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Los metamateriales son estructuras periódicas cuyas celdas unidad son muy
pequeñas en comparación con la longitud de onda a la frecuencia de trabajo.
Bajo estas condiciones, estos materiales artificiales pueden considerarse como
medios homogéneos cuyos parámetros constitutivos dependen de las carac-
teŕısticas de las celdas unidad que los componen. La aparición de los meta-
materiales abrió un nuevo campo de investigación que ha generado multitud
de trabajos en las ĺıneas de microondas, óptica y acústica.

En este contexto, el objetivo principal de esta tesis es el estudio de nuevas
estructuras basadas en metamateriales que permitan el control de la en-
erǵıa electromagnética. En particular, plantea nuevas soluciones para prob-
lemas de localización y absorción de ondas electromagnéticas. La tesis ha
sido desarrollada en el Grupo de Fenómenos Ondulatorios de la Universidad
Politécnica de Valencia y en colaboración con el Grupo de Metamateriales
Acústicos y Electromagnéticos de la Universidad de Exeter.

Los problemas estudiados en la primera parte de esta tesis son la concen-
tración de enerǵıa para su posterior absorción, la transferencia inalámbrica
de potencia y nuevos sistemas capaces de ser empleados como sensores de
posición. Para la solución de estos problemas se emplean un nuevo tipo
de estructuras ciĺındricas, multicapa y anisótropas conocidas como Cristales
Fotónicos Radiales. La dependencia radial de los parámetros constitutivos
de los materiales que componen cada una de sus capas genera, en estas es-
tructuras, un comportamiento similar al de los cristales fotónicos unidimen-
sionales. Entre los resultados obtenidos con estas estructuras, cabe destacar
la primera demostración experimental de un resonador basado en Cristales



Fotónicos Radiales.
La absorción de ondas electromagnéticas por capas delgadas de materiales

con pérdidas es el segundo tema tratado en esta tesis. El objetivo principal
es el estudio teórico y experimental del aumento de la absorción en capas
delgadas mediante el uso de estructuras periódicas bidimensionales, también
llamadas metasuperficies. En concreto, se han estudiado los efectos de una
red cuadrada de cavidades coaxiales sobre la que se coloca una capa delgada
de un material con pérdidas. Como resultado, se consigue un aumento de
la absorción que permite obtener picos de absorción total. El estudio semi-
anaĺıtico de esta estructura ha permitido obtener expresiones que controlan
la posición del pico de absorción y su amplitud; las cuales han permitido
desarrollar una metodoloǵıa de diseño para sistemas de absorción total.
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Els metamaterials són estructures periòdiques en els que les cel·les uni-
tat són molt xicotetes en comparació amb la longitud d’ona a la freqüència
de treball. Tenint en consideració aquestes condicions, aquestos materi-
als artificials poden considerar-se com a mitjans homogenis en els que els
paràmetres constitutius depenen de les caracteŕıstiques de les cel·les unitat
que els componen. A més, l’aparició dels metamaterials va obrir un nou camp
d’investigació que ha generat multitud de treballs en les ĺınies de microones,
òptica i acústica.

En aquest context, l’objectiu principal d’aquesta tesi és l’estudi de noves
estructures basades en metamaterials que permeten el control de l’energia
electromagnètica. En particular, planteja noves solucions per a problemes de
localització i absorció d’ones electromagnètiques. La tesi ha sigut realitzada
en el Grup de Fenòmens Ondulatoris de la Universitat Politècnica de València
i en col·laboració amb el Grup de Metamaterials Acústics i Electromagnètics
de la Universitat d’Exeter.

Els problemes analitzats en la primera part de la tesi són la concentració
d’energia per a la seua posterior absorció, la transferència inalàmbrica de
potència i nous sistemes capacos de ser empleats com a sensors de posició. Per
a la solució dels problemas identificats s’utilitza un nou tipus d’estructures
ciĺındriques, multicapa i anisòtropes conegudes com a Cristalls Fotónics Ra-
dials. La dependència radial dels parámetres constitutius dels materials que
componen cadascuna de les seues capes genera, en aquestes estructures, un
comportament semblant al dels Cristalls Fotónics Unidimensionals. Entre els
resultats obtinguts, cal destacar la primera demostració experimental d’un
ressonador basat en Cristalls Fotónics Radials.



Pel que respecta a la segon part de la tesi, l’absorció d’ones electro-
magnètiques per capes primes de materials amb pèrdues és tema tractat.
L’objectiu principal és l’estudi teòric i experimental de l’augment de l’absorció
en capes primes per mitjà de l’ús d’estructures periòdiques bidimensionals,
també denominades metasuperficies. En concret, s’han examinat els efectes
d’una xarxa quadrada de cavitats coaxials sobre la qual es col·loca una capa
prima d’un material amb pèrdues. Com a resultat, s’aconseguix un augment
de l’absorció que permet obtindre pics d’absorció total. Aix́ı mateix, l’estudi
semi-anaĺıtic d’aquesta estructura ha permés obtindre expressions que con-
trolen la posició del pic d’absorció i la seua amplitud; les quals han permés
desenvolupar una metodologia de disseny per a sistemes d’absorció total.
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Metamaterials are periodic structures whose unit cells are small compared
to the wavelength at the operating frequency. Under these conditions, these
artificial materials can be considered as homogeneous media whose constitu-
tive parameters depend on the characteristics of the unit cells. The discovery
of metamaterials opened a new research field that has produced many works
with microwaves, optical waves and acoustic waves.

In this context, the main goal of this thesis is the study of new structures
based on metamaterials that allow controlling of electromagnetic energy. In
particular, new solutions for localization and absorption of electromagnetic
waves are proposed. The thesis has been developed in the Wave Phenomena
Group of the Polytechnic University of Valencia and in collaboration with
the Group of Acoustic and Electromagnetic Metamaterials at the University
of Exeter.

The problems studied in the first part of this thesis are energy harvesting
for subsequent absorption, wireless power transfer and new systems that can
be used as position sensors. To solve these problems a new type of cylindrical,
multilayer and anisotropic structures known as Radial Photonic Crystals are
used. The radial dependence of the constitutive parameters generates, in
these structures, a behavior like a one dimensional photonic crystals. Among
the results obtained with these structures, it is included the first experimental
demonstration of a Radial Photonic Crystals based resonator.

Absorption of electromagnetic waves by thin layers of lossy materials
is the second topic of this thesis. The main target is the theoretical and
experimental study of the absorption enhancement in thin layers by using
two-dimensional periodic structures, also called metasurfaces. Specifically,



we studied the effects of a square lattice of coaxial cavities covered by a thin
layer of lossy material. As a result, an enhancement of the absorption peaks
that can produce total absorption is achieved. The semi-analytical study
of this structure has allowed obtaining expressions that control the position
of the absorption peak and its amplitude; which have helped to develop a
design methodology for total absorption systems.
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1 Introduction

This is an introductory chapter in which the goals of the thesis are explained.
Moreover, the methods and procedures employed throughout this work are
briefly described. Finally, the structure of the thesis is presented and the
different chapters of the manuscript are summarized.
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4 Introduction

1.1 Motivation

Controlling electromagnetic waves and managing their energy are a chal-
lenging problems with a huge number of applications. The work carried
out in this thesis has been supported by the Spanish government under the
TEC-2010-19751 project and the project Engineering Metamaterials of the
CONSOLIDER program. The objective of both projects was designing new
devices inspired on metamaterials. In the framework of these projects, this
thesis is focused on the study of advanced artificial structures for the manage-
ment of electromagnetic energy. More specifically, we have studied theoretical
and experimentally highly anisotropic and inhomogeneous structures (Radial
Photonic Crystals) and artificial thin surfaces (metasurfaces) for their poten-
tial application in the localization and absorption of electromagnetic waves,
specially in the microwave regime. This manuscript is divided in two main
parts.

The first part reports a comprehensive study of Radial Photonic Crystals
and their application for the localization of electromagnetic waves. Radial
Waves Crystals are a new type of structures with cylindrical symmetry and
crystal-like behavior predicted by members of the Wave Phenomena group,
where this thesis has been developed [1]. The results obtained with Radial
Waves Crystals showed extraordinary resonant properties with acoustic and
electromagnetic fields, Radial Sonic Crystals and Radial Photonic Crystal
respectively. Motivated by these previous results, the thesis began with a
deep study of the Radial Photonic Crystal and their resonant properties.
Then, these properties were employed for developing a new path in the de-
sign of devices for the management of electromagnetic energy. Particularly,
we focused on the use of Radial Photonic Crystal in Energy Harvesting and
Wireless Power Transfer . We chose these applications for different reasons.
On the one hand, these applications need completely different resonant prop-
erties and it is a proof of the wide range of applications in which the Radial
Photonic Crystal can be employed. On the other hand, these are applications
which are attracting an increasing interest, like it is shown in Fig.1.1 where
we can see the evolution of citations on these topics. Moreover, due to the
complexity of the Radial Wave Crystal structures, we were interested in the
first practical realization of a Radial Photonic Crystal and its experimental
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Figure 1.1: Number of citations per year in papers under the search: (a) wire-
less power transfer and (b) energy harvesting electromagnetic waves. Source:
Web Of Science.

characterization.

The second part of the thesis deals with the absorption of electromagnetic
waves by thin layers. Particularly, it is focused on the absorption enhance-
ment produced by metasurfaces. The motivation for tackling this topic is
the theoretical analysis of a simple structure which allows understanding the
different mechanisms which produce the absorption enhancement. The re-
sults of the study can be applied for explaining the absorption phenomenon
in more complex structures. Particularly, we focused on the study of the
absorption enhancement produced by a metallic metasurface on the backside
of a lossy thin dielectric layer. We studied how the metasurface affects to the
absorption spectra. In the last part of the thesis, we experimentally verified
the theoretical findings.

1.2 Methodology and Procedures

This section explains the methods employed for the development of this re-
search work. The topics covered in this thesis have been developed with three
different procedures: analytical methods, numerical simulations and experi-
mental demonstrations. Each procedure and the data analysis are detailed
below.
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Analytical Methods

The different topics tackled by this thesis have been studied under a theoret-
ical point of view by analytical models. These models have allowed a deep
knowledge of the studied structures and, in some cases, simplifications which
have allowed obtaining design criteria. In particular, two analytical methods
have been employed: Transfer Matrix Method and Mode Matching Method.
The main features of these methods are:

1. Transfer Matrix Method. We have used this method for the analysis
of the Radial Photonic Crystals, which is a 2D dimensional problem
dealing with anisotropic and inhomogeneous materials. Applying the
boundary conditions at the interfaces of the Radial Photonic Crystals,
we have obtained the Band diagram and the transmission coefficients
of these periodic structures.

2. Mode Matching Method. This method has been used in the second part
of the thesis, during the study of the absorption by thin layers. With
this method, we have solved the 3D problem of a thin dielectric layer
covered by a metallic grating. Using a monomode approximation inside
the cavities of the metallic grating, we have proposed design criteria
for total absorption structures.

Both theoretical models have been implemented using Matlab.

Numerical Simulations

With the purpose of demonstrating our analytical models and for the anal-
ysis of complex systems, difficult to perform with analytical methods, two
commercial software packages were employed:

1. COMSOL. With this finite element solver, we have solved two kinds
of 2D problems in the first part of the thesis. On the one hand, eigen
frequency studies of the Radial Photonic Crystals for obtaining their
resonant frequencies. On the other hand, frequency domain studies
with point sources to obtain the response of the Radial Photonic Crys-
tals.

2. Ansys HFSS. We have used this 3D finite element solver in both parts
of the thesis. In the first part, we have done the study of a periodic
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array of Split Ring Resonator for extracting the effective parameters
and the study of RPC shells implemented with these resonators. In
the second part, we have simulated the absorption produced by the
periodic system formed by a metallic grating and a dielectric layer over
it.

Experimental Demonstrations

Each part of the thesis has an experiment which demonstrates the concepts
under study. Two experimental setups have been specifically developed to
demonstrate the theoretical predictions:

1. 2D E-field mapping. This kind of measurements has been done for
the characterization of Radial Photonic Crystals. To this purpose, we
have fabricated our own 2D chamber and developed a software, with
LabView, for the automatic data acquisition.

2. Absorption measurements. The characterization of the absorption has
been performed with transmission measurements in free space at differ-
ent frequencies. Noteworthy, the use of collimating mirrors for exciting
the samples with plane waves.

Data Analysis

The results from the analytical models, numerical simulations and experi-
ments are processed to allow an easy comparison between them. The analysis
of the data and the graphics have been done using Matlab.

1.3 Structure of the Thesis
This thesis is organized in two parts and eight chapters. The distribution of
the chapters and the content of each one are summarized as follows:

Chapter 1 starts with the motivation of the thesis. Next, a brief review
of the state of the art is presented. Finally, the third section describes the
structure and the organization of the thesis.

The first part of the thesis, entitled Localization of Electromagnetic
Waves, reports the main resonant features of highly anisotropic and inho-
mogeneous structures. More specifically, the work is focused on a new type of
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structures with cylindrical symmetry and crystal-like behavior named Radial
Wave Crystals. This part includes three chapters.

Chapter 2 introduces a revision of the theoretical principles needed for
working with electromagnetic periodic media. Concepts like wave equations,
boundary conditions and Bloch theorem are reviewed.

Chapter 3 studies in detail the concept of Radial Photonic Crystal,
pointing out the fulfilling of the requirements for applying the Bloch theo-
rem. A comparison with the Circular Photonic Crystals has been performed.
Moreover, the resonant modes generated in these structures are also studied.

Chapter 4 presents the potential applications where the resonant prop-
erties of the Radial Photonic Crystal can be employed. Three different cases
are reviewed: energy harvesting, wireless energy transfer and position sen-
sors.

The second part, entitled Absorption of Electromagnetic Waves,
studies thin absorbing layers for electromagnetic waves. The study is divided
in three chapters.

Chapter 5 provides a brief introduction to the problematic of the thin
absorbing layers and proposes an alternative to enhance the absorption using
artificial thin surfaces.

Chapter 6 presents theoretically our proposal. In this chapter, an ana-
lytic model has been developed using a monomode approximation. A com-
plete study of the system has been carried out. Moreover, this model allows
obtaining a simple method for designing total absorption systems.

Chapter 7 describes the experimental demonstration of the whole ab-
sorption system. The main theoretical findings extracted from our model are
experimentally confirmed.

Chapter 8 summarizes the conclusion remarks extracted from the two
parts of the thesis. Furthermore, future research lines identified from this
work are presented.

In addition, three appendixes have been included with useful information
for the development of this work.

Appendix A collects mathematical concepts used in the development
of the theoretical models. Bessel Functions and their main properties are
presented, and besides, Chebyshev Identity is explained.

Appendix B explains the retrieval method used for the homogenization
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of the Split Ring Resonators (SRR) unit cells. This method is used in the
experimental characterization of the Radial Photonic Crystal.

Appendix C lists the merits of the author. The appendix includes
the contributions to international journals and the conference proceedings
resulting from oral and poster presentations in international and national
conferences.

Finally, in Bibliography section, a list of the works cited throughout
this thesis is include. In this list, the works are numbered sequentially in
order of appearance.
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2
Principles of periodic

media

The work presented in this thesis studies different properties of the electro-
magnetic wave propagation in periodic media. This chapter summarizes some
theoretical principles needed for working with periodic media. First, the wave
equation is derived from the Maxwel’s equations, paying special attention to
the two-dimensional (2D) problem. Then, the direct and reciprocal lattices
of the periodic media are introduced. Moreover, the eigenvalue problem of
the wave equation is presented and it is used to prove Bloch’s theorem. In
chapter 2.4, the band structure and the concept of photonic bandgap are
presented. Finally, we will introduce the concept of metamaterial and the
main features of these artificial structures.
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2.1 Wave Equations
For studying the propagation of electromagnetic waves, we have to start with
Maxwell equations. Considering a source free medium, the relation between
electric and magnetic fields can be expressed by the Maxwell equations, in
the SI units, as:

∇×E(r, t) = − ∂

∂t
B(r, t), (2.1a)

∇×H(r, t) = ∂

∂t
D(r, t), (2.1b)

∇ ·D(r, t) = 0, (2.1c)
∇ ·B(r, t) = 0. (2.1d)

These equations relate the electric field (E), the magnetic field (H), the
electric displacement (D) and the magnetic induction (B). Moreover, the
relations between E and D and between H and B are obtained from the
constitutive equations. The constitutive equations in vacuum conditions are:

D = ε0E, (2.2a)
B = µ0H , (2.2b)

where ε0 is the vacuum permittivity and µ0 the permeability. In an isotropic
media the constitutive parameters ε and µ are constant. In this case, the
constitutive equations for the electric field, D = εE, and the magnetic field,
B = µH only depend on a scalar value.

Along this manuscript the time dependence of the electromagnetic fields
takes the form

E(r, t) = E(r)e−iωt, (2.3a)
H(r, t) = H(r)e−iωt, (2.3b)

where ω is the angular frequency, and E(r) and H(r) represent the eigen-
function of the wave equations. The harmonic time dependence of the elec-
tromagnetic fields allows to write the Eq.(2.1a) and Eq.(2.1b) equations as:
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∇×E(r) = iωB(r), (2.4a)
∇×H(r) = −iωD(r). (2.4b)

Taking the curl of Eq.(2.4a) and using the constitutive relation for the mag-
netic field, we obtain:

∇×∇×E(r) = iωµ∇×H(r). (2.5)

Now introducing Eq.(2.4b) and using the vector operator identity∇×(∇×A) =
∇ (∇ ·A)−∇2A, we have

∇ (∇ ·E(r))−∇2E(r)− k2E(r) = 0, (2.6)

with k2 = (ω/c)2 being c = c0/
√
µε. From Eq.(2.1c) we know that∇·E(r) =

0, so that
∇2E(r) + k2E(r) = 0. (2.7)

This wave equation is known as Helmholtz’s equation. The same proce-
dure can be employed to obtain the Helmholtz’s equation for the magnetic
fields.

Finally, if we consider a periodic distribution of isotropic materials, the
constitutive parameters, ε(r) and µ(r), will be periodic functions with the
same periodicity that the lattice. Under these conditions, the wave equation
for the electric and magnetic fields are:

ΘEE(r) ≡ 1
ε(r)∇×

{
1

µ(r)∇×E(r)
}

= ω2E(r) (2.8a)

ΘHE(r) ≡ 1
µ(r)∇×

{
1
ε(r)∇×H(r)

}
= ω2H(r) (2.8b)

where ΘE and ΘH represent the differential operators of these equations.

2.1.1 Two-dimensional periodic systems
This section particularizes the previous analysis for 2D periodic systems. An
schematic representation of a 2D problem is depicted in the figure 2.1.b. The
system is periodic in x̂ and ŷ directions and invariant along ẑ, such that ε(r),
µ(r), E(r) and H(r) do not depend on the z-coordinate. Considering that
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the waves travel on the x-y plane (k parallel to this plane) we can decouple
the vectorial equation in two independent sets of equations.

The first set corresponds with Ex = Ey = 0 and Ez 6= 0 and it is known
as TE polarization. The Maxwell equations leads to

∂

∂y
Ez(r) = iωµ(r)Hx(r), (2.9a)

∂

∂x
Ez(r) = −iωµ(r)Hy(r), (2.9b)

∂

∂x
Hy(r)− ∂

∂y
Hx(r) = −iωε(r)Ez(r), (2.9c)

where r is the position in the x-y plane (cylindrical coordinates). The wave
equation for the TE polarization can be obtained combining these equations
for removing Hx(r) and Hy(r).

− 1
ε(r)

{
∂

∂x

1
µ(r)

∂

∂x
− ∂

∂y

1
µ(r)

∂

∂y

}
Ez(r) = ω2Ez(r). (2.10)

The second case, known as TM polarization, is characterized by Hx = Hy = 0
and Hz 6= 0. With the same procedure that for the TE polarized waves, the
set of equation is

∂

∂y
Hz(r) = −iωµ(r)Ex(r), (2.11a)

∂

∂x
Hz(r) = iωµ(r)Ey(r), (2.11b)

∂

∂x
Ey(r)− ∂

∂y
Ex(r) = iωε(r)Hz(r), (2.11c)

and the wave equation for Hz(r) is

− 1
µ(r)

{
∂

∂x

1
ε(r)

∂

∂x
− ∂

∂y

1
ε(r)

∂

∂y

}
Hz(r) = ω2Hz(r) (2.12)

2.1.2 Boundary conditions
To apply the boundary conditions at the interface between two different
media we can decompose the electromagnetic fields in the normal components
to the surface (En, Hn, Dn and Bn) and the tangential components to the
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Figure 2.1: Schematic representation of 1D and 2D photonic crystals. a)
1D PhC where the different colours represent layers with different dielectric
constants. The system has no dependence in the z and x direction. b) 2D
PhC made with a periodic distribution of dielectric rods. The system is
invariant in z direction

surface (Et,Ht,Dt andBt). The boundary conditions impose the continuity
of the tangential electric and magnetic fields:

E
(1)
t = E

(2)
t , (2.13)

H
(1)
t = H

(2)
t , (2.14)

and also the continuity of the normal components:

D(1)
n = D(2)

n , (2.15)
B(1)
n = B(2)

n , (2.16)

where (1) and (2) refer to the change of the dielectric and magnetic properties
of the materials at both sides of the interface boundary.

For the case of the 2D problem using cylindrical coordinates we can apply
the boundary condition for the TE and TM modes. First, if we consider the
TE modes (i.e the components different than zero are Ez Hr and Hθ) the
continuity conditions of the tangential components imply that:

E(1)
z = E(2)

z , (2.17)
1
µ(1)

δ

δr
E(1)
z = 1

µ(2)
δ

δr
E(2)
z , (2.18)

where µ(1) and µ(2) are the permeabilities in each medium. For the TM
modes the components involved are Hz, Er and Eθ. In a similar way to the
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Figure 2.2: Photonic crystal with a squared distribution. a) Real lattice.
The unit cell is shown with the blue square. b) Brillouin zone of the squared
lattice. The irreducible zone and the special points (Γ, M , X) are plotted.

TE modes

H(1)
z = H(2)

z , (2.19)
1
ε(1)

δ

δr
H(1)

z = 1
ε(2)

δ

δr
H(2)

z . (2.20)

being ε(1) and ε(2) the permittivities of the two different media.

2.2 Direct and Reciprocal Lattice
Photonic Crystals (PhC) are obtained from a building unit which is peri-
odically repeated in space. The translational symmetry that describes the
periodicity in crystals can be expressed as a linear combination of three in-
dependent vectors (d1, d2 and d3) which are called lattice vectors, like it is
shown in Figure 2.2.(a) where a square lattice of cylindrical scatters is repre-
sented. These vectors define the unit cell. The lattice vectors, and thus the
unit cell, can be selected in various ways for the same periodic distribution.
Independently of the unit cell choice, the volume of the cell remains constant
and is given by V = d1 · (d2 × d3).

Once the lattice vectors are chosen according to the symmetry of the
structure, any unit cell can be described by

R = l1d1 + l2d2 + l3d3 (2.21)

where lα (α = 1, 2, 3) are integers. Moreover any point in a unit cell can
be reached with the nearest R vector, and adding to it the corresponding
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fractions of the lattice vectors:

r = R+ r′ = (l1d1 + l2d2 + l3d3) + (xd1 + yd2 + zd3) . (2.22)

being x, y, z the dimensionless fractions of the axes.
Now, if we consider a periodic crystal formed by dielectric rods like in

Figure 2.2.(b), the translational symmetry of the structure has to be reflected
in the dielectric function. This means that the dielectric function fulfils:

ε(r +R) = ε(r). (2.23)

In this case, the periodic function can be analyzed by Fourier transform as
follows [2]:

ε(r) =
∫
u(q)eiq·rdq. (2.24)

That is, the function ε(r) can be expressed as a combination of plane waves
with amplitude u(q) and wave vector q. The translational symmetry in the
dielectric function [see Eq.(2.23)] requires that:

ε(r +R) =
∫
u(q)eiq·reiq·Rdq =

∫
u(q)eiq·rdq. (2.25)

This relation imposes that u(q)eiq·R = u(q). This requirement can be satis-
fied only if u(q) = 0 or eiq·R = 1. Then u(q) = 0 except for the values where
eiq·R = 1. The q vectors verifying this condition form the reciprocal lattice,
G. The vectors of this lattice are:

G = m1g1 +m2g2 +m3g3 (2.26)

The reciprocal lattice need to fulfil G ·R = n2π which implies that ai · bj =
2πδij. Finally, for a direct lattice defined by its primitive vectors (d1, d2 and
d3) , its reciprocal lattice can be constructed by:

g1 = 2π d2 × d3

d1 · (d2 × d3) (2.27a)

g2 = 2π d3 × d1

d2 · (d3 × d1) (2.27b)

g3 = 2π d1 × d2

d3 · (d1 × d2) (2.27c)
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2.3 Bloch Theorem
A system has continuous translational symmetry when it is unchanged by a
translation through any displacement d. Photonic crystals do not have con-
tinuous translational symmetry, they have discrete translational symmetry
This means that they are not invariant under translation in any distance,
only for some fixed step length [3]. As it was explained before, the basic
step vector is called primitive lattice vector, R [see Eq.(2.21)]. The discrete
translation operator is defined as:

TRψ(r) = ψ(r +R), (2.28)

being ψ(r) an arbitrary function. The eigenfunction of this operator can be
found as

TRψ(r) = λ(R)ψ(r), (2.29)

where λ(R) represents the eigenvalues. Applying a translation operator over
the previous expression we obtain

TRTR′ψ(r) = λ(R)TR′ψ(r) = λ(R)λ(R′)ψ(r). (2.30)

Now, taking into account that for any lattice vector TRTR′ = TR+R′ , we can
write

TRTR′ψ(r) = TR+R′ψ(r) = λ(R+R′)ψ(r). (2.31)

Equations (2.30) and (2.31) imply that the eigenvalues have to fulfil λ(R)λ(R′) =
λ(R+R′) which means that the eigenfunction of the discrete translational
operator is of the form:

λ(R) = eik·R, (2.32)

where the vector k can be expressed in terms of the reciprocal lattice as

k = k1g1 + k2g2 + k3g3 (2.33)

The differential operator defined in Eq.(2.8a) is invariant under transla-
tions, Θ(r) = Θ(r + R). Then applying the translation operator to this
eigenvalue equation we can write

TRΘ(r)Ek(r) = Θ(r+R)Ek(r+R)
= Θ(r)Ek(r+R)

= Θ(r)TREk(r) (2.34)
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This means that the translation operation commutes with Θ, so the eigen-
function of the operator TR is simultaneously an eigenfunction of the difer-
entcial operator Θ:

ΘEk(r) =
(
ωk
c

)2
Ek(r) (2.35)

TREk(r) = λ(R)Ek(r) (2.36)

Now applying an arbitrary lattice translation R to the eigenfunction Ek(r)
one obtains:

TREk(r) = Ek(r+R) = λ(R)Ek(r) = eik·REk(r) (2.37)

which leads to the Bloch’s theorem. Bloch proved that waves in peri-
odic media propagates without scattering with a certain wavevector k and
their behavior is governed by a periodic envelope function multiplied by a
planewave:

Ek(r) = eik·rek(r) (2.38)

where ek(r+R) = ek(r).

