlinearity is 

zero, 𝑁̂ = 0. This process is repeated for all the steps [13, 101].  

Nonlinearity generation in non-adiabatic biconical tapered fibers is 

analyzed in Paper H. The power threshold at which nonlinearities arise 

is determined by comparing the response of the tapered fiber when an 

initial chirped pulse distribution and pulses up to 10kW are launched in 

the device. The nonlinearity generation effects in both temporal and 

spectral domains show an asymmetric spectral widening and a variable 

fringe visibility, which correspond to typical features of Self-Phase 

Modulation nonlinearity. Theoretical simulations are carried out solving 

the nonlinear Schrödinger equation by the Split-Step Fourier Method, 

showing a good agreement with the experiments.   
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Figure 3.21: Split Step Fourier Method fundamentals (SSFM). 
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Chapter 4 

 

General Discussion 
 

The objective of the previous chapters was to explain some important 

concepts required to understand the ideas developed and collected in 

the papers presented in this thesis and to provide the necessary context 

to frame this work.  This chapter delivers a general discussion of the 

obtained results.  

Chapter 1 introduces the basics of optical communications systems 

and focuses on chromatic dispersion, describing causes and 

consequences of this phenomenon.  The broadening experienced by 

pulses propagating through the transmission medium is analyzed and 

quantified. Likewise, the two main contributions to chromatic 

dispersion, i.e. material and waveguide dispersion, are described. Having 

provided the theoretical basis of chromatic dispersion, its main 

experimental measurement schemes are presented. Techniques such as 

time-of-flight method, modulation-phase-shift method and 

interferometry method are explained. Furthermore, chromatic 

dispersion management motivation and necessity is exposed. The 

limitations induced by the dispersion in the system performance are 

analyzed and the signal degradation due to inter-symbol interference is 

highlighted. Dispersion compensation concept is also introduced, as well 

as the use of some types of fibers such as dispersion compensating fibers 
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or dispersion shifted fibers for this purpose. The most common 

dispersion compensation arrangements are described, including the 

necessity of optical amplifiers and dispersion slope compensation. In 

addition, methodologies used in higher bit rate systems are considered.             

Chapter 2 addresses the principles of chromatic dispersion tailoring 

in photonic integrated waveguides. Paper A presented here is framed in 

this context, where chromatic dispersion profiles of integrated slot 

waveguides are investigated. The effective refractive index of the modes 

propagating through the structure is computed through numerical 

simulations using commercial software and a subsequent differentiation 

process to obtain the chromatic dispersion profile. The aim of this paper 

is to analyze the influence of the waveguide’s geometrical parameters on 

the dispersion curve in order to tune it. The results obtained show that 

two different dispersion regimes can be distinguished depending on the 

cross-sectional area of the waveguide. Some applications such as pulse 

shaping or nonlinearities, among others, are expected to benefit from 

this study. 

Experimental measurements of dispersion in integrated optics are 

usually carried out by means of interferometry, mainly based on Mach-

Zehnder interferometers. The relation between the phase of the signal 

and the maximum and minimum positions in the spectral interference 

pattern obtained is used to do this. Paper B included in this chapter 

employs an experimental setup to measure chromatic dispersion based 

on a Mach-Zehnder interferometer. It allows for the calculation of 

continuous dispersion profiles as a function of wavelength while being 

immune to thermal fluctuations thanks to the counter propagating 

reference beam. When a wavelength sweep is realized, a continuous 

phase profile which subsequently allows the calculation of the 

experimental dispersion profile as a function of wavelength is obtained. 

This technique is used to measure dispersion of two types of geometries, 

strip and slot waveguides, as well as the group index of the structure. 

The results obtained show good agreement with theoretical calculations.  

The good performance of this technique is demonstrated even for 

devices with high insertion losses and polarization dependence.   

Chapter 3 focuses on dispersion tailoring in tapered fibers. By 

heating and stretching a single-mode fiber, a different geometry 

presenting two transition regions and a narrow waist between them can 
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be obtained. Aspects such as the tapered fiber geometry and its 

fabrication procedure are first examined. Then, the propagation 

characteristics are exposed, providing a description of the dependence of 

the tapered fiber response with the waist length and the difference 

between the effective indexes of the modes travelling along the waist. As 

explained, this allows carrying out dispersion engineering in this type of 

fibers by different procedures. Paper C presents experimental group 

delay and dispersion tailoring in tapered fibers by the application of 

strain in the taper. When mechanically stretching the fiber, its waist 

length as well as the effective indexes difference are modified, which 

results in a variation of the response of the tapered fiber. First, the group 

delay and the dispersion profiles of a single-mode fiber are obtained and 

compared with those corresponding to a fiber of the same characteristics 

but including a taper. Then, the tapered fiber is stretched to different 

points of elongations which allows for the tailoring of its dispersion 

profile. Group delay and dispersion engineering is also shown by means 

of the modification of the outer medium putting the tapered fiber in 

contact with a surface, leading to the possibility of coarse tailoring.          

Some interesting applications in which tapered fibers are widely 

used such as supercontinuum generation and light coupling to micro 

resonators are also discussed. Furthermore, other functionalities carried 

out by means of tapered fibers are deeply described and demonstrated. 

The first application considered, pulse shaping, relies on the 

modification of different characteristics of an optical pulse, such as 

envelope, amplitude or phase, to best suit the requirements of a specific 

application. The operating principle of pulse shaping is described and 

some of the most commonly arrangements used, i.e. 4f Fourier 

transform, liquid crystal spatial light modulator, acousto-optic 

modulator and acousto-optic programmable dispersive filters, 

presented. Paper D focuses on the use of an in-line combination of two 

tapered fibers to achieve dynamic pulse shaping in an affordable and 

simple way. To do this, one of the tapered fibers is mechanically 

stretched as to phase shift the envelope of the combined transmission 

response. This results in different pulse waveforms when stretching the 

tapered fiber to different elongations. This phase variation in the 

combined response arises from changes in the interference conditions 

between the transference functions of the individual tapered fibers. 

Additional flexibility is demonstrated by introducing different amounts 



75 
 

of uncompensated dispersion in the experimental setup. Some 

applications that may benefit from our approach include terahertz 

generation and dynamic nonlinear optics.  

Using one of the applications presented in Paper D as a guideline, 

the following functionality based on tapered fibers that was investigated 

was sensing. First of all, some aspects related to optical sensing are 

presented such as advantages, types of sensing and most common 

configurations. The performance parameters that characterize the 

sensor, such as sensitivity, resolution or detection limit, among others, 

are defined. Subsequently, the most popular structures and devices to 

perform sensing measurements are analyzed. Technologies considered 

suitable to build the sensor include optical fiber, photonic crystals, 

plasmonics and integrated waveguides. The next two papers presented 

in this thesis are related to sensing applications.  

Paper E proposes a low cost experimental setup for refractive index 

and strain sensing measurements. The cost reduction arises from the use 

of an incoherent broadband light source instead of a tunable laser. 

Although this configuration leads to lower sensitivity values they can be 

increased by using an in-line combination of two tapered fibers. The 

refractive index measurements are carried out considering different 

outer mediums such as air, deionized water and different concentrations 

of ethanol in deionized water. Likewise, strain sensing measurements 

are realized by mechanically stretching one of the tapered fibers. A 

sensor arrangement comprising a tunable laser is also characterized for 

comparison purposes. Furthermore, sensitivity values obtained in both 

configurations for refractive index and strain sensing measurements are 

presented and compared.  

As mentioned before, Paper F presented in this work is also framed 

in sensing functionalities. Its aim is to provide a set of rules for the 

manipulation of tapered fibers in refractive index and strain sensing 

measurements. The precautions necessary to handle such type of fibers 

in order to not introduce artifacts on the sensor’s response are detailed 

and discussed. The main factors considered include the placement of the 

tapered fiber inside of the material which refractive index is to be sensed 

as well as the presence of undesired curvatures in strain sensing. Their 

effect on the sensor response is studied and compared with the proper 

handling case.  
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Mode conversion is other functionality discussed in this work. It 

consists on the coupling of optical power from one propagating mode to 

another due to variations in the refractive index distribution or optical 

fiber geometry. Paper G presented in this work proposes a mode 

converter consisting of a mechanically stretched tapered fiber. A 

curvature is inserted in one of its transition regions, which allows the 

modification of the propagation characteristics of the device. By varying 

the radius the spectral response can be optimized. The proposed 

arrangement is used for refractive index and strain sensing, providing 

higher sensitivity when compared with the straight configuration sensor. 

Results show higher radiated power values for smaller bending radii, in 

good agreement with the theoretical fundamentals presented in this 

section. As demonstrated, the increased radiated power in the tapered 

fiber facilitates the detection mechanism and significantly improves the 

sensor performance. Furthermore, the applicability of the proposed 

structure to mode conversion is analyzed, showing the possibility of very 

high mode conversion ratios in a very simple way.    

The last functionality reported is the generation of nonlinearities. 

First, the parameters and conditions required for nonlinear generation 

are presented. The nonlinear Schrödinger equation for the particular 

case of optical pulses propagating through optical fiber is described and 

two types of nonlinearities, the scattering nonlinearities and the χ(3)  

nonlinearities, are differentiated. In the first case, stimulated Brillouin 

scattering and stimulated Raman scattering are considered. Then, χ(3) 

nonlinearities such as cross-phase modulation, four-wave mixing and 

self-phase modulation are discussed. The generation of the latter effect 

in tapered fibers is the aim of Paper H presented in this thesis. In the 

first place, the power threshold required for nonlinear generation in the 

tapered fiber is determined. Subsequently, the response of the tapered 

fiber is obtained for different input power values in both temporal and 

spectral domains. Results show spectral broadening and variable fringe 

visibility, which are effects typically associated with self-phase 

modulation. The numerical results obtained after solving the nonlinear 

Schrödinger equation show good agreement with the experiments.        
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Chapter 5 

 

Conclusions 
 

The great expansion experienced by optical communication systems has 

been facilitated by the multitude of advantages that presents its main 

transmission mediums, optical fiber and integrated waveguides. Among 

them, their high versatility has made it possible to develop multiple 

functionalities that cover a wide range of potential applications. These 

arise from the possibility of modifying the conventional characteristics of 

light propagation along the medium in a very easy way.  

There are several undesired phenomena that must be taken into 

account in optical systems, such as losses, crosstalk and chromatic 

dispersion. Nevertheless, the possibility to control and tailor the 

chromatic dispersion present in an optical structure offers a wide range 

of applications. By a careful control of this phenomenon, several 

functionalities such as nonlinearities or ultrashort pulse propagation, 

among others, can be enhanced or suppressed. In this context, chromatic 

dispersion tailoring becomes a very powerful tool when designing 

optical communications systems. 
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This PhD analyzes and implements chromatic dispersion tailoring in 

integrated photonics and optical fibers. To do this, both numerical and 

experimental studies are carried out. Several useful conclusions can be 

extracted from the obtained results.  

First, different dispersion regimes are identified by means of 

software simulations by varying the geometrical parameters of 

integrated waveguides. This analysis can be used as a bidirectional 

design guideline: on one hand, it provides an approximated idea of the 

waveguide dimensions required to obtain a given dispersion profile; on 

the other hand, the quantity of dispersion for a given waveguide cross-

section can be approximated.  

Second, an experimental setup capable of measuring dispersion in 

integrated waveguides is developed. This arrangement provides 

continuous dispersion versus wavelength measurements without being 

affected by thermal fluctuations. Several functionalities can benefit from 

this, as it can be used directly for dispersion studies or as a starting point 

to develop other applications once the dispersion value of the integrated 

structure is known. 

Third, dispersion tailoring in tapered fiber is analyzed and 

experimentally demonstrated. Tapered fibers have emerged as a very 

promising device because of its simplicity and wide applicability. In this 

PhD, dispersion tailoring is easily carried out by applying stress to the 

fiber. The potential of this technique is the simplicity and the possibility 

of fine tuning the dispersion characteristics of the tapered fiber. 

Finally, the use of tapered fibers in several functionalities such as 

pulse shaping, sensing, mode conversion and nonlinearities is also 

exposed and analyzed, in order to provide an idea of the versatility of 

this type of structure. 

To sum up, such an important effect as chromatic dispersion is 

theoretically analyzed and experimentally measured in this PhD. 

Dispersion tailoring is carried out in both optical fiber and nanophotonic 

waveguides by modifying the geometry of the two transmission 

mediums. In addition, the applicability of tapered fibers for several 

functionalities is shown.     
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Abstract 

We investigate the chromatic dispersion properties of silicon channel 
slot waveguides in a broad spectral region centered at ~1.5 μm. The 
variation of the dispersion profile as a function of the slot fill factor, i.e., 
the ratio between the slot and waveguide widths, is analyzed. 
Symmetric as well as asymmetric geometries are considered. In general, 
two different dispersion regimes are identified. Furthermore, our 
analysis shows that the zero and/or the peak dispersion wavelengths 
can be tailored by a careful control of the geometrical waveguide 
parameters including the cross-sectional area, the slot fill factor, and the 
slot asymmetry degree. 

 

1. Introduction 

In the last few years, silicon photonics has emerged as an attractive and 
promising technology in the field of integrated optoelectronics. The 
recent progress in nanofabrication techniques has enabled the 
development of basic photonic building blocks on a silicon-on-insulator 
platform including light sources, modulators, and photodetectors [1–3]. 
The silicon photonics approach provides some advantages, including 
lower-cost and higher-integration, compared with more traditional 
solutions based on other materials, e. g., III-V semiconductor compounds 
or LiNbO3. 

In general, any silicon-based photonic component is affected by 
chromatic dispersion. Then, the design and optimization of silicon 
photonic devices requires a very precise knowledge of the dispersion 
properties. In this context, the chromatic dispersion of a simple silicon 
waveguide with ~6 μm2 cross-sectional area was first measured by 
Tsang et at [4]. In this dimension regime, the light confinement is weak 
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and the dispersion profile is primarily determined by the intrinsic silicon 
dispersion. In contrast, when the cross-sectional area is reduced, the 
optical confinement is stronger and, then, the effective dispersion is the 
result of the interplay between the material and the waveguide or 
geometrical dispersion [5–7]. In fact, a careful control of the waveguide 
shape and size allows for the tailoring of the group velocity dispersion 
(GVD) so that normal, anomalous, or even zero GVD can be achieved in 
the spectral region centered at ~1.5 μm [5–7]. 

On the other hand, the so-called silicon nanophotonic slot 
waveguides have been proposed and fabricated for different applications 
[8–10]. In these waveguide structures, the optical field is strongly 
confined in a very thin region of low refractive index material, which is 
sandwiched between two silicon layers. As a result, a high optical 
intensity is produced in a small area so that the nonlinear optical 
performance is highly enhanced [10]. An early analysis of the dispersion 
properties of symmetric slot waveguides was reported by Zheng et al. 
[11]. In [11], numerical simulations demonstrate that the GVD of slot 
waveguides is, in general, significantly quite different compared with the 
dispersion of traditional channel waveguides. However, the analysis by 
Zheng et al. was limited to a small spectral range of only 0.15 μm 
centered at ~1.55 μm and the dispersion control capabilities were 
unexplored. Simulated results of GVD in a horizontal slot waveguide 
filled with silicon nanocrystals have also been reported [12]. In addition, 
more complex slotted waveguides have been proposed for dispersion 
compensation purposes [13]. 

In this paper, we perform a detailed analysis of chromatic 
dispersion in silicon channel slot waveguides. First, a simple channel 
waveguide is assumed [7] and two different dispersion regimes are 
identified. Next, we analyze the influence of a slotted region on the GVD 
of the channel waveguide by considering different slot fill factors. Again, 
the same previous two different dispersion regimes are distinguished. In 
this case, the slot fill factor determines the dispersion regime in which 
the guiding structure operates. We also analyze the GVD in asymmetric 
slot-based structures, i.e., when the slot is placed in a region different 
than the geometrical center of the waveguide [14,15]. 

 

2. Dispersion in nanophotonic slot waveguides 

Let us first consider a conventional silicon channel waveguide consisting 
on a silicon channel embedded in a silica cladding, as shown in Fig. 1(a). 
Throughout this paper, three different cross-sectional areas, A = hw, will 
be considered, 1 μm2, 0.5 μm2, and 0.1 μm2, for both, conventional and 
slot waveguides, with h and w being the height and width of the 
waveguide, respectively, as shown in Fig. 1. These transversal areas are 
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similar to those considered in other related works in silicon [7] so 
fabrication should not be a problem by using conventional 
nanofabrication techniques [6,7,9]. In addition, for simplicity, a fixed 
aspect ratio of 1-to-1.5 (height-to-width) will be assumed in all cases. 
However, it is important to mention that the GVD profile also depends on 
this parameter, as demonstrated in [7]. Our numerical simulations are 
performed by using a full-vector mode solver based on the beam 
propagation method [16]. In Fig. 1(a) a typical electric field profile of the 
fundamental quasi-TE mode in the x axis is plotted. The field distribution 
is confined in the silicon core although evanescent tails are found in the 
silica region. 

By using the mode solver, we compute the effective index, neff(λ), in 
a broad spectral range and by numerical differentiation the GVD 
parameter as a function of wavelength, Dλ = -(λ/co)d2neff/dλ2, is 
obtained. It is worth mentioning that our analysis includes the 
contribution of material dispersion to the GVD, by considering the 
Sellmeier equations for both silicon and silica [17]. In Fig. 2, we show the 
resultant GVD profiles for the three cross-sectional areas under analysis. 
For comparison, the normal dispersion of pure crystalline silicon is also 
plotted. On the one hand, note that for larger cross-sectional areas, the 
GVD profile is similar to that corresponding to the silicon dispersion in 
such a way that the GVD gradually increases for longer wavelengths. We 
name this GVD behavior as material dispersion regime. A vertical up 
shifting in the dispersion profile is observed so that, eventually, we find a 
zero-GVD wavelength and, then, a region with anomalous GVD. The more 
the cross-sectional area is reduced, the more the zero-GVD wavelength is 
decreased. On the other hand, for smaller areas, the GVD profile is quite 
different having a maximum GVD along the spectral region and two zero-
GVD wavelengths when the maximum dispersion value is positive, as 
shown in the figure. These GVD characteristics describe the geometrical 
dispersion regime. For other aspect ratios in this dispersion regime, 
similar dispersion profiles are obtained but we find normal GVD in the 
whole spectral range [7]. Two different qualitative dispersion of the  

 

 

Fig. 1. (a) Conventional, (b) symmetric slot, and (c) asymmetric slot silicon-on-insulator 
channel waveguides with same cross sectional area. The electric field distribution of the 
quasi-TE mode in the x dimension corresponding to λ=1.55 μm is plotted. 
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characteristics are then observed depending on the cross-sectional area 
channel waveguide. Although beyond the scope of this paper, we 
mention that a more rigorous description of these two dispersion 
regimes can be performed by analyzing the sign of the next higher order 
dispersion parameter [5]. In the material dispersion regime, this term 
will be strictly positive in the whole spectral region but in the geometric 
dispersion regime we could find spectral regions with different sign and 
thus specific wavelengths where the term is cancelled.  

2.1 Symmetric slot waveguides 

We now turn our attention to the case of silicon waveguides with a 
vertical slot. In Fig. 1(b), a typical geometry of a slot waveguide is shown. 
Note that the modal electric-field distribution has a strong discontinuity 
at the high-index-contrast interfaces and the optical field is significantly 
increased in the slot region. We have computed the dispersion 
properties of three different slot waveguides with the above introduced 
cross-sectional areas, i.e., 1 μm2, 0.5 μm2, and 0.1 μm2, which include the 
slot region. The same aspect ratio is assumed. The resultant GVD curves 
are shown in Fig. 3(a-c), respectively. For each cross-sectional area, 
different slot fill factors have been considered, namely, 1:5, 1:10, 1:25, 
and 1:50. The fill factor is defined as the normalized ratio between the 
slot and the waveguide widths, i.e., t/w, see Fig. 1(b). Generally, in Figs. 
3(a)-3(c) the dispersion profiles can be grouped into the two dispersion 
regimes previously defined for a conventional waveguide. As expected,  

      

Fig. 2. Group velocity dispersion for the fundamental quasi-TE mode of a silicon 
nanophotonic channel waveguide with a fixed aspect ratio of 1:1.5 and three different 
cross sectional areas. The intrinsic pure crystalline silicon dispersion is also plotted. 
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when the slot fill factor is decreased, the GVD profiles asymptotically 
converge to the dispersion of conventional channel waveguides. 

The effect of the slot on the waveguide dispersion is different for 
each particular cross- sectional area. For a cross-sectional area equal to 1 
μm2, Fig. 3(a), a change in the slot fill factor translates into a relatively 
small variation in the GVD curve. In fact, all the dispersion profiles lie in 
the so-called material dispersion regime. Note that for larger fill factors, 
the dispersion profile exhibits a zero-GVD wavelength and, as a result, a 
spectral region with anomalous dispersion is found. For intermediate 
cross-sectional areas, ~0.5 μm2, Fig. 3(b), we find that the slot dimension 
strongly determines the dispersion regime in which the waveguide 
operates.  More particularly, for the fill factors 1:5 and 1:10 we have GVD 
profiles in the geometrical dispersion regime while the fill factors 1:25 
and 1:50 present GVD curves quite similar to the  silicon material 
dispersion profile. For small cross-sectional areas, 0.1 μm2, Fig. 3(c), we 
find that the slot waveguide mostly works in the geometrical dispersion 
regime. Note  that  the  dispersion  curve  is  significantly  down  shifted  
when  the  slot  fill  factor  is increased while the wavelength with 
maximum-GVD is nearly constant at ~1.4 μm (dashed vertical line). 
Transversal dimensions h = 258 nm and w = 387 nm are considered in 
this latter case, according to the assumed aspect ratio. 

2.2 Asymmetric slot waveguides 

In asymmetric silicon slot waveguides, the slot location is different than 
the geometrical center of the waveguide [14,15], as shown in Fig. 1(c). 
We define the asymmetry degree as k = 2s/w, where s is the distance 
from the center of the waveguide to the center of the slot, in absolute 
value, and w/2 is half of the total width of the waveguide, as shown in 
Fig. 1. With this definition, symmetric slot waveguides have an 
asymmetry degree equal to zero. We have analyzed the GVD for different 
asymmetry degrees, namely, k = 0, 0.25, 0.5, and 0.75 while keeping the 
same cross-sectional area. Our aim is to investigate the influence of the 

 

Fig. 3. Group velocity dispersion profiles of symmetric slot waveguides for different slot 
fill  factors. Three different cross-sectional areas have been considered: (a) 1 μm2, (b) 
0.5 μm2, and (c) 0.1 μm2, with a fixed aspect ratio equal to 1:1.5. The dispersion curve of 
a conventional channel waveguide is also plotted. 
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waveguide asymmetry on the chromatic dispersion properties for the 
same cross-sectional areas assumed in previous simulations.  

Figure 4, shows the results from numerical simulations for the three 
different above introduced cross-sectional areas (columns) and three 
different slot fill factors, 1:5, 1:10, and 1:25 (rows). Note that, according 
to our asymmetry degree definition, a specific slot shift to the right or to 
the left from the center yields the same asymmetry degree. As expected, 
the same GVD is obtained for both cases, as verified by numerical 
simulations. In general, we note from obtained results that the GVD is 
more sensitive to asymmetry changes when smaller cross-sectional 
areas are considered. For large areas, 1 μm2, and for all the fill factors, 
Figs. 4(a)-4(c), the waveguide always operates in the material dispersion 
regime and a small change in the GVD is observed when the asymmetry 
degree is increased. For intermediate areas, 0.5 μm2, more significant 
changes are found in the GVD. On the one hand, in Figs. 4(d-4e), by 
starting in the geometrical dispersion regime, a change in the asymmetry 
degree modifies the dispersion profile in such a way that the maximum-
dispersion wavelength shifts to longer values. For larger asymmetry 
degrees, k = 0.75, the GVD is switched from the geometrical to the 
material dispersion regime. On the other hand, for a smaller fill factor, 
1:25, Fig. 4(f), the GVD first changes from the material to the geometrical 
dispersion regime as the asymmetry degree is increased returning to the 
original behavior when the asymmetry is further increased. Finally, for 
small cross-sectional areas, 0.1 μm2, Figs. 4(g)-4(i), we find a significant 
larger GVD variation compared with previous examples. Note the 
different scales in the dispersion axis. For a fill factor equal to 1:5, Fig. 
4(g), when the asymmetry degree is increased the GVD enters into a new 
dispersion regime in which the dispersion profile exhibits both a 
maximum and a minimum dispersion value along the spectral region. 
This dispersive behavior is consistent with the GVD profiles obtained for 
conventional channel waveguides with cross-sectional areas smaller 
than ~0.1 μm2 [18]. For larger fill factors, Figs. 4(h),4(i) the waveguide 
exclusively operates in the geometrical dispersion regime for all the 
asymmetry degrees but exhibits a variation in the maximum-dispersion 
wavelength for a 1:10 fill factor, Fig. 4(h), whereas a nearly constant 
maximum-dispersion wavelength is observed for a 1:25 fill factor, Fig. 
4(i). Interestingly, the cases k = 0.5 in Fig. 4(e) and k = 0 in Fig. 4(g) 
exhibit quite flat dispersion profiles over a certain spectral range. We 
attribute this behavior to a transition between different dispersion 
regimes. For all the cross-sectional areas, we have performed similar 
simulations by considering a fill factor equal to 1:50 obtaining small 
changes in the dispersion curves when the asymmetry in the waveguide 
is varied.  
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3. Conclusions 

A detailed analysis of the dispersion properties of silicon-on-insulator 
vertical slot waveguides has been performed. Our study shows that, in 
general, the dispersion behavior of slot waveguides strongly depends on 
the slot dimension and location. Two different dispersion regimes have 
been qualitative distinguished by analyzing and comparing several 
waveguide examples with different cross-sectional areas and slot fill 
factors. Our results show that a careful control of the slot geometrical 
parameters, i.e., width and position, enables the tuning of the GVD 
characteristics, including the maximum and/or the zero-GVD 
wavelengths. Furthermore, constant dispersion in a broad wavelength 
range can be achieved by properly designing slot waveguides. Dispersion 
tailoring of slot waveguides may be interesting for controlling several 
relevant phenomena including ultrashort pulse propagation and 
nonlinear optical effects. 

 

 

 

Fig. 4. Dispersion profiles of a slot waveguide for different asymmetry degrees. Three 
different cross-sectional areas are considered (a-c) 1 μm2, (d-f) 0.5 μm2, and (g-i) 0.1 
μm2. Each row corresponds to a constant slot fill factor, 1:5, 1:10, and 1:25, respectively. 
The aspect ratio in all cases is 1:1.5. 
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Abstract 

An accurate technique to characterize chromatic dispersion and its slope 
versus wavelength is reported. The method is based on a heterodyne 
Mach–Zehnder interferometer, which is immune to thermal phase noise 
by using a counterpropagating reference beam. Chromatic dispersion 
profiles are obtained over a broad wavelength region even in short 
waveguides with considerable loss. Conventional strip silicon 
waveguides as well as slotted geometries are considered. Theoretical 
simulations are also presented for comparison, which show good 
agreement with the experimental results.  
 