2.4 Photonic Band Structure
The Photonic Band Structure (PBS) of a PhC describes the eigenvalue dis-
tribution in frequency, ωn(k). Due to the periodicity of this system, the
wave propagation is forbidden at certain frequencies ranges. The ranges of
frequencies where no electromagnetic modes propagate are called Photonic
Bandgaps (PBGs). Under certain conditions, the PBG extends over all pos-
sible directions, in this case it is called complete band gap.

In Figure 2.3, the simplest case of a PBS is represented, a 1D PhC made
of alternating layers with different dielectric constants [3]. A schematic rep-
resentation of the system is shown in Figure 2.1.a, where the lattice vec-
tor is defined as dẑ. The waves propagate in ẑ direction (on-axis propa-
gation, k = kz). In this 1D system the reciprocal vectors are G = n2π

a
ẑ

(n = 0,±1,±2...) and the Brillouin zone is defined as −π/d < kz < π/d be-
ing the limits of the PBS. In the first case, Figure 2.3.a, a multilayer system
is shown in which all the layers have the same dielectric properties, so it be-
haves like a bulk material (ε1 = ε2 = 13). The modes lie on the light line and
are given by ω(k) = ck/

√
ε. In Figure 2.3.b, the PBS of a multilayer system



22 Principles of periodic media

-1 0 1
0

0.05

0.1

0.15

0.2

0.25

0.3

-1 0 1
0

0.05

0.1

0.15

0.2

0.25

0.3

Photonic Band Gap 

 

 

-1 0 1
0

0.05

0.1

0.15

0.2

0.25

0.3

-1
0

0.05

-1
0

0.05

Photonic Band Gap 

 

 

 

   

Figure 2.3: Band diagram for an on-axis propagation in a 1D PhCs calculated
with the Transfer Matrix Method [4]. a) Every layer has the same dielectric
constant ε1 = ε2 = 13. b) Layers with different dielectric constants, ε1 = 12
and ε2 = 13. c) Layers with different dielectric constants, ε1 = 1 and ε2 = 13

slightly different dielectric constants in the material (ε1 = 12 and ε2 = 13)
is shown. The shadowed area represents the frequency range where appear a
PBG where the wave propagation is not allowed. Each band, denoted with
n = 1, 2, represents one eigenmode. Finally, in Fig.2.3.c, the PBS of a mul-
tilayer system with a strong contrast in the dielectric properties (ε1 = 1 and
ε2 = 13) is plotted. Note that the increase of the dielectric contrast produces
broadening of the PBG, increasing the number of frequencies in which there
is no propagation.

This idea can be extended to the 2D case. To do that, it is necessary
taking into account that now the system is periodic in two directions (x̂ and
ŷ) and homogeneous in the third one (ẑ). In the 2D problem, the splitting
between TE and TM polarizations is possible and the PBSs associated with
each one are different. Figure 2.4 shows the PBS for each polarization in a
squared distribution of rod with εd = 8.9 embedded in air when kz = 0.The
PBG is represented over the directions of maximun symmetry of the Brillouin
zone (see Fig.2.21). In this system there is a complete PBG for the TE modes
which is represented with the shadow area, but there is no PBG for the TM
modes.
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Figure 2.4: Band diagram for TM modes (solid lines) and TE modes (dashed
lines) in a 2D-photonic crystal made of dielectric rods (εd = 8.9) embedded
in air. The rod, with radius is 0.2d, are placed in a squared lattice. [5]

2.5 Metamaterials
Metamaterials are artificial structures whose building elements are arranged
periodically on a subwavelength scale. Thus, under the subwavelength regime,
the periodic material can be considered as a homogeneous material whose
constitutive parameters can be obtained applying homogenization theories.
By using electrically small inclusions, compared to the operation wavelength,
one can create artificial materials with unusual characteristics not found in
natural materials [6] [7]. The special properties and the possibility of tai-
loring their constitutive parameters have put metamaterials on the focus of
many works in the last years.

In a general way, metamaterials can be classified on the basis of the be-
havior of their constitutive parameters, µ and ε, which define the propagation
properties inside the material. Figure 2.5 represents the classification of the
metamaterials. Metamaterials defined as double positive (DPS) materials
have ε > 0 and µ > 0. Metamaterials with one of its contitutive parameters
negative are known as epsilon-negative (ENG), when ε < 0 and µ > 0, or mu-
negative materials (MNG), when ε > 0 and µ < 0. Finally, double negative
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Figure 2.5: Classification of electromagnetic (EM) metamaterials [6]. Dou-
ble positive (DPS), epsilon-negative (ENG), mu-negative (MNG) and double
negative (DNG) materials.

(DNG) materials are characterized by having both constitutive parameters
negative (ε < 0 and µ < 0). Metamaterials have opened a way for designing
new materials, being possible to obtain not only new DPS, MNG or ENG
materials, also DNG materials [8].

These artificial materials have given the opportunity for many interesting
applications which were not possible with natural materials. For example,
W. Cai et al. proposed a perfect lenses based on metal-dielectric composites
that allows subwalength resolution [9]. Metamaterials have been used for
the design of optical cloaks [10], making possible to avoid the perturbations
produced by an object on an impinging wave. Also, EM absorption can be
enhanced by using metamaterial, being possible to obtain perfect absorbers
[11].



3
Radial Photonic

Crystals

The idea of a Radial Photonic Crystal, RPC, was introduced by D. Torrent
and J. Sánchez-Dehesa in 2009 [1] [12]. Having anisotropic and radial de-
pendent constitutive parameters, RPCs are multilayer structures which are
invariant under radial translation and verify the Bloch’s theorem. RPCs
are different to the so called Circular Photonic Crystals (CPCs) where the
Bloch’s Theorem cannot be applied [13] [14].

This chapter describes the main features of 2D RPCs. First section dis-
cusses the applicability of the Bloch’s theorem in cylindrical multilayer struc-
tures and justifies the radial dependence of the constitutive parameters in the
RPCs. Then the PBS is calculated for an infinite RPC and the transmission
in a RPC shell with a finite number of periods is calculated. Finally, an
analysis of the resonant modes allowed in the RPC shell is presented.
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Figure 3.1: Schematic representation of a 2D cylindrical multilayer structure
formed by two different materials a and b with periodicity d = da + db. The
structure has a void cavity filled with the same material that the background.

3.1 Cylindrical Multilayer Shells and the Bloch
Theorem

Considering a 2D system, both CPC and RPC are cylindrical multilayer
structures. In Figure 3.1, a schematic representation of these structures is
shown. To understand the originality of the RPCs and the most important
differences with the CPCs, we start with the study of the propagation of
TE-polarized waves in the CPC.

CPCs are composed by a radial periodic arrangement of cylindrical layer
with isotropic and homogeneous materials. An example of the constitutive
parameters in these structures is represented in Fig. 3.2. In these 2D struc-
tures and considering the TE polarization, E = Ezẑ, the wave equation
defined in Eq. (2.8a) can be written as follows:

1
rε(r)

{
− ∂

∂r

(
r

µ(r)
∂

∂r

)
+ 1
rµ(r)

∂2

∂θ2

}
E(r, θ) = ω2E(r, θ), (3.1)

where the constitutive parameters follow the periodicity of the system, so
ε(r) = ε(r + d) and µ(r) = µ(r + d) (see Fig. 3.2). The electric field in an
arbitrary point of the space can be factorized as:

E(r, θ) =
∑
q

Eq(r)eiqθ, (3.2)
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Figure 3.2: Constitutive parameters of a CPC with 5 periods (10 layers):
(a) permittivity, ε and (b) permeability µ. The layers are characterized by:
εa = 1.5, µa = 2, εb = 2, µb = 1 and da = db.

where q = 0, 1, 2, .. represents the angular variation. Using separation of vari-
ables, we obtain that the electric field Eq(r) has to accomplish the following
wave equation:{

− 1
rε(r)

∂

∂r

(
r

µ(r)
∂

∂r

)
+ q

r2ε(r)µ(r)

}
Eq(r) = ω2Eq(r). (3.3)

The differential operator that takes part in this wave equation is not invariant
under translation of the form r → r + nd, being n an integer. Note that the
term r/µ(r) and rµ(r) cannot be simultaneously periodic. As a consequence
of that, the Bloch theorem cannot be applied to these structures.

By assuming that each layer is made with an anisotropic material whose
constitutive parameters can be expressed in a tensorial form as

ε =


εr(r) 0 0

0 εθ(r) 0
0 0 εz(r)

 ,µ =


µr(r) 0 0

0 µθ(r) 0
0 0 µz(r)

 , (3.4)

the wave equation ca be re-written as{
− 1
rεz(r)

∂

∂r

(
r

µθ(r)
∂

∂r

)
+ q

r2εz(r)µr(r)

}
Eq(r) = ω2Eq(r). (3.5)

Now, the coefficients r/µθ(r), rµr(r) and rεz(r) can be made simultaneously
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periodic by ensuring that

r + nd

µθ(r + nd) = r

µθ(r)
, (3.6a)

(r + nd)µr(r + nd) = rµr(r), (3.6b)
(r + nd) εz(r + nd) = rεz(r). (3.6c)

These conditions establish that the constituent parameters have to fulfill the
relations (3.7a), (3.7b) and (3.7c), where µ̂θ(r), µ̂−1

r (r), ε̂−1
z (r) are periodic

functions.

µθ(r) = rµ̂θ(r), (3.7a)
µ−1
r (r) = rµ̂−1

r (r), (3.7b)
ε−1
z (r) = rε̂−1

z (r). (3.7c)

In a structure periodic along the radial direction which is composed by two
media, a and b with thickness da and db respectively (see Fig.3.1), we can de-
fine the vector X(r) ≡ [µθ(r), µ−1

r (r), ε−1
z (r)] which contains the constituent

parameters in a layer. Therefore the constitutive parameters in the structure
can be expressed as:

X(r) =

rX̂a if (n− 1)d < r < (n− 1)d+ da
rX̂b if (n− 1)d+ da < r < nd

(3.8)

where d = da + db, n is an integer and X̂a,b ≡
[
µ̂θa,b(r), µ̂−1

ra,b
(r), ε̂−1

za,b
(r)
]

represents the periodic functions which compose the constitutive parameters
in each layer. The following set of constitutive parameters ensure the RPC
condition is:

µθa(r) = µ̂θar = 2r
d
, µθb(r) = µ̂θbr = r

d
, (3.9a)

µra(r) = µ̂ra
r

= 0.25d
r

, µrb(r) = µ̂rb
r

= 0.5d
r
, (3.9b)

εza(r) = ε̂za
r

= d

1.5r , εzb(r) = ε̂zb
r

= d

r
. (3.9c)

These parameters are represented in Fig. 3.3. Note that the inner void cavity
is necessary to avoid the divergence of the constitutive parameters. Under
these conditions, the new differential operator is invariant under translation
in r̂ and the Bloch’s theorem can be applied in cylindrical coordinates.
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We can express the wave equation in each layer by introducing the Eq.
(3.8) in Eq. (B.2).

∂2Eq(r)
∂r2 + [ω2ε̂izµ̂iθ − q2 µ̂iθ

µ̂ir
]Eq(r) = 0, (3.10)

These equations have plane-wave solutions and the dispersion relation in each
layer can be expressed as:

k2
iq = [ω2ε̂izµ̂iθ − q2 µ̂iθ

µ̂ir
], i = a, b. (3.11)

Applying the Bloch’s theorem, the general solution for the electric field is

Eq(r) =
∑
G

eiKreiGr (3.12)

where G = 2πn/d is the reciprocal lattice and K represent a Bloch wave
vector.

For the TM mode the same procedure can be followed but with the mag-
netic field. In this case, the vector X(r) ≡ [εθ(r), ε−1

r (r), µ−1
z (r)] the wave

equation for the magnetic field is

∂2Hq(r)
∂r2 + [ω2µ̂iz ε̂iθ − q2 ε̂iθ

ε̂ir
]Hq(r) = 0, (3.13)

where,
k2
iq = [ω2µ̂iz ε̂iθ − q2 ε̂iθ

ε̂ir
], i = a, b. (3.14)

3.2 Photonic Band Structure and Transmis-
sion Spectra

This section, reports a theoretical study of the wave propagation in RPCs.
We use the TMM to obtain the photonic band structure and the transmission
spectra. This method has been widely used for the study of 1D periodic
media [4]. In our case due to the complexity of the RPCs some modifications
have to be introduced [15].

According to Eq. (3.10), the electric fields inside each layer of the RPC
shell can be expressed as a sum of incident plane wave and reflected plane
waves as follows:

Eq(r) =
[
(C+

q )lneiklq(r
′−nd) + (C−q )lne−iklq(r

′−nd)
]
eiqθ, (3.15)
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Figure 3.3: Profiles of the constitutive parameters in RPC with 5 periods
(10 layers) with da = db: (a) permittivity, εz and (b) permeability µθ and µr.
Material a: µ̂aθ = 2/d, µ̂ar = 0.25d and ε̂az = d/1.5. Material b: µ̂bθ = 1/d,
µ̂br = 0.5d and ε̂bz = d/1.

Figure 3.4: Infinite slab. Plane wave amplitudes associated with the nth unit
cell and its neighboring cells.
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where the wave numbers klq are defined in the Eq. (3.11), r′ = r − rint,
n = 1, 2, ..., N and l defines the materials a and b. Figure 3.4 shows the
definition of wave amplitudes.

The electric fields in two consecutive layers are related through the cor-
responding boundary conditions. Thus, for the TE polarized modes under
study, the boundary conditions are reported in Eq. (2.17) and Eq. (2.18).
These conditions are imposed at the interfaces of the unit cell. Therefore,
the matrix relating the complex amplitudes of the plane waves in a b-layer
with those of the equivalent layer of the next unit cell is:


(
C+
q

)
bn−1(

C−q
)
bn−1

 =
A B

C D

(C+
q

)
bn(

C−q
)
bn

 , (3.16)

where the transmission matrix ABCD elements are:

A = e−ikbqdb
[
cos (kaqd)− 1

2i
(
µ̂θb
µ̂θa

kaq
kbq
− µ̂θa
µ̂θb

kbq
kaq

)
sin (kaqda)

]
, (3.17)

B = eikbqdb
[
−1

2i
(
µ̂θb
µ̂θa

kaq
kbq
− µ̂θa
µ̂θb

kbq
kaq

)
sin (kaqda)

]
, (3.18)

C = e−ikbqdb
[

1
2i
(
µ̂θb
µ̂θa

kaq
kbq
− µ̂θa
µ̂θb

kbq
kaq

)
sin (kaqda)

]
, (3.19)

D = eikbqdb
[
cos (kaqd) + 1

2i
(
µ̂θb
µ̂θa

kaq
kbq
− µ̂θa
µ̂θb

kbq
kaq

)
sin (kaqda)

]
. (3.20)

Taking into account that inside the RPC we can apply the Bloch’s theo-
rem, the periodic condition can be written as:

(C+
q

)
bn(

C−q
)
bn

 = eiKd


(
C+
q

)
bn−1(

C−q
)
bn−1

 . (3.21)

It follows from the Eqs. (3.16) and (3.21) that the column vector for the
Bloch wave satisfies the following eigenvalue problem:A B

C D

(C+
q

)
bn(

C−q
)
bn

 = eiKd

(C+
q

)
bn(

C−q
)
bn

 . (3.22)
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The eigenvalue of the translational matrix is given by

eiKd = 1
2(A+D)−

√[1
2(A+D)

]2
− 1. (3.23)

The dispersion relation is given by

cos(Kd) = cos (kaqda) cos (kbqdb)+
1
2

(
µ̂θb
µ̂θa

kaq
kbq

+ µ̂θa
µ̂θb

kbq
kaq

)
sin (kaqda) sin (kbqdb) (3.24)

The solution for this equation using the parameters described in Eqs.(4.1) is
displayed in Fig. 3.6(a), where q denotes the symmetry order of the modes
in the corresponding band. Note that each band contains modes with well-
defined symmetry. In addition, note that modes with coefficient q > 0 have a
cutoff frequency higher than zero. Also, part of the q = 1 band (with dipolar
symmetry modes) is inserted within the first band gap of mode q = 0 (with
monopolar modes).

Let us stress that by changing the material parameters in Eq. (4.1) it
is possible to perform band gap engineering and design photonic structures
that fit our needs. For example, in Fig. 3.6(a) we observe that part of the
modes with dipolar symmetry (q = 1) are in the band gap of the rest of
modes. This implies that only dipolar modes will be excited by external
sources in the frequency region [0.38, 0.55] (in reduced units). This feature
can be extremely useful for designing photonic devices based on finite size
RPCs.

Now, considering a finite slab with N periods, the electric field inside the
RPC shell will be defined as in Eq. (3.15) and, in turn, the electric field in the
homogeneous and isotropic media can be represented by a linear combination
of Bessel and Hankel functions:

Eq =
[
C+
iqHq(kir) + C−iqJq(kir)

]
eiqθ, (3.25)

where k2
i = ω2εiµi with i = 1, 2. Jq(kr) and Hq(kr) are the Bessel and

Hankel function of order q (See Appendix A.1). Material 1 and 2 are the
materials inside the inner and in the external background, respectively. Note
that this expression allows us to obtain the field produced by external sources
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Figure 3.5: Finite slab. Amplitudes associated with each layer in a slab with
N periods.

located at any position inside the cavity (r < rint). Figure 3.5 shows the field
amplitude in this system.

For the case of a RPC shell made of N unit cells, the following relation
applies: (C+

q

)
b1(

C−q
)
b1

 =
A B

C D

N (C+
q

)
bN(

C−q
)
bN

 . (3.26)

The continuity conditions at the interface between the inner cavity (medium
1) and the RPC shell produce the following transition matrix:

C+
1q

C−1q

 = iπµ1

2

 J ′q(k1Ra) −Jq(k1Ra)
−H ′q(k1Ra) Hq(k1Ra)

 1 1
Z1 −Z1

(C+
q

)
b0(

C−q
)
b0

 , (3.27)

where
Z1 = i

µ1kbq
k1µ̂θbRa

. (3.28)

The boundary conditions at the interface between the RPC shell and the
external background (medium 2) give the second transmission matrix:(C+

q

)
bN(

C−q
)
bN

 = 1
2

1 1
1 −1

 Hq(k2Rb) Jq(k2Rb)
Z2H

′
q(k2Rb) Z2J

′
q(k2Rb)

C+
2q

C−2q

 , (3.29)

with
Z2 = −ik2µ̂θbRb

µ2kbq
. (3.30)

Finally, the complex amplitudes of the E field in the inner cavity and in
the external background are related by the end-to-end relation:C+

1q

C−1q

 =
M11 M12

M21 M22

C+
2q

C−2q

 , (3.31)
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M = iπµ1

4 sinKd

 J ′q(k1Ra) −Jq(k1Ra)
−H ′q(k1Ra) Hq(k1Ra)

AN BN

CN DN

×
 Hq(k2Rb) Jq(k2Rb)
Z2H

′
q(k2Rb) Z2J

′
q(k2Rb)

 .
(3.32)

The N power of the matrix follows the following relation

AN BN

CN DN

 =
A B

C D

N =
AUN−1 − UN−2 BUN−1

CUN−1 DUN−1 − UN−2

 , (3.33)

where UN = sin (N + 1)Kd/ sin (Kd). The ABCD matrix elements are cal-
culated as:

AN =
[
2 cos (Kd) +

(
µ̂θb
µ̂θa

kaq
kbq
− µ̂θa
µ̂θb

kbq
kaq

)
sin (kaqda) sin (kbqdb)

]
sin (NKd)− 2 sin ((N − 1)Kd)

(3.34)

BN = −2i
[
cos (kaqda) sin (kbqdb) + µ̂θa

µ̂θb

kbq
kaq

sin (kaqda) sin (kbqdb)
]

(3.35)

CN = −2Z1i

[
cos (kaqda) sin (kbqdb) + µ̂θb

µ̂θa

kbq
kbq

sin (kaqda) sin (kbqdb)
]

(3.36)

DN = Z1

[
2 cos (Kd)−

(
µ̂θb
µ̂θa

kaq
kbq
− µ̂θa
µ̂θb

kbq
kaq

)
sin (kaqda) sin (kbqdb)

]
sin (NKd)− 2 sin ((N − 1)Kd)

(3.37)

The M matrix is employed to determine the transmittance, Tq and the re-
flectanceRq of modes with q symmetry from the RPC shell. Their expressions
are

Tq = 1
M11

(3.38)

and
Rq = M21

M11
. (3.39)
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Figure 3.6: (Color online) (a) Photonic band structure for the radial photonic
crystal described in Sec. II. (b) Calculated transmission coefficients Tq for
the five period metamaterial shell described in Fig. 3.3. (c) Calculated
transmission coefficients Tq for a structure similar to Fig. 1 but with inverted
a and b layer order (abab... changes to baba...).

Let us recall that these coefficients always refer to the radial propagation
direction. The quality factor, Q of a given resonant mode can also be obtained
from the matrix element M11(ω) and involves the calculation of the complex
frequencies ωR that cancel this matrix element: M11(ωR) = 0, where ωR =
ω0 − iα. Then, the Q factor can be calculated from the real and imaginary
parts of the resonance frequency as Q = ω0

2α . In the rest of this chapter,
unless otherwise indicated, Q factors are calculated following this procedure.

The transmission properties of the shell are depicted in Fig. 3.6(b) and
Fig. 3.6(c). The difference between both cases only comes from the layer
ordering. In Fig. 3.6(b), layer profiles exactly follow the data in Fig. 3.3,
whereas in Fig. 3.6(c) the order between a and b layers is inverted. Thus, in
Fig. 3.6(b), the inner layer is of a type and outer layer is of b type, but in
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Fig. 3.6(c) it is the opposite. The different curves represent the transmittance
coefficients Tq for the total transmitted electrical field, Et

z, whose expression
is

Et
z =

∑
q

Aq
0TqHq(k0r)eiqθ, (3.40)

where A0q represent the amplitudes of the incident wave modes, Tq give
information about the interaction between EM waves and the RPC shell.
Note that a given Tq curve is specifically related to the allowed band with
the same q symmetry in the dispersion diagram shown in Fig.3.6(a). The
peaks observed in a selected Tq spectrum represent the resonant modes with
q symmetry in the shell.

3.3 Analysis of the RPC Resonant Modes
The resonant modes associated with these RPC shells can be characterized
as Fabry-Perot, cavity, and whispering gallery modes. The Fabry-Perot-like
modes are located in the RPC shell, cavity modes exist at the central cavity
whose features are equivalent to those predicted for cylindrical cavities and
whispering gallery modes are the third type of resonant modes existing in
these structures and they are localized close to the interfaces at the inner and
outer boundaries of the RPC shell with the background. This main purpose
of this section is the study of these resonances.

3.3.1 Fabry-Perot like modes
If the deeps of coefficients Tq appear at frequencies within the photonic bands
of the corresponding dispersion relation [see Fig. 3.6(a)], they are produced
by a Fabry-Perot (FP) interference phenomenon due to the shell finite thick-
ness. Figure 3.7(a) plots, as an example, the E-field pattern of a FP mode
with dipolar symmetry (q = 1). Note that the field is mainly located in-
side the shell; i.e., within positions rint < r < 5d. The FP-like resonances
have been widely studied in previous works. For a detailed discussion of
their properties and their potential application the reader is addressed to the
references [1] and [16].

3.3.2 Cavity modes
When the deeps in Tq appear within the bandgap of the photonic band with
a given symmetry, they represent modes that are confined in the central
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Figure 3.7: Resonant modes found in the 5 period RPC-shell described in Fig.
1: (a) Fabry-Perot like mode with symmetry q = 1 and frequency 0.3101 (in
reduced units), (b) cavity mode with symmetry q = 2 and frequency 0.3157
(C2 in Fig.3.6(b)), (c) whispering gallery mode with symmetry q = 0 and
frequency 0.4724 (WG0 in Fig. 3.6(b)), and (d) whispering gallery mode
with symmetry q = 3 and frequency 0.9442 (WG3 in Fig. 3.6(b)).
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void region. For example, Fig. 3.6(b) shows that deep C1 appearing in the
profile of the spectrum q = 1 (dashed line) corresponds to a cavity mode
with dipolar symmetry. C1 has frequency 0.1971 which is below the cutoff
of the corresponding band in Fig. 3.6(a). In a similar manner, deeps C2 and
C3 with frequencies 0.3157 and 0.4156, respectively, are due to the presence
of cavity modes with quadrupolar (q = 2) and hexapolar symmetry (q = 3).
Figure 3.7(b) displays as an example the E-field pattern corresponding to the
cavity mode with quadrupolar symmetry (q = 2). Let us stress that cavity
modes are strictly related to the size of the inner cavity and, as it is shown
in Fig.3.7(b), they are strongly localized inside the cavity.