1. Introduction 

Transporting and processing high bitrate signals require a precise 
management of dispersion properties [1], [2]. Nonlinear effects are also 
very sensitive to, not only dispersion, but its exact dependence with 
wavelength, i.e., its higher order derivatives [1]. Chromatic dispersion 
measurement techniques have been reported by many authors. 
Examples of these are techniques like time-of-flight [3] or phase-shift 
methods [4]. Time-of-flight methods are based on the relative temporal 
delays measurement for pulses at different wavelengths and, in phase-
shift methods, the input to output phase shift of a modulated signal is 
measured in order to obtain the group delay spectra. These dispersion 
characterization techniques were originally conceived for optical fibers, 
where propagation distance can be made very long in order to provide 
large delays. When the sample to measure is short, more precise 
interferometric techniques are needed like the ones reported in [5]–[10]. 
These techniques employ a Mach–Zehnder interferometer (MZI) or 
Michaelson interferometer, where the fringe positions provide the phase 
information. However, interferometers, especially if fiber-based, suffer 
from thermal fluctuations which introduce phase noise that randomly 
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shifts the fringes. If the insertion loss of the sample is high, the 
measurement may require several seconds or minutes, which is a 
timescale where thermal phase noise can dramatically degrade the 
measurement. 

In other references [11]–[13], waveguide dispersion is measured by 
making a fully- integrated unbalanced MZI. Scanning the wavelength one 
can extract dispersion by measuring the change of free-spectral range 
(FSR) of the fringes. However, some problems of this technique are i) 
this only provides discrete values of group index, ii) these measurements 
are also affected by thermal noise, and iii) the technique cannot be 
applied to a single straight waveguide, because an integrated MZI is 
needed. 

In this paper, we propose a method for chromatic dispersion 
characterization with a fiber-based MZI using a technique which is 
immune to thermal phase noise. We describe how the proposed 
experimental setup compensates the fringe instability and we show 
continuous chromatic dispersion profiles obtained for different 
waveguide geometries together with theoretical calculations. 

 

2. Technique 

Fig. 1 shows the measurement apparatus. It is a fiber-based MZI, where 
one of the branches has an optical delay line (ODL), and the other has the 
waveguide sample. Acoustooptic modulators (AOMs) are also present in 
both branches, and they are used as frequency shifters. Their RF 
frequencies are set to 80 and 80.04 MHz, respectively, so that when the 
beams are recombined they produce 40 kHz beatings which can be 
precisely measured with a lock-in amplifier. The lock-in also extracts the 
phase of the beatings, which is measured with respect to the phase of the 
beatings produced by a counterpropagating beam. This is carried out by 
amplifying the signal from the reference photodiode and sending it to the 
lock-in reference input. In this way, thermal fluctuations which affect 
both beams are cancelled out, and only the wavelength dependence of 
the phase is extracted during the sweep. A similar concept for stabilizing 
a MZI was reported in [14] for a distributed fiber sensor system. In 
principle, one could also use a copropagating beam as a reference, but 
that would require filters to separate the signal from the reference beam, 
thus a counterpropagating reference is easier to implement. On the other 
hand, if the lock-in amplifier in use can reach the MHz range, only one 
AOM would be necessary, as the beatings would have 80 MHz frequency. 

Let us obtain the equations that govern the phase response of this 
system. Frequency dependent propagation constant can be expanded in 
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Taylor series as follows [15]: 

β(ω) = neff(ω)
ω

c
= β0 + β1(ω − ω0) +

1

2!
β2(ω − ω0)

2 +
1

3!
β3(ω − ω0)

3 + ⋯ (1) 

where 𝛽𝑖 = (𝑑𝑖𝛽 𝑑𝜔𝑖⁄ )𝜔=𝜔0
 (i=0,1,2…). The first three terms of the 

propagation constant can be expressed as 

β0 =
ω0

c
neff(ω0) ,          β1 =

ng(ω0)

c
 ,          β2 =

−λ2

2πc
Dλ  (2) 

where neff is the effective index, β1 is related to the group index (ng) and 
β2 is the group velocity dispersion (GVD) parameter. Let us consider a 
MZI consisting of an homogeneous waveguide in one arm and a variable 
air path, e.g., an ODL, in the other branch. To compensate for the 
response of the system, two measurements with different lengths are 
necessary, the shortest one to be used as a reference. There are two 
possibilities to make this, as shown in Fig. 2. If the waveguide is 
homogeneous (no tapers or wider parts to facilitate the coupling) one 
can remove the sample to get the reference response [see Fig. 2(a)]. On 
the other hand, if the waveguide has section variations of considerable 
length, the reference must contain the same section variations, and only 
the length of the section under test must be different, as shown in Fig. 
2(b).  

In any case, we are interested in the phase difference with respect 
to the reference measurement, therefore the dispersion response of the 
AOMs, fibers, and waveguide coupling regions are all compensated. The 
response will only depend on Ls, which is the extra waveguide length 

 

Fig. 1. Experimental setup. PC: Polarization controller, PD: Photo-detector, AOM: 
Acoustooptic modulator, ODL: Optical delay line. Solid lines denote fiber connections, 
and dashed lines, electrical connections. The ODL is pigtailed, but has a free-space 
delay inside. Isolators suppress the optical signals travelling toward the laser outputs. 
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between both measurements, and La, which is the extra air path added to 
the ODL to keep the MZI balanced.  

If we define ϕs as the phase added when increasing the waveguide 
length by Ls and ϕa as the phase added when increasing the ODL path by 
La, we have  

ϕs(ω) − ϕs(ω0) = Ls (β1Δω +
β2

2!
Δω2 +

β3

3!
Δω3)   (3) 

ϕa(ω) − ϕa(ω0) = La
Δω

c
     (4) 

Hence, the phase difference between both branches Δ𝜙 = 𝜙𝑠 − 𝜙𝑎 is 
given by 

Δϕ(ω) − Δϕ(ω0) = (Lsβ1 −
La

c
) Δω + Ls (

1

2!
β2Δω2 +

1

3!
β3Δω3)  (5) 

Balancing the MZI consists of adjusting La to make the first term in 
Δω equal to zero. This is experimentally carried out by moving the ODL 
until the slope of the phase at the central wavelength becomes zero. 
Under these conditions, the group index of the waveguide under test will 
be given by  

 

Fig. 2. Different measurement schemes, where the actual measurement is shown in the 
top panel and the reference in the bottom panel. (a) Only one length of homogeneous 
waveguide using a measurement with no sample as reference. (b) Two different lengths 
of a waveguide, using the shorter one as the reference. 
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ng = c ∙ β1 =
La

Ls
      (6) 

The ODL must have a range which is long enough to cover the path 
difference between the reference sweep and the signal sweep. An ODL 
range of 500 ps would allow the characterization of devices up to that 
amount of delay, which corresponds to an approximate length of 37 mm 
(assuming a group index of 4), which is enough for most photonic 
integrated circuits.  

Once the MZI is balanced, the terms from (5) in Δω2 and Δω3 can be 
obtained from a polynomial fit of the resulting curve. In principle, one 
could also obtain higher-order dispersion terms, but these terms would 
only become evident if lower-order terms are small. In our case, we have 
fitted the curves up to third-order.  

Fig. 3 shows the effect of thermal phase drift. The red dashed curve 
shows the fluctuations of the signal beam phase with time without using 
the counterpropagating beam as a reference. In this case, the lock-in 
amplifier was referenced with the 40 kHz beatings obtained from mixing 
the RF sources of the AOMs. The plot shows a noise level which would 
prevent a reliable measurement of the phase dependence on wavelength 
with a sweep that takes several seconds. On the other hand, the solid 
black curve shows the phase when referencing with the beatings 
produced by the counterpropagating reference beam. The fixed 
wavelength of the counterpropagating beam must be close to the 
propagating signal wavelength, as this way the phase noise is reduced to 
the minimum. For this reason, it was set to the central wavelength where 
the MZI is balanced. The phase noise is greatly reduced because thermal 
fluctuations of the optical paths of both branches equally affect both 
beams. 
 

3. Fabrication 

In this paper, we show the characterization of silicon-based waveguides 
with three different geometries, which we call Sample A, B and C.  
Sample A and Sample B are strip waveguides patterned with deep-UV 
lithography. They have 2 µm oxide buffer, 25 mm length, and 215 nm 
height, as shown in Fig. 4(a) and (b). Sample A corresponds to a TE 
polarization channel waveguide with 430 nm width. Sample B, used as 
TM polarization channel waveguide, has 487 nm width. The sidewall 
angle introduced in the manufacturing process is 8⁰ and 6⁰ for Sample A 
and Sample B, respectively. These parameters were extracted from SEM 
micrographs, and were fine-tuned within the experimental error range 
to optimize the fitting. Sample C is a 50% asymmetric slot waveguide 
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patterned with electron-beam lithography. It has 3 µm oxide buffer, 14 
mm length, and 250 nm height. In asymmetric slot waveguides, the slot 
location is different than the geometrical center of the waveguide. We 
define the asymmetry degree as 2s/w [16], where s is the distance from 
the center of the waveguide to the center of the slot, in absolute value, 
and w/2 is half of the total width of the waveguide, see Fig. 4(c). The 
waveguide consists of a 80 nm wide silica slot between two silicon rails 
with 5.5⁰ angled sidewalls. All samples are covered with silica using 
plasma-enhanced chemical vapor deposition (PECVD).  

In samples A and B light was vertically coupled through 70 nm-deep 
grating couplers. Total insertion loss was 24 dB for Sample A (TE) and 15 
dB for Sample B (TM). On the other hand, for Sample C light was 
horizontally coupled using lensed fibers; total insertion loss was 54 dB. 

 

4. Results 

Fig. 5(a) and (c) show the phase experimental measurement and its 
polynomial fit for Sample A and Sample B, respectively. From the fit for 
each sample, chromatic dispersion profiles are obtained, Fig. 5(b) and 
(d), where numerical simulations performed by using commercial  

 

 

Fig. 3. Phase noise versus time when the measurement is unreferenced (red, dashed) 
and referenced with a counter-propagating beam at fixed wavelength (black, solid). 
Signal and reference wavelengths were 1550 and 1530 nm, respectively. The phase 
noise is dramatically reduced by referencing. 
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software based on finite element method are also presented for 
comparison. In theoretical calculations, we compute the effective index, 
neff(λ), in a broad spectral range and by numerical differentiation the 
GVD parameter as a function of wavelength is obtained as Dλ =- 
(λ/c)d2neff/dλ2. Material dispersion has been taken into account by 
considering the Sellmeier equation for both silicon and silica [17].   

It can be seen that dispersion values and their slopes reasonably 
agree with the calculations; the small discrepancies are attributed to 
geometrical deviations of the fabricated device with respect to the 
simulation, which is assumed to be perfectly symmetric and 
homogeneous. In principle, there is no limitation on the dispersion 
measurable range. However, the minimum measurable dispersion would 
be determined by the phase noise, which depends on the experimental 
conditions. β3 parameter is also obtained for both samples; for Sample A, 
we found an experimental value of β3= -0.0394 ps3/m and a theoretical 
value of β3= -0.0392 ps3/m. In the case of Sample B, experimental β3= 
0.019 ps3/m and calculated β3= 0.0076 ps3/m values are obtained. 
Experimental group index values are 4.36 and 3.21 for TE polarization 
strip and TM polarization strip, respectively, while calculated values are 
4.35 and 3.46, showing a good agreement too. Vertical slot waveguide 
experimental phase and its fitting are shown in Fig. 5(e). Fig. 5(f) shows 
the chromatic dispersion profile for this sample which presents a 
measured value of β3= -0.0939 ps3/m and a calculated value of β3= -
0.0886 ps3/m. Experimental and theoretical values of group index for 
Sample C are 4.17 and 4.15, respectively. 

 

Fig. 4. Different measured waveguides. (a) 430 nm wide silicon strip for TE 
polarization. (b) 487 nm wide silicon strip for TM polarization. (c) Vertical slot 
waveguide. Waveguide parameters were extracted from SEM micrographs and were 
fine-tuned within the measurement error range to optimize the fitting. 
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5. Conclusion 

A novel method for chromatic dispersion measurement in nanophotonic 
waveguides is proposed and demonstrated. By measuring the phase 
evolution versus wavelength of the waveguides in a MZI, the chromatic 
dispersion and its slope can be determined. The technique is immune to 
fringe instability and allows the characterization of integrated 
waveguides with high insertion loss. We have performed an accurate 
dispersion characterization of conventional strip waveguides for both TE 
and TM polarizations as well as vertical slot waveguide. The 
experimental results were in close agreement with those obtained from 
simulation. 
 

 

Fig. 5. Phase evolution and chromatic dispersion profiles for (a)–(b) TE polarization 
strip waveguide (Sample A), (c)–(d) TM polarization strip waveguide (Sample B) and 
(e)–(f) vertical slot waveguide (Sample C). 
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Abstract 

The dispersion profile of a nonadiabatic tapered singlemode fiber is 
characterized and dynamically tuned. Its group delay and dispersion 
parameters are measured and compared to those of a standard 
singlemode fiber. The dispersion profile can be tuned by introducing a 
phase shift through mechanical stretching. Coarse tuning is also obtained 
by varying the surrounding medium of the tapered fiber. Dispersion values 
up to 700 ps/nm·km in nonadiabatic tapered fibers are obtained for the 
first time. Dynamic tuning exposed here can be very useful in applications 
such as nonlinearities or soliton generation.   

  

Chromatic dispersion is one of the limiting effects in optical 
communications systems. It broadens optical pulses leading to 
degradation in the quality of the system, not only increasing the noise 
level in analogical systems but also inducing Inter Symbol Interference 
(ISI) in digital systems [1,2]. The latter reduces the bitrate-distance 
product, this is the amount of data that can be transmitted per time and 
space through optical links. Besides, several functionalities such as 
nonlinear generation [3], broadband optical parametric gain [4] and 
soliton generation [5] are highly dependent on the dispersion 
characteristics of the device. Therefore, an accurate management of the 
chromatic dispersion profile of devices and systems is required. 
Chromatic dispersion can be split into material dispersion and 
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waveguide dispersion. Dispersion tailoring is usually performed by 
varying the structural and geometrical parameters of the device [6-8], 
which allows for more control on their response as opposed to material 
engineering which usually requires the fabrication of different devices 
using different materials. 