3.3.3 Whispering gallery modes

In addition to the resonant modes previously described we have observed
additional features in the transmission spectra that have been associated to
whispering gallery (WG) modes. The shoulders annotated in Fig. 3.6(b) as
WG0, WG1, WG2 and WG3 are produced by resonant modes characterized
for having their E-field mainly localized in the last layer of the shell, as it is
usual for the WG described in the literature. The frequencies of modes WG0,
WG1, WG2 and WG3 have been obtained independently using a method
based on finite elements and their values are 0.4724, 0.5607, 0.7667 and
0.9442 (in reduced units). These values are in agreement with the frequencies
at which the shoulders appear in the corresponding Tq (with q = 0 to 3).

The WG modes are characterized by two main properties. On the one
hand, their frequencies are always within the bandgap of the photonic bands
with the same symmetry. On the other hand, they appear in a truncated RPC
with a void cavity at its center. In other words, the structures sustaining WG
modes are anisotropic shells having two boundaries with the background. For
the case under study here, the external and inner borders are at rext = 7d
and rint = 2d, respectively. Figures 3.7(c) and 3.7(d) plot, as two typical
examples, the E-field patterns of WG-type modes with symmetries q = 0
and q = 3, respectively; WG0 and WG3 in Fig. 3.6(b). It is shown that
E-fields are mainly localized at the shell inner and outer layers, respectively.

Figure 3.8(a) specifically shows the E-field profile, along the diameter
crossing the horizontal axis, for the mode WG0 with frequency 0.4724. A
comparison with the profiles of the components of the refractive index tensor,
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Figure 3.8: (a) The E-field profile along a diameter section of a WG mode
located at the outer layer of the 5 period RPC shell described in Fig. 3.3.
The monopolar mode WG0 with frequency 0.4724 is depicted. Note how the
field amplitude exponentially decreases with the separation from the external
boundary. The inset shows the E-field pattern in 2D for comparison purposes.
(b) Radial dependence of the radial and angular components of the refractive
index tensor.
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which are shown in Fig. 3.8(b), indicates that localization takes place in the
last period, where the last layer is b-type (with nr = 1). At this point it is
interesting to remain that the so called Tamm states were observed at the
interface between a multilayered dielectric structure and the background.
The Tamm states are strongly localized at the last layers of the multilayers
due to the high contrast between the refractive index of the last layers and
the background. In contrast, our WG modes, these being a kind of surface
states with circular symmetry, are slightly localized and, therefore, highly
radiative.

WG modes localized in the shell inner layer can be also obtained by
simply inverting the sequence of alternating a- and b-type layers. Figure
3.9(a) shows the case of a WG mode with monopolar symmetry (q = 0) that
has been obtained using an inner layer b-type and an outer layer a-type. The
inset shows the 2D field pattern of this mode that resonates at 0.4575 (in
reduced units), a value very close to that of the WG0 mode localized in the
outer layer of the shell. The high concentration of field observed inside the
cavity is due to the leaky nature of this mode in combination with the fact
that its wavelength is commensurate with the cavity diameter (φ = 2rint);
i.e., φ ≈ 3λ/2. The radial E-field profile shown in Fig. 3.9(a) in comparison
with the radial dependence of components nr and nθ (as shown in Fig. 3.9(b))
let us to conclude that localization of these types of modes is strongly related
with regions with high nθ.

It has been pointed out that a main feature of WG modes found in RPC
shells is that they are strongly radiative. In other words, they have very low
Q-factors, a property of paramount interest in building devices for energy
harvesting. The Q-factors of WG modes are specifically studied in the next
section in comparison with the Q-factors of cavity and FP resonances.



3.3 Analysis of the RPC Resonant Modes 41

Figure 3.9: (a) The E-field profile along a diameter section of a WG mode
located at the inner layer of the 5 period RPC shell with inverted sequence
(a-type and b-type layers have been exchanged with respect to Fig. 3.3).
The monopolar WG0 mode with frequency 0.4575 is depicted. Note the
high concentration of the field in the cavity due to the leaky nature of this
mode. The insets show the E-field pattern in 2D for comparison purposes.
(b) Radial dependence of the radial and angular components of the refractive
index tensor.



42 Radial Photonic Crystals



4 RPC applications

It has been shown that RPC shells have rich resonant properties which can be
tailored to adjust the behavior for different applications. In this chapter, we
will present three different applications in which the RPC resonant properties
can be employed.

First, in section 4.1, we will comprehensively study the use of WGMs
for increasing the EM field concentration and enhancing energy harvesting.
Then, in section 4.2, we will review the requirements needed in wireless
power transfer systems and we will propose a solution for the Wireless Power
Transfer problem by means of the FP modes of the RPC. Finally, in section
4.3, the use of the RPC shell as position sensors will be theoretically and
experimentally studied.
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Figure 4.1: Profiles of the constitutive parameters defining an anisotropic
metamaterial shell made of three periods of alternating materials and having
a central cavity with radius rint = d/4. (a) Radial and angular permeabilities
µr and µθ , (b) permittivity εz, and (c) radial and angular components of
the refractive index nr and nθ , respectively.

4.1 Energy Harvesting
Energy absorption and harvesting are topics deeply studied in the last years
for their use with acoustic, electromagnetic or thermal energy. For har-
vesting energy it is necessary a system which concentrates the surrounding
energy and allows its conversion to AC voltage by a conversion medium. In
this work, the concept of energy harvesting is considered as the ability of a
given structure of exchanging and trapping EM energy from the surrounding
medium. In this sense, artificially structured materials have shown potential
advantages as concentrator devices due to their exotic properties which are
not found in natural materials [17] [18]. In the literature, it has been demon-
strated that low-Q resonant modes in spherical nanoshells can be used for
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facilitating the coupling of ligth and improve the absorption [19]. Also, 2D
magnetic shells have been proposed for collecting the energy in the void core
and boosting the energy harvest [20]. In this section, an specific configura-
tion of RPC-shells that enhances the energy exchange between their resonant
WG modes with the background EM fields will be studied.

A metamaterial shell is here designed for operating at frequencies around
f = 3 GHz (i.e., for wavelengths around λ = 100 cm). The shells under study
have radial period d = 2 mm, (da = db = d/2), the central cavity has radius
rint = 0.5 mm (rint = d/4), and the constitutive parameters of its layers are:

µra(r) = 9.6d
r
, µrb(r) = 7.2d

r
, (4.1a)

µθa(r) = 24r
d
, µθb(r) = 12r

d
, (4.1b)

εza(r) = 8.4d
r
, εzb(r) = 49d

r
. (4.1c)

These parameters are selected to produce WG modes with extremely low
Q-factors. The profiles for these parameters together with those of the com-
ponents of the refractive index tensor are described in Fig.4.1(a) to Fig.
4.1(c).

For the sake of comparison, the Q-factors of the FP-like modes and cavity
modes have been also calculated as a function of the number N of double
layers. Results have been obtained using the TMM described in Chapter 3
and have been compared with the ones calculated using a commercial soft-
ware (COMSOL). Only radiation losses are considered in all the calculations.
The possible dissipative losses associated with materials have been neglected
in this study.

Figures 4.2(a) and 4.2(b) show the results obtained for the frequencies
and Q-factors, respectively, of the FP-like modes. Modes with monopolar
(q = 1), dipolar (q = 2) and hexapolar (q = 3) symmetry are studied. The
FP-like mode for a given symmetry corresponds with the lowest frequency
mode within the pass band. Note the excellent agreement between the values
calculated with the TMM (dashed lines) and the COMSOL simulations (con-
tinuous lines). The main feature of these modes is the slight variation of the
frequency as a function of the number of layers (upper panel) and also small
variation of the Q-factor (less than one order of magnitude). The high values
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Figure 4.2: Frequency variation (a) and quality factor Q variation (b) as a
function of the number N of periods for the Fabry-Perot resonances located
in the shell described in Fig. 4.1. The radius of the cavity being rint =
0.5 mm. Results from a commercial software (COMSOL) are compared with
the transfer matrix method (TMM).
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Figure 4.3: Frequency variation (a) and quality factor Q variation (b) as
a function of the number N of periods for the modes located in the inner
void cavity of the shell described in Fig. 4.1. The radius of the cavity
being rint = 0.5 mm. Results are obtained with the transfer matrix method
(TMM).

and almost constant of the Q-factor make these modes not appropriate for
use in field concentrators for the energy harvesting.

Figure 4.3 shows the results corresponding to cavity modes. Figure 4.3(a)
shows that their frequencies remain constant as a function of N and are very
high in comparison with that of FP modes. High frequency values are due
to the small dimension of the cavity. For this case only TMM calculations
are reported since the commercial software, which is based on finite elements
method, is not efficient with large electrical size objects. Figure 4.3(b) shows
that their Q-factors exponentially increase with N , which can be understood
as a consequence of the exponential decaying behavior of the E-field within
the photonic bandgap.Due to the extremely high Q-factors of the cavity
modes, the exchange of energy between the cavity and the background is not
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Figure 4.4: Frequency variation (a) and quality factor Q variation (b) as a
function of the number N of periods for the outer interface whispering gallery
resonances located in the shell described in Fig. 4.1. The radius of the cavity
being rint = 0.5 mm. Results from a commercial software (COMSOL) are
compared with the transfer matrix method (TMM).

favored, so these modes cannot be used for energy harvesting.
Figure 4.4 reports the properties of WG modes localized at the outer sur-

face as a function of N . Figure 4.4(a) shows that their frequencies have a
negligible dependence with the shell thickness. Their values for N = 2 (4
layers) are 3.35 GHz (WG1), 4.29 GHz (WG2) and 5.36 GHz (WG3). Again,
results obtained with our analytical TMM are well supported by the numer-
ical experiments using COMSOL.

Figure 4.4(b) indicates that the Q factors decrease with the thickness
of the shell, an interesting feature that can be useful for energy harvesting.
We may provide an intuitive explanation for this observed feature. The
decreasing values of Q when the size of the shell increases are related to the
occurrence of WGMs in the band gaps of the multilayer shell. It is clear that
in the respective band gap propagation of the EM wave of the WG mode
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in the radial direction and towards the center of the structure is prohibited
(WGMs only travel in the angular direction). This is one of the requirements
for the existence of these modes.

When we consider finite size shells, thicker multilayers that produce the
exponential tails of the E field towards the center will not reach the inner
cavity and lose localization in comparison with thinner shells. It is observed
in Fig. 4.4 how the Q factors converge to an apparently common value for
an increasing number of layers. This common value is necessarily the one
corresponding to the surface mode weakly localized at the interface between
the background with the semi-infinite structure. Note that mode WG1 has
the lowest Q-factor among all the modes analyzed here. For the higher order
WGMs, their Q factors are 2 orders of magnitude lower than those calculated
for the FP-like modes with similar order. In comparison with the Q factors
obtained for cavity modes C1 and C2, WG1 has a Q factor comparable with
that of C1 at N = 2, while WG2 has a Q factor 2 orders of magnitude larger
(at N = 2). However, for increasing shell thickness WGMs strongly decrease
their Q factor up to values several orders of magnitude lower than that of
the cavity modes. It can be concluded that WGMs associated with a thick
enough metamaterial shell are the best candidates to guarantee an efficient
energy exchange with the EM waves to/from the background.

A very remarkable property of these modes is that their frequencies, as
in the case of cavity modes, do not vary with the shell thickness. This would
seem counter-intuitive since the frequency of WG modes in cylindrical cav-
ities made of isotropic dielectric medium depends of the optical path deter-
mined by the cavity perimeter; that is ` = n× 2πR, where n is the refractive
index and R the cavity radius. For the anisotropic and inhomogeneous shell
under consideration, Fig. 4.1(c) shows that nr is constant within each layer
of types a or b, their values alternate in consecutive layers between nra = 15
and nrb = 25. Since the external layer (of b-type) has a higher refractive in-
dex, compared to the background or the closest shell layer (of a-type) it may
guide some energy in the angular direction. Conditions exist for these modes
to be propagative within the external b-layer, and this time again resonant
modes appear due to the finite size of the perimeter of this external layer.
Refractive index in this perimeter varies as nθ = √εzµr ∝ cte

r
, which is an

inverse function of the radial distance, and with ct being a constant value
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Figure 4.5: Frequency variation (a) and quality factor Q variation (b) as a
function of the number N of periods for the inner interface whispering gallery
resonances located in the shell described in Fig. 4.1. The radius of the cavity
being rint = 0.5 mm. Results from a commercial software (COMSOL) are
compared with the transfer matrix method (TMM).

depending on the a- or b-type layer. Now, this refractive index with inverse
radial dependence makes that the ’optical path’ (∼ nθ × 2πr = ct) of the
outer layer is independent of the size (or number of layers) of the shell. This
explains the constant resonant frequencies of the whispering gallery modes.

If the layer order is inverted (i.e., higher nθ value for the inner interface
layer), the previously observed WGMs are transferred to that interface. The
behavior of these modes is described in Fig. 4.5 and is coherent with the
previous discussion. Again, the resonant frequencies of the WGM of the
inner interface are independent of the size of the shell. This behavior is
obvious for this configuration since the circular dimension of the inner layer
is kept constant when adding external layers. Resonant frequencies are only
slightly shifted with respect to those of Fig. 4.4. In coherence also with
the previous discussion, the Q factors obtained increase with the number of
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layers since the exponential tail is smaller at a larger distance from the inner
surface. In other words, the internal WGMs will be increasingly isolated
with respect to external background and, therefore, the radiation losses will
be smaller (i.e., higher Q factors). However, the Q-factor variation with the
number of layers is not exponential as it was in the case of cavity modes
(see Fig.4.3). In this case, the RPC shells with less layers will have a better
behavior as a energy harvesting device.

Finally, let us discuss the case of two degenerate WGMs obtained for a
single shell, one being located at the outer boundary and the other at the
inner boundary. This case is achieved considering a shell with an odd number
of layers (seven layers equivalent to three periods and one additional b-type
layer); the total diameter being equal to φ = 15mm. Figure 4.6 reports
how a point source located at a distance rsource = 20 mm(≡ 10d) from the
shell center illuminates the shell for three slightly different frequencies. It is
shown how the WG2 mode at the outer layer is excited at 4.277 GHz, while
the WG2 mode at the inner layer is excited at 4.323 GHz. Moreover, Fig.
4.6(b) shows that both modes are simultaneously excited at 4.303 GHz. The
frequency differences are much smaller than those depicted in Figs. 3.8 and
3.9 since the inner void cavity size is much (electrically) smaller and there is a
lower perturbation due to it. In the case depicted in Fig. 4.6(c), the resonant
mode is linked to the inner interface of the shell with the cavity. In order to
complete this graphical information, the Q factors of these two degenerate
modes have been calculated showing a non-negligible difference. For the
external WGM shown in Fig. 4.6(a) we obtained the value QWG2ext = 503,
whereas for the internal WGM shown in Fig. 4.6(c) QWG2int = 1824. This
difference is expected since the internal WGM is more isolated from the
external background and, consequently, is less radiative.

As a conclusion to this section, the resonant properties of the WGM can
be used for the harvesting of EM energy due to their low Q-factors which
allow the energy exchange with the background. Both WGM possibilities,
internal and external, have been studied in terms of the shell thickness, con-
cluding that: (i) for the external mode , in which the energy has to be
collected in the outer layer, a high number of layer favors the energy har-
vesting; (ii) for the internal mode, where the energy will be collected in the
inner layer, the minimun number of layer will produce a better behavior as
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Figure 4.6: E-field patterns of an external point source illuminating a RPC
shell and exciting a whispering gallery mode, (a) an external whispering
gallery mode at 4.277 GHz, (b) simultaneous excitation of internal and ex-
ternal whispering gallery modes at 4.303 GHz, and (c) internal whispering
gallery mode at 4.323 GHz. Here the total number of layers of the shell is
seven, with inner and outer layers of the same a type.
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energy concentrator.

4.2 Wireless Power Transfer
Another application which has motivated many works and in which the scien-
tific community is devoting enormous efforts is the Wireless Energy Transfer
(WPT). The interest in this topic is related to the development of mobile
and wireless charging devices. Since times of Nicola Tesla [21], the chal-
lenge of transmitting energy without physical contact has been a hot topic.
However, it has been in the last decades when the necessity of this type of
technology has become evident. Nowadays, the number of electronic devices
(telephones, laptops, MP3- reproducers...) that each consumer uses has in-
creased and this fact has produced a huge dependence on charging systems,
which are typically associated to wire connections. Moreover, new potential
applications have been discovered in new environments where the physical
connections are not possible or not appropriated (satellites or emergency sys-
tems). The study of new technologies that avoid the use of wires or other
physical infrastructures for transmitting energy can improve the mobility
for recharging batteries and allow uninterrupted operation. For all these rea-
sons, the possibility of feeding or recharging electronic devices with a wireless
system especially attractive.

To deal with the WPT, different types of technological schemes have
been proposed [22] [23] [24]. The proposals can be divided in two groups:
radiative and non-radiative energy transfer systems. The radiative solutions
have important drawbacks. It is difficult to make the correct pointing and
the necessary adjustments to maintain the alignment between transmitter
and receiver. Furthermore, the beam can be easily blocked, interrupting the
transmission of power, this can even affect (or damage) the blocking object.

For the non-radiative systems the magnetic induction [25] and the strong
resonant coupling [26] [27] phenomenon have been the most studied. On the
one hand, in the magnetic induction systems the primary winding (source)
and the secondary winding (the device) must be close in distance, and posi-
tioned with a particular alignment. From the technical point of view, this re-
quires a large magnetic flux coupling between windings for proper operation.
On the other hand, in strong resonant coupling systems, it is fundamental to
have a sub-wavelength size resonators with high quality factors (Q). In this
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Figure 4.7: Scheme of a WPT system. (a) Mode amplitudes when the system
has only two resonators and (b) when the system has two resonators, a
excitation source and a collecting receptor .

section, we propose an alternative WPT system based on the strong resonant
coupling phenomena which uses RPCs as resonant elements.

We start introducing the Copled Mode Theory (CMT) for the analysis of
the WPT [28]. First, assuming a time dependence e−iωt, we consider a single
resonator, where the mode amplitude a(t) can be defined as follows:

da(t)
dt

= −iω0a(t)−
( 1
τrad

+ 1
τabs

)
a(t), (4.2)

with 1/τrad and 1/τabs being the decay rates due to escaping power and losses
in the material, respectively, and ω0 the resonant frequency. From the energy
in the system W (t) = |a(t)|2, we can obtain the power dissipation due to the
decay rates Prad and Pabs:

dW (t)
dt

= −2
( 1
τrad

+ 1
τabs

)
W = −Prad − Pabs. (4.3)

The power radiated to the background is Prad = 2W/τrad = ωW/Qrad and
the power dissipated in the material is Pabs = 2W/τabs = ωW/Qabs. The
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quality factor of the resonator can be calculated as:

1
Q0

= 1
Qrad

+ 1
Qabs

. (4.4)

Notice that in the design of WPT systems we try to minimize the dissipated
power, so we require resonators with high quality factors.

Now, the study is focused on the coupling produced between two res-
onators. Figure 4.7.(a) shows a schematic of a WPT scheme. If we consider
the coupling between two resonators with mode amplitudes a1(t) and a2(t),
resonant frequencies ω1 and ω2 and coupling factors κ12 and κ21, the ampli-
tudes obey the following equations:

da1(t)
dt

= −iω1a1(t)− Γ1a1(t) + iκ12a2(t), (4.5a)

da2(t)
dt

= −iω2a2(t)− Γ2a2(t) + iκ21a1(t), (4.5b)

where Γ1 = (1/τrad1 + 1/τabs1) and Γ2 = (1/τrad2 + 1/τabs2) represent the
decay rates in each resonator. Considering Γ1 = Γ2 = 0, energy conservation
imposes that the time rate of change energy must be zero, so:

d|a1|2 + |a2|2

dt
= a∗1κ12a2 + a1κ

∗
12a
∗
2 + a∗2κ21a1 + a2κ

∗
21a
∗
1 = 0 (4.6)

The coupling coefficients have to satisfied κ12+κ∗21 = 0. Due to the reciprocity
of the system the coupling coefficients are equal and real, κ12 = κ21 = κ.

The matrix representation of the Equation 4.5 can be written as:

ȧÌĞ = Aa, (4.7)

where

A =
−iω1 − Γ1 iκ

iκ −iω2 − Γ2

 . (4.8)

To obtain the eigenmodes, we consider that (a1(t) a2(t)) = (A1 A2)e−iωt. In
this case, to solve the equation system we have to ensure det(A + λI) = 0,
being I the identity matrix and λ = −iω. The complex frequencies are:

ωe,o = ω1 + ω2

2 − iΓ1 + Γ2

2 ±
√

(ω1 − ω2

2 − iΓ1 − Γ2

2 )2 + κ2. (4.9)
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The frequency splitting produced by the coupling between the resonances is
defined by δ(1)

ω = ωe − ωo = Ω0, with

Ω0 =
√

(ω1 − ω2

2 − iΓ1 − Γ2

2 )2 + κ2. (4.10)

Note that for the same frequency ω1 = ω2 and the same decay rate Γ1 =
Γ2, the splitting is δ(2)

ω = |κ12|. The coupling rate κ can be evaluated in
practice from the frequency separation between even and odd modes, since it
is related to the intensity of the interaction. We have used κ = (ωo − ωe)/2,
where ωo and ωe are the angular frequencies of each mode. On the other
hand, there is a rate at which energy is dissipated in the resonators, which
can be quantified by means of the damping factor. In our case, we use
the damping factor Γ related to the Q value and giving the width of the
resonances. From the definition of the Q-factor, we have Q = ω/2Γ. Since
there are two resonant modes (even, odd), the averaged damping factor is
Γ =

√
ΓoΓe. In a practical situation, the coupling rate κ should be large

enough in comparison with the damping factor Γ in order that energy is
transferred at a rate higher than it is lost in the system. A figure of merit
(FOM) can be defined as the coupling to loss ratio κ/Γ, which has to reach
values in principle much higher than 1.

Once the system is excited by a source the schematic view of the system
is represented in Fig.4.7.(b). Considering a complete WPT system, where
a source is connected to the resonator 1 with a coupling factor κ1 and the
resonator 2 is connected to the receptor with a coupling factor κ2 [29], the
set of equations which models the system can be written as:

da1(t)
dt

= −iω1a1(t)− Γ1a1(t) + iκ12a2(t)− κ1a1(t) +
√

(2κ1)s+1(t), (4.11a)

da2(t)
dt

= −iω2a2(t)− Γ2a2(t) + iκ21a1(t)− κ2a2(t), (4.11b)

s−1(t) =
√

(2κ1)a1(t)− s+1(t) (4.11c)

s−2(t) =
√

(2κ2)a2(t). (4.11d)
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The scattering matrix elements (S-parameters) can be obtained and writ-
ten as follows:

S21 = S−2

S+1
=

2iκ
√

(κ1κ2)
(Γ1 + κ1 − iδ1)(Γ2 + κ2 − iδ2 + κ2) , (4.12)

and
S11 = S−1

S+1
= (Γ1 − κ1 − iδ1)(Γ2 + κ2 − iδ2 + κ2)

(Γ1 + κ1 − iδ1)(Γ2 + κ2 − iδ2 + κ2) . (4.13)

being δ1,2 = ω − ω1,2. The conditions which maximize the efficiency of the
system are: power transmission maximization (i.e |S21|2 → max) and power
reflection minimization (i.e |S11|2 → min)

Based in this analysis, Figure 4.8 shows the magnitude of the S21 in a
complete WPT system as a function of the frequency and the coupling rate
κ12, when we consider two identical resonators with κ1 = κ2 = 1 (perfect
coupling with the source and the receptor), Γ1 = Γ2 = 0 (no losses in the
resonators) and a normalized frequency f1 = f2 = 5. The critical coupling
is marked and we can see the over coupled and the under coupled regions.
Within the over coupled region, in this example, maximum S21 occurs at
two frequencies. In the under coupled region the S21 magnitude decreases
exponentially when κ21 decreases. The coupling rate, κ12, and the separation
between the resonators, D, are inversely proportional.

As we have mentioned before, this section presents a proposal for the
use of RPCs shells as resonant elements in a WPT system. The designed
anisotropic metamaterial shell consists of alternating layers of type a and of
type b whose constitutive parameters are defined as follows:

µra(r) = 40d
r
, µrb(r) = 60d

r
, (4.14a)

µθa(r) = 35r
d
, µθb(r) = 20r

d
, (4.14b)

εza(r) = 40d
r
, εzb(r) = 60d

r
. (4.14c)

In this study the losses in the materials are neglected because they de-
pend on the particular RPC implementation (SRR resonator, using natural
materials with these premittivity and permeability values or using discrete
elements) and this is out of the scope of this study. The design criteria



58 RPC applications

 

 

 

Figure 4.8: S21 magnitude as a function of frequency and transmitter to
receptor coupling κ12. The coupling rates with the source and the receptor
κ1 = κ2 = 1, the decay rates in the resonator are Γ1 = Γ2 = 0 and the
resonant frequencies of the resonators are f1 = f2 = 5

.
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Figure 4.9: Profiles of the constitutive parameters defining an anisotropic
metamaterial shell made of 2 periods of alternating materials and having a
central cavity with radius rint = 10 mm. (a) Radial and angular permeabili-
ties µr and µθ , (b) permittivity εz, and (c) radial and angular components
of the refractive index nr and nθ , respectively.

have been: (i) work with a low resonant frequency for obtaining a subwave-
length size resonator, (ii) increase the quality factor for reducing the radiation
losses and (iii) choose the constitutive parameters in order to make the ra-
dial impedance (Zr(r) =

√
µr(r)/εz(r)) identical to the vacuum impedance.