Tapered fibers consist of a narrow waist located between two 
transition regions [9]. This structure is obtained by exposing a standard 
single-mode fiber to a heating and stretching process [10]. Depending on 
the length of the transition region two types of tapered fibers can be 
distinguished: in adiabatic tapers these regions are long enough to allow 
the fundamental mode to propagate normally through the taper; 
however, non-adiabatic tapers are abrupt and the fundamental mode 
experiences higher-order mode coupling in the tapered regions. 
Biconical tapered fibers have been employed in several functionalities 
such as sensing [11], super-continuum generation [12] and pulse 
shaping [13]. The great development of tapered fibers lies in the 
simplicity in which conventional propagation characteristics of standard 
optical fibers can be modified. 

In this context, dispersion tailoring in adiabatic tapered fibers have 
been demonstrated by the modification of geometrical parameters such 
as the waist diameter [14] and structural parameters such as the 
refractive index of the outer medium [15,16]. However, if the tapered 
fiber is immersed in different liquids to modify its surrounding medium, 
a very careful cleaning must be carried out after the measurements in 
order to return to the starting state of the taper. Also, dispersion 
engineering just by means of the variation of geometrical parameters in 
the manufacturing process presents a more static behavior. This paper 
proposes using non-adiabatic tapered fibers to perform dynamic 
chromatic dispersion tailoring in a wide bandwidth by mechanically 
stretching the fiber. This stretching introduces a controlled phase shift 
which affects the spectral response, varying the dispersion 
characteristics of the fiber in a simple and dynamic way. Further control 
on the dispersion response is demonstrated by modifying the refractive 
index (RI) of the outer medium without immersing the tapered fiber in 
fluids. 

Fig. 1 shows the profile of a non-adiabatic biconical tapered fiber 
with waist of diameter ρ and length Lw located between two transition 
regions of length Tt. Most of the energy from the fundamental mode that 
is injected through the input taper splits into the cladding fundamental 
mode and a higher-order cladding mode. These modes propagate 
through the waist experiencing different effective propagation distances 
that depend on their mode effective indexes [17]. These modes interfere 
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at the output transition region, leading to an interference fringe pattern 
in the frequency domain, similar to that of a Mach-Zehnder  
interferometer (MZI). The phase of the transference function of the 
tapered fiber follows [13] 

𝜑(𝜆)~ sin (
2𝜋

𝜆
∙ 𝐿𝑤 ∙ (𝑛𝑒𝑓𝑓1 − 𝑛𝑒𝑓𝑓2) + 𝜑0)   (1) 

where Δneff = neff1-neff2 accounts for the difference between the effective 

indexes of the waist modes, λ is the vacuum wavelength and φ0 

is the initial phase. According to this expression, variations in waist 

length [18] and effective indexes [19,20] of the modes directly influence 

the spectral response of the taper. Group delay and chromatic dispersion 

are related to the phase by the following relations 

τg =
∂φ

∂ω
~

𝐿𝑤

c
∙ ∆𝑛𝑒𝑓𝑓 ∙ cos (

2𝜋

𝜆
∙ 𝐿𝑤 ∙ ∆𝑛𝑒𝑓𝑓 + 𝜑0) (2) 

𝐷 =
𝑑

𝑑𝜆
(

1

𝜏𝑔
)~

−2𝜋𝑐

𝜆2
∙ tan (

2𝜋

𝜆
∙ 𝐿𝑤 ∙ ∆𝑛𝑒𝑓𝑓 + 𝜑0) ∙ sec (

2𝜋

𝜆
∙ 𝐿𝑤 ∙ ∆𝑛𝑒𝑓𝑓 + 𝜑0) (3) 

Thus, by varying the phase difference of the interference pattern, 

group delay and chromatic dispersion of the tapered fiber can be 

modified. According to Eq.2, maximum values in the phase transference 

function become minimum values in the group delay profile and vice 

versa. Please note that this expression accounts for the effect of the 

tapered fiber but not for the effect of the waveguide and material of the 

optical fiber. Eq.3, shows how dispersion becomes zero at local 

maximums in the group delay and maximum absolute values at the local 

minimums. 

Figure 2 shows the transmission response of a non-adiabatic  

 

Fig. 1. Biconical tapered fiber. 
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tapered fiber manufactured in a standard single-mode fiber (SSMF) with 

parameters Tt=1 mm, Lw=13 mm and ρ=18 µm, obtained using an Optical 

Network Analyzer (ONA) from Advantest. Frequency modulation and 

fiber index were set to 3 GHz and 1.45, respectively. The length of the 

whole section of fiber is L= 79.5 cm. As can be seen in its fringe pattern, 

the taper presents a free spectral range (FSR) value of 8.2 nm and a 

visibility of approximately 5 dB. The taper was set in a translation stage 

by fixing its sides using two drops of glue in contact with the cladding. 

Group delay and chromatic dispersion characteristics of the tapered 

fiber as a function of wavelength were measured by using the ONA with 

the same configuration parameters, and the obtained results are 

illustrated in Figure 3. A SSMF section of fiber with the same total length 

L as the tapered segment was also characterized for comparison 

purposes in a 40 nm bandwidth centered at 1550 nm. As can be seen, 

inserting the taper clearly modifies the conventional propagation 

characteristics of the standard fiber, resulting in a periodic behavior in 

its group delay response. The periodicity of the group delay profile 

corresponds with the FSR of the transmission response. Likewise, the 

chromatic dispersion profile is also modified as can be seen in Fig. 3(b). 

Both group delay and dispersion behavior are in agreement with the 

results predicted by Eq. 2 and Eq. 3. In this wavelength span 

conventional fibers show an almost constant value of 18 ps/nm·km. 

Much higher values of approximately 500 ps/nm·km are observed in the 

 

Fig. 2. Experimental transmission response of a biconical tapered fiber. 



122 
 

periodic dispersion profile at the minimum values of the group delay as 

expected from Eq. 3. 

Dynamic tuning is observed by stretching the tapered fiber to three 

different points of elongation, L1=0 µm, L2=250 µm and L3=500 µm, 

respectively. The starting point, L1, is the same elongation state as the 

one previously compared with the untapered fiber in Figure 3. Figure 4 

shows the optical transmission function of the stretched tapered fiber for 

the three elongation points. As can be seen, the modification of Lw 

induces changes in the interference pattern, leading to a spectral shift, as 

predicted from Eq. 1. Linear wavelength shifts of 0.2 nm and 0.4 nm are 

observed when the taper fiber is elongated from L1 to L2 and L3, 

respectively. Figure 5 shows the group delay and chromatic dispersion 

profiles obtained for these elongation points. Group delay profiles 

experience a shift to higher wavelengths when the tapered fiber is 

stretched. Considering the dispersion peaks nearest to the 

telecommunications wavelength of 1550 nm, elongation point L1 

presents its maximum value of 427 ps/nm·km at 1547.9 nm, L2 

maximum value is 450 ps/nm·km at 1548.52 nm and L3 peak of 480 

ps/nm·km is located at 1549.06 nm. To sum up, mechanical stretching of 

the structure allows for fine tuning of its dispersion profile. Also, the 

modification of the dispersion profile shape provides periodic zero 

dispersion wavelengths, as shown in Fig. 5(b) which can be useful in 

applications requiring dispersion compensation or propagation in 

nondispersive media. 

 Taking advantage of the evanescent part of the fields propagating 

through the waist the characteristics of the tapered fiber can be easily 

modified. The effective indexes of the propagating modes can be varied 

by putting the tapered fiber in contact with a support surface as shown 

in [21]. This allows the modification of the refractive index of the 

surrounding medium leading to the variation of the propagation 

characteristics of the tapered fiber. The transmission response of a 

tapered fiber with the same geometrical parameters Lw, Tt and ρ as the 

previously analyzed but located on-surface is depicted in Fig. 6. As can be 

seen, its visibility and FSR are approximately 7 dB and 8.2 nm, 

respectively, leading to more abrupt resonances in comparison with the 

optical response of the over-surface tapered fiber. The contact between 

the support surface and the tapered fiber leads to scattering losses and a 

wavelength shift due to the different index of the surrounding medium.  
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Fig. 3. (a) Group delay and (b) chromatic dispersion of a single mode standard fiber 
with and without tapering it. 

 

Fig. 4. Experimental response of a stretched biconical tapered fiber considering three 
different elongation points. 
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Losses cause the modes travelling along the waist to present more 

similar amplitudes, thus reducing the residual power under destructive 

interference resulting in more abrupt resonances in its transference 

function. Group delay and chromatic dispersion characteristics are 

shown in Fig. 7 where the results obtained for the over-surface tapered 

fiber are also included for comparison purposes. As can be seen, group 

delay profile is shifted approximately the half of the FSR, i.e. around 4 

nm, as well as its chromatic dispersion profile. Furthermore, both 

profiles present higher visibilities than those of the over-surface taper, 

which is in agreement with the higher visibility exposed in the 

transmission response in Fig. 6. Maximum dispersion peaks of 

approximately 700 ps/nm·km can be achieved, which is more than 40 

times the dispersion value present in a SSMF at the considered 

bandwidth. 

In conclusion, we have proposed a novel technique to implement 

dynamic dispersion tailoring based on non-adiabatic fiber tapers. It has  

 

Fig. 5. (a) Group delay and (b) chromatic dispersion of a stretched tapered fiber 
considering three different points of elongation. 



125 
 

  

 

 

Fig. 7. (a) Group delay and (b) chromatic dispersion of On-surface and Over-surface 
tapered fibers. 

 

Fig. 6. Experimental transmission response of an on-surface tapered fiber. 
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been fabricated and its amplitude, group delay and chromatic dispersion 

responses measured and compared with those of an untapered fiber 

with the same length and characteristics. The interferometric response 

of the structure has been controlled by mechanical stretching and its 

dispersion characteristics measured as a function of the elongation. This 

technique can be applied to carry out fine-tuning dispersion engineering 

in applications such as nonlinearities or soliton propagation where 

chromatic dispersion characteristics are crucial. In addition, pulse 

shaping and dispersion compensation modules can benefit from this 

tailoring technique. We obtained stable and repeatable measurements, 

thanks in part to the robustness of the relatively large tapers employed. 

The approach is not only scalable and simple, but also allows for a 

dispersion tailoring in a wide bandwidth. Combined ways of dispersion 

tailoring in tapered fibers may be considered to obtain a higher level of 

dispersion control. Results by locating the tapered fiber in contact with a 

support surface are also exposed, showing that dispersion can be 

tailored from the conventional value of 17 ps/nm·km at 1550 nm to 

more than 700 ps/nm·km. Therefore, effective index variations along 

with the stretching process presented here can be combined to 

implement dynamic dispersion tailoring. 
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Abstract 

Tapered single-mode fibers are employed to perform dynamic pulse 
shaping in a bandwidth of several terahertz. The transfer function of 
cascaded biconical tapers is controlled by introducing a phase shift into 
one of them through mechanical stretching. It is a simple and low-cost 
technique with potential to process signals with bandwidths as large as 
those allocated by standard optical fiber while introducing little 
degradation. Femtosecond pulses are shaped to prove the concept.  

 

Optical fiber is a versatile and excellent transmission medium employed 
not only in data distribution but also in signal processing. Different 
applications from sensing to imaging and pulse shaping have been 
implemented taking advantage of its capabilities [1]. Fibers with 
different properties can be obtained through material doping and the 
design of their geometry, allowing for different functionalities, such as 
dispersion compensation, increased nonlinear effects, and polarization-
dependent behavior [2]. In the same direction, biconical tapered fibers 
emerged as a simple way to modify the properties of standard fiber by 
reducing its transversal section through heating and mechanical 
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stretching along the propagation axis [3–5]. These consist of a uniform 
waist allocated between conical transition regions and are often 
classified according to the type of transition; nonadiabatic for abrupt 
ones, in which the fundamental mode of the untapered fiber couples not 
only to the core of the waist but also to the air–cladding interface, and 
adiabatic tapers, with more gradual transitions that do not introduce 
higher order coupling. Biconical tapers have been used in sensing [6,7], 
supercontinuum generation [8,9], directional coupling [10,11], 
chromatic dispersion compensation [12], and fiber laser mode-locking 
[13]. Nonadiabatic tapers are particularly interesting in the fabrication of 
all-fiber temperature, stress, and refractive index sensors since light 
traveling through the outer interface of the fiber interacts with the 
external medium before being recoupled into the fundamental mode of 
the fiber.  

Ultrashort optical pulses are of widespread use in different 
applications, such as spectroscopy, metrology, and communications [14]. 
Particular pulse shapes are required by some of them; e.g., to fit certain 
spectral masks in communications [15] and to locally increase the power 
in terahertz spectroscopy [16]. To accomplish this, pulse shaping 
techniques with bandwidths capable of allocating femtosecond pulses 
are necessary. Most of these techniques rely on dispersion to gain 
separate access to the different spectral components of the pulse, either 
in space [17], or in time [18], for free-space and fiber-based solutions, 
respectively. These approaches provide good performance but require 
careful dispersion compensation. This Letter proposes using fiber tapers 
to perform dynamic shaping of light in a bandwidth as large as that of 
standard optical fiber. One of the two fiber tapers, in series, is 
mechanically stretched to introduce a controlled phase shift that affects 
the cascaded spectral response. The processed signals experience little 
dispersion because of the reduced length of the tapers. This makes the 
technique optimal for the processing of signals of very large bandwidth 
without relying on dispersive effects that may be difficult to compensate. 
The approach is highly scalable and compatible with fiber-based 
systems. 

Figure 1 shows the profile of a biconical tapered fiber with a waist 
of diameter ρ and length Lw between two exponential coupling regions of 
length Tt [19]. Modes propagating through the waist experience different 
propagation distances, depending on their effective index, neffi for the ith 
mode. This results in a fringe pattern in the frequency domain, similar to 
that of Mach–Zehnder interferometers (MZI), once they interfere with 
their delayed replicas after recoupling into the fundamental standard 
fiber mode (nSSMF). For the tapers considered in this work, most of the 
energy injected into the taper splits in two modes that propagate 
separately in the waist. The resulting transference function of the 
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optical intensity (TF) is therefore expected to be as follows:  

 TF~sin (k0LW(neff1 − neff2) + φo)                  (1)  

where k0 and φ0 are angular wavenumber in vacuum and phase offset, 
respectively. Variations in waist length [20] and effective indexes [21, 
22] of the modes directly influence the spectral response of the taper. 
Although this has been extensively exploited in sensing applications, we 
turn around the concept by controlling the taper parameters to modify 
its TF. Assuming that the taper length is stretched by an amount Lw, its 
spectral response will shift ω in optical frequency. According to Eq. (1), 
both variables follow the relation  

 
∆ω

ω
=

∆LW

LW
       (2) 

which shows that small increases in the taper length introduce 
considerable frequency shifts.  

Figure 2 shows the transmission response of two non-adiabatic 
fiber tapers that were fabricated with parameters Tt=1 mm, Lw=13 mm 
and ρ=18 µm, obtained using a tunable continuous-wave laser and a 
power meter. The fabrication technique consists of a small flame set in a 
three-axis-translation stage that allows us to move the flame consistently 
and accurately so as to ensure that the fiber is uniformly heated while 
the fiber is being stretched [5]. Deviations in this process led to different 

 

Fig. 1. (a) Biconical tapered fiber and (b) scheme of the interferometric phenomenon 
along the tapered fiber. 
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free-spectral ranges (FSR) of 8.3 nm and 7.25 nm. Commercial 
simulation software was employed to compute the different modes 
propagating in the waist as well as their effective indexes, leading to 
values of 1.4444 and 1.4214 for neff1 and neff2, respectively, by considering 
standard refractive index values for core and cladding at 1.55 µm. The 
experimental measurements agree well with these values while the 
quasi-sinusoidal transfer function confirms the two modes 
approximation. The fabricated tapers show insertion losses of 2 dB, 
which are attributed to radiation in the transition sections as well as to 
propagation in the waist and transitions between the fibers. The second 
taper was stretched after fixing its sides onto a translation stage by 
means of two drops of glue in contact with the cladding of the untapered 
fiber and separated approximately 3.5 cm. Results are shown in Fig. 2(b) 
where the starting point is the solid black line and the response shifts to 
lower wavelengths for increasing lengths, as expected from Eq. (1).  
Wavelength shifts of 1.5, 2.8 and 6.3 nm were measured. These values 
correspond with theoretical elongations of 12, 23 and 53 µm for 
frequencies in the telecom wavelength of 1550 nm, respectively. Small 
amplitude changes were observed for different stretching conditions. We 
attribute these variations to little curvatures introduced in the taper-
waist interfaces during stretching that radiate part of the energy, and 
slight changes in the transition region that modify the coupling between 
the fundamental mode of the fiber and modes excited in the waist.  

Both tapered fibers were set in line by direct connection of their 
untapered extremes and its combined response measured for three 
different elongations of the waist of the second taper, as shown in Fig. 3. 
The resulting response resembles that of a single taper with increased 
visibility and modulated in amplitude. The theoretical periodicity of this 
modulation is FSR1·FSR2/(FSR1-FSR2), being FSRi the ith taper response. 

Fig. 2. (a) Experimental transfer functions of the fixed and (b) stretched biconical 

tapers. 
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Experiments fit the predicted value of 57 nm. Since the combined 
response matches the product of the individual ones, it can be concluded 
that additional interference phenomena, such as reflections between the 
tapered fibers, do not contribute significantly to the total response. Also, 
because the phase shift introduced in the stretched taper shifts the 
combined response, small phase changes originate large frequency shifts 
for the envelope. This may be useful in the development of fiber-based 
sensors with increased sensitivity. In the present work, this technique is 
used to shape femtosecond optical pulses dynamically.  

Figure 4 shows the experimental setup and preliminary 
measurements. A fiber laser generates 100-fs pulses at a repetition rate 
of 50 MHz with an average power of 7dBm. A section of dispersion 
compensating fiber (DCF) with -0.67 ps/nm of accumulated dispersion is 
employed before the pulse-shaping stage (PSS) to avoid nonlinear effects 
in the tapers arising from pulses with high peak power and to pre-
compensate for the dispersion suffered by the pulses along the standard 
single-mode fiber (SSMF) placed at the output of the experimental setup. 
A 99/1 power splitter is set at the output of the tapers to observe the 
spectrum and autocorrelation function of the processed pulses by means 
of an optical spectrum analyzer (OSA) and an intensity optical 
autocorrelator (OA), based on harmonic generation in a nonlinear 
crystal, respectively. A high-power booster benchtop Erbium-doped fiber 
amplifier (EDFA), from Keopsys, was included before the SSMF to boost 
the signal. It provided amplification with a saturated output of 18 dBm 
and return loss below -40 dB over the whole C-band so as not to filter the 
spectrum of the signals to be amplified. Although stretching and 
compression of the pulses was performed to amplify them up to the 

Fig. 3. Transmission response of the inline combination of fixed and stretched tapered 

fibers for different elongation.  
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sensitivity level of the OA without exciting nonlinear effects in the tapers, 
the processing technique does not rely on dispersion and can be 
implemented using only the few cm of fibers that are necessary to 
fabricate the tapered fibers.   

The spectrum and autocorrelation functions of both the laser output 
and shaped pulses are shown in Fig. 4(b). In this case, the response of the 
tunable taper was shifted to overlap the response of the fixed taper in 
the bandwidth of the femtosecond laser. In-phase interference (i.e., the 
elongation point where the spectral responses of the tapered fibers 
interfere with similar phases for the spectrum of the laser), at these 
wavelengths results in fringes with increased visibility. Without tapers, 
the optical autocorrelation resolves pulses with a full width at half-
maximum (FWHM) duration of 200 fs. Since these recompressed pulses 
are close to their transform-limited duration, all previous dispersion is 
nearly completely compensated. Consequently, when the cascaded 
tapers are included in the setup, the optical pulses measured at the OA 
are widened due to the dispersion induced by the tapered fibers 
themselves.   

 

Fig. 4. (a) Experimental setup and (b) experimental measurements illustrating the 
concept of pulse shaping through taper cascading. 
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Figure 5 shows optical autocorrelation traces for the inline 
combination of two tapered fibers after the compensation of the 
dispersion present in the setup, with the exception of Fig. 5(a) that 
shows the OA function of only the tunable taper for comparison 
purposes. Figure 5(b) corresponds with the cascaded combination of the 
two tapered fibers under approximate in-phase interference in the laser 
bandwidth. Figures 5(c)-5(f) show several pulse train profiles obtained 
for different interference points. These results show that the number of 
pulses as well as their amplitude distribution can be controlled by 
mechanical stretching of the tunable taper. Moreover, when the amount 
of uncompensated dispersion in the setup widens, the pulses, up to a 
duration that exceeds the delay introduced by the modal dispersion 
experienced by the modes propagating in the waist the pulses, overlap in 
time and interfere and a train of pulses with a repetition frequency that 
depends on the uncompensated dispersion is generated. For the 
femtosecond pulses considered here, an uncompensated dispersion of a 
few meters of SSMF is enough to generate such an interference pattern. 
This way, dispersion can be used to scale the resulting signal in the time-
domain by inserting and removing pieces of SSMF to obtain 
uncompensated dispersion. Measurements shown in Fig. 6 are for a 
constant configuration of the fiber tapers point and steps of 10 m of 
SSMF. When dispersion is perfectly compensated, the pulse train 

 

Fig. 5. Optical autocorrelation measurements with dispersion compensation of (a) one 
taper fiber, (b) in-phase interference of both tapers, (c)-(f) cascaded combinations for 
different interference points. 
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resembles those of Fig. 5. In the rest of traces, the delay between pulses 
in the train is changed from less than 1 ps to more than 2 ps. Although 
using dispersion to change the repetition frequency of the generated 
train of pulses seems interesting, broadening and reduction of peak 
power may limit its applicability. 

In conclusion, we have proposed a novel technique to implement 
dynamic spectral responses, based on cascading of nonadiabatic fiber 
tapers. These have been fabricated and their individual and combined 
responses measured. The transfer function of the whole structure has 
been controlled by mechanical stretching of a single taper. In this work, 
this technique has been applied to the shaping of ultrashort optical 
pulses, although several applications may benefit from this approach, 
such as stress and temperature sensing, with enhanced sensitivity. We 
obtained stable and repeatable measurements thanks to the robustness 
of the relatively large tapers employed. The approach is not only scalable 
and simple, since it requires only processed pieces of standard fiber, but 
also allows for signal processing in a bandwidth of several terahertz 
while introducing little losses and dispersion. Techniques using 
dispersion allow for quasi-arbitrary waveform generation although 
compensation of high order dispersion terms becomes difficult. Since our 
approach does not rely on dispersion, it should be useful in applications 
where the duration of the pulse is critical. For example, in the generation 
of terahertz radiation where trains of femtosecond pulses are employed 

 
Fig. 6. Optical autocorrelation measurements of the two tapered fibers in line 
combination for different values of dispersion. 
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to increase the spectral brightness of the emitter, or to provide 
controlled light–matter interaction in nonlinear optics. On the other side, 
the effect of uncompensated dispersion in the fiber link has been studied 
and proved useful to generate additional waveforms through interpulse 
interference. This increases the range of waveforms that can be 
generated at the expense of pulse widening. Alternative ways of 
changing the operating conditions of the tapers should be considered. 
For example, piezoelectric actuators and energetic optical fields capable 
of introducing nonlinear effects in the taper are expected to provide 
electrical and optical control, respectively. 
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Abstract 

In this paper, biconical tapered fibers are used to carry out sensing in a 
simple and effective way by using an incoherent source and a power 
meter. This approach reduces the cost and complexity of traditional 
schemes based on tunable lasers while providing similar performance. 
Refractive index and strain sensing measurements are presented and their 
performance discussed. 
 

1. Introduction 

Optical fiber is the preferred transmission medium for different 
applications due to its large bandwidth, immunity to electromagnetic 
interferences and little attenuation, among others [1]. Fiber geometry 
can be changed in several ways to modify its characteristics and 
fabricate different devices such as amplifiers, modulators, 
interferometers, directional couplers, filters, etc. [2]. Among these 
devices, biconical tapered fibers are fabricated through the application of 
heat and mechanical strain [3]. They consist of a uniform waist located 
between two transition regions. Depending on the length of the 
transition two types of tapers can be distinguished. When the transition 
is smooth or adiabatic the fundamental mode of the fiber propagates 
normally. However, if the transition is abrupt or non-adiabatic the 
fundamental fiber mode originates several modes. These modes have 
different effective indexes and therefore experience different 
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propagation lengths. Once the modes are recoupled into the fundamental 
mode of the standard fiber the interference between these modes 
creates a spectral pattern that depends on the difference between their 
effective refractive indexes and the waist length, resembling the 
spectrum of a Mach-Zehnder interferometer (MZI) when a few modes 
gather most of the total power [4].  

Sensing is of widespread use in several fields such as medicine, 
communications and imaging systems, among others [5]. Two important 
types of sensing that rely on optical technology are strain [6] and 
refractive index (RI) [7] sensors. The quality of a strain or refractive 
index sensor is quantified through the sensor sensitivity [8], whose 
expression relates the shift induced in the sensor response per unit of 
change. Strain sensing has been carried out using different devices such 
as Bragg gratings [9], photonic crystal fibers [10] or ZnO piezoelectric 
wires [11]. On the other side, different structures and technologies have 
been used to sense RI [7], like surface plasmon resonance (SPR) [12], 
ring resonators [13] or photonic crystals [14], among others. 

Non-adiabatic biconical tapered fibers are used for both RI and 
strain sensing [15-17]. RI and strain sensors consist of a continuous 
wave (CW) laser, the sensing structure and a power meter [18-20]. 
Although they provide good sensitivity by tuning the pump wavelength 
into the maximum slope point of the tapered fiber’s response, CW lasers 
are costly and experience long-term wavelength and power drifts that 
must be compensated using a wavelength-meter together with a digital–
analog feedback system [21]. To alleviate this problem, a viable solution 
is the use of an incoherent broadband source (e. g. a diode). In this case 
the power detected corresponds not with individual points of the 
transfer function but with the integration of a wavelength span. The 
sensitivity is initially reduced because of this power integration, 
although the main noise source (laser’s amplitude and wavelength 
changes) disappears so electrical post-amplification can be used to 
obtain similar sensitivities. Therefore in the latter approach source cost 
and complexity are considerably reduced. Although the use of a 
broadband source can lead to lower extinction ratios they can be 
increased by introducing a combination of tapered fibers so that the 
performance provided by the two approaches is comparable. 

In this paper, the characterization of refractive index and strain 
sensors based on the inline combination of biconical taper fibers and use 
of an incoherent broadband source is presented and compared with the 
results obtained by the standard approach. The comparison between the 
two approaches exposed here is very useful when designing sensing 
measurements based on fibers as it takes into account critical aspects 
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such as the experimental setup cost, the sensor sensitivity and the source 
stability. The use of biconical tapered fibers reduces dramatically the 
cost of the system because of the simplicity and low cost of its fabrication 
process. In addition, the cascaded combination of tapered fibers provides 
flexibility and versatility to the sensing scheme. Moreover, an increase in 
the sensitivity of the sensor by using the two tapered fibers combination 
is demonstrated for the first time to the author’s knowledge. Finally, the 
use of an incoherent source lowers the cost of the system and provides 
increased amplitude stability that compensates for lower dynamic 
ranges. Therefore, the proposed setup reduces the cost of the system 
while increasing the sensor sensitivity, flexibility and amplitude stability.   

 

2. Principle of operation 

Figure 1 shows the two different methods considered to carry out 
sensing measurements. Spectral variations in the response of the device 
can be detected by using a tunable laser emitting in the maximum slope 
point of the response, as depicted in Fig. 1(a). The shift direction can be 
determined by monitoring variations of the output power level. This 
method leads to a good extinction ratio and sensitivity, but also to higher 
costs and complexity. Similar results can be obtained by the cascaded 
combination of tapered fibers using a broadband source, as shown in Fig. 