These design constrains facilitate the energy transfer between the shells.
To reduce the size of the resonators, we have chosen a 4-layer resonator

with inner cavity rint = 10 mm, radial periodicity parameter d = 15 mm with
da = 5 mm and db = 10 mm, so the external radius is rext = 40 mm. The
constitutive parameters described in Eq. (4.14) and particularized for these
physical dimensions are displayed in Figure 4.9. Figure 4.9.(a) and Figure
4.9.(b) show that the parameter values described are not extreme as the ones
proposed in [26] for dielectric structures, where εr = 147.7.
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(a) (b) (c)    

   

Figure 4.10: Resonant modes with different symmetry orders. (a) Dipolar
modes at fq=1 = 143.91 MHz with quality factor Qq=1 = 1054, (b) quadrupo-
lar modes at fq=2 = 179.33 MHz with quality factor Qq=2 = 4.45 ·105 and (c)
sextupolar modes at fq=3 = 223.87 MHz with quality factor Qq=3 = 1.56 ·108.

Figure 4.10 shows the modes with symmetry orders q = 1, 2, 3 allowed
in our design. Value of q defines the dipolar, quadrupolar or sextupolar
orders. Resonant modes are found at fq=1 = 143.91 MHz, fq=2 = 179.33 MHz
and fq=3 = 223.87 MHz. The quality factors associated to these resonances
are Qq=1 = 1054, Qq=2 = 4.45 · 105 and Qq=3 = 1.56 · 108. From these
results, we chose the mode with symmetry q = 2 because the quality factor
is bigger than the quality factor of the q = 1 mode (less radiative losses)
and the resonant frequency is smaller than the frequency for the q = 3
mode (more subwavelength). So the operation frequency is f = 179.33 MHz
at which the free space wavelength is close to λ0 = 1.67 m. Taking into
account the physical dimensions of the design, we can see that the shell has
a sub-wavelength size at the operation frequency; i.e., λ/rext ≈ 42. The sub-
wavelength size is paramount to operate in a strong coupling regime since
evanescent components of the resonant fields are used to transfer the energy.

Once the resonant mode has been choosen, the second step in the anal-
ysis is the study of the system with two coupled shells and the study of
the coupling between the resonators by means of the analysis of the reso-
nant modes. Figure 4.11 shows the resonance modes involved in this study.
First, 4.11(a) represents the resonant mode of single shell with quadrupolar
symmetry. Then Figure 4.11(b) and Figure 4.11(c) are the even and odd res-
onant modes of a pair of coupled RPC shells, respectively. As in the previous
theoretical analysis, the combination formed by these two resonant elements
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(a) 

(b) (c) 

Figure 4.11: Simulated electric field patterns in normalized units of (a) the
quadrupolar resonance of a single RPC at fq=2 = 179.33MHz. (b) and (c)
represent the strongly coupled resonance pattern of a system formed by 2
resonant shells separated a distance (center to center) D = 200 mm = 5rext.
Resonance frequency for the even mode is 179.32 MHz, while it is 179.34 MHz
for the odd mode.
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creates a system with its own resonant modes and frequencies, which result
from the original resonant modes of the individual element. In this case,
D = 200 mm = 5rext and the even and odd modes appear at 179.32 MHz
and 179.34 MHz. Both modes share the symmetry axis formed by the line
equidistant from both centers of the RPCs.

The purpose of the analysis of the combined system is to evaluate if a
strong coupling regime is established between both resonant elements that
can favor a wireless energy transfer. Two key parameters can be identified
in order to evaluate such an interaction. On the one hand it is the coupling
factor or rate κ between the RPCs. As we have seen, this coupling factor
relates the variations of the field amplitude in the first shell a1 with the
field amplitude in the second shell a2. On the other hand, there is the rate
at which energy is dissipated in the resonators, which can be quantified by
means of the damping factor, Γ.

Our study consists in analysing the resonant system formed by two shells
with split resonant frequencies. For each mode, even and odd, a coupling to
loss ratio has been calculated from the respective frequencies and Q-factors.
The results are summarized in Fig. 4.12, where panel (a) displays the reso-
nant frequencies as a function of the distance between shells. It is observed
that, as expected, fe and fo are quite different for the shorter distances and
both tend to the single shell resonance frequency as distance increases. Let
us recall that these are relative distances larger than the size of the shells,
and at the same time they are smaller than the operation wavelength in free
space.

Figures 4.12(b) and 4.12(c) report the quality Q and damping Γ factors
(related only to radiation losses), respectively. The even mode presents more
radiation losses, i.e. lower Q-factors. For the odd mode and since the damp-
ing factor presents a minimum value, a maximum value is obtained for the
Q-factor. This maximum value corresponds to a separation close to four
times the radius of the shells. This is an important difference between both
resonant modes.

Figure 4.12(d) displays the calculated FOM, which gives the coupling to
loss ratio κ/Γ. Within a wide range of distances the FOM reaches values
much higher than one. All this distance range where the FOM presents
values higher than one is in principle usable in view of obtaining a wireless
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Figure 4.12: Numerical results from an eigenvalue analysis of a pair of cou-
pled resonators with varying separation distance D/rext (ratio between the
physical distance among their centers and the radius of the RPCs). (a) Res-
onant degenerated frequencies of the coupled RPCs system, (b) Damping
factor for each resonant frequency including radiation losses (c) Calculated
quality factors for both resonant modes. (d) Figure of merit (FOM) for the
energy transfer calculated as the ratio between the coupling factor κ and the
averaged damping factor Γ.
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Figure 4.13: Simulated coupling to loss ratio FOM = κ/Γ for the metama-
terial shells compared to homogeneous disks as a function of the normalized
separation in each case.

power transfer; energy is transferred at a rate higher than the rate at which
it is lost in the system, which is the target of the device.

Additionally, we have compared the efficiency of the proposed resonator
structures, based on metamaterials, with other solutions already explored.
Thus, the same analysis has been also carried out for homogeneous isotropic
disks with the same physical dimensions of the metamaterial shells. Specif-
ically, the constitutive parameters are the result of averaging those of the
RPC metamaterial shell: εH = 30.06, µH = 33.23. Under these conditions,
the individual resonator frequency is fq=2 = 190.09MHz and the associated
quality factor is QH = 1.42 · 105. The two calculated FOMs as a function
of the separation distance are displayed in Fig. 4.13. They demonstrate
that the coupling factor between the two anisotropic metamaterial shells is
higher than that for the equivalent homogeneous dielectric-magnetic disks.
With the metamaterial resonators, stronger quality factors can be obtained
and thereby higher FOM (FOMRPC >> FOMH). It is concluded that the
proposed resonator structures based on metamaterials present much better
performance for wireless energy transfer.
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Figure 4.14: Simulated power transfer efficiency η and transmission coef-
ficient S21 as a function of separation distance. These relative figures are
defined between the two port planes of the coaxial connectors. Efficiency η

includes the transfer rates from the connectors to the RPCs and the wireless
transfer rate between the RPCs. Inset shows a schematic of the wireless
energy transfer system including source and drain coaxial connectors to re-
spectively inject and extract EM energy.
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A practical application of this type of system would require inevitably ad-
ditional considerations in order to assess a magnitude quantifying the trans-
fer efficiency. For this goal, we have analyzed the problem of placing two
shells in proximity under conditions that could be encountered in practice.
In particular, we have analyzed the possibility of using connecting elements
respectively acting as a power source and a power drain. Therefore, 3D nu-
merical simulations including feeding and probing coaxial connectors in both
shells are performed. This permits to directly obtain the power transfer
efficiency figure evaluating the performance of the system. This efficiency
can be estimated directly from the transmission coefficient (S21) relating the
power from the transmitting port that is transferred to the receiving port.
The system analyzed is composed of two identical devices including a coaxial
standard connector on the shells inner cavities and each one acts respectively
as power source and power drain.

A schematic of this configuration is given in Fig. 4.14. Importantly, the
connectors themselves are part of the power transfer system and influence its
performance. Also, the estimated efficiency by this means is a global value
that includes the efficiency of the transfer between the connectors and the
shells on top of the transfer efficiency between the two shells. Let us mention
that the placement or geometrical design of these connecting elements is
not optimized. Impedance adaptation between coaxial probe and the cavity
material is the only consideration taken into account. Coaxial probes are
not placed exactly at the center of the inner cavities. This is done in order
to improve the excitation of the quadrupolar mode [30]. Since this mode
has a null at the center of this cavity because of symmetry reasons, the
center is not an optimum position for the source or load connectors. The
optimal position to maximize matching between the connector and the shell
has not been investigated and is therefore susceptible of improvement. In
our simulations, the inner coaxial conductor is just displaced at r = 0.1rext
from the center of each RPC. The presence of the connectors creates a slight
perturbation in the electrical behavior of the RPCs, shifting in practice their
resonant frequencies from the ones displayed in Fig. 4.11(a). However, the
simulations show that this shift is very small (< 0.01%) and it is almost
homogeneous within the considered range of separation distances.

Figure 4.14 shows the evolution of the transfer efficiency as a function of
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Figure 4.15: Field in a system with two RPC shells. Magnitude of the electric
field and magnetic field lines.

the separation between the shells in normalized units. At each separation
distance, the maximum transmission frequency is shifted (as it was already
shown in Fig. 4.12(a)). The maximum transmission coefficient is obtained
at each one of these peak frequencies: this maximum S21 value is the one
reported in Fig.4.13. It can be seen that efficiency is higher for the shorter
distances and it slowly decays with increasing separations. Maximum trans-
fer efficiency close to η = 83% is obtained for a separation of four times the
device radius. This distance value is slightly above the one reported in Fig.
4.12(d)), because the system has been altered due to the presence of the
coaxial connectors and, as it was discussed previously, resonance frequencies
have also been shifted. Efficiency remains high (η > 35%) for separations
up to ten times the radius of the shells. In this sense, it is interesting to
note that this separation range corresponds, in terms of electrical distances
to D/λ = 0.07 (for the shortest separation) to D/λ = 0.22 (for the largest
separation). Actually, this means that in all cases we are at a short electri-
cal distance, within the first quarter-wavelength away from the transmitting
device. Hence, even reactive power can be used to couple energy from one
device to the other.

Figure 4.15 allows to see the coupling mechanism between both RPC
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Figure 4.16: Profiles of the constitutive parameters defining an anisotropic
metamaterial shell made of 2 periods of alternating materials and having a
central cavity with radius rint = 15 mm. (a) Radial and angular permeabili-
ties µr and µθ and (b) permittivity εz.

shells. This figure represents the surface map of the electric field magnitude
and the magnetic field lines.

4.3 Position Sensors
In this section, the resonant properties of the Fabry-Perot modes in the RPC
shells are studied for their use as position sensors. This study is done with
numerical simulations and experiments. The selected values of constitutive
parameters are:

µra(r) = d

0.347r , µrb(r) = d

0.5r , (4.15a)

µθa(r) = 0.08r
d

, µθb(r) = 0.04r
d

, (4.15b)

εza(r) = d

0.143r , εzb(r) = d

0.1r , (4.15c)

where d = da+db = 10 mm and da = db = 5 mm. The RPC shell has 2 periods
( 4 layers) and the void inner cavity has rint = 15 mm. The parameter profiles
are represented in Fig. 4.16. In this section, we focus the attention on the
hexapolar mode, q = 3, which appears at f = 3.8 GHz. This frequency will
be the operation frequency of the samples.

It is complicated to implement these microstructures due to their anisotropy
and the radial dependence. Therefore, in order to fabricate a RPC sample,
some simplifications allowing the feasibility of the device are used; a reduced
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Figure 4.17: Profile of the reduced constitutive parameters. Centre of the
RPC is at r = 0 mm. Angular permeability (dashed line) follows a step
function; permittivity (solid line), εz = 3.4 for the whole RPC shell; radial
permeability (not plotted) is constant and equal to that of the background.

model is used [30]. The details of the reduced model are summarized in Ap-
pendix B. The profiles of the reduced constitutive parameter are illustrated
in Fig.4.17. Angular permeability µθ(r) follows a stair-like profile in which
each value is calculated like the angular permeability defined by Eqs.(B.1)
in the center of the layer, permittivity is εz = 3.4 for all the RPC shell and
radial permeability µr(r) is constant and equal to that of the background
(µr = 1).

The practical implementation of the reduced constitutive parameters of
each layer is performed by a microstructure array using a unitary cell com-
posed of a split ring resonator (SRR). The permeability of an array of SRRs
can be modeled by a Lorentz-type function with the resonant frequency sepa-
rating positive and negative values of the effective permeability. By designing
the geometric dimensions of the SRRs, it is possible to tailor the permeabil-
ity response at the design frequency of f = 3.8 GHz. Table 4.1 contains the
effective parameters of each layer implemented with SRRs.

Figure 4.18 displays the schemes and the final appearance of the RPC
sample. Figure 4.18.(a) shows the distributions of SRRs which form each
layer. The geometric dimensions of a unit cell are detailed in Fig.4.18.(b) and
the physical dimensions of the SRRs which form each layer are summarized
in Table 4.2.
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Ring resonator 1A 1B 2A 2B
real(µ) 0.1434 0.0974 0.2481 0.1468
real(ε) 3.4137 3.4087 3.4350 3.4148

Table 4.1: Extracted parameters from the unit cells. Constitutive parameters
of the ring resonators at f = 3.8 GHz.

Design parameter(mm) 1A 1B 2A 2B
ar 5 5 5 5
aθ 5.236 5.236 5.236 5.236
ht 9 9 9 9
rs 3.7 3.7 3.7 3.7
w 0.4 0.4 0.6 0.4
g 0.42 0.6 0.24 0.41

mean radius 17.5 22.5 27.5 32.5
ring/layer 21 27 33 39

Table 4.2: Design parameters of the SRRs which form each layer of the RPC
shell implemented with the reduced profile defined in Table 4.1
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(b) (a) 

(c) 

Figure 4.18: Implementation scheme of the RPC shell. (a) Details of the
RPC shell implemented with SRRs, (b) SRR unit cell and (c) RPC sample.

The SRRs have been fabricated using a dielectric layer (Neltec NY9220)
with a thickness of 0.381 mm and covered by 35µm of metal. The dielectric
used has low permittivity and loss [εr = 2.2(1 + i0.0009)]. Each SRR has
been made with a combination of a chemical etch process and a laser micro-
machining. Figure 4.18.(c) shows the sample including a support of Rohacell
foam.

A field mapping apparatus has been developed to perform the experi-
ments. This system comprises four parts: a 2D chamber, a Vector Network
Analyzer (VNA), two linear positionning robots and a computerized control
application. A scheme of the experimental setup is illustrated in Fig. 4.19.
The chamber consists of by two parallel aluminum plates which are separated
by a distance d = 10 mm. This 2D wave guide can support the TEM mode,
TMn modes and TEn modes. The TEM mode is the only propagation mode
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Figure 4.19: Schematic view of the measurement setup

through the guide if the space between plates, d, fulfills k ≤ 1/d where k is
the wave number. In our system, the separation d can be changed manu-
ally. In this experiment, the electric field is polarized perpendicularly to the
chamber plates.

The top plate is 125 cm× 125 cm× 1 cm and it is fixed. To avoid a pos-
sible plate bending of the plates, it is reinforced with six girders and leans
on four points at the corners. The bottom plate is 60 cm × 60 cm × 0.8 cm
and can move 60 cm in two orthogonal directions. This structure creates a
60 cm × 60 cm measurement area allowing 2D displacements in orthogonal
directions. This bottom plate is attached to a set of guide rails which make
the movement possible. There are two parallel rails in each direction. Two
robots control the movement of the bottom plate. In the center of the top
plate, a SMA connector used as sensing probe is introduced in the chamber
0.3 mm approximately. The diameter of this SMA connector, which is used
as sensing probe, is about 1 mm, so the minimum horizontal step in the hor-
izontal plane has to be higher than that. A second SMA connector is placed
at the bottom plate and penetrates in the chamber 5 mm approximately. Two
possible excitation waves are implemented:

• Cylindrical wave: The connector is located at the center of the bottom
plate and emits a quasi-cylindrical wave.
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Figure 4.20: 2D parabolic refector. Focal length is 2 cm and diameter is
12.5 cm. SMA connector is at the focal point.

• Plane Wave: The connector is placed on one side of the bottom plate
and it is backed by a parabolic reflector. The parabolic reflector allows
the transformation of a cylindrical wave into a plane wave. The con-
nector is on the focal point of the parabola. The focal length of the
parabolic reflector is 2 cm and the diameter is 12.5 cm. It is made with
methacrylate and is wrapped with a metallic film. This device is shown
in Fig. 4.20.

The detection antenna and the source antenna are connected to the Vector
Network Analyzer (Rohde & Schwartz, model ZVA24) with flexible coaxial
cables. The VNA allows measurements in a frequency range of 10 MHz to
24 GHz. It is controlled by means of GPIB (General Purpose Instrumen-
tation Bus) and a home-made Labview code.. To avoid the reflections at
the chamber boundaries, a circular absorbing material has been placed in
the chamber (see Fig 4.21). It decreases the total useful area but it reduces
reflections and improves the quality of the measurements. The final useful
measurement area is 28 cm× 28 cm. However, the thickness of the absorbing
material is smaller than the separation between the plates; it is necessary to
keep an air gap to allow the bottom plate movements. The absorbing ma-
terial is shown in Fig. 4.21 for the plane wave and for the cylindrical wave
(note the different shapes).

The whole setup has been tested without the samples through an empty
chamber measurement. Figure 4.22 presents the measured field patterns for
the two emitting sources. The E-field maps are normalized to the maximum



74 RPC applications

(b) (a) 

Figure 4.21: Configuration of the emitting source. (a) Setup is configured
for the cylindrical wave, sample is located; (b) Setup is configured for the
plane wave, parabolic reflector is located in the absorbing material aperture
at the bottom plate centre.

value of the E-field. The electric field map when the chamber is excited
with a punctual source [Fig. 4.22(a) and Fig. 4.22(b)] demonstrates that a
cylindrical wave is generated inside the chamber. It is observed that there are
reflections of the electric field at the chamber boundaries. These reflections
are in large part due to the separation between the absorbing material and
the top plate. For the plane wave excitation [Fig. 4.22(c) and Fig. 4.22(d)],
it is observed that the wave fronts have a slight curvature. Despite of this
imperfection, the wave front can be considered a quasi-plane wave excitation
in the central area of the chamber.

Prior to the study of the RPCs as position sensors, we have characterized
the behaviour of a RPC under different excitation sources: a plane wave, a
punctual source within the void inner cavity and an external point source.
These measurement types are illustrated from Fig. 4.23(a) to Fig. 4.23(c),
where the samples are represented by the striped red circles and the grey
circumferences represent the absorbent material.

The first measurement is schematically illustrated in Fig. 4.23(a) and
corresponds to a plane wave impinging on the shell. Figure 4.24 shows the
results of this study. First, in Figure 4.24.(a), the magnitude of the E-field
obtained from a 2D-Comsol simulation is represented at f = 3.8 GHz. In this
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(b) (a) 

(c) (d) 

Figure 4.22: Measured E-field maps (normalized units) inside the empty
chamber. (a) and (b) magnitude in dB and real part with the cylindrical wave
configuration over the range of 280 mm × 280 mm; (c) and (d) magnitude
in dB and real part with the plane wave configuration over the range of
300 mm× 240 mm.
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(b) (a) 

(c) (d) 

Figure 4.23: Schematic with the relevant parameters for the measurements.
The measurement area is the dx × dy square. The samples are represented
by the striped red circle. Black circle represents the absorbing material. (a)
One sample, plane wave; (b) One sample, cylindrical wave into the sample;
(c) One sample, cylindrical wave out of sample; (d) Two samples, cylindrical
wave out of samples.
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(b) (a) 

Figure 4.24: E-field complex magnitude map for a plane wave illuminating an
RPC shell. (a) 2D-Comsol simulation with the reduced profile at f = 3.8 GHz
and (b) measurement results at f = 4 GHz.

simulation, each layer of the RPC shell follows the theoretical expressions
defined in Eq. (B.1). It can be noticed that the quasi-plane wave excites the
q = 3 mode of the shell, and besides, the result shows that the lobe which is
directly illuminated by the plane wave (perpendicular to the wave front) is
cancelled, so a total of five lobes appear. On the other hand, in Fig. 4.24(b),
there is a representation of the experimental data when the spatial resolution
is 2 mm in each direction, the measurement area is 240 mm × 300 mm and
the frequency f = 4 GHz. The experimental result is represented at 4 GHz
,instead of 3.8 GHz, because our experimental setup modifies the behaviour
of the samples in all the measurements. For this reason all measurements are
obtained at f = 4 GHz. This effect is discussed later. In order to compare
the results, the E-field maps are normalized to the maximum value of the E-
field. We have demonstrated that the Fabry-Perot modes in the RPC shells
can be exited by a plane waves which can be understood as distant sources.

The next case studies a point source exciting the sample from a point
inside the inner cavity. The source is located at the centre of the cham-
ber, inside the inner cavity of the RPC, and is displaced 11 mm from the
centre of the sample [see Fig. 4.23(b)]. Note that modes with symmetry
q ≥ 1 cannot be excited if the source is placed exactly in the centre of the
inner cavity. The point source excites the q = 3 Fabry-Perot resonance at
f = 3.8 GHz. In Fig. 4.25, the real part of the E-field patterns produced
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by the combination of the RPC shell and the point source inside the inner
cavity are represented. For analysis purposes, the results of the experimental
measurements (at f = 4 GHz) are compared with the COMSOL simulations
(at f = 3.8 GHz) and with the HFSS simulations (at f = 3.8 GHz). As we
have mentioned previously, Comsol simulation solves the electric field in a
2D model, with the theoretical profiles of the constitutive parameters and
HFSS simulation is a 3D model with the RPC implemented with SRRs, so
it works with the reduced profile. The total measurement area is the blue
square in Fig.4.23.(b) (240 mm × 240 mm) and the resolution is 2 mm in x-
direction and 2 mm in the y-direction. The combination of the point source
surrounded by the RPC acts as a beam-forming device, transforming the
isotropic radiation of the source in a radiation pattern with six lobes. In the
same way, if the exciting source has the appropriate frequency, another mode
with q > 0 will be excited and different patterns can be achieved. It allows
using this structure to control the directionality of the source.

Notice how the response of first the HFSS simulation (SRR design) and
then the fabricated shell are progressively degraded with respect to the ideal
2D Comsol simulation. Since HFSS simulations and measurements are per-
formed on a true 3D configuration, only the top plane of the microstructure
can be mapped. This top plane includes the splits of the rings that locally
concentrate high E-fields.

In the third measurement with a RCP shells, the behaviour of the shell has
been studied when the source is placed in the region outside the shell. Figure
4.23(c) provides a schematic view of the setup. The source remains at the
centre of the chamber and the sample is located at a distance of r = 95 mm
from the source. Again, the measurement area is (240 mm × 240 mm) and
the spatial resolution is 2 mm in each direction. If the source is placed in the
region outside the shell, it is the impinging wave that causes the resonant
mode of the RPC to be excited. The results are reported in Fig.4.26. As in
the previous case, this figure includes the results for the Comsol and HFSS
simulations at f = 3.8 GHz and the experiment at f = 4 GHz. The field
distribution in the shell has five beams and a sixth one attenuated beam
appears pointing to the source direction. One of the beams turns towards
the source direction and it will be useful for locating the source position.

Now, we focus on the study of a pair of RPCs with an external source
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(b) (a) (c) 

Figure 4.25: Real part of the E-field map of a point source placed inside
the RPC shell (in the inner cavity) and exciting the q = 3 mode. (a) 2D-
Comsol simulation with the reduced profile at f = 3.8 GHz; (b) 3D-HFSS
simulation implemented with SRRs at f = 3.8 GHz; (c) measurement results
at f = 4 GHz.

(b) (a) (c) 

Figure 4.26: E-field complex magnitude map for a point source illuminating
the RPC shell (source to center separation rint = 95mm) and exciting the
q = 3 mode. (a) 2D-Comsol simulation with the reduced profile at f =
3.8 GHz; (b) 3D-HFSS simulation implemented with SRRs at f = 3.8 GHz;
(c) measurement results at f = 4 GHz.
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(b) (a) (c) 

Figure 4.27: Real part of the E-field for a point source illuminating 2 RPC
shells at a distance of approximately 90mm to their centres and radiating.
(a) Comsol simulation with the reduced profile at f = 3.8 GHz; (b) HFSS
simulation implemented with SRRs at f = 3.8 GHz; (c) measurement results
at f = 4 GHz.

illuminating them. Figure 4.23(d) illustrates the situation of this study.
The source is at the centre of the chamber and there are two shells. The
shells are located at r1 = r2 = 9 cm from the source and are separated by
a distance r3 = 12.8 cm. Again, the measurement area is 240 mm× 240 mm
and the space resolution is 2 mm in each direction. The results are shown
in Fig. 4.27 for the Comsol and HFSS simulations (f = 3.8 GHz) and the
experiment (f = 4 GHz). The behaviour is similar to that discussed earlier
between a shell and an external source. Nevertheless, this time, each shell
has a lobe in the direction of the source. This makes possible to use these
devices in applications to determine the source position using triangulation.