 

Fig.1. Sensor structures when considering (a) a CW tunable laser with a single 
tapered fiber and (b) an incoherent broadband source with the inline combination 
of two tapered fibers. 
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1(b), resulting in a simpler and cheaper experimental setup. This 
approach takes advantage of the increased extinction ratio obtained in 
the in-phase interference region of the response of the tapered fibers. In 
this paper, tapered fibers characterization was accomplished by means 
of a tunable laser, and sensing measurements were carried out using 
both a broadband source and a tunable laser for comparison purposes. A 
power meter was used in all cases to monitor the response. 

Two biconical tapered fibers, Taper A and Taper B from now on, 
with geometrical parameters Tt=1 mm, Lw=13 mm and ρ=18 µm were 
fabricated, where Tt is the coupling regions length and ρ and Lw are the 
waist diameter and length, respectively, as shown in Fig. 1(a). Optical 
characterization of the two tapered fibers and its inline combination is 
shown in Fig. 2. The free spectral range (FSR) values of the tapered fibers 
are FSRA=8 nm and FSRB=8.2 nm, respectively. Differences are originated 
from small deviations in the fabrication process. The resulting FSR from 
the cascaded combination of the two tapered fibers is given by 
(FSR1∙FSR2) ⁄ (FSR1-FSR2) [4], which in this case is 328 nm. The resulting 
FSR is higher than the sweep bandwidth of 100 nm, and therefore a 
complete period is not shown in Fig. 2(c). Taper A was stretched 
longitudinally after fixing its two ends onto a translation stage by means 
of two drops of glue in contact with the cladding of the untapered part of 
the fiber. Both tapered fibers were set in line by direct connection of 

 

Fig.2. Strain optical characterization by means of a tunable laser and a power meter 
of (a) isolated Taper A, (b) isolated Taper B and (c) their inline combination for three 
different points of elongation of Taper A, ΔLw1, ΔLw2 and ΔLw3 
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their untapered extremes and the resulting transfer function for the 
combination of Taper A-Taper B when considering three different 
elongation points of Taper A, ΔLw1=20 µm, ΔLw2=30 µm and ΔLw3= 40 µm, 
is shown in Fig. 2(c). As can be seen, depending on the constructive 
interference provided by the sum of the individual responses of the two 
tapered fibers while stretching Taper A, different maximum extinction 
ratios are obtained, varying from 3 dB to 12 dB.    

Considering that the fundamental mode power mainly splits into 
two modes, the operating principle of the tapered fiber sensors is based 
on the transfer function dependence on the waist length and the index 
difference between the two nearest cladding modes as follows [4]:  

𝑇𝐹 ~ 𝑠𝑖𝑛(𝑘0𝐿𝑊(𝑛𝑒𝑓𝑓1 − 𝑛𝑒𝑓𝑓2) + 𝜑0)            (1)  

where k0 is the angular wavenumber in vaccum, φ0 is the phase offset 
and neff1 and neff2 are the effective indexes of the fundamental cladding 
mode and the first order cladding mode, respectively. This leads to strain 
and refractive index sensing in a wide bandwidth thanks to a single 
structure. System calibration was realized for refractive index variations 
as well. Four different outer mediums were considered, i.e. deionized 
water (DIW) in addition to 2%, 4% and 6% Ethanol concentration in 
DIW, with refractive indexes at 1550 nm and ambient temperature of 
nDIW=1.3173, n2%Eth=1.3186, n4%Eth=1.3199 and n6%Eth=1.3212, 
respectively [22]. Figure 3 shows the transference function of Taper A 
and the inline combination Taper A-Taper B for these four different 
surrounding mediums. Taper A maximum extinction ratio decreases 
because of the increased evanescence of the optical field for surrounding 
mediums with higher refractive index, varying from 6 dB in air to 5 dB in 
DIW. Besides, it considerably falls when the refractive index is even 
higher, reaching maximum extinction ratios of 3 dB, as shown in Fig. 
3(a). This is due to the different absorption coefficient of the ethanol. On 
the other side, the maximum extinction ratio of the cascaded 
combination of the two tapered fibers rises slightly when increasing the 
refractive index from air to DIW due to a phase shift in the total transfer  
function. This provided a higher maximum extinction ratio in the optical 
response, as depicted in Fig. 3(b). When considering higher refractive 
indexes through different ethanol concentrations in DIW, the inline 
combination transference function presents lower maximum extinction 
ratio because the phase shift leads to a point of destructive interference 
between the individual transfer functions. 
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3. Experimental Results and Discussion 

 

Strain sensing was performed using both a tunable laser and a 
broadband source for comparison purposes. A power meter was 
employed to monitor the results instead of an optical spectrum analyzer 
in order to reduce costs in the experimental setup. Therefore, the 
sensitivity value is expressed in terms of extinction ratio as SΔL=ΔP/ΔLw. 
Figure 4(a) shows the transference function obtained when considering 
a tunable laser source while Taper A is stretched. When the stretching 
increases, the tapered fiber is elongated and the optical response varies. 
This approach exhibits a maximum extinction ratio of 6.3 dB, thus the 
sensitivity value obtained for Taper A is StunableA=0.54 dB/µm. On the 
other side, when a broadband source is used, Fig. 4(b), the maximum 

 

Fig.3. RI sensing optical characterization by means of a tunable laser and a power 
meter of (a) Taper A, and the cascaded combination of (b) Taper A-Taper B when 
considering DIW, 2%, 4% and 6% ethanol concentration in DIW (from top to bottom 
plots). 
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extinction ratio decreases providing sensitivity values  for Taper A and 
the inline combination of the tapered  fibers Taper A-Taper B of 
SbroadbandA=0.077 dB/µm and SbroadbandA-B=0.121 dB/µm, respectively. 
Sensitivity value obtained of the inline combination is higher than that of 
the isolated Taper A because of the enhancement in extinction ratio 
achieved by the cascaded combination. Therefore, using a broadband 
source instead of a tunable laser is a very useful approach as it presents 
good values of sensitivity in addition to lower system costs and higher 
stability. 

Refractive index sensing measurements were also realized by 
means of a broadband source. Taper A was used for sensing the outer 
mediums previously mentioned, i.e. DIW and 2%, 4% and 6% ethanol 
concentration in DIW, in addition  to air (nair=1), as depicted in Figure 5. 
Considering the RI sensor sensitivity given by SRI=ΔP/Δn, the sensitivity 
values obtained for Taper A and the inline combination Taper A-Taper B 
are SbroadbandA=907.69 dB/RIU and SbroadbandA-B=2261.53 dB/RIU, 

 

Fig.4. Strain sensing measurements by means of a power meter and a (a) 
tunable laser and (b) broadband source. 
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respectively. It can be seen how the combination of two tapered fibers 
increases considerably the sensitivity. 

Power stability for the two approaches considered was 
characterized at the same temperature conditions and for the same 
biconical tapered fiber using a power meter. An EXFO FLS-2600 Laser 
Source was used in both modes, tunable and ASE. As can be seen in the 
normalized transfer function shown in Figure 6, the broadband source 
provides higher stability than the tunable source with a deviation of 
0.039 dB in comparison with the peak to peak variation of 0.139 dB of 
the tunable laser approach. 

 

4. Conclusion 

In conclusion, we have proposed and demonstrated refractive index and 
strain sensing in a simple way just by means of biconical tapered fibers 
in a broad bandwidth. This was carried out using a low-cost 
experimental setup consisting on a broadband source and a power 
meter. The cascaded combination of two tapered fibers allowed 
enhancing the extinction ratio of the resulting transference function to 
increase the performance of the system. In addition, results obtained 
using a tunable laser are shown for comparison purposes. RI and strain 
sensing measurements as well as power stability evolution in both 
approaches are presented and analyzed. This work shows the versatility 
and great applicability of biconical tapered fibers in sensing systems by 
means of the proposed stable and low-cost experimental setup. 

 

Fig.5. RI sensing measurements by means of a broadband source and a 
power meter. 
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Abstract 

Tapered fibers are used in multitude of applications due to its great 
versatility and functionality. In particular, this type of fibers is especially 
useful for sensing applications. For this purpose, tapered fibers must be 
adequately manipulated to avoid disturbances in the sensor’s response. 
In this paper, a guideline for the correct handling of biconical tapered 
fibers during refractive index and strain measurements is presented and 
analyzed considering several manipulation scenarios and its 
corresponding influence in the performance of the system. 

 

1. Introduction 

Biconical tapered fibers are devices designed to modify the propagation 
characteristics of optical fiber in a simple way [1]–[3]. They consist of a 
narrow waist between two tapered regions. Its fabrication process 
involves stretching the fiber while heating it. Thus, by controlling the 
stretching speed along with the heat intensity, different waist diameters 
and tapered regions length can be obtained [4]. This leads to two 
different field behaviors inside the tapered regions. On one hand, when 
the transition is gradual the fundamental mode propagates without 
experiencing any variation. However, if the transition is abrupt the 
fundamental mode suffers from higher order couplings. Tapered fibers 
have been used in many applications such as supercontinuum generation 
[5], coupling [6] or pulse shaping [7] among others. In addition, the use 
of tapered fibers in sensing applications [8]–[10] has been widely 
discussed. Nevertheless, the use of these fibers requires certain handling 
precautions in order to avoid variations in the transfer function that are 
not due to the sensing process itself.  
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This paper provides several manipulation rules to consider when 
refractive index (RI) and strain sensing measurements are carried out 
using biconical tapered fibers. Different handling situations and its 
consequences in the sensor’s response are considered and analyzed. 
Although the study included in this work uses tapered fibers with 
determined dimensions, the special attention in tapered fiber fragility for 
small waist diameters. Also, the fiber waist diameter has an important 
influence on the number of modes excited in the tapered region. Waist 
diameters smaller than one micrometer do not originate an interference 

pattern at 1.55 μm because the 𝐿𝑃0𝑚
𝑐𝑙𝑎𝑑𝑑𝑖𝑛𝑔

 mode does not propagate 

through the waist while diameters larger than those reported in this 
work lead to more excited modes thus complicating the monitoring of 
the sensed parameter due to the complex spectral response of the device 
[11]. 

2. Apparatus description 

 The nonadiabatic tapered fiber used in the experiments is shown in Fig. 
1, including its main geometric parameters Tt = 1 mm, Lw = 13 mm and ρ 
= 18 μm. When the fundamental mode propagates through the input 
taper it experiences higher order modes coupling and a power 
transference occurs between the core fundamental mode 𝐿𝑃01

𝑐𝑜𝑟𝑒  to the 

two nearest cladding modes, the fundamental mode 𝐿𝑃01
𝑐𝑙𝑎𝑑𝑑𝑖𝑛𝑔

 and a 

higher order mode 𝐿𝑃0𝑚
𝑐𝑙𝑎𝑑𝑑𝑖𝑛𝑔

 [12]. These modes propagate though the 

waist with different effective indexes and interfere between them 
because of their different propagation constant. Part of the light which is 
not confined in the taper propagates evanescently around the waist. 
Simulations carried out by means of commercial software provided the 
effective indexes of the two modes propagating through the waist, 
1.4444 and 1.4214, respectively, by considering standard refractive 
index values for core and cladding at 1.55 μm. Once these modes reach 

 

Fig. 1.  Biconical tapered fiber section profile. 
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the output tapered region they are re-coupled into the fundamental 
mode, leading to the creation of a spectral pattern which depends on the 
difference between the modes effective indexes and the waist length [7]. 
The resulting phase difference between the modes can be expressed as 
follows [12]: 

∆𝜙 =
2𝜋 Δ𝑛𝑒𝑓𝑓𝐿

𝜆
     (1) 

where Δneff is the effective refractive indexes difference between the two 
propagating modes, L is the interference length and λ is the operating 
wavelength. When introducing a curvature in an optical fiber, its 
refractive index depends on the bending radius following the expression 
[13]: 

𝑛 = 𝑛0 [1 + (1 + 𝜒)
𝑥

𝑟
]    (2) 

where n0 is the refractive index in the corresponding non-curved optical 
fiber, r is the radius of the curvature, χ refers to the elasto-optic effect 
and x is the transverse coordinate of the bend. If the refractive index in 
the curvature is considerably higher than that of the outer medium, the 
mode experiences a low loss curve. Conversely, when the curvature 
refractive index is similar to the refractive index of the surrounding 
medium, the mode is poorly confined and suffers high radiation losses.  

To sum up, variations in the waist length or effective indexes of the 
optical modes shift the interference pattern of the device while the 
introduction of curvatures has an effect on the degree of confinement 
experienced by the propagating fields. These effects can be monitored to 
build strain, refractive index and curvature sensors. 

 

3. Measurements procedure 

Sensing measurements were carried out using a tunable laser and a 
power meter. Refractive index sensing analysis takes into consideration 
the modification of the surrounding refractive index due to the 
placement of the tapered fiber, the position of the tapered fiber anchor 
points and the creation of bubbles or flows in the testing container. 
Strain sensing considers variations in the sensor response introduced by 
the improper bending of the tapered fiber.  

Sensor performance parameters are obtained for both RI and strain 
measurements. Sensitivity is defined as the spectral shift experienced in 
the sensor response divided by unit of change. Therefore, when 
considering refractive index and strain sensing, sensitivity can be 
expressed as SRI = Δλ/Δn [nm/RIU] and SSTRAIN = Δλ/ΔLW [nm/μm], 
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respectively. Moreover, the sensor resolution R is defined as the smallest 
variation that can be accurately detected. Furthermore, the detection 
limit of the sensor can be easily calculated as DL = R/S [14]. 
 

A. Refractive index sensing 

As mentioned before, the fundamental mode propagating through the 
input tapered region experiences higher order modes coupling. 
Considering that the fiber mode is mainly divided into the mode 
traveling along the waist and the mode propagating in the fiber interface 
with the outer medium, the tapered fiber transfer function depends on 
the difference between these two modes effective indexes. Therefore, it 
is vital to pay attention to different situations that can alter the effective 
indexes leading to an erroneous sensing measurement. The first 
situation considered here is the tapered fiber placement. To avoid 
altering the outer refractive index, the tapered fiber must be in contact 
only with the medium to be sensed. To do this, one possible solution is to 
glue the tapered fiber into a structure that suspends it into the air. An 
example is shown in Fig. 2(a), where the tapered fiber is set on an optical 
delay line (ODL). Thus, the tapered fiber is fully surrounded by the 
external medium, air, providing true and reliable measurements. On the 
other side, when the tapered fiber is in contact with a surface, as seen in 
Fig. 2(b), the surface modifies the effective index value of the mode 
traveling through the cladding-outer medium erroneously modifying the 
sensor response.  