Figure 4.28 explains in detail the behavior of a pair of RPC shells as po-
sition sensor. The lower panel represents an example of the E-field produced
by two shells and an external point source. Over the E-field map, two white
circumferences, which are sharing centres with the RPC shells, mark the E-
field lines to be analysed. The representation of the E-field in these lines are
in the polar graphics of the upper panel. From these graphics, the angles α1

and α2 can be obtained with the lowest-magnitude lobe. With these angles
and knowing the distance between the shells the position of the source can
be determined.
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Figure 4.28: Detailed analysis of a pair of RPC shells as a position sensor.
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4.3.1 Analysis of the frequency shift
In order to evaluate the disagreement between simulations and measure-
ments, a complete study has been developed through the analysis of resonant
mode coefficients. It aims to evaluate the behaviour of resonant modes at dif-
ferent frequencies. Resonant mode coefficients are extracted from measured
or simulated field maps.

We consider the case of a point source illuminating the RPC shell. Fields
can be expressed as a linear combination of waves emitted by the source and
waves scattered by the RPC. These waves are modelled, in cylindrical coor-
dinates, by Hankel and Bessel functions. Functions with order q represent
the resonant modes with symmetry q. Two regions have to be distinguished
in the field maps: the external region without the source and the inner cavity
region.

In the first case, electric field in the outside region can be expressed in
terms of the field produced by the punctual source (ψ0) and the scattered
field by the RPC (ψSC) as

ψI = ψ0 + ψSC , (4.16)

with

ψ0 =
+∞∑
q=−∞

A0
qHq(kr)eiqθ, (4.17a)

ψSC =
+∞∑
q=−∞

AqJq(kr)eiqθ, (4.17b)

where Jq and Hq are the Bessel and Hankel functions with order q and
the constant coefficients A0

q and Aq contain the information of the resonant
modes. These coefficients are related by the transmission matrix, whose
elements are defined by

Tq = Aq
A0
q

. (4.18)

The second study analyzes the field into the inner cavity (region II). The
expression for the field is:

ψII =
+∞∑
q=−∞

BqHq(kr)eiqθ. (4.19)
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Note that ψI and ψII are known from the measurements or simulations,
so a multiple linear regression is applied to obtain the coefficients Bq, A0

q and
Aq.

In a Multiple Linear Regression problem, a measured response is ex-
pressed as a linear function of multiple predictor variables. The ith observa-
tion can be written as

yi = β0 + β1xi1 + ...+ βpxip + εi, (i = 1, ..., n), (4.20)

where xij is the jth predictor variable for the ith observation, βj is the re-
gression coefficient and εi is the error term. A case with n observations and
p predictor variables, it can be cast as:

Y = βX + ε, (4.21)

where Y is the response vector (n × 1 dimensional), the design matrix X is
a matrix which packs the predictors (n × p+ 1), β is the regression vector
(p + 1 dimensional) and ε is the error vector. It represents a linear system
where the unknowns are the coefficients β. If n > p, the system will be
oversized. 

y1
...
yn

 =


1 x11 · · · x1p
... ... . . . ...
1 xn1 · · · xnp



β0
...
βp

+


ε1
...
εn

 (4.22)

In order to estimate β, we take a least squares fitting. The residual vector
elements are defined by:

ri = yi − β0 + β1xi1 + ...+ βpxip , (i = 1, ..., n). (4.23)

Thus the residual vector is:

R = Y − βX. (4.24)

This method obtains the unknown values of the parameters β by finding
numerical values that minimize the sum of the squared difference between
the observed response and the result of the model. So the problem is

min ‖R‖2 = min ‖Y − βX‖2, (4.25)
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where
‖Y − βX‖2 = (Y − βX)T (Y − βX). (4.26)

Taking derivatives with respect to β, and setting these to 0, we obtain

−2X ′(Y −Xβ) = 0, (4.27a)
X ′Y = X ′Xβ. (4.27b)

The regression coefficients can be obtained as

β̂ = (X ′X)−1X ′Y. (4.28)

A statistic that summarizes the quality of the fit is the residual standard
deviation. It is defined by

σ =

√√√√ ∑n
i=1 r

2
i

n− p− 1 . (4.29)

This problem can be particularized for Eqs. (4.16) and (4.19). For in-
stance, to extract the resonant mode parameters in the cavity (region II), the
values of the electric field in n points inside the cavity are collected. These
points make the measured response:

Y =


ψII(r1, θ1)
ψII(r2, θ2)

...
ψII(rn, θn)

 . (4.30)

Then, if the sums are truncated to [−Qmax, Qmax], the predictor variable
matrix is generated as is illustrated in Eq. (4.31). In this matrix, each row
represents the Hankel functions from Eq. (4.19) in a point.

X =


1 H−Qmax(kr1)e−iQmaxθ1 · · · HQmax(kr1)eiQmaxθ1

1 H−Qmax(kr2)e−iQmaxθ2 · · · HQmax(kr2)eiQmaxθ2

... ... . . . ...
1 H−Qmax(krp)e−iQmaxθp · · · HQmax(krp)eiQmaxθp

 . (4.31)
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Figure 4.29: Schematic representation of the region distribution used in the
analysis. Inner region is delimitated by the circumference rin. External
region is between rout1 and rout2 .

Finally, the regression coefficient vector is formed as:

β =



β0

B−Qmax
B−Qmax+1

...
BQmax


. (4.32)

Note that β0 has to be close to zero, because in Eqs. (4.16) and (4.19)
there are no constant terms. The same procedure can be applied to extract
the resonant mode coefficients from the region outside the shell (region I). In
this case, each row of the predictor matrix will be composed by Hankel and
Bessel functions and the regresion vector by the Aq and Aq

0 terms.
Now this method is utilized to extract the mode coefficients from the

simulated and measured field maps. A simulation for the shell displaced
9.5 cm from the source has been employed to obtain these field maps. Figure
4.29.a shows the field map obtained with a Comsol simulation when the
frequency is 3.8 GHz. It includes a scheme of the two regions used in this
study. Specifically, the inner region is delimitated by the circumference with
rin = 1.4 cm and the external region by the external radius rout1 = 7 cm and
the inner radius rout2 = 3.5 cm. The frequency range of this study is 3 GHz
to 5 GHz.
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Lorentzian Fit f0 (GHz) Γ Q

Simulation extraction 3.76 8.4 · 108 6.39
Measurement extraction 4 6.7 · 108 9.37

Eigenfrequency analysis (Comsol) 3.89 — 8.64

Table 4.3: Lorentzian fit.

A parameter extraction in the inner cavity (region II) has been done for
each frequency. The coefficients variation is represented in Fig. 4.30. Left
plot represents the analysis of the numerical simulations and right plot the
analysis for the experimental data. It is observed that for frequencies lower
than 3.6 GHz (shadow region) the coefficients have a different behavior than
the coefficients obtained from the COMSOL simulation. This effect is due to
the dispersive behavior of the SRR, around this frequency the variations in
the constitutive parameters are significant. For frequencies above 3.6 GHz,
although there is a frequency shift, the coefficients curves have a behavior
similar to the coefficients extracted from the Comsol simulations.

At the resonance frequency of the mode q = 3 the coefficient Bq has a
maximum. Notice that, in this study, the same discrepancy between the
simulation and the measurement appears.

In order to compare both resonances, we can analysed them using a
Lorentzian fit:

L(f) = A0 + A1

π

(1
2Γ)2

(x− x0)2 + (1
2Γ)2) , (4.33)

where f0 es the resonant frequency of the q = 3 mode and the parameter Γ
represents the width of the resonance curve, which is related to the quality
factor by Q = ω/2Γ. The data extracted from this analysis are summarized
in Table 4.3. The resonant curve which characterizes the simulated Bq3

coefficient is defined by f0 = 3.76 GHz and Γ = 8.4 · 108. The quality factor
calculated from the fitted curve is Qsim = 6.39. The frequency and the
quality factor are nearly equal to the obtained with Comsol. The measured
coefficient Bq3 has been fitted by a Lorentzian function with f0 = 4 GHz,
Γ = 6.7 · 108, so the quality factor is Qmeas = 9.37. Despite the f0 in both
Lorentzian functions are different, the parameters Γ have the same order, so
the width of both curves are similar.
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Figure 4.30: Extracted coefficients from the inner cavity field for the first
4 modes: (a) Extracted coefficients from the simulated E-field maps. (b)
Extracted coefficients from the measured E-field maps. Red vertical arrows
mark the point of optimal behaviour.
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Figure 4.31: Bq3 approached by a Lorentzian function:(a) Simulated Bq3,
the parameters of the Lorentzian curve are: f0 = 3.76GHz, Γ = 8.4 · 108 and
Qsim = 6.39. (b) Measured Bq3, the parameters of the Lorentzian curve are:
f0 = 4GHz, Γ = 6.7 · 108 and Qmeas = 9.37.
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Figure 4.32: Extracted coefficients Bq from the inner cavity field for the
first 4 modes: (a) Extracted coefficients from the simulated E-field maps. (b)
Extracted coefficients from the measured E-field maps. Red vertical arrows
mark the point of optimal behaviour.

The Tq coefficients are represented in Fig. 4.32. Left plot represents the
analysis of the simulations and right plot the analysis for the measurements.
As in the previous analysis, the coefficients extracted from the measurements
have a wrong behaviour within the dispersive region (shadow area). Coeffi-
cients Bq3 have a maximum value around the resonance frequency and this
value is one. Note that, from the Tq definition in Eq. (4.18), this value
means a total reflection of the impinging field. Moreover, we can see that
Bq2 coefficients have a high value, this is because of the point source which
has an important contribution of the cuadrupolar mode [see Eq. 4.22].

In all this section, we have found a disagreement between the resonant
frequencies of in simulations and measurements. The frequency shift ob-
served in the measurements and in the coefficient extraction is caused by the
experimental setup. The top plate of the 2D chamber is not in contact with
the RPC sample for allowing the antenna movement. As a consequence, the
air gap with 1 mm, above the sample causes a variation on the constitutive
parameters [see Fig. 4.33(b)]. To evaluate the effect of this air gap, each
unit cell has been simulated taking into account the air gap existing over the
SRR. Using a retrieval method and the new S-parameters simulated with
the air gap, the constitutive parameters are obtained. Table 4.4 gives the
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(b) (a) 

  

  

  

Figure 4.33: Scheme of the unit cells. (a) Unit cell employed for the de-
sign of the samples and (d) unit cell with the airgap, s, produced by the
measurement setup.

results obtained at 3.8 GHz. This displacement in the constitutive param-
eters is shown in Fig. 4.34, where the discontinuous lines are the designed
parameters and the continuous profiles are the parameters obtained inside
the chamber.

This change in the constitutive parameters causes a shift in the resonance
frequency of the RPC. In order to assess the frequency shift, COMSOL sim-
ulations have been used. The constitutive parameters extracted from the
simulation of the ring resonators with the air gap have been introduced in

Ring resonator 1A 1B 2A 2B
real(µ) 0.225 0.1885 0.321 0.2287
real(ε) 2.834 2.833 2.848 2.834

Table 4.4: Extracted parameters from the unit cells. Constitutive parameters
of the ring resonators with 1mm of air over the sample at 3.8GHz.
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Figure 4.34: Constitutive parameter profiles. Blue lines are the permeability
and red lines are the permeability. Dashed: Original design parameters.
Solid: parameters with air gap

a 2D-COMSOL model and two different analysis have been performed: an
eigenvalue analysis and an analysis with an external point source. First, the
eigenvalue analysis shows that the resonance frequency for the mode q = 3
is f = 3.99 GHz that is in agreement with our experimental findings. In
the second analysis, the resonance modes are studied with the parameter
extraction. These results are presented in Fig. 4.35 (continuous line). Fig-
ure 4.35 compares the behavior of the mode coefficients extracted from the
measurement and from the COMSOL simulations of the model with air over
the sample. These analysis demonstrate that the frequency shift is caused by
the experimental set-up and support our earlier observations, showing that
E-field maps for a frequency f = 4 GHz have the field map more defined.
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Figure 4.35: Extracted coefficients from the inner cavity field for the first 3
modes. Results from measurements are displayed with symbols; results from
analytical simulation are displayed with lines.
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Part II
Absorption of

Electromagnetic Waves





5
Absorption Mechanisms

in Thin Layers

This section summarizes the properties of the absorption systems based on
lossy thin layers. First section presents the traditional systems. Then, a
review of the absorption enhancement mechanisms with periodic structures
is introduced.

Contents
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . 96

5.2 Coaxial Grating . . . . . . . . . . . . . . . . . . . 98
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Figure 5.1: Schematic representation of traditional absorber devices: (a)
Salisbury screen and (b) Jaumann absorber.

5.1 Introduction
Electromagnetic absorbers have attracted much interest due to the number
of applications in which they are involved. The design of flat and thin mate-
rials with high absorption is still a challenge. Conventional electromagnetic
absorbers are electrically thick. For example, Salisbury screen is an absorber
device which is constructed by placing a thin resistive sheet at λ/4 above
a perfect conductor plane. This system is schematically represented in Fig.
5.1(a). To increase the absorption bandwidth, resistive sheets are stacked
over each other at a distance of a quarter wavelength, as it is shown in Fig.
5.1(b). This solution is known as Jaumann absorber and generates wider
absorption band compared to the Salisbury absorber.

The condition for considering ultra-thin absorbers is working with thick-
ness λ/10 or less at the operation frequency. The thickness of the lossy
materials can be reduced by using periodic materials. Periodic distributions
of scattering elements can be placed at the interface between the air and the
absorber material. Waves will be scattered preferentially into the dielectric
with larger permittivity. This solution is schematically represented in Fig.
5.2(a). Other option for reducing the thickness of the absorber material is to
use a periodic arrangement of resonant elements which concentrate the field
in the lossy material enhancing the absorption [see Fig. 5.2(b)]. Finally,
periodic gratings can be placed on the bottom of the absorber material gen-
erating strong evanescent fields near the diffracted modes cutoff frequencies.
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(a) 

(b) 

(c) 

Figure 5.2: Absorption enhancement by periodic media. (a) Periodic distri-
bution of scattering elements which favours the wave trapping at the lossy
material. (b) Absorption enhancement by the excitation of resonances in a
periodic distribution of resonators. (c) Excitation of the guided modes in the
lossy layer by a periodic grating.
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Recently, the introduction of metamaterials has opened new ways for
designing absorbing materials. In the design of absorber devices based on
metamaterials, a design can be considered successful when at least one of
the following criteria is satisfied: (i) perfect or near unity absorption, (ii)
very thin or sub-wavelength size to avoid bulky devices, and (iii) broadband
operation. To these purposes, a number of options have been proposed and
analyzed in the literature. Structures based on resonant patches [31] [32] have
been studied at several spectral regimes. Usually, the resonant characteristics
of these patches are employed to optimize absorption. Also, in combination
with metallic backed planes, thin layers have been proposed including slits
over dielectric layers [33] [34], holes or cavities in the metallic plane [35]
[36] and even metal-dielectric multilayered structures [37]. Wide incidence
angles can be explored with any of these possible element configurations [38].
Also, if the sub-wavelength thickness requirement is relaxed, performance
improvements in broadband operation can be achieved [39] [40]. Although
most solutions are based on periodic media, it is possible to improve the
absorption properties using disordered media [41].

5.2 Coaxial Grating
In the following chapters, we will study the absorption produced by a meta-
surface on the bottom of a lossy thin layer. Particularly, the metasurface
used in our study is made of annular-type cavities patterned on a metallic
plate.

It has been shown that coaxial- or annular-type cavities present a en-
hancement of the transmission due to the TEM mode always present in this
particular type of cavities [42–46]. Although annular cavity arrays have been
previously studied in regards of their transmission characteristics, no studies
have been performed exploring their use as building blocks for absorption
enhancement.

The absorption enhancement produced by the metasurface will be com-
prehensively analysed. The absorption mechanism is based on the fact that
the subwavelenght cavities provide the resonances giving a strong concen-
tration of EM energy which is absorbed by the thin dielectric slab on top.
The fundamental mode (TEM mode) of the annular cavities has not cutoff
frequency, a feature that is here employed to obtain extraordinary absorption
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Figure 5.3: Schematic representation of the proposed structures. Region I is
the background medium (air in our case), region II is a dielectric slab with
thickness ` and dielectric permittivity εd(1 + iξ). Region III is a perfectly
conducting metal containing a square distribution of annular cavities with
lattice period a and length h filled with a dielectric material εh. The external
and inner radii of the annular cavities are re and ri, respectively.

at low frequencies. This is an advantage in comparison with empty cavity
designs where resonances are limited by the frequency cut-off determined by
the cavity diameter. In comparison with metamaterial absorbers based on
the repetition of metallic resonators [11], the absorption in our structures
takes place on the dielectric absorbing layer on top on the metallic surface.
This feature can be also considered as an advantage because of its easy fabri-
cation; that is, the thin dielectric film is just deposited on top of the surface
while the metallic resonators require a complex design together with a very
accurate fabrication.
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6
Absorption Enhancement

by a Coaxial Grating

The chapter is organized as follows. Section 6.1 introduces the structures
under study and describes the model employed in their analysis. In Section
6.2, the solutions are particularized for the coaxial cavities employed in our
proposal for total absorption systems. Afterwards, in Section 6.3, we discuss
the absorptive properties of the structures at low frequencies. The different
features of the absorptive peaks are comprehensively analyzed as a function
of the structure parameters. Moreover, we study other physical mechanisms
of energy absorption.
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Figure 6.1: Schematic representation of metasurface covered by a lossy thin
layer with thickness `. An arbitrary unit cell of a metasurface is represented
with lattice vectors d1 and d2. The impinging electric field vector E is rep-
resented and decomposed in tangential components.

6.1 Mode Matching Analysis
The mode-matching technique is here employed to analyze the interaction
of a plane wave impinging on a thin and lossy dielectric layer backed by the
metallic metasurface.

The structure under study is schematically shown in Fig. 6.1. The EM
waves propagating in air (region I) impinge on a thin dielectric slab (region
II) placed on top of a metallic metasurface (region III) containing a 2D array
of arbitrary cavities with length h. A unit cell of a generic metasurface is
represented, being d1 and d2 the lattice vectors. The cavities are denoted by
C1, C2...C6 and are filled with a lossless dielectric material with permittivity
εhi. The dielectric slab with complex dielectric constant ε̂d = εd(1 + iξ) has
thickness `. Furthermore,this figure represents the impinging plane wave with
an oblique angle of incidence. The E-field vector is decomposed in tangential
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components.

6.1.1 General case
It is assumed that the structure is illuminated (see Fig. 6.1) by a plane wave
whose wavevector in spherical coordinates can be written as:

k0 = ω/c(sin θ cosφx̂+ cos θ sinφŷ + cos θẑ) (6.1)

The geometry of the problem indicates that the EM fields in the background
and the dielectric layer can be decomposed in tangential and perpendicular
components to the metallic surface, which defines the xy plane at z = 0.
Thus, the electric and magnetic fields are given by:

E(r) = Ezẑ +Et, (6.2)
B(r) = Bzẑ +Bt. (6.3)

The wavevector can be expressed as:

k0 = q0ẑ + kt, (6.4)

where k2
0 = q2

0 + |kt|2. The light polarization σ is named S when Et⊥kt or
P when Et||kt. The temporal dependence e−iωt will be implicitly assumed
in the rest of the chapter for all the fields.

Due to the periodicity of the system, diffracted modes can be excited with
tangential wavenumber:

kG = kt +G, (6.5)

being G the reciprocal lattice vectors

G = m1b1 +m2b2, (6.6)

where bi are the primitive vectors of the reciprocal lattice and m1,2 are in-
tegers (m1,2 = 0,±1,±2, ...). The solution for Et and Ht can be obtained
as a linear combination of these diffracted waves, which additionally can be
decomposed in two polarizations σ = S, P , being S and P the polarizations
perpendicular and parallel, respectively, to the wavevector kG, and whose
unit vectors are given by

ûGS = ẑ × kG
|kG|

, (6.7)
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for the S−polarization and

ûGP = kG
|kG|

, (6.8)

for the P−polarization.
Therefore, the fields in region I (the air) are expressed as

|E0
t 〉 = A−0σ0e

−iq0(z−`) |ktσ0〉+
∑
G,σ

A+
Gσe

iqG(z−`) |kGσ〉 , (6.9)

|−ẑ ×H0
t 〉 = −Y 0

0σ0A
−
0σ0e

−iq0(z−`) |ktσ0〉+∑
G,σ

Y 0
GσA

+
Gσe

iqG(z−`) |kGσ〉 , (6.10)

where A−0σ0 is the amplitude of the incident wave with polarization σ0 and
q2
G = (ω/c0)2 − |kG|2.

Using Dirac’s notation the diffracted wave with wavevector kG and po-
larization σ is denoted by the ket |kGσ〉, and their normalized expressions
are

〈r|kGσ〉 ≡
1√
Ω
eikG·rûGσ, (6.11)

where Ω is the area of the unit cell and they accomplish 〈kGσ|r〉 〈r|kGσ〉 = 1.
The modal admittances YGσ for the two polarizations are

Y 0
GS = qG

kω

√
ε0

µ0
, (6.12)

and
Y 0
GP = kω

qG

√
ε0

µ0
, (6.13)

where ε0 and µ0 are, respectively, the dielectric permittivity and magnetic
permeability of air.

Similarly, the tangential components of the fields in region II (the dielec-
tric slab) are

|Ed
t 〉 =

∑
G,σ

(B+
Gσe

ipG(z−`) +B−Gσe
−ipG(z−`)) |kGσ〉 , (6.14)
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and

|−ẑ ×Hd
t 〉 =

∑
G,σ

Y d
Gσ×

(B+
Gσe

ipG(z−`) −B−Gσe−ipG(z−`)) |kGσ〉 , (6.15)

with p2
G = k2

d − |kG|2 and kd = k0
√
εdµd.

The modal admittances for each polarization are now

Y d
GS = pG

kω

√
εd
µd
, (6.16)

and
Y d
GP = kω

pG

√
εd
µd
. (6.17)

Finally, the tangential components of the fields inside the cavities can be
written as:

|Eα
t 〉 =

∑
n,α

Cnα(eiknαz + Γnαe−iknαz) |nα〉 , (6.18)

|−ẑ ×Hα
t 〉 =

∑
n,α

YnαCnα(eiknαz − Γnαe−iknαz) |nα〉 , (6.19)

where the modal admittance is Ynα, the reflection coefficient at the cavity
bottom is Γnα = −e−2iknαh and 〈r|nα〉 the n mode in the α cavity.

Now, we apply the boundary condition in the interfaces (z = ` and z =
0). At the air/dielectric interface, located at z = `, the continuity of the
tangential components of the fields gives

A+
Gσ + A−0σ0δ0σ0 = B+

Gσ +B−Gσ, (6.20)
Y 0
Gσ(A+

Gσ − A−0σ0δ0σ0) = Y d
Gσ(B+

Gσ −B−Gσ). (6.21)

At z = 0, the metal/dielectric interface, the boundary conditions impose
the continuity of Et over the entire unit cell and the continuity of Ht over
the annular cavity. Thus, at the interface the field equations are∑

G,σ

(B+
Gσe

−ipG` +B−Gσe
ipG`) |kGσ〉 =

∑
n,α

Cnα(1 + Γnα) |nα〉 , (6.22)

∑
G,σ

Y d
Gσ(B+

Gσe
−ipG` −B−GσeipG`) |kGσ〉 =

∑
n,α

YnαCnα(1− Γnα) |nα〉 . (6.23)
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Now, (6.22) is projected with the mode 〈kGσ| while (6.23) is projected with
cavity mode 〈nα|, leading to

B+
Gσe

−ipG` +B−Gσe
ipG` =

∑
n,α

Cnα(1 + Γnα) 〈kGσ|nα〉 , (6.24)∑
G,σ

Y d
Gσ(B+

Gσe
−ipG` −B−GσeipG`) 〈nα|kGσ〉 = YnαCnα(1− Γnα). (6.25)

The term 〈nα|kGσ〉 = 〈kGσ|nα〉∗ represents the overlapping integrals of the
diffracted waves in the dielectric layer with the mode inside the cavities.

6.1.2 Absorption analysis
The study of the absorption produced by the system is done by the analysis
of the energy flux. We can obtain the electromagnetic energy flux as the
integral over a unit cell of the real part of the Poynting Vector:

Φ =
∫∫

Ω
< (E×H∗) dS (6.26)

The vectorial product of the electric and magnetic fields can be decomposed
as follows:

E×H∗ = (Et + ẑEz)× (H∗t + ẑH∗z ) =
(Et ×H∗t )︸ ︷︷ ︸
Longitudinal

+ (ẑEz ×H∗t ) + (Et × ẑH∗z )︸ ︷︷ ︸
Tangential

(6.27)

It is easy to see that the flux equation can be written as:

Φ =
∫∫

Ω
< (Et ×H∗t ) dS, (6.28)

where dS = ẑ is the surface differential.
The tangential component of the electric and the magnetic fields are de-

composed using the vector definition in Eqs. (6.7) and (6.8) leading to:

Et =
∑
G

(EGP ûGP + EGSûGS) , (6.29)

Ht =
∑
G

(−HGP ûGS +HGSûGP ) , (6.30)

Each component can be expressed as a linear combination of forward and
backward propagating plane waves as follows:

Et

 EGP = A+
GP e

iqGz + A−GP e
−iqGz

EGS = A+
GSe

iqGz + A−GSe
−iqGz

(6.31)
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and

Ht

 HGP = YGS
(
A+
GP e

iqGz − A−GP e−iqGz
)

HGS = YGP
(
A+
GSe

iqGz − A−GSe−iqGz
) (6.32)

The flux can be rewritten as

Φ =
∫∫

Ω

∑
G

< (EGPH∗GS − EGSH∗GP ) dS (6.33)

Using the expansion in forward and backward propagating waves of the elec-
tric and magnetic fields, we can see that

< (EGPH∗GS) = YGP

(∣∣∣A+
GP

∣∣∣2 − ∣∣∣A−GP ∣∣∣2) (6.34)

and
< (EGSH∗GP ) = −YGS

(∣∣∣A+
GS

∣∣∣2 − ∣∣∣A−GS∣∣∣2) . (6.35)

Finally, the flux can be calculated as

Φ = Ω
∑
G

[
YGP

(∣∣∣A+
GP

∣∣∣2 − ∣∣∣A−GP ∣∣∣2)− YGS (∣∣∣A+
GS

∣∣∣2 − ∣∣∣A−GS∣∣∣2)] (6.36)

Let us consider that the total flux can be divided in the incoming flux and
the out-coming flux,

Φ = Φin − Φout, (6.37)

where
Φin = Ω

∑
G

(
YGP

∣∣∣A−GP ∣∣∣2 + YGS
∣∣∣A−GS∣∣∣2) (6.38)

and
Φout = Ω

∑
G

(
YGP

∣∣∣A+
GP

∣∣∣2 + YGS
∣∣∣A+

GS

∣∣∣2) (6.39)

Notice that in a lossless system Φout = Φin, so Φ = 0. The absorption of the
system can be calculated as:

A = 1− Φout

Φin

. (6.40)

We can cast this equation into

A = 1−
∑
G

YGP
∣∣∣A+

GP

∣∣∣2 + YGS
∣∣∣A+

GS

∣∣∣2
Y0σ0

∣∣∣A−0σ0

∣∣∣2 . (6.41)

being A−0σ0 the amplitude of the incident plane wave with polarization σ0.
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6.1.3 Monomode approximation
We have developed a model with one cavity per unit cell in which only
the fundamental mode is considered inside the cavities, it is a monomode
approximation. The fundamental mode is denoted by |α〉 and, considering
that it is the only mode in the cavities, Equations (6.22) and (6.23) can be
simplified as:

|Eα
t 〉 = Cα(eikhz + Γαe−ikhz) |α〉 , (6.42)

|−ẑ ×Hα
t 〉 = YαCα(eikhz − Γαe−ikhz) |α〉 , (6.43)

where the modal admittance is Yα and the reflection coefficient at the cavity
bottom is Γα.

Using this monomode approximation, the boundary conditions at z = 0
which impose the continuity of Et over the entire unit cell and the continuity
of Ht over the annular cavity can be rewritten as:∑

G,σ

(B+
Gσe

−ipG` +B−Gσe
ipG`) |kGσ〉 = Cα(1 + Γα) |α〉 , (6.44)

∑
G,σ

Y d
Gσ(B+

Gσe
−ipG` − B−Gσe

ipG`) |kGσ〉 = YαCα(1 − Γα) |α〉 . (6.45)

Now, applying the projection as in the previous case we arrive to:

B+
Gσe

−ipG` +B−Gσe
ipG` = Cα(1 + Γα) 〈kGσ|α〉 , (6.46)∑

G,σ

Y d
Gσ(B+

Gσe
−ipG` −B−GσeipG`) 〈α|kGσ〉 = YαCα(1− Γα). (6.47)

The system of equations formed by Eqs. (6.20), (6.21), (6.46) and (6.47)
can be solved to obtain the amplitude of the reflected waves as a function of
the incident wave amplitude. To do that, we proceed as follows. From Eq.
(6.46), B+

Gσ is:

B+
Gσ = Cα(1 + Γα) 〈kGσ|α〉 eipG` +B−Gσe

2ipG`. (6.48)

This term can be inserted in Eq. (6.47)

−2
∑
G,σ

Y d
Gσ

Yα
B−Gσe

ipG` 〈α|kGσ〉 = Cα
[
(1− Γα)− (1 + Γα)χ(1)

]
(6.49)
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where
χ(1) =

∑
G,σ

Y d
Gσ

Yα
〈α|kGσ〉 〈kGσ|α〉 (6.50)

Equation (6.48) is inserted into Eqs. (6.20) and (6.21), leading to:

A−GσδG0 + A+
Gσ = B−Gσ(1− e2ipG`) + Cα(1 + Γα) 〈kGσ|α〉 eipG` (6.51)

Y 0
Gσ

(
−A−GσδG0 + A+

Gσ

)
=

− Y d
GσB

−
Gσ(1 + e2ipG`) + Y d

GσCα(1 + Γα) 〈kGσ|α〉 eipG` (6.52)

Using Eqs. (6.51) and (6.52), the coefficients B−Gσ and A+
Gσ can be written

as a function of Cα:

B−Gσ = 2Y
0
Gσ

Y H
Gσ

A−0σ0δG0 + Y d
Gσ − Y 0

Gσ

Y H
Gσ

Cα(1 + Γα) 〈kGσ|α〉 eipG`, (6.53)

A+
Gσ = RdA

−
0σ0δG0 + 2Y

d
Gσ

Y H
Gσ

Cα(1 + Γα) 〈kGσ|α〉 eipG` (6.54)

where

Rd =
Y 0

0σ

(
1 + e2ip0`

)
− Y d

0σ(1− e2ip0`)
Y 0

0σ(1 + e2ip0`) + Y d
0σ(1− e2ip0`) (6.55)

and
Y H
Gσ = Y 0

Gσ(1− e2ipG`) + Y d
Gσ(1 + e2ipG`) (6.56)

Now, equation (6.53) is introduced into Eq. (6.49) and we obtain:

− 4Y
0

0σY
d

0σ
Y H
σ Yα

A−0σ0 〈α|k0σ0〉 eip0` =

Cα
[
(1− Γα)− (1 + Γα)

(
χ(1) + χ(2)

)]
, (6.57)

with χ(2) being

χ(2) = 2
∑
G,σ

Yα
Y d
Gσ

Y 0
Gσ − Y d

Gσ

Y H
Gσ

e2ipG` 〈α|kGσ〉 〈kGσ|α〉 (6.58)

Therefore, the coefficient of the field inside the cavities, Cα, as a function of
the amplitude of the incident wave is:

Cα = Cα = − 4
M

Y 0
0σY

d
0σ

Y H
0σYα

〈α|ktσ0〉 eip0`A−0 (6.59)
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where
M=(1− Γα)− (1 + Γα)

(
χ(1) + χ(2)

)
(6.60)

The amplitude of the field in the cavities can be introduced into Eqs. ((6.53))
and ((6.54)) and we get

B−Gσ = 2Y
0

0σ
Y H

0σ
A−0 ×[

δG,0 −
2
M
eip0`

Y d
Gσ − Y 0

Gσ

Y H
Gσ

Y d
0σ
Yα

(1 + Γα) 〈α|ktσ0〉 〈kGσ|α〉 eipG`
]
, (6.61)

A+
Gσ = RdA

−
0σ0δG0 − 8Y

d
Gσ

Y H
Gσ

Y 0
0σ
Yα

Y d
0σ
Y H

0σ

1 + Γα
M

〈kGσ|α〉 eip0ÃśÃś`eipG` (6.62)

Finally, from Eq. ((6.20)) the coefficients B+
Gσ

B+
Gσ = A−0σ0δG0 + A+

Gσ0B
−
Gσ0 (6.63)

In this work our interest is focused in frequencies below the diffraction limit
and, therefore, we consider that only the fundamental modeG = 0 is excited.
In other words, the reflection coefficient is simply

R0(ω) = A+
0P/A

−
0 (6.64)

and the absorption in the dielectric slab is calculated as

A(ω) = 1− |R0(ω)|2 (6.65)

Low-Frequency regime

For a thin dielectric slab we can assume that p0` << 1, then Rd ≈ −1 and
it is easy to show from (6.64) that the reflection coefficient can simplified to

R0 = −cos khh+ i(H2
00 + χ) sin khh

cos khh− iχ sin khh
, (6.66)

where H2
00 = 〈α|ktP 〉 〈ktP |α〉.

The lattice sum term χ given in (6.66) is a complex quantity that is
frequency dependent. It can be expressed as χ(ω) = χR + iχI . Therefore,
the reflection coefficient can be given as

R0 = −cos khh+ χI sin khh+ i(H2
00 − χR) sin khh

cos khh+ χI sin khh− iχR sin khh
(6.67)
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and the absorption of the system is

A(ω) = 1− (cot khh+ χI)2 + (H2
00 − χR)2

(cot khh+ χI)2 + χ2
R

. (6.68)

The behavior in frequency of χI and χR is obtained by splitting the lattice
sum in χ in the propagating (qG and pG real) and evanescent contributions
(qG and pG imaginary). Since we are below the diffraction limit in both
the dielectric and the background, the only propagating mode is that with
G = 0. Thus,

χ(ω) = χ0 +
∑
G 6=0

χG, (6.69)

where the term χ0 is given by

χ0 = Y d
0P
Yα

Y 0
0P cos(p0`)− iY d

0P sin(p0`)
−iY 0

0P sin(p0`) + Y d
0P cos(p0`)

H2
00 ≈

kω√
k2
ω − |kt|2

√
ε0

εh
H2

00, (6.70)

the last expression being obtained with the approximation sin p0` ≈ 0. Note
that χ0 is real since there are no losses neither in the background nor in the
cavities.

The terms χG for G 6= 0 cannot be simplified with the same approach
since the lattice sum is infinite and the product pG` grows up linearly. Also,
the presence of the complex permittivity of the dielectric slab in the expres-
sions makes difficult splitting these terms into their real and imaginary parts.
To do it, we make a Taylor expansion of these terms around ξ = 0,

χG(ξ) ≈ χG(ξ = 0) + ξ∂ξχG(ξ = 0) (6.71)

The first term of the expansion is found to be purely imaginary, since it is
given by

χG(ξ = 0) = H2
GG

Y d
GP

Yα

Y 0
GP cos (pG`)− iY d

GP sin (pG`)
−iY 0

GP sin(pG`) + Y d
GP cos(pG`)

(6.72)

and, below the diffraction limit, the propagation constants pG when ξ = 0
are purely imaginary, and so are the impedance terms Y 0

GP and Y d
GP . Then,

it is easy to see that, in the above equation, the term H2
GG is real, while
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the fraction Y d
GP/Yα is purely imaginary. The last term in the expression is

real because cos(pG`) and i sin(pGl) are also real and the i factor in all the
impedances cancel each other.

The second term in the expression has a more complex form, since it is the
derivative χG respect ξ for ξ = 0 and, after some tedious but straightforward
analysis, is given by

χ′G(ξ = 0) =
∑
G 6=0

H2
GG

Y d
G

Yα
×

2`k2
dpG

(
Y d
G

2 − Y 0
G

2)+ (k2
G − p2

G)
(
2iY d

GY
0
G(1− cos 2pG`)− (Y d

G
2 + Y 0

G
2) sin 2pG`

)
4p2

G

(
Y d
G cos pG`− iY 0

G sin pG`
)2 ,

(6.73)

which is found to be real. Effectively, the termH2
GG is real, while the following

fraction is purely imaginary. Exploring the numerator of the second term, it
is easy to see that all the terms are purely imaginary: the first one is linear
in pG, the second one contains the factor 2i and the third one is proportional
to sin pG`. This term multiplied by the first fraction gives us a real number.
Finally, since the denominator is real, it is found that the full expression is
real.

χR(ω) ≈ χ0 + ξχ′G(ξ = 0) (6.74)
χI(ω) ≈ −iχG(ξ = 0) (6.75)

The frequency dependence of both χR(ω) and H00(ω) is very smooth.
Then it can be assumed that both are constant at low frequencies. On the
contrary, it can be seen that the frequency dependence of χI is predominantly
linear in kω with negative slope, that is

χI = −iχG(ξ = 0) ∼ −iY
d
G

Yα
∼ −kω (6.76)

since we are under the condition G 6= 0 and pG is purely imaginary.
The above considerations let us to conclude that the frequency depen-

dence of the absorption is

A(ω) = 1− f 2(ω) + c2
1

f 2(ω) + c2
2
, (6.77)
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where f(ω)2 = (cot khh+χI)2. A(ω) has a maximum as long as f(ω)f ′(ω) =
0. But f ′(ω) is negative for the frequency region of interest and, therefore,
the only possibility of having a maximum is f(ω) = 0. So, the condition for
having a peak in the absorption is

cot khh+ χI(ω) = 0. (6.78)

In fact, this expression relates the peak position with the cavity length h and
the lattice sum χI , which contains only the contribution of the evanescent
modes. Therefore it is concluded that the position of the peak is mainly
determined by the interaction of the evanescent waves in the dielectric and
the fundamental mode of the annular cavities. Also, it must be pointed
out that the above condition depends on the layer’s thickness `, but it is
independent of ξ, the dissipative term of the permittivity.

The amplitude of the absorption has a frequency dependence that can be
obtained from Eq. (6.67). When this amplitude fulfills the condition (6.78)
the peak amplitude only depends on the term H2

00 − χR, which gives perfect
absorption (unity amplitude) when its value is zero. In other words, the
condition for having perfect absorption is

H2
00 − χR = 0. (6.79)

This condition shows that perfect absorption depends on the value for ξ
through χR, but it is independent of h. Interestingly, the condition for perfect
absorption is independent of the frequency at which it occurs, since it has
been already mentioned that the dependence in frequency of H00 and χR is
smooth.

Complex unit cells

Let us consider now the case in which more than one cavity is associated
to one point of a Bravais lattice. In other words, we study here a periodic
arrangement of cavities with N annular cavities inside the unit cell of the
square lattice. The position of the α aperture in the unit cell is given by a
vector Rα, with α = 1, 2...N . Under the monomode approximation we have
now a set of N coefficients Cα, one for each cavity, then mode matching has
to be applied to every aperture, and Eqs. (6.46) and (6.47) become
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B+
Gσe

−ipG` +B−Gσe
ipG` =

∑
β

Cβ(1 + Γβ) 〈kGσ|β〉 , (6.80)
∑
G,σ

Y d
Gσ(B+

Gσe
−ipG` −B−GσeipG`) |Gσ〉 〈α|kGσ〉 = YαCα(1− Γα). (6.81)

After solving the system of equations defined by (6.20), (6.21), (6.80) (6.81)
we get

A+
GP = R0δG,0A

−
0 −

8eip0`eipG`
Y 0

0PY
d

0P
Y H

0

Y d
GP

Y H
G

∑
αβ

1 + Γα
Yα

M−1
αβ 〈β|G0P 〉 〈GP |α〉A−0 , (6.82)

were the matrix elements Mαβ are defined as

Mαβ = (1− Γα)δαβ − (1 + Γβ)χαβ, (6.83)

and the interaction sums are given by

χαβ =
∑
G

Hαβ
GG

Y d
GP

Yα

Y 0
GP cos(pG`)− iY d

GP sin(pG`)
−iY 0

GP sin(pG`) + Y d
GP cos(pG`)

. (6.84)

being
Hαβ
GG = 〈α|GP 〉 〈GP |β〉 (6.85)

6.2 Modes in Coaxial Cavities
The coaxial cavity geometry is shown in the Figure 6.2. The outer radius
is denoted by re and the inner radius by ri. The cavity is filled with a loss-
less dielectric material with permittivity εh. In this scheme, the cylindrical
coordinate system employed in the analysis is also represented.

Fields inside the cavities are expressed as the superposition of TM modes
(Hz = 0), TE modes (Ez = 0) and TEM modes (Ez = Hz = 0). The solution
for the transversal components, Et, can be written as:

Et = i
qN
k2
E

∇tΨE − i
kω
k2
M

√
µ

ε
ẑ ×∇tΨH −∇tΨTEM (6.86)
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Figure 6.2: Schematic representation of the coaxial cavity.

6.2.1 TEM modes
TEM mode is the fundamental mode in a coaxial cavity. This mode is char-
acterized by Ez = Hz = 0 and this fact makes that the fields have to be
derived by a scalar potential ΨTEM(r, θ) which is the solution of:

∇2ΨTEM(r, θ) = 0. (6.87)

The inner conductor is at a potential V0 and the outer conductor is at
zero volts, so the boundary conditions that have to be satisfied are that
ΨTEM(ri, θ) = V0 and ΨTEM(re, θ) = 0. Applying the method of separation
of variables the potential can be rewritten as:

ΨTEM(r, θ) = R(r)P (θ). (6.88)

and Eq. (6.87) can be expressed as:

r

R(r)
∂

∂r

(
r
∂

∂r
R(r)

)
= −k2

r , (6.89)

1
P (θ)

∂2

∂θ2P (θ) = −k2
θ , (6.90)
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and
k2
r + k2

θ = 0. (6.91)

The solution for the angular function P (θ) is:

P (θ) = A sin (kθθ) +B cos (kθθ). (6.92)

From the symmetry of the problem, kθ has to be an integer; kθ = n. Now,
considering the boundary conditions, the potential has not to vary with θ,
so kθ = n = 0. Thus kr = 0 and the equations for R(r) can be reduced to

∂

∂r

(
r
∂

∂r
R(r)

)
= 0. (6.93)

The general solution for R(r) and for ΨTEM will be

ΨTEM = C ln r +D. (6.94)

Now applying the boundary conditions, the constants C and D can be solved
and the potential can be written as

ΨTEM = V0
ln re/r
ln re/ri

. (6.95)

Figure 6.3 shows the tangential electric field pattern of the TEM mode.
We can see how there is not angular dependence of the electric field. Black
arrows are the tangential electric field vector which is in the radial direction,
r̂. Red arrows represent the tangential magnetic field vector being in the
angular direction, θ̂

The electric field inside the coaxial apertures corresponding to the TEM
mode is given by

〈r|ΨTEM〉 = ∇tψTEM (6.96)

The normalization condition for the TEM mode will be

〈kTEM |r〉 〈r|kTEM〉 =
∫∫

Ω
∇tΨ∗TEM · ∇tΨTEMdS (6.97)

and the normalized TEM mode is

〈r|ΨTEM〉 = − 1√
2π

1√
ln(re/ri)

1
r
r̂ (6.98)
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Figure 6.3: Electric field for the TEM mode. Black and red arrows represent
the tangential electric and magnetic field vectors.

Coupling integrals

The application of boundary conditions by mode-matching requires the cal-
culation of the overlapping integrals

〈kGσ|kTEM〉 =
∫∫
Ωc

〈kGσ|r〉 · 〈r|kTEM〉 dΩ =
∫∫
Ωc

〈r|kGσ〉∗ · 〈r|kTEM〉 dΩ,

(6.99)
where the surface integral is over the coaxial aperture. where ψTEM is a
solution of Laplace’s equation

∇2ψTEM = 0. (6.100)

The calculation of the overlapping integrals (6.99) is better performed if the
S and P modes above the plate are expressed as

〈r|kGP 〉 = 1√
Ω
−i
kG
∇te

ikG·r, (6.101)

and
〈s|kGS〉 = 1√

Ω
−i
kG
ẑ ×∇te

ikG·r. (6.102)
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Then, for P-polarized waves, the overlapping integral is

〈kGP |kTEM〉 = −i
kG
√

Ω

∫∫
Ωc

∇te
ikG·r · ∇tψTEMdΩ, (6.103)

which, using Green’s first identity, can be expressed as

〈kGP |kTEM〉 = i
kG
√

Ω
∫∫
Ωc
eikG·r∇2

tψTEM dΩ

−
∫
∂Ωc e

ikG·rr̂ · ∇tψTEM dl. (6.104)

The first term of this integral vanishes because of ∇2
tψTEM = 0, and the

second term can be easily obtained. Therefore the expression for the overlap
with P-polarized waves is

〈kGP |kTEM〉 = −i
√

2πb√
Ω

eikG·Rα√
ln(b/a)

J0(kGb)− J0(kGa)
kGb

. (6.105)

Similarly, for S-polarized waves, the overlapping integral is written as

〈kGS|kTEM〉 = −i
kG
√

Ω

∫∫
Ωc

(
ẑ ×∇te

ikG·r
)
· ∇tψTEMdΩ. (6.106)

Again, applying Green’s first identity and using that ∇2ψTEM = 0 we get

〈kGS|kTEM〉 = −i
kG
√

Ω

∫
∂Ω
ψTEM r̂ ·

(
ẑ ×∇te

ikG·r
)
dl. (6.107)

However the above integral cancels, since boundary conditions for the TEM
mode requires that ψTEM = 0 on the aperture’s boundary, where the above
integral is performed, thus 〈kGS|α〉 = 0.

6.2.2 TE modes
For the TE modes or H-polarization, when Ez = 0, the magnetic field Hz

can be expressed as:

Hz(r, θ, z) = ΨH(r, θ)eiqMz, (6.108)

where ΨH(r, θ) satisfies

∇2ΨH(r, θ) + k2
MΨH(r, θ) = 0, (6.109)
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Figure 6.4: TE mode solutions for different mode orders when re = 4 mm
and ri = 1 mm.

where q2
M = k2

ω − k2
M . The values of kM are the eigenvalues of the TE modes

in the cavity. The solution for this equation is given by:

ΨH(r, θ) =
∑
q

∑
n

1
NH
qm

(
Jq(kMr)−

J ′q(kMri)
Y ′q (kMri)

Yq(kMr)
)cos qθ

sin qθ

 (6.110)

where kM must satisfy that

J ′q(kMri)
Y ′q (kMri)

−
J ′q(kMre)
Y ′q (kMre)

= 0 (6.111)

The values of kM that satisfy this equation define the TEqn modes in
the coaxial cavities. Figure 6.4 represents the numerical solution for the
transcendental equation when re = 4 mm and ri = 1 mm. The solutions are
denoted by χ′qn. As it is observed in Fig. 6.4 , the TE11 mode has the lowest
cutoff frequency. This is the dominant TE mode. The magnetic field pattern,
Hz, of this mode is shown in Figure 6.5. Black lines represent the transversal
electric field vector,Et.

In a coaxial cavity, as we have seen before, the fundamental mode is the
TEM. The TE11 is the mode with the lowest cutoff frequency. This cutoff
frequency will define the monomode frequency range. To study the effect
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Figure 6.5: Magnetic field pattern, Hz, of the TE11 mode. Black arrows
represent the transversal electric field vector, Et.

of the internal and external radius in the TE11 cutoff frequency, we have
performed two different analysis. First, we have fixed the value of the internal
radius, ri = 1 mm and we have evaluated the influence of the external radius,
re. Figure 6.6.(a) contains this analysis, showing that the cutoff frequency
decreases with the internal radius. Secondly, we have fixed the value of the
external radius, re = 4 mm and we have obtained the cutoff frequency as a
function of the internal radius, ri. This result is shown in Fig.6.6(b), where
we can see that the cutoff frequency also decreases when the internal radius
decreases. Note that, for increasing the monomode frequency range we have
to decrease the internal and the external radius.

6.2.3 TM modes
Solutions for the TM modes can be found in a similar manner. In this case,
for a TM mode ( E-mode), where Hz = 0, the electric field can be expressed
as:

Ez(r, θ, z) = ΨE(r, θ)eiqEz, (6.112)
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Figure 6.6: Influence of the internal and external radius in the TE11. Cutoff
frequency when: (a) the internal radius is ri = 1 mm for different values of
re and (b) (a) the external radius is re = 4 mm for different values of ri

where ΨH(r, θ) satisfies

∇2ΨE(r, θ) + k2
EΨH(r, θ) = 0, (6.113)

with q2
E = k2

ω − k2
E. The values of kE are the eigenvalues of the TM modes

in the cavity. The solution for this equation is given by:

ΨE(r, θ) =
∑
q

∑
n

1
NE
qm

(
Jq(kMr)−

Jq(kMri)
Yq(kMri)

Yq(kMr)
)cos qθ

sin qθ

 , (6.114)

where kE must satisfy that

Jq(kMri)
Yq(kMri)

− Jq(kMre)
Yq(kMre)

= 0 (6.115)

The values of kE that satisfy that condition define the TMqn modes in the
coaxial cavities. Figure 6.7 represent the numerical solution for the transcen-
dental equation. The solutions are denoted by χqn. The electric field pattern,
Ez, of this mode is shown in 6.8. Black arrows represent the transversal elec-
tric field vector,Et.
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Figure 6.7: TM mode solutions for different mode orders when re = 4 mm
and ri = 1 mm.
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Figure 6.8: Electric field pattern, Ez, of the TM01 mode. Black arrows
represent the transversal electric field vector, Ht.
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6.3 Numerical Experiments
In order to support the results obtained from the analytical model full wave
simulations have been performed using HFSS. The corresponding results are
shown in Fig.6.9.(b) and they demonstrate that the absorptive profiles of
the fundamental mode C1 and its first higher mode, C2, are equal to those
obtained from the model [see Fig.6.9(a)].

However, it is observed that the absorptive profile of peak G1, correspond-
ing to the hybrid mode, is not well reproduced since the model only takes
into account the fundamental TEM mode and its corresponding Fabry-Perot-
like modes quantized by the cavity length h. We should remark that G1 is
above the cutoff frequency of the grating modes due to the periodicity of the
lattice. The possible interaction of this type of modes with the evanescent
modes in the coaxial cavity cannot be precisely modeled with our method.
This is obvious since our model only considers the fundamental mode, the
one with azimuthal mode number M = 0, and its N longitudinal excitations
inside the coaxial cavities. Despite this slight disagreement, our model gives
a good quantitative prediction of the peak positions at which the structure
absorbs energy.

6.3.1 Low-frequency absorption.
Figure 6.10(a) depicts the behavior of the low frequency peak for three values
of the cavity length h. Dashed, continuous and dotted lines represent the
results for h/a =0.3, 0.5 and 0.8, respectively. It is observed that the peak
amplitude does not depend on h, but its profile becomes sharper for lower
values of the frequency position. This behavior is strictly related to the fact
that TEM modes in longer cavity depths have a weaker interaction with
the dielectric slab. It is also clear that the position of the peak strongly
depends on the length h. Moreover, this result indicates that the amplitude
remains constant when the coaxial length changes. Figure 6.10(b) represents
the condition (6.78) for having an absorption peak with the black line, and
the horizontal dotted lines mark the coaxial lengths for which the absorption
spectra are represented in the top panel. A clear correspondence is noticed
between the crossing frequencies in Fig.6.10(b) and the peak positions in
Fig.6.10(a).