The tapered fiber’s transfer function measured under both 
scenarios, over surface and on surface, is shown in Fig. 3. The device was 
put inside of a recipient and three outer mediums were considered to 
carry out RI sensing measurements: air, deionized water (DIW) and 4% 
ethanol concentration in DIW, with refractive indexes nair = 1, nDIW = 
1.3173 and n4%Eth = 1.3199, respectively, at a wavelength of 1.55 μm [15]. 
As can be seen in Fig. 3(a), when considering air as the outer medium the 
fringe pattern presents sinusoidal shape with a free spectral range (FSR) 
value of FSRair-over surface = 8.2 nm and a visibility of approximately 6.5 dB. 
When considering higher refractive indexes as DIW, the extinction ratio 
decreases to 4.55 dB because of an increased evanescence of the optical 
field. In addition, the FSR value increases to FSRdiw-over surface = 10.5 nm. 
Then, for an outer refractive index even higher, as that of ethanol, the 
FSR becomes 10.75 nm and the extinction ratio decreases to 3 dB 
because of the different absorption coefficient of ethanol. In these two 
cases, the sinusoidal shape of the fringe pattern remains. This sensor 
presents sensitivity and resolution values of SRI = 1250 nm/RIU and R = 
8 · 10−6, respectively, obtained assuming a resolution of 0.01 nm in the 
spectrum analyzer. These results are competitively compared with other 
refractive index sensors based on tapered fibers as those present in [16]  
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and [17], which reported resolution values are 5.8 · 10−6 and 8.5 · 10−5, 
respectively. When the tapered fiber is placed on a surface part of the 
mode propagating through the cladding-outer medium interface varies 
leading to changes in the sensor’s transference function as shown in Fig. 
3(b). It can be observed how the tapered fiber interaction with the 
support surface causes the transfer function to lose its sinusoidal shape. 
In addition, the free spectral range value for the air case is slightly 
modified in comparison with the over-surface situation, resulting in a 
FSR of 8.36 nm. When considering larger refractive indexes in the 
tapered fiber on-surface placement, as DIW and 4% ethanol 
concentration in DIW, the transfer function still presents a non-
sinusoidal shape. The results suggest that more than two modes are 
present in the waist region. Approximate FSR values for DIW and 4% 
Ethanol are FSRdiw-on surface = 10.75 nm and FSREth-on surface = 10.8 nm. 

Another issue to take into consideration during the manipulation of 
the tapered fiber is the position of the anchor points. These must be  

Fig. 2.  Examples of biconical tapered fibers placed (a) over-surface and (b) on-surface.  
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located in the untapered region. If the anchor points are set in the 
tapered region, the possibility of breaking the tapered fiber increases 
dramatically. Moreover, attention must be paid to the creation of bubbles 
or streams inside the recipient. In the first case, an air bubble in the 
liquid solution causes an undesired difference in the refractive index of 
the sensed medium similar to the one produced when the tapered fiber 
is in contact with a support surface. Also, small currents can be created 
when introducing liquids in the recipient, which results in a different 
transfer function because of a modification in the evanescence field. To 
sum up, in order to assure the correct operation of the refractive index 
sensor based on tapered fibers it is extremely important to guarantee 

 

Fig. 3.  Transfer function of biconical tapered fibers placed (a) over-surface and (b) on-
surface considering air, deionized water (DIW) and 4% ethanol concentration in DIW as 
outer mediums.  
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that the tapered fiber will be in exclusive contact with the sensed 
medium. Otherwise, undesired changes are introduced in the sensing 
response, leading to considerable measurement errors. 

 

B. Strain sensing 

Handling precautions are required as well when strain sensing 
measurements based on tapered fibers are carried out. As mentioned 
above, the transfer function of the tapered fiber depends not only on the 
index difference between the modes propagating but also on the length 
of the waist. Thus, stretching of the tapered fiber can be monitored by 
measuring variations in its transference function. An initial stretching 
state together with two different elongation points L1 and L2 was 
analyzed. The most important issue considered here is the presence of 
curvatures in the taper region when stretching the fiber, as this leads to a 
completely different sensor response. Two examples of tapered fiber 
manipulation with and without curvature are depicted in Fig. 4. As can 
be seen, in the first case the tapered fiber was set completely straight 
and therefore, when considering different elongation points, the 
stretching is linearly shared. Conversely, in curved tapered fibers as the 
one depicted in Fig. 4(b) the transition regions experiences most of the 
stress, making it easier to break and introducing additional losses in the 
taper regions.  

The transfer function of a straight placed tapered fiber presents the 
sinusoidal interference pattern provided typically by this type of fiber, as 
shown in Fig. 5(a). When the tapered fiber is stretched, the sensor 
response experiences a phase shift to lower wavelengths, resulting in a 
sensitivity value of SSTRAIN = 146 pm/μm, which is also competitively with 
state of art value of 95 pm/μm [8]. However, the sinusoidal shape 
remains constant, differing only in small and local variations in the 
visibility. This difference originates from slight changes in the shape of 
the taper region that lead to variations in the coupling process occurring 
between the fundamental mode and the modes excited in the waist.  

However, when considering a curved tapered fiber the transfer 
function presents lower visibility and an irregular sinusoidal pattern. 
This is due to the large amounts of optical power that are radiated in the 
tapered regions. Stretching the tapered fiber to the two different 
elongation points considered L1 and L2, it can be seen in the transference 
function of Fig. 5(b) how the sensor response is completely modified. 
The visibility of the curved tapered fiber increases for increasing 
stretching. In addition, the transfer function exhibits a nonsinusoidal 
shape that suggests the existence of more modes than those considered 
in the straight case. Other issues to take into account include the 
introduction of small curvatures in the taper-waist interfaces which  
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must be avoided as they degrade the sensor’s response. Also, the  
application of an excessive amount of stretching, which will distort or 
even destroy the tapered fiber. 

 

4. Conclusion 

In this work, a guideline for sensing measurements that rely on the use 
of tapered fibers is presented and analyzed. Common manipulation 
mistakes are discussed and their influence on the sensor performance 
studied. Refractive index sensing measurements were carried out 
considering different outer mediums. Two different scenarios, over-
surface and on-surface, were taken into account and its influence in the 
sensor response investigated. Issues as the position of the tapered fiber’s 
anchor points and the creation of bubbles or streams while sensing were  

Fig. 4.  Examples of (a) straight and (b) curved biconical tapered fibers. 
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studied. Moreover, the effect of curvatures in the tapered region of the 
device during strain sensing measurements is examined. Although the 
applications discussed here are refractive index and strain sensing other 
applications which use biconical tapered fibers are expected to benefit 
from our study. 
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Abstract 

Non-adiabatic tapered fibers are basic photonic components used in a 
wide range of applications. Here we investigate a way to increase their 
utility through the controllable bending of one of their tapered sections. 
The experiments carried out explain, for the first time, the mechanics of 
this approach showing how these tapers can be used to build more 
sensitive sensors. Their use as highly efficient mode converters is also 
discussed. 

 

1. Introduction 

Tapered fibers are versatile devices capable of carrying out a variety of 
functions from filtering and light coupling to sensing, among others [1]. 
They consist of a waist located between two tapered sections which are 
fabricated through heating and pulling [2], [3]. The input mode 
experiences different effects that depend on the length and shape of the 
first tapered section. For sections longer than a threshold, which is 
determined by the characteristics of the fiber, the fundamental mode 
propagates as usual. These tapers are called adiabatic and its main 
application is light coupling because of the increased evanescence of the 
transmitted field [4], [5]. However, when the transition between the 
fiber and waist section is not smooth the fundamental mode couples to 
higher-order modes that propagate through the waist [6]. Due to the 
different propagation velocities, an interference pattern is obtained at 
the output of the device. These are called non-adiabatic tapers and have 
been used not only in sensing applications [7]-[9] but also as filters [10]-
[12] and dynamic pulse shapers [13].   
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Extensive work has been done to observe how different parameters 
such as the tapered fiber’s cross-section profile and waist’s radius affect 
the total response of the device. For example, polarization-maintaining 
[14] and micro-structured fibers [15], [16] have been used to achieve 
polarization stability thanks to the elliptical core and efficient super-
continuum generation due to the increased light confinement, 
respectively. However, little work has been done to understand how the 
tapering sections influence the total response. Li et al. reported the 
detection of curvatures in tapered fibers [17], Sun et al. introduced 
curvatures on the whole structure to implement an amplitude sensor 
[18] while Luo et al. presented a micro displacement sensor based on a 
bent microfiber [19]. Because of the bending of the whole structure the 
results previously reported are not conclusive with respect to the effect 
of curving the tapering sections since all the structure was curved as a 
whole. We recently reported some guidelines on the manipulation of 
tapered fibers for their use as refractive index and strain sensors, where 
the influence of curvatures on the sensor was studied as a whole [20].      

In this paper we present the first results that show the effect of 
small curvatures in one of the tapering regions on the response of the 
device. The results obtained show that simple geometrical modifications 
such as mechanical stretching introduce a highly efficient mode 
conversion that can be used to reconfigure the properties of the device in 
interesting ways. This can be used to greatly increase its sensing 
capabilities and to perform lossless mode conversion in only 1 mm of 
propagation.  

 

2. Principle of Operation 

Figure 1 shows the most relevant modes present in a non-adiabatic 
tapered fiber with waist length L, waist diameter ρ and length of the 
transition regions Lt. For the geometrical parameters considered here, 
the fundamental mode splits in two modes, the fundamental cladding 
mode and a higher order cladding mode. Their different effective indexes 
originate a spectral sinusoidal fringe pattern at the output of the device 
due to their different time of arrival. The resulting phase difference 
between the modes can be expressed as [21]: 

Δ𝜙 =
2𝜋 Δ𝑛𝑒𝑓𝑓𝐿

𝜆
     (1) 

where Δneff is the effective refractive indexes difference between the two 
propagating modes, L is the interference length and λ is the operating 
wavelength. In this case only two modes are generated, although it is  
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clear that the transition regions govern how light splits and combines. 
One simple geometrical modification consists of introducing a curvature 
of radius R and arc θ into one of the transition regions. In this case, the 
refractive index of the tapered fiber depends on the bending radius 
following the expression: 

   𝑛 = 𝑛0 [1 + (1 + 𝜒)
𝑥

𝑅
]        (2) 

where n0 is the refractive index in the corresponding straight tapered 
fiber, χ refers to the elasto-optic effect and x is the transverse coordinate 
of the curvature [22]. For radii comparable to the size of the modes, the 
propagating energy will couple outwards, meaning that the higher order 
cladding mode will experience increased losses while the fundamental 
cladding mode will couple to additional cladding modes. This is a simple 
and efficient way of controlling the number of modes present in the 
waist and therefore the spectral response of the device. For sensing 

 

Fig. 1. (a) Straight and (b) curved tapered fiber. ncl, nc and nout stand for the refractive 
indexes of cladding, core and outer medium, respectively.  
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applications, it can be used to control the amount of light that interacts 
with the outer medium and to build cheaper sensors that rely on loss 
measurement instead of monitoring wavelength shifts of the fringe 
pattern, as in traditional approaches [23]. 

3. Experimental Results and Discussion 

The experimental setup used to characterize tapered fibers is 
shown in Fig. 2. A tunable laser, model Santec TSL-210F with a tuning 
range from 1260 nm to 1630 nm and emitting 0 dBm of optical power in 
the telecom band and a power meter model Ando AQ2140 were 
employed to extract the optical response of the device. Two tapered 
fibers with parameters L=13 mm, ρ=18 μm and Lt=1 mm were fabricated 
and fixed on translation stages using glue drops before being put inside 
of a container which was filled with different fluids. 

Results for the straight tapered fiber are shown in Fig. 3. A section 
of 40 mm of fiber that includes the tapered fiber was stretched using the 
translation stage. Taking into account L and the section-dependent 
mechanical elasticity of the fiber, approximately half of the stretching 
applied to the fiber section is applied to the waist. Experimental results 
were normalized to only consider the stretching experienced by the 
waist, ΔL, as a function of the stress applied to the fiber section. Figure 
3(a) shows the frequency shift Δ experienced when the tapered fiber is 
mechanically stretched from its initial state to elongations of 60 μm and 
100 μm.  

Three different mediums were considered for the refractive index 
(RI) sensing measurements shown in Fig. 3 (b): air, deionized water 
(DIW) and a dilution made of DIW and 5% of ethanol. The refractive  

Fig. 2. Experimental setup used to obtain the response of the tapered fibers as a 
function of strain and outer refractive index. TLS: tunable laser source, PM: power 
meter. 



174 
 

 

indexes of these mediums at 1550 nm and ambient temperature are 1, 
1.317 and 1.320 [24], respectively. The free-spectral range (FSR) or 
spectral period of the fringed spectrum increases from 8.35 nm (air) to 
10.98 nm (DIW) and 11.01 nm (DIW and ethanol). These measurements 
provide calculated RIs of 1.315 and 1.320 for DIW and diluted DIW, 
respectively, by assuming that the higher order cladding mode fully 
interacts with the outer medium while the fundamental cladding mode 
interacts very little. According to these experiments a sensitivity of 0.086 
dB/μm is obtained for the strain sensor when using a continuous wave 

 

Fig. 3. Spectral response of the straight tapered fiber as a function of (a) strain and 
(b) surrounding refractive index.  
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(CW) laser emitting in the maximum slope point of the fringe pattern and 
a power meter to build the sensor, which is competitive with the state of 
art values [25,26]. Maximum sensitivities of 1000 dB/RIU are achieved 
when using this setup as RI sensor, which are competitive when 
compared to other refractive index sensing techniques as those shown in 
[27-29] which reported sensitivity values of 160 dB/RIU, 304.89 dB/RIU 
and 800 dB/RIU, respectively.  