Variation in the absorption properties with the outer and inner radius
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Figure 6.9: Absorbance spectrum A(ω). Results are obtained with a
P−polarized plane wave impinging along the direction φ = 0 and θ = π/4.
The slab with thickness `/a = 0.3 is a lossy dielectric with permittivity
εd = 2+ i0.05. The metallic surface contains a square distribution of annular
cavities with radii ri/a = 0.1, re/a = 0.4, and length h/a = 1. The dashed
curve corresponds to the absorption of the slab with a flat metal underneath,
that shows the same result at normal incidence (θ =0). The insets depict the
fields at the peak positions. (a) Theoretical simulation. (b) HFSS simulation.
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Figure 6.10: (a) Absorbance spectra for three values of cavity lengths h. (b)
Frequency of the absorptive peak as a function of h (black line). Results
are obtained using the incident direction θ = π/4, φ =0 and the following
parameters of the structure: ri/a = 0.1, re/a = 0.4, `/a = 0.1, εd = 2 + i0.1,
and εh = 1.
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Figure 6.11: (a) Absorbance spectra A(ω) calculated for three values of the
external cavity radius re. (b) Absorbance enhancement as a function of
re. The structure dimensions are ri/a = 0.1, h/a = 0.7, `/a = 0.1, the
permittivity is εd = 2 + i0.1 and the incidence angles are θ = π/4, φ = 0.
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Figure 6.12: (a) Absorbance as a function of the annular inner radius ri. The
structure dimensions are re/a = 0.4, h/a = 0.7, `/a = 0.1. The permittivity
is εd = 2 + i0.1 and the incidence angles are θ = π/4, φ = 0. (b) Absorbance
enhancement in the active layer as a function of ri.
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Figure 6.13: Absorbance in the dielectric slab with thickness `/a =0.1 for
three values of ξ in its dielectric permittivitty εd =2(1+iξ). The annular
cavities on the metalic metasurface have dimensions ri/a = 0.1, re/a = 0.4
and h/a =0.7. Results are obtained for the incidence angles θ = π/4 and
φ =0.

of the coaxial aperture is presented in Figs. 6.11 and 6.12. Note that the
dependence on re is also giving the dependence with the lattice filling fraction
f , which is f = π(re/a)2 for the square lattice. The peak position is slightly
connected with the coaxial radii. In case of variations in re, the peak position
goes down in frequency when re increases; i.e., for larger cavities the TEM
mode becomes more localized and decreases in frequency. On the other hand,
when the inner radii ri increases the peak position moves to higher frequencies
since the annular aperture becomes thinner. However, note that the peak
amplitude increases with the outer radii but is independent of the inner radii.

Figure 6.13 shows how the absorption peaks change in shape with the
losses in the dielectric ξ, comparing the absorption spectrum for ξ =0.025,
0.05, 0.1, for a structure with ri/a = 0.1, re/a = 0.4, h/a =0.7, `/a =0.1,
θ = π/4 and φ =0. Note that the peak position does not depend on the
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Figure 6.14: Absorbance of a dielectric slab with permittivity εd =2+i0.1
for three different thicknesses. The annular cavities on the metallic surface
have dimensions ri/a =0.1, re/a =0.4, h/a =0.7. Continuous lines under the
peaks represent the absorption without the metallic metasurface. Results are
obtained for the incident angles θ = π/4 and φ =0.

dielectric losses in the slab. Note that perfect absorption (unity absorption)
is obtained for ξ = 0.05 and not for the larger value ξ =0.1, indicating
that ξ should be optimized for a given structure in order to achieve perfect
absorption.

Finally, Fig. 6.14 shows the absorption for three thicknesses of the di-
electric slab. Notice that the peak amplitude is independent of the dielectric
thickness, meaning that with the proper design perfect absorption is ob-
tained independently of the thickness of the absorbing layer. However, also
note that the peak profile becomes broader for larger thickness, indicating
that absorption is proportional to the volume of the active layer.

6.3.2 Other absorption mechanisms
Now, two additional mechanisms of absorption by thin films are studied and,
although it will be shown that they are less efficient, they may offer more
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Figure 6.15: Absorbance of a dielectric slab with thickness `/a = 0.1 and
permittivity εd = 2 + i0.1 on top of a metallic metasurface containing four
annular cavities in the units cell (see the inset). The four cavities have the
same cylindrical section (ri1,2,3,4/a = 0.1, re1,2,3,4/d = 0.2), but their lengths
are different: h1/a = 0.35, h2/a = 0.4, h3/a = 0.45 and h4/a = 0.5. Results
are obtained for the incident angles φ =0 and θ0 = π/4.

degrees of freedom to improve the absorption by the thin film.
The first mechanism considers the possibility of using a non-Bravais lat-

tice; i.e., by having more than one cavity in the unit cell. The second takes
into account the excitation of guided modes in the slab by the metallic grating
underneath.

Non-Bravais lattices

Let us consider now the case in which more than one cavity is associated to
one point of a Bravais lattice.

Figure 6.15 shows the absorption spectra for a square lattice containing
four cavities per unit cell. All the four cavities have the same inner and
outer radii, given by ri/a = 0.1 and re/a = 0.2, respectively, but different
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depths, being h1/a = 0.35, h2/a = 0.4, h3/a = 0.45 and h4/a = 0.5. The
dielectric slab with thickness `/a = 0.1 has a permittivity ε = 2 + i0.1.
This result is obtained for the incident angle is θ0 = π/4. It is clear that
there is no coupling between the cavity resonances, since the response of the
complete system can be understood as the superposition of the responses of
four different cells, each one corresponding to the holes with respective depths
h1,h2,h3 or h4, which has been depicted in the figure by dotted lines. This
lack of interaction can be confirmed by the fact that the interaction matrix
χαβ has only significant values in the diagonal elements when α = β. The
individual resonances of each cavity have very low coupling to neighboring
cells and, therefore, these super-cells can be employed for designing multi-
frequency absorbing layers.

Guided modes in slab

The excitation of guided modes of the dielectric layer can also produce ab-
sorptive peaks. These modes propagate along the lateral dimension of the
slab and, consequently, their optical paths can be much larger than that
corresponding to the vertical dimension. Remember that the excitation of
these modes from the far field is not possible since the parallel wavenumber
required for this excitation cannot be provided by a free space propagat-
ing wave. The role of the array of resonators is precisely to provide this
additional wave number by the excitation of a set of diffracted waves.

Figure 6.16(a) shows the absorption spectra for three values of the per-
mittivity: εd = 2(1 + i0.05) (continuous line), εd = 2(1 + i0.005) (dashed
line) and εd = 2(1 + 0.15i) (dotted line). Results are obtained for the inci-
dent direction defined by the angles θ = π/4 and φ = 0 and the parameters
of the structure are reported in the caption. The absorptive peaks denoted
by G1, G2 and G3 are caused by the excitation of hybrid modes that are
guided along the dielectric slab. They are excited thanks to the transverse
component kGi of the diffracted modes, as explained below.

The P−polarized guided modes of a dielectric slab with a metallic grat-
ing underneath are obtained by setting Cα = 0 in (6.46) and inserting the
condition obtained for B±GP into equations (6.20) and (6.21). In addition, by
assuming that there is no incident field, the condition for the existence of a
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guided mode can be written as

−iY 0
GP sin(pG`) + Y d

GP cos(pG`) = 0 (6.116)

This expression is contained in the denominator of the term χ(ω) . When
this condition is fulfilled a peak in the absorption spectrum will appear, as it
is shown in Fig. 6.16(b), where the dispersion diagram of the dielectric slab
(black line) and the transverse components of the diffracted modes(dotted
lines) are depicted. Notice that the crossing points between both of them
mark the peak positions. The reciprocal vectors at which the peaks appear
are G1 =(-1,0), G2=(-1,1)=(1,-1), and G3 =(-2,0), using the labeling G =
(m1,m2) of Eq. (1).

The dependence on the incident direction is depicted in Fig. 6.17 where it
is clearly shown the angle dependence predicted by condition (6.116). Notice
that, on the contrary, no dependence is found for the low frequency peak,
which corresponds to the fundamental cavity mode.



6.3 Numerical Experiments 133

0

0.5

1

 

 

0.4 0.6 0.8 1 1.2
0

2

4

6

8

10

 

 

(a) 

(b) 

 

 

 

 

kG2 

G1 

G2 

G3 

kG1 

kG3 

Figure 6.16: (a) Absorbance with a dielectric slab of thickness `/a =0.1 and
permittivity εd =2(1+iξ). Absorbance has been calculated for three values of
ξ. (b) Dispersion diagram of the guided modes inside the slab. The annular
cavities on the metallic metasurface have dimensions ri/a = 0.1, re/a = 0.4
and h/a =0.4. Results are calculated for the incidence angles θ0 = π/4 and
φ =0.
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Figure 6.17: Dependence of the absorption for the incident angle θ at fixed
φ =0. Results are obtained with a slab with `/a =0.1 and permittivity
εd =2(1+i0.05). (b) Dispersion diagram of the guided modes inside the slab.
The annular cavities on the metallic metasurface have dimensions ri/a = 0.1,
re/a = 0.4 and h/a =0.4.



7
Experimental

verification of Total
Absorption

In this chapter, we experimentally study the absorbing system introduced
in Chapter 6 and present a practical demonstration of the easy tunable sys-
tem theoretically proposed. In particular, we develop a design method which
allows engineering metasurfaces with total absorption. The designs are fab-
ricated and experimentally characterized, studying the influence of the angle
of incidence. The control of the peak frequency with the cavity length is
demonstrated and the dependence of the peak amplitude with the dielectric
thickness is also shown.

Contents
7.1 Design Methodology . . . . . . . . . . . . . . . . 136

7.2 Experimental setup . . . . . . . . . . . . . . . . . 139

7.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . 140

7.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . 146



136 Experimental verification of Total Absorption

7.1 Design Methodology
After the theoretical analysis described in Chapter 6, this section presents
a method for designing total absorption devices. This method is based in
the theoretical approximation for the low-frequency absorption peak that
leads on to Eqs. (6.78) and (6.79). The methodology for the design of total
absorption devices is organized as follows:

Step 1: Choose the material of the lossy thin layer

(a) the material permittivity, εd.

(b) the material thickness, `

Step 2: Define the lattice. To produce total absorption by a thin layer, we use
` << d. Moreover, we have to ensure that the operation frequency is
below the diffraction limit.

Step 3: Choose the coaxial cross section, re and ri, according with the fabrica-
tion limitations. In our case, these limitations are:

(a) re − ri > 2 mm and ri > 2.

(b) d− 2re > 2 mm.

(c) h < 10 mm.

Step 4: Starting from the previous analysis, we define the first design condition
as: C1 = cot(khh) + χI = 0. In this point, there are two options for
the design:

(a) Setting h and determine f (Design 1).

(b) Setting f and determine h (Design 2).

Using C1 condition, we can find the unknown parameter.

Step 5: Ensure that the losses in the material, ξ, fulfils the design condition
C2 = H2

00 − χR = 0 producing total absorption.

The dielectric chosen for the experimental demonstration is a standard
glass-reinforced epoxy laminate material named FR4. At the working fre-
quencies in this experiment the dielectric permittivity of this material is
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εd = 4.2(1 + 0.025i). The small imaginary part of this permittivity indicates
that FR4 has a poor performance as an absorber of microwaves frequencies.
We have designed a metasurface made of aluminum which can enhance the
absorption of a FR4 layer with ` = 1.2 mm, producing total absorption when
the incidence angle is θ = 45◦.

After choosing FR4 as dielectric, we have designed the coaxial-cavity
grating for having the total absorption peak in the frequency range between
5 GHz and 10 GHz, which is our measurement regime. The incident angles
are between 20◦ and 60◦. To ensure that we work below the diffraction limit
(flim = sin θd/c), we have chosen d = 10 mm. Now, taking into account
the physical limitations in the fabrication process, which are reported in the
Step 3, the dimensions of each coaxial cavity are re = 4 mm, ri = 2 mm.
Due to the monomode approximation employed in the model, the internal
radius and the external radius have to be as small as possible to avoid the
effects of higher modes in the coaxial cavity.

Following Design 1, we set h = 10 mm and find the operation frequency
using C1. The result obtained from this equation is shown in Fig. 7.1(a).
The curve has a minimum that marks the frequency of the absorption peak,
f = 5.62 GHz. Once we have known the frequency in which the absorption
peak appears, we check that the condition for having total absorption is
satisfied. The condition C2 is evaluated and represented in Fig 7.1(b) as a
function of the losses in the dielectric. The value for the losses in the FR4 is
marked with a red arrow. This result confirms that C2 = H2

00 − χR ≈ 0.
Following Design 2, we set f = 7.1 GHz and evaluate the h value satisfying

the condition established in C1. This equation is represented in Fig.7.2.(a)
and determines that h = 7 mm. Then, considering h = 7 mm, we represent
the condition for having total absorption as a function of the losses and
confirm that the conditions is satisfied.

In order to characterize our designs and to study the capacity of tailoring
the peak position, three different samples of the coaxial grating have been
manufactured; all have the same cavity cross-section but different cavity
lengths (h). The dimensions of the cavity cross section are: re = 4 mm
and ri = 2 mm the external and internal radius respectively. The three
different cavity lengths are h = 10 mm (Sample 1), 7 mm (Sample 2) and
5 mm (Sample 3). The samples consist of 40 unit cells in the x-direction and
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Figure 7.1: Design 1. Setting h = 10 mm. (a) Representation of C1 condition
for obtaining the operation frequency. (b) Representation of C2 condition
obtaining the total absorption.

0.8 1 0 0.02 0.04
-0.04

-0.03

-0.02

-0.01

0

0.6 0.8 1
10

-3

10
-2

10
-1

10
0

0
-0.04

-0.03

-0.02

-0.01

0
(a) (b) 

FR4 

losses 

 

Cavity length, (cm) Losses ,  

 
 

 
 

 

Figure 7.2: Design 2. Setting f = 7.1 Ghz. (a) Representation of C1 con-
dition for obtaining cavity length, h. (b) Representation of C2 condition
obtaining total absorption.
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Dielectric Slab Length (cm) Width (cm) Thickness (mm)
Slab 1 40 40 1.2
Slab 2 40 40 1.6
Slab 3 40 40 2.3

Coaxial Grating re (mm) ri (mm) h (mm)
Sample 1 4 2 10
Sample 2 4 2 7
Sample 3 4 2 5

Table 7.1: Physical dimensions of the samples. The lattice period is d =
10 mm for all the gratings.

40 unit cells in the y-direction, and the periodicity of the array is d = 10 mm.
The dielectric sheet entirely covers the metallic grating and it is fixed at the
corners. Also we have characterized the coaxial-cavity grating with three
different dielectric thicknesses, ` = 1.2 mm (Slab 1),1.6 mm (Slab 2), 2.3 mm
(Slab 3). Details of the three samples and the three dielectric slabs are
reported in Table 7.1. Thus, a total number of nine different structures have
been experimentally characterized.

A scheme of the structure under study is shown in Fig. 7.3(a). A pho-
tograph of one constructed metasurface is shown in Fig. 7.3(b), where the
dielectric layers is slightly displaced from its original position for a better
visualization of the square array of coaxial cavities.

7.2 Experimental setup
In the experimental setup, a microwave radiated from a rectangular horn
antenna, which is placed at the focus of a collimating spherical mirror, im-
pinges with an incident angle θ the fabricated sample. The horn antenna is
orientated and positioned such that the electric-vector of the radiation is in
the plane of incidence (i.e. p- or TM polarized), and so that the plane of
incidence is parallel to the xz-plane (keeping φ = 0◦). The reflected beam
is collected by a receiver horn antenna, which is orientated to detect only
p-polarized radiation and placed at the focus of a second mirror tilted an
angle θ with respect to the normal vector of the sample surface. The angle
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Figure 7.3: (a) Schematic representation of the experimental sample com-
prising of an array of coaxial cavities in a metal covered by a dielectric sheet.
The plane of incidence is also shown. (b) Photograph of one constructed
device. The FR4 dielectric layer is displaced for a better observation of the
patterned surface (ri = 2 mm, ri = 4 mm and h = 10 mm).

of incidence is shifted manually by changing the position and rotation of the
transmission and the detection horns [see Fig. 7.4]. A photograph of the
experimental setup is shown in Fig. 7.5.

A reference measurement is needed for obtaining the absorption spectra.
This reference measurement is taken by using an aluminum plate with the
same area and thickness than that of the sample (with the dielectric layer).
The reflectivity is obtained for the same frequency (f) values. Using this
method, the sample absorption (A) can be calculated from

A(f) = 1− Rsample

Rref

, (7.1)

where Rsample and Rref are the reflectivity spectra for the sample and the
aluminum plate respectively.

7.3 Results
Figure 7.6 summarizes the experimental characterization of Sample 1 (h =
10 mm) with Slab 1 (` = 1.2 mm) on top. In Fig. 7.6 (a), the absorption
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Figure 7.4: Schematic representation of the experimental setup

Figure 7.5: Photograph of the experimental setup
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Figure 7.6: (a) Absorption spectrum obtained with an incident p-wave with
θ = 45◦. The structure is formed by a combination of Sample 1 (h = 10 mm)
with Slab 1 (` = 1.2 mm). (b) Experimental absorption spectra taken for sev-
eral incidence angles θ, where the darkest color corresponds to the strongest
absorption.
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spectrum is shown when the incident angle is θ = 45◦. The symbols represent
the experimental data while the continuous line is the calculated with the
model reported in Chapter 6. The dashed line corresponds to the absorption
produced with the dielectric layer (Slab 1) covering an unpatterned aluminum
surface. It is observed that the calculated spectrum is in good agreement with
the experimental one except for a small frequency shift: the measured peak
centered at 5.62 GHz gives absorption of 93% while the calculated peak is
centered at 5.5 GHz with 98% absorption. The shifting of the measured
peak towards high frequencies is about 2% and is due to an unavoidable air
film existing between the metal grating and the dielectric layer. This film of
air or air gap appears because of the defects (raised edges) produced during
the manufacturing process of the coaxial cavities edges, and because of the
mechanical stress of the dielectric layer, which is not completely flat. The
effect of the non-perfect contact between the dielectric and the metasurface
is discussed later.

In Fig. 7.6 (b), the same type of measurement has been performed for
several incident angles; from θ = 20◦ to θ = 75◦. The observed insensitivity
of the peak position with the impinging angle supports the predictions of
the model. Nevertheless, the absorption amplitude changes, a maximum
value is achieved for θ = 60◦ while for higher or lower angles the absorption
decreases. Also, it is easy to observe that, when the incidence angle is close
to normal incidence (θ ≈ 0◦), the absorption vanishes because the impinging
wave cannot excite the resonant modes in the coaxial cavities without a phase
variation across the surface.

Now, we experimentally study the feasibility of tuning the peak position
with the cavity length, h. To do that, we have employed the dielectric layer
with ` = 1.2 mm (Slab 1) and the three metallic samples. The correspond-
ing spectra are shown in Fig. 7.7. The experimental data (symbols) are
compared with the theoretical results (continuous lines). The measured (cal-
culated) peaks appear at 5.62(5.5) GHz, 7.24(7.09) GHz and 9.14(8.83)GHz,
for h = 10 mm, h = 7 mm and h = 5 mm, respectively. These results demon-
strate the tuning capability of the absorption peak with h while keeping
its high absorption (> 90%). The measured (calculated) peak amplitudes
are 0.93 (0.98), 0.99 (0.99) and 0.97 (0.99) for h = 10 mm, h = 7 mm and
h = 5 mm, respectively. From these results one confirms the design method-
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dielectric thickness is ` = 1.2 mm (Slab 1) and the angle of incidence is
θ = 45◦.
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ology described in Section 7.1, allowing the design of structures with total
absorption at prefixed frequencies. The same effect noticed in the previous
experiment also appears in these results, a frequency shift is produced in the
experimental absorption spectra due to the non perfect contact between the
coaxial grating and the dielectric sheet.

The third experiment analyzes the effects that the thickness of the dielec-
tric layer, `, produces in the amplitude an position of the absorption peak.
Figure 7.8(a) represents such dielectric thickness dependence, the dark areas
define the regions with larger absorption. It is observed that ` has effects
not only on the peak frequency but also in its amplitude. However, we can
concluded from Fig. 7.8(a) that changing ` is not very efficient for tuning
the peak position. It is observed that the frequency interval where the peak
is highly absorptive (between 6.5 GHz and 7.5 GHz) is not as broad as the
change produced by varying the cavity length h, which shifts the peak be-
tween 5 GHz and 10 GHz, keeping its maximum amplitude. Figure 7.8(a)
shows that the absorption amplitude increases with the dielectric thickness,
until it rises to one at ` =0.8 mm (horizontal dashed line) and remains con-
stant for higher values. This is the region with total absorption, which is
represented by the shadowed area in Fig. 7.8(b). The first value producing
total absorption can be considered as the optimum for designing the absorp-
tive structure. For example, for the cavity length studied here(h = 7 mm),
the optimum value is `opt = 0.8 mm. In other words, a correct design of a
total absorption device has to ensure that ` ≥ `opt, but the optimal value will
reduce the cost of the dielectric layer.

To confirm the role that the dielectric layer thickness (`) plays in deter-
mining the amplitude and frequency position of the total absorption peak
produced by a given patterned surface a second experiment is performed.
We have considered the metasurface Sample 2 having patterned cavities with
h = 7 mm which is successively covered with the three dielectric slabs ( all
having thickness over the optimum value of `). Figure 7.9 shows the three
absorption spectra obtained for θ = 45◦, the symbols represent the measure-
ments while the continuous lines illustrate the theoretical simulations. It is
observed that changes of the layer thickness are accompanied with changes
in the position a of the absorption peak. The measured (calculated) frequen-
cies of the absorption peaks are 7.25(7.09) GHz, 7.09 (6.88)GHz and 6.92
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Figure 7.8: (a) Calculated absorption for the Sample 2 (h = 7 mm) as a
function of the dielectric layer thickness (`). For values ` ≥ 0.8 (horizontal
dashed line) the absorption peak is unity. (b) Amplitude of the absorption
peak as a function of `. The vertical dashed line defines the onset of total
absorption.

(6.68) GHz, for ` = 1.2 mm, ` = 1.6 mm and ` = 2.3 mm mm, respectively.
The profiles show an asymmetrical profile not shown in the numerical simu-
lations. This asymmetry is probably due to an artifact of our experimental
setup which uses finite size samples, a feature that is hard to include in our
simulations. In other words, the receiver antenna is not symmetrically lo-
cated with respect to the borders of the samples and, therefore, the waves
radiated from the sample borders arrive to this antenna with low but differ-
ent amplitudes, producing interference effects in the recorded spectra. This
interference effects are clearly observed in the wiggling observed at the lower
(absorption) parts of the spectra. The measured (calculated) peak ampli-
tudes are,0.99(0.99) , 0.98(0.99) and 0.99(0.99) for ` = 1.2 mm, ` = 1.6 mm
and ` = 2.3 mm mm, respectively. In these measurements the frequency shift
produced by the airgap between the metal and the dielectric is also noticed.

7.4 Discussion
To get a physical insight of the frequency shift observed between theory and
experiment, we have extended the model introduced in Chapter 6 to the case
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Figure 7.9: Absorption for the Sample 2 (h = 7 mm) with three different
dielectric thicknesses. The angle of incidence is θ = 45◦. Symbols represent
the measurements and solid lines the theoretical results.

that considers an air gap between the dielectric layer and the metal grating
[see Fig. 7.10]. To do that, we use the same methodology that in the previous
case and taking into account only the P-polarization (we have demonstrated
in Chapter 6 that the system is not affected by S-polarized waves).

First, fields in the air region are expressed as:

|E0
t 〉 = A−0 e

−iq0(z−`) |kt〉+
∑
G

A+
Ge

iqG(z−`) |kG〉 , (7.2)

|−ẑ ×H0
t 〉 = −Y 0

0 A
−
0 e
−iq0(z−`) |kt〉+

∑
G

Y 0
GA

+
Ge

iqG(z−`) |kG〉 , (7.3)

where A−0 is the amplitude of the incident wave and q2
G = (ω/c0)2 − |kG|2.

The normalized expressions of the fields remain equal and can be written as:

〈r|kG〉 ≡
1√
Ω
eikG·rûG, (7.4)

where Ω represents the area of the unit cell. The modal admittances for the
P-polarized waves in the air region are

Y 0
G = kω

qG

√
ε0

µ0
(7.5)
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Figure 7.10: Schematic representation of the system under study with a film
of air (air gap) with thickness g between the coaxial grating and the dielectric
sheet.

and the unit vectors are
ûG = kG

|kG|
(7.6)

Then, fields in the dielectric region are

|Ed
t 〉 =

∑
G

(B+
Ge

ipG(z−`) +B−Ge
−ipG(z−`)) |kG〉 , (7.7)

and
|−ẑ ×Hd

t 〉 =
∑
G

Y d
G(B+

Ge
ipG(z−`) −B−Ge−ipG(z−`)) |kG〉 , (7.8)

with p2
G = k2

d − |kG|2, kd = k0
√
εdµd and the modal admittance

Y d
G = kω

pG

√
εd
µd
. (7.9)

We add the fields in the air gap region which can be expressed as:

|Eg
t 〉 =

∑
G

(C+
Ge

iqG(z−`) + C−Ge
−iqG(z−`)) |kG〉 , (7.10)

and

|−ẑ ×Hg
t 〉 =

∑
G

Y 0
G(C+

Ge
iqG(z−`) − C−Ge−igG(z−`)) |kG〉 . (7.11)
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Inside the cavities the fields are

|Eα
t 〉 = Dα(eikhz + Γαe−ikhz) |α〉 , (7.12)

|−ẑ ×Hα
t 〉 = YαDα(eikhz − Γαe−ikhz) |α〉 , (7.13)

where, using the monomode approximation, the modal admittance is Yα =√
εh/µh, the reflection coefficient at the cavity bottom is Γα = −e−2ikhh and

the normalized TEM mode is

〈r|α〉 = − 1√
2π

eikG·Rα√
ln(re/ri)

1
r
r̂, (7.14)

Applying boundary conditions and projecting the electric fields with the
mode 〈kGσ| and the magnetic field with cavity mode 〈α|, we obtain the
following system of equations:

Interface z = 0 (air-dielectric)

A+
G + A−0 δG0 = B+

G +B−G (7.15)
Y 0
G(A+

G − A−0 δG0) = Y d
G(B+

G −B−G) (7.16)

Interface z = ` (dielectric-air)

B+
Ge
−ipG` +B−Ge

ipG` = C+
Ge
−iqG` + C−Ge

iqG` (7.17)
Y d
G

(
B+
Ge
−ipG` −B−GeipG`

)
= Y 0

G

(
C+
Ge
−iqG` − C−GeiqG`

)
(7.18)

Interface z = `+ g (air-coaxial grating)

C+
Ge
−iqG(`+g) + C−Ge

iqG(`+g) = Dα(1 + Γα) 〈G|α〉 (7.19)∑
G

Y 0
G

(
C+
Ge
−iqG(`+g) − C−GeiqG(`+g)

)
〈α|G〉 = YαDα(1− Γα) (7.20)

More details about the coupling integrals 〈α|G〉 and 〈G|α〉 are reported in
Chapter 6.

From these equations one can obtain the coefficients Dα inside the cavities
as

Dα = − 4
M

Y 0
0
Yα

Y 0
0

Y H
0
eiq0g 〈α|0〉A−0 , (7.21)



150 Experimental verification of Total Absorption

where

Y H
G = Y 0

G

(
(cos pG`− iρd sin pG`)− e2iqGg (cos pG`+ iρd sin pG`)

)
− Y d

G

(
(i sin pGl − ρd cos pG`)− e2iqGg (i sin pG`+ ρd cos pG`)

)
, (7.22)

and

M = (1− Γα)− (1 + Γα)(χ(1) + χ(2)). (7.23)

Terms χ(1) and χ(2) are

χ(1) =
∑
G

Y 0
G

Yα
〈G|α〉 〈α|G〉 (7.24)

and
χ(2) = 2

∑
G

Y 0
G

Yα

Y D
G

Y H
G

e2iqGg 〈α|G〉 〈G|α〉 , (7.25)

with Y D
G being

Y D
G = Y 0

G (cos pG`+ iρd sin pG`)− Y d
G (i sin pG`+ ρd cos pG`) , (7.26)

where ρG = Y 0
G

Y dG
. The coefficients of the reflected waves are:

A+
G = RdA

−
0 δG0 +Dα(1 + Γα) 〈G|α〉 eiqGgN (7.27)

with

Rd = −1 + 2 Y
0
G

Y H
G

(
(cos pG`− iρG sin pG`)− e2iqGg (cos pG`+ iρG sin pG`)

)
(7.28)

and

N = (cos pG`+ iρG sin pGl)

− Y D
G

Y H
G

(
(cos pG`− iρG sin pG`)− e2iqGg (cos pG`+ iρG sin pG`)

)
. (7.29)

Therefore, the absorption A(ω) = 1−R(ω) can be cast as

A(ω) = 1−
∑
G Y

0
G|A+

G|
Y 0

0 |A−0 |
(7.30)
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Equation determining the frequency position of the peak

The absorption peak of interest here always appears below the diffraction
limit. So, the absorption can be expressed as:

A(ω) = 1− |A
+
0 |

|A−0 |
= 1−R0 (7.31)

Considering that q0` << 1 and p0` << 1 and following the same procedure
that in Ref.[16], the reflectance can be written as follows:

R0 ≈ −
cos khh+ i sin khh(χ+ 2H2

00)
cos khh− i sin khhχ

, (7.32)

where χ is a lattice sum that can be decomposed as χ = χR + iχI . This
expression has a minimum value when

cot khh+ χI(ω) = 0. (7.33)

This equation gives the condition for obtaining a peak in the absorption. It
is similar to the one already developed in without the air gap but now the
dependence on the air gap (g) is embedded in χ.

Figures 7.11 summarize the variation produced by the air gap in the
position and amplitude of the peak. Figure 7.11(a) plots the solution of this
expression as a function of the airgap thickness g when h = 10 mm (Sample
1) with ` = 1.2 mm (Slab 1) and the incidence angle is θ = 45◦. This result
shows that an increase of the air gap thickness shifts the peak to higher
frequencies. This behavior supports our previous claim suggesting that an
unavoidable air gap explains the discrepancy between theoretical results and
experimental data observed. Moreover, it is observed in Fig. 7.11(b) that
there is a g value for which the peak amplitude is maximum. However,
this result has no much interest since the air gap is out of control in the
experimental setup.

A parametrical study of the air gap thickness, denoted by g, has been
performed for θ = 45◦ using Slab 1 on top of Sample 1. Figure 7.12 (a)
represents the absorption spectra calculated for several values g showing how
the existence of an air gap shifts the absorption peak to higher frequencies.
This behavior supports our previous observed in Fig. 7.11. Moreover, in Fig.
7.12 (b) the frequency position of the peak is represented as a function of g.



152 Experimental verification of Total Absorption

0 0.02 0.04 0.06 0.08 0.1
0.2

0.4

0.6

0.8

1

0 0.01 0.02
0.9

0.95

1

Gap thickness,  

 

A
b

so
rp

ti
o

n
 

0 0.02 0.04 0.06 0.08 0.1
5

5.5

6

6.5

7

F
re

q
u

e
n

cy
, 

 (
G

H
z)

 

(a) 

(b) 

Figure 7.11: Sample 1 (h = 10 mm) with the Slab 1 ( ` = 1.2 mm ) when
the incidence angle is θ = 45◦. (a) Frequency position of the absorption peak
as a function of the air gap thickness, g. (a) Amplitude of the peak as a
function of g.
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MM model (g = 0) MM model Experiment
f (GHz) g (mm) f GHz f GHz

Sample 1 + Slab 1 5.5 36 5.62 5.62
Sample 2 + Slab 1 7.09 30 7.24 7.24
Sample 3 + Slab 1 8.83 41 9.14 9.14
Sample 2 + Slab 2 6.88 36 7.09 7.09
Sample 2 + Slab 3 6.68 41 6.92 6.92

Table 7.2: Effect of an air gap on the frequency of the peak showing total
absorption. The g values are obtained from the fitting to the measured peak
position.

This curve is obtained using Eq. (7.33). In this figure, the horizontal lines
correspond to air gap thicknesses of the spectra shown in Fig. 7.12(a). We
can see that the Eq. (7.33) predicts the position of the absorption peak.

The effect of the air gap has been studied in all the measurements pre-
sented in this work and the results of these studies are reported in Table
7.2.

Figure 7.13 shows a comparison between the experimental data reported
in 7.7 and the calculated absorption spectra using the airgap correction. The
measured (calculated) peaks appear at 5.62(5.62) GHz, 7.24(7.24) GHz and
9.14(9.14)GHz, for h = 10 mm, h = 7 mm and h = 5 mm. The calculated
profiles are fitted using the following air gap thicknesses: g=36 µm, 30 µm,
and 41 µm, respectively.

Moreover the experimental data shown in Figure 7.9 are compared with
the air gap model in Figure 7.14. The measured (calculated) frequencies of
the absorption peaks are 7.25(7.25) GHz, 7.09 (7.09)GHz and 6.92 (6.92)
GHz, for` = 1.2 mm, ` = 1.6 mm and ` = 2.3 mm mm, respectively. The
calculated spectra are obtained using an air layer with g = 30 µm, 36 µm,
and 41 µm, respectively.
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Figure 7.12: Effect of non-perfect contact between the dielectric layer and
the metallic grating on the frequency of the absorption peak (numerical pre-
dictions) for the Sample 1 (h = 10 mm) with the Slab 1 ( ` = 1.2 mm ) when
the incidence angle is θ = 45◦. (a) Calculated absorption spectra for several
values of air gap thickness, g. (b) Calculated position of the absorption peak
as a function of the air gap thickness, g. The inset illustrates the structure
studied here.
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Figure 7.13: Absorption spectra for three values of cavity length h. The
dielectric thickness is ` = 1.2 mm (Slab 1) and the angle of incidence is
θ = 45◦. Symbols represent the measurements and continuous lines represent
the results obtained with the model described in this section. The calculated
spectra are obtained using an air layer with g = 36 µm, g = 30 µm, and
g = 41 µm for h = 10 mm, h = 7 mm and h = 5 mm, respectively.
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Figure 7.14: Absorption for the Sample 2 (h = 7 mm) with three different
dielectric thicknesses. The angle of incidence is θ = 45◦. Symbols represent
the measurements and solid lines the theoretical model. The calculated spec-
tra are obtained using an air layer with g = 30 µm, g = 36 µm, and g = 41
µm for ` = 1.2 mm, ` = 1.6 mm and ` = 2.3 mm mm, respectively.



8 Concluding Remarks

This chapter summarizes the work reported in this manuscript and highlights
the main contributions obtained during the thesis. Furthermore, in the sec-
ond section, the future works connected with the results developed in this
thesis are explained.
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8.1 Summary and Conclusions
In the first part of this thesis, the resonant properties of the RPC shell have
been studied in depth. Particularly, we have analyzed the existence of low-Q
whispering gallery modes at the interface of these anisotropic and inhomo-
geneous metamaterials shells. Low-Q whispering gallery modes present a
resonant frequency independent of the shell thickness and their quality fac-
tor can be adapted by changing the dielectric thickness. These features make
possible the use of these modes for the energy exchange with the electromag-
netic energy in the surrounding background, so they can be used in energy
harvesting systems. In addition, Fabry-Perot modes, which are allowed in
these shells, have been proposed as a solution for other applications. Partic-
ularly, we have study the strong coupling produced between two RPC shells
for wireless power transfer and the use of a pair of RPC shells as a position
sensor. This part also contains the first experimental verification of a RPC
shell implementation.

The second part of this thesis deals with the absorption enhancement
produced by a periodic grating placed on the bottom of a lossy thin layer.
We have developed a theoretical model which allows a comprehensive study
of the absorption mechanism in the system. Moreover, the experimental data
demonstrate how the resonances produced by the metallic grating enhance
over 3300% the absorption in the low-loss dielectric layer, compared to the
response with an unpatterned metal backing.

8.2 Future Work
The present study leaves some points to be treated in more depth in further
works.

The feasibility of using the RPC as resonators with evanescent field pat-
terns for efficient wireless non-radiative energy transfer has been demon-
strated, but a future line of research is the development of simplified struc-
tures allowing easy implementations and experimental verifications of these
results. Another interesting point is the scaling of the structures to work
at other frequencies ranges. For example, by changing the unit cell, RPCs
can be designed for working at higher frequency. This fact can be useful to
develop position or frequency sensor at the Terahertz range.
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An interesting work is the development of a new theoretical model which
includes the TE11 mode inside the coaxial. This study will reveal the effect
produced by these evanescent wave in the low-frequency absorption peak.
Finally, the study of random surfaces is another interesting line of research.
Due to the high speed of calculus we can study deeply the effects of disor-
dered media in the absorption enhancement. The knowledge of such simple
structure will allow understanding the role that the disorder plays in the
absorption.
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Part III
Appendix





A Mathematical notes

A.1 Bessel Functions
The Bessel’s differential equation is defined as:

x2 d
2y

dx2 + x
dy

dx
+ (a2x2 + q2)y = 0 (A.1)

Two different and independent solutions of this equation are the Bessel and
Neuman functions, Jq(x) and Y (x) respectively. The solution for Bessel
equation can be written as:

y = AJq(ax) +BYq(ax) (A.2)

The functions Jq(x) are the Bessel functions of first kind and are defined as:

Jq(x) =
∞∑
m=0

(−1)m
m!(m+ q)!

(
x

2

)2m+q
, (A.3)

where q is the order of the Bessel function. A representation of the Bessel
functions of first kind is shown in Fig A.1(a). In Figure A.1(b) the derivatives
of these equations are also represented. The Neuman functions Yq(x), also
named Bessel functions of second kind, have the form:

Yq(x) = Jq(x) cos(qπ)− J−q(x)
sin(qπ) . (A.4)

In Fig. A.2(a) and Fig. A.2(b) are represented the Bessel functions of second
kind and their derivatives. Also it is necessary to define the Hankel functions,
which are related with the Bessel and Neuman functions as:

H(1)
q (x) = Jq(x) + iYq(x) (A.5)

H(2)
q (x) = Jq(x)− iYq(x) (A.6)
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Figure A.1: (a) Bessel functions of the first kind and (b) Derivative of Bessel
functions of the first kind.
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Figure A.2: (a) Bessel functions of the second kind and (b) Derivative of
Bessel functions of the second kind.
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where i is the imaginary unit.

A.1.1 Properties
Now, we list some properties of the Bessel functions. Being Ψ = J, Y,H:

1. δΨq(kr)
δr

= kΨ′q(kr)

2. Ψ′q(x) = 1
2 (Ψq−1(x)−Ψq+1(x))

3. Ψ−q(x) = (−1)qΨq(x)

4. Ψq(x) = x
2q (Ψq−1(x) + Ψq+1(x))

A.2 Chebyshev Identity
In this section, we derives the Nth power of a unimodular matrix also known
as Chebyshev identity. Let us analyze the eigenvalues the eigenvectors of the
matrix. The eigenvector problem can be written as: A B

C D

V± = e±KΛV±, (A.7)

where e±KΛ represents the eigenvalues and V± the eigenvectors. The eigen-
values are given by:

e±KΛ = 1
2 (A+D)±

{[1
2 (A+D)

]2
− 1

}1/2

(A.8)

and the corresponding eigenvectors are:

V± =
 α±
β±

 , (A.9)

being

α± = B

[B2 + (e±KΛ − A)2]1/2
β± = e±KΛ − A

[B2 + (e±KΛ − A)2]1/2
(A.10)

To derive the Chebyshev identity we use the following relation:M
 A B

C D

M−1


N

= M

 A B

C D

N M−1 (A.11)
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This matrix equation is easy to see taking into account that MM−1 = I. The
relation establishes that the Nth power of a transformed matrix is similar to
transform of the Nth power of the original matrix. We are looking for M
matrix that transform the original matrix into a diagonal matrix with the
eigenvectors, such that

M

 A B

C D

M−1 =
 eiKΛ 0

0 e−iKΛ

 (A.12)

Using equation (A.11) we can write A B

C D

N = M−1

 eiNKΛ 0
0 e−iNKΛ

M (A.13)

The values of the M matrix and the inverse, M−1 are

M−1 = 1√
α+β− − α−β+

 α+ α−
β+ β−

 (A.14)

M = 1√
α+β− − α−β+

 β− −α−
−β+ α+

 (A.15)

Finally the Nth power of the unimodular matrix is A B

C D

N = 1√
α+β− − α−β+

 β− −α−
−β+ α+

 (A.16)

×

 eiNKΛ 0
0 e−iNKΛ

 β− −α−
−β+ α+


After some simplifications, we can express this equation as A B

C D

N =
 AUN−1 − UN−2 BUN−1

CUN−1 DUN−1 − UN−2

 (A.17)

where

UN = sin ((N + 1)KΛ)/ sin (KΛ) (A.18)

and

KΛ = cos−1
(1

2 (A+D)
)
. (A.19)



B
Reduced Parameters of

Radial Photonic
Crystals

The purpose of this study is the design of a simplified structure of a RPC
shell with four layers (two layers with material A and two layers with material
B), with rint = 15 mm, da = db = 5 mm and whose constitutive parameters
are described by:

µra(r) = d

0.347r , µrb(r) = d

0.5r , (B.1a)

µθa(r) = 0.08r
d

, µθb(r) = 0.04r
d

, (B.1b)

εza(r) = d

0.143r , εzb(r) = d

0.1r . (B.1c)

The simplified structure should be able to act as a resonator at the same
frequencies that a RPC shell. The equation that models the electric field
inside a 2D RPC shell can be written as:

[
− ∂

∂r

(
r

µθ(r)
∂

∂r

)
+ q

rµr(r)

]
Eq(r) = rεz(r)ω2Eq(r). (B.2)

Terms r
µθ(r) ,

1
rµr(r) and rεz(r) define the normalized constitutive parame-

ters and the propagations features in the RPC shell. The simplified design of
the RPC shell has only radially dependent function for the angular perme-
ability and keeping constant values of radial permeability (µr(r) = µredr ) and
permittivity (εz(r) = εredz ). To obtain an equivalence between the complete
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and the reduced system we analyze the average of these terms over the four
layer. For the simplified structure we obtain the following expressions:

〈rεz(r)〉red =
∫ rext
rint

rεz(r)dr
rext − rint

≈ r2
ext − r2

int

2(rext − rint)
εredz (B.3)

〈
1

rµr(r)

〉
red

=
∫ rext
rint

dr
rµr(r)dr

rext − rint
≈ ln(rext/rint)

(rext − rint)
1
µredr

(B.4)

The same procedure apply to the RPC shells leads to

〈rεz(r)〉RPC = daε̂za + dbε̂zb
d

= ε̂za + ε̂zb
2 (B.5)

〈
1

rµr(r)

〉
RPC

=
da
µ̂ra

+ db
µ̂zb

d
= 1

2

(
1
µ̂ra

+ 1
µ̂zb

)
(B.6)

To ensure that both system are equivalent, it is necessary that

〈rεz(r)〉RPC = 〈rεz(r)〉red (B.7)

〈
1

rµr(r)

〉
RPC

=
〈

1
rµr(r)

〉
red

(B.8)

Applying these condition, we obtain the relation between the RPC pa-
rameters and the reduced profile:

ε̂za + ε̂zb = r2
ext − r2

int

(rext − rint)
εredz (B.9)

1
µ̂ra

+ 1
µ̂zb

= 2ln(rext/rint)
(rext − rint)

1
µredr

(B.10)

Then, for the angular permeability, the values of the reduced profile are
constant in each layer and equal to the respective layer at its center. This
values are modeled by:

µθ(r) =

µθa(r) = µ̂θa
(
rint + da

2 + (n− 1)d
)

µθb(r) = µ̂θb
(
rint + 3db

2 + (n− 1)d
) n = 1, 2 (B.11)

Table B summarizes the value of each parameter in each layer. In Fig.
B.1, a comparison of the resonant modes in both structures is shown.
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Ring resonator 1A 1B 2A 2B
µθ 0.14 0.09 0.22 0.13
εz 3.4 3.4 3.4 3.4
µr 1 1 1 1

Table B.1: Constitutive parameters of the reduced profile

Figure B.1: Comparison between the resonant modes in the complete RPC
and in the reduced shell
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C
Homogenization of the

SRR Unit Cells

In this appendix, the method used for the parameter retrieval of the SRR
unit cells is explained in detail. First, we obtain the expressions which define
the effective parameters. Then, an example of an extraction from a SRR unit
cell is calculated.

C.1 Transmission Matrix
We start with the analysis of the Transmission Matrix for a single dielec-
tric slab. Considering an isotropic and homogeneous medium with ηa =√

(µa/εa), na = √
µaεa and ka = nak0 and setting E(z) = x̂E(z) and

H(z) = ŷH(z), the forward and backward fields can be expressed as:

E(z) = E+
a e

ikaz + E−a −ikaz = E+(z) + E−(z), (C.1)

H(z) = 1
ηa

(
E+
a e

ikaz − E−a −ikaz
)

= 1
ηa

(
E+(z) + E−(z)

)
. (C.2)

We can express the forward and backward amplitudes in terms of the total
magnetic fields as:

E+(z) = 1
2 (E(z) + ηaH(z)) , (C.3)

E−(z) = 1
2 (E(z)− ηaH(z)) . (C.4)

Equations (C.1) and (C.3) can be written in a matrix form as:E
H

 =
 1 1
η−1
a −η−1

a

E+

E−

 ,
E+

E−

 = 1
2

1 ηa
1 −ηa

 E
H

 . (C.5)
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Figure C.1: Schematic representation of the field amplitudes. (a) Field am-
plitudes propagating between two positions of the same medium. (b) Field
amplitudes across and interface. (c) Field amplitudes in a single dielectric
slab.

Next, we obtain the Propagation Matrix which relates the propagation of
the forward and backward waves from one point to another point separated
d = z2 − z1. The amplitude of the waves are represented in Fig C.1(a). The
field amplitudes in z1 and z2 can be written as:

E+
2 = E+

0 e
ikaz2 → E+

1 = E+
0 e

ikaz1 = E+
0 e

ika(z2−d) = E+
2 e
−ikad (C.6)

E−2 = E−0 e
−ikaz2 → E−1 = E−0 e

−ikaz1 = E+
0 e
−ika(z2−d) = E−2 e

ikad (C.7)

Writing these equation in matrix form we lead to the Propagation Matrix :E+
1

E−1

 =
e−ikd 0

0 eikd

E+
2

E−2

 . (C.8)

Then, we have to analyse the interface between two different media [see
Figure C.1.(b)]. In this case, the Matching Matrix will related the field am-
plitudes at both size of the interface. To do that, we have to apply the
boundary conditions that impose the continuity of the fields across the in-
terface, Ea = Eb. and Ha = Hb. These conditions expressed in terms of the
forward and backward waves are:

E+
a + E−a = E+

b E
−
b , (C.9)

1
ηa

(
E+
a − E−a

)
= 1
ηb

(
E+
b − E−b

)
. (C.10)



C.1 Transmission Matrix 173

The Matching Matrix is:

E+
a

E−a

 = 1
τa

 1 ρa
ρa 1

E+
b

E−b

 ,
E+

b

E−b

 = 1
τb

 1 ρb
ρb 1

 E+
a

E−a

 , (C.11)

where

ρa = ηb − ηa
ηb + ηa

, τa = 2ηb
ηb + ηa

, (C.12)

ρb = ηa − ηb
ηa + ηb

, τb = 2ηa
ηa + ηb

. (C.13)

Now, we are ready to study the Transmission Matrix of a single slab.
The system under study is represented in Fig C.1(c) where the notation used
for the field amplitudes is shown. Applying the Matching Matrix and the
Propagation Matrix we can calculate the relation between the field in the left
and right sides of the dielectric slab. The procedure is:

E+
1

E−1

 = 1
τa

 1 ρa
ρa 1

E+
b

E−b

 = 1
τa

 1 ρa
ρa 1

e−ikbd 0
0 eikbd

E+
b′

E−b′

 (C.14)

= 1
τa

 1 ρa
ρa 1

e−ikbd 0
0 eikbd

 1
τb

 1 ρb
ρb 1

E+
2

E−2


Moreover, the relation between the electric and magnetic fields in both side
of the dielectric slab is:

E1

H1

 =
 1 1
η−1
b −η−1

b

E+
b

E−b

 =
 1 1
η−1
b −η−1

b

e−ikbd 0
0 eikbd

E+
b′

E−b′

 (C.15)

= 1
τa

 1 1
η−1
b −η−1

b

e−ikbd 0
0 eikbd

1 ηb
1 ηb

E2

H2


This matrix is known as Transmission Matrix and can be written as:

E1

H1

 =
T11 T12

T21 T22

 =
 cos(kbd) iηb sin(kbd)
iη−1
b sin(kbd) cos(kbd)

E2

H2

 (C.16)
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The relations of the elements of this matrix with the S-parameters are [47]:

T11 = (1 + S11)(1− S22) + S21S12

2S21
(C.17)

T12 = (1 + S11)(1 + S22)− S21S12

2S21
(C.18)

T21 = (1− S11)(1− S22)− S21S12

2S21
(C.19)

T22 = (1− S11)(1 + S22) + S21S12

2S21
(C.20)

For the symmetry of the problem S11 = S22 and S21 = S12. From the
first element of the Transmission Matrix we can obtain the value of nb as a
function of the S-parameters:

cos(nbk0d) = 1− S2
11 + S2

12
2S21

→ nb = 1
k0d

cos−1(1− S2
11 + S2

12
2S21

). (C.21)

From T12 and T21 we can obtain the value of the wave impedance ηb in terms
of the S-paramters:

η2
b = T12

T21 → ηb =

√√√√(1− S11)2 − S2
12

(1 + S11)2 − S2
12

(C.22)

The relation between the constitutive parameters with the wave impedance,
ηb, and the refractive index, nb:

εb = nb
ηb

µb = nbηb. (C.23)

C.2 Effective Parameters of SRR Unit Cells
In Sec. 4.3, a practical implementation of the constitutive parameters of each
RPC layer is performed by an arrayed microstructure using a unitary cell
composed of a SRR. The method used to obtain the material parameters of
these metamaterials is based on the previous analysis [48]. The S-parameters
for the unit cell of Fig C.2(a) are computed using HFSS Ansoft. S-parameters
are presented in Fig. C.2(b) and Fig. C.2(c).

Now, the effective permittivity and effective permeability are calculated
based on the assumption that the slab can be accurately described as a ho-
mogeneous material with these parameters. The permeability of an array
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Figure C.2: (a) A single unit cell of a negative index metamaterial. (b) and
(c) Magnitude and phase of the S-parameters calculated with HFSS.
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of SRRs can be modelled by a Lorentz-type function with the resonant fre-
quency separating positive and negative values of the effective permeability.
The characteristic effective parameters of this material have a typical behav-
ior given in Fig C.3(c) and Fig C.3(d).
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6. Jorge Carbonell, Francisco Rodŕıguez-Fortuño, Ana Dı́az-Rubio, Ale-
jandro Mart́ınez, Francisco Cervera and José Sánchez-Dehesa Directive
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