Results obtained for the curved tapered fiber are shown in Fig. 4. 
The extremes of the taper are fixed at an angle of θπ/2 and R is varied 
from a couple of mm to a few tens of μm as a function of strain. The 
tapered fiber is fixed so that θ remains practically constant and 
independent from R. Figure 4 (a) shows the results for the curved taper 
surrounded by air under different stretching conditions. For little strain 
the response is identical to that of a straight tapered fiber because of the 
large curvature radius. However, losses grow for increased strain and 
the non-sinusoidal shape of the spectral response observed at higher 
strain values indicates the presence of more than two modes along the 
waist. 

Further stretching brings the sensor back into 2-mode operation 
with considerably increased visibility and FSR. Figure 4 (b-c) illustrates 
the sensor response for different RI values, showing that visibility 
depends more on strain than on the outer RI. While the shape is not 
perfectly sinusoidal, which may difficult the measurement of Δ and 
ΔFSR, the increase in the visibility can be used to fabricate improved 
sensors. For example, an increase in the visibility of 10 dB (as can be 
obtained for s = 2400 μm when compared to s = 0 μm considering air as 
the surrounding medium, Fig. 4(a)) provides a tenfold enhancement in 
the sensor sensitivity.  

The transmission response of the tapered fibers is captured at 
stretching steps of a few microns to observe the evolution of the modes 
in both straight and curved cases when immersed in different media. 
When the inverse Fourier transform is applied to the spectral 
transmission response a good approximation to the impulse response of 
the device is obtained and the modes present in the waist are seen as 
time-delayed amplitude peaks because of their different propagation 
velocities. This is shown in Fig. 5 for both the straight and curved 
versions of the tapered fiber. Figure 5 (a) illustrates how in the straight 
taper the same two modes are present, at t=0 ps and t=0.8 ps, 
independently of the stretching. However, for stretching values around 
150 μm some of the power transfers into an intermediate mode at t=0.2 
ps. This is probably due to small curvatures in the tapering regions of the 
sensor which disappear after being tensed. On the other side, Fig. 5 (b) 
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Fig. 4. Spectral response of the curved tapered fiber as a function of (a) strain and (b-c) 
surrounding refractive index under different strain conditions. 



177 
 

shows how the introduction of a curvature in the tapering section has no 
effect for large radii but introduces mode coupling for small ones. In this 
case light couples to outer modes; the fundamental cladding mode 
couples to a higher-order mode while the higher-order cladding mode is 
radiated. Figure 6 shows the amplitudes of the different modes present 
in the waist when the different tapers are surrounded by air, DIW and 
DIW-diluted ethanol. Mode conversion efficiency is high, approaching 
100 % when the tapered fiber is surrounded by the dilution of DIW and 
ethanol. We can distinguish three different operation regions for this 
device: for large R values it behaves as a straight tapered fiber and can 
be used in a traditional sensor arrangement (CW laser). For smaller 
curvatures (stretching values between 2100 μm and 2600 μm) it 
becomes an efficient mode converter, while for further stretching the 
total losses increase and it can be used to build cheaper sensor based on 
incoherent and wideband sources as LEDs. Such a sensor would have a 
sensitivity of 0.0057 dB/μm. 

      

 

Fig. 5. Inverse Fourier transform of the module of the transference function for (a) 
straight and (b) curved tapered fibers under different stretching conditions.  
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4. Conclusion 

To sum up, we propose a new arrangement in which non-adiabatic 
tapered fibers can be used to build highly sensitive stress and refractive 
index sensors. Through the bending of only one of the tapered sections 
we are able to implement not only more efficient stress sensors but also 
highly efficient fiber-based mode converters that are only a few 
millimeters long. The experimental results reported also demonstrate, 
for the first time, how the mode coupling that takes place in the tapered 
sections is the main responsible for changes in the transference function 
of the device while neglecting the influence of light propagation in the 
waist. Although sensing and mode conversion have been proposed as the 
main applications of the device, alternative ones as dynamically tunable 
filtering and pulse shaping may also benefit from this new approach. 
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Abstract 

Nonlinear effects are observed in a non-adiabatically tapered optical 
fibre. The designed structure allows for pulse breaking and spectral 
broadening in approximately a centimetre of propagation using a 
commercial telecom laser. These devices are simple to fabricate and 
suitable to generate and control a variety of nonlinear effects in practical 
applications because they do not experience short-term degradation as 
previously reported approaches. Experimental and theoretical results 
are obtained, showing a good agreement. 

 

1. Introduction 

Optical fibre is not only an excellent transmission medium. Doped fibres 
provide the gain medium necessary to build lasers while others types 
compensate for the dispersion of standard fibre or increase light-matter 
interaction through tight confinement of the optical field [1]. In this 
direction, tapered fibres emerged as a simple way to modify the 
properties of optical fibres by reducing its cross-section [2]. They have 
been used for sensing [3], supercontinuum generation [4] and efficient 
coupling to waveguides and micro-resonators [5, 6], among others.  

Tapered fibres are often classified as adiabatic or non-adiabatic 
according to the transition length. In the first case, the transition is 
gradual enough for the fundamental mode not to couple to higher order 
modes. They are the best choice for applications that require different 
degrees of confinement such as super-continuum generation [4] or 
evanescent field coupling [6]. On the other hand, in non-adiabatic tapers 
the waveguide cross-section changes so abruptly that the energy of the 
fundamental mode splits into several modes that propagate before 
interfering at the output of the device. Applications of non-adiabatic 
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tapers include tunable optical filtering [7] and different types of sensing 
[3].  

In this work, we demonstrate nonlinear generation using non-
adiabatically tapered fibres for the first time to our knowledge. 
Nonlinear effects are intensified thanks to the tailoring of dispersion and 
to the increased power density obtained when coupling light from the 
fundamental core mode of a stretched piece of standard single-mode 
fiber into higher-order cladding modes. Previous approaches rely on 
adiabatic tapers with micron or submicron diameters [4]. Although their 
performance is good tapers with such small diameters are degraded and 
even destroyed in a few days or hours. Our device can be used in a wide 
range of practical applications because it does not suffer from fast 
degradation due to its relatively large diameter. The periodic 
transference function of the device, which can be tuned through 
optimization of its geometry, makes it especially useful for applications 
such as wavelength-division multiplexed networks and optical comb 
generation where a large number of spectrally spaced components are 
required. Because the approach relies on the stretching of a piece of 
standard fiber we believe this is one of the simplest solutions that can be 
found to generate nonlinear effects in fiber-based systems.   

 

2. Principle of operation 

A tapered fibre can be depicted as a waist of length Lw and diameter ρ 
between two coupling regions of length Tt, as shown in Fig. 1. When the 
fibre-to-waist transition is abrupt, the energy carried by the fundamental 
mode splits into different modes. For the structures considered in this 
paper two modes, the fundamental cladding mode and a higher order 
cladding mode, gather most of the optical power. These modes couple 
back into the fundamental mode of the standard fibre along the second 
transition. Time-delayed replicas of the input optical field will be 
obtained at the output of the tapered fibre because of the different 
propagating modes indexes. 

Consider now a dispersion pre-compensated optical pulse 
propagating through fibre. It narrows during propagation and for 
powers exceeding a certain value, nonlinear effects such as self-phase 
modulation become noticeable [8]. The nonlinear power threshold can 
be drastically decreased through tapering of the standard fibre at the 
maximum optical intensity point as long as the reduction in the modes’ 
effective area compensates for the losses introduced by power splitting 
[8]. This mechanism allows for power-efficient generation of nonlinear 
effects using standard optical fibre. As demonstrated here, the 
fundamental cladding mode experiences nonlinear propagation for  
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lower peak power values because its high spatial confinement results in 
reduced nonlinear power thresholds.  

 

3. Experimental results 

The experimental setup is shown in Fig. 2. It consists of a 
femtosecond fibre laser (FemtoFErb from Toptica Photonics) which 
emits 100-fs optical pulses at a repetition rate of 100 MHz with an 
average power of 100 mW. A piece of dispersion compensating fibre 
(from OFS) is used to pre-compensate for the second-order dispersion of 
10 meters of standard fibre (SMF-28e+ from Corning). Dispersion pre-
compensation was carried out so non-linear effects could not be 
observed before the tapering of the fibre. At the end of the link, the 
optical fibre was tapered through heating and controlled pulling. For our 
design, the transitions regions present an exponential profile with  

 

Fig. 1. Power evolution of the main modes existing in the taper for a propagating optical 
pulse. Shaded area depicted with nle show peak power values exceeding the nonlinear 
power threshold for each cladding mode. The modes sketched represent a 2-dimensional 
section of their corresponding intensity profile and appear at different positions along the 
waist to illustrate their different effective propagation indexes.  
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Tt= 1mm while the waist length and diameter are Lw=13 mm and ρ=18 
µm, respectively. The taper was large enough to be visible using a 
standard camera, as shown in Figure 3 where its transference function, 
measured using a tunable laser and a power meter, is also included.  The 
taper has 3 dB insertion losses and free spectral range of 6 nm. Its 
transference function is practically sinusoidal implying that two modes 
gather most of the energy. In these structures, the spectral fringe period 
depends mainly on the waist length, making robust tapered fibres with 
fringe periods between a few nm and 200 nm available. This would be 
hardly attainable using other technologies.  

The nonlinear Schrödinger equation was solved using the split-step 
Fourier method [8] to simulate pulse propagation through the fibre link. 
A 100-fs sech2 optical pulse was considered for the simulation in order to 
realize an accurately comparison with the experiments.  Simulations 
include second- and third-order dispersion, losses and different 
nonlinear effects such as self-phase modulation. Typical parameter 
values were used for the standard and dispersion compensation fibre. In 
addition, effective areas and propagation indexes of the different taper 
cross sections were calculated using commercial photonics simulation 
software. Values of 1.4475 and 1.444 are considered for the core and 
cladding materials, respectively. The nonlinear index is 2.6·10-20 m2/W. 
For the standard fiber we consider a group velocity dispersion (GVD) of 
17 ps/nm·km and a dispersion slope of 0.13 ps3/km. These values 
become 50 ps/nm·km and 0.1 ps3/km in the waist of the taper. These 
values are referred to a wavelength of 1550 nm. The effective mode area 
of the standard fiber’s core mode is 80 µm2, which is reduced 

 

Fig. 2. Experimental setup used to nonlinear generation. The end of the fiber is tapered 
through a heating and pulling process.  
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to half this amount for the cladding modes. The two cladding modes that 
propagate through the waist have effective refractive propagation 
indexes of 1.4444 and 1.4214, respectively. Figure 4 shows the 
theoretical results of the nonlinear Schrödinger equation in both time 
and spectrum domains. Chirped pulse distribution considers the fibre 
link without the tapered fibre. The peak power can be increased up to 
some tens of kW with no evidence of nonlinear effects thanks to pre-
chirping of the pulses. After including the tapered fibre in the simulator, 
two pulses with their associated fringed spectrum can be observed. As 
can be seen, nonlinear generation is not appreciable for input peak 
power values up to 7 kW. This value agrees well with theory, which for 
our waist diameter and length estimates that nonlinear effects should 
become appreciable for peak powers above 7 kW [8]. After injecting 
pulses with a peak power of 10 kW nonlinear effects become noticeable. 
Typical features of self-phase modulation such as pulse breaking and 
spectral widening can be clearly appreciated in the time and spectrum 
domain, Fig. 4(a) and Fig. 4(b), respectively.  

Figure 5 shows the experimental results. Chirped pulse distribution 
allows for linear delivery of the optical pulses. After fibre tapering, the 
resulting spectrum for peak powers below the nonlinear threshold 
corresponds with the filtered optical source. By using 10 kW pulses 
nonlinear effects, mainly self-phase modulation, reshape the spectrum 

 

Fig. 3. Photograph of the tapered fibre fabricated and its optical characterization by means 
of a tunable laser and a power meter.  



189 
 

and increase the visibility of some fringes. The inset in Fig. 5 shows the 
autocorrelation intensity traces obtained. As can be observed, nonlinear 
effects introduce a change in the amplitude ratio between the peaks. 
Although sub-pulses originating from self-phase modulation cannot be 
resolved using our intensity autocorrelator the reduction in the relative 
delay between main and secondary peaks suggests pulse breaking. 
Differences between the experiments and simulations arise due to 
differences between the real and estimated parameters and because of 
the limited resolution of the experiments. However, the main features 
that indicate nonlinear generation such as asymmetric spectrum 
expansion and variable fringe visibility are shown in both cases while 
appearing at the same optical power levels. Because the experiments 

 

Fig. 4. Numerical solution of the nonlinear Schrödinger equation for a pulse that 
propagates through the fiber link, (a) Time-domain results and (b) Spectrum-domain 
results.   
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aimed to find the power threshold for nonlinear generation the 
expansion of the spectrum is not noticeable for the central components 
of the spectrum, although it is visible for those around 1450 nm and 
1650 nm. The asymmetry observed in the output response is due to the 
chirp imposed on the input pulse when the propagating pulse 
experiences self-phase modulation [9]. The results obtained show that 
the power required to generate nonlinear effects is reduced by a factor of 
8 when compared with the power levels that would be required using 
standard optical fiber.  

 

4. Conclusion 

In this work nonlinear generation using non-adiabatically tapered 
fibres is proposed and demonstrated. The device fabricated considerably 
reduces the minimum optical power required to generate nonlinear 
effects as demonstrated through simulations and experiments. It is 
simple to fabricate, made of standard fibre and robust enough to be 
useful in practical applications where previous approaches based on 
adiabatic tapers with micron or submicron radii are not suitable due to 
their short lifetimes.  Because of its interferometric nature and tunable 
spectral period this device should be useful in several applications, 
including wavelength generation in wavelength-division multiplexing 
systems. 

 

Fig. 5. Spectra showing linear and nonlinear operation of the taper. Corresponding optical 
intensity autocorrelation traces are shown in the upper right corner.    
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