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Abstract

This paper addresses an easy computation of the multiple components of the
response to a sinusoidal input of a dual-rate linear time-invariant discrete
system from the Bode diagram of LTI systems arising from a lifted repre-
sentation. Based on those results, a generalized Bode diagram is suggested.
Some new conclusions derived from this conceptual interpretation are in-
troduced. This diagram provides a better insight in the frequency-response
issues in multivariable control than the standard Singular Value Decomposi-
tion of the lifted model. As an application, the output ripple suppression in
a multirate control scheme is presented.

Keywords: Dual-rate systems, frequency response, digital control, Bode
diagram

1. Motivation

The consideration of multirate systems (MRS) in fields like signal pro-
cessing and communications are well established many years ago. Digital
control is also an environment where multirate systems are used either to
overcome practical difficulties or to achieve unattainable results by single
rate control [1, 2, 3, 4]. In fact Dual-rate systems in systems and control
have long ago been of interest to engineers [5]: low-latency measurements,
limited-speed actuators in control loops, fast sensing in order to better filter
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measurement noise, network load [6, 7], computational resources [8], zero-
assignment [9], etc. are issues concerning possible applications advantages of
dual-rate systems.

Although there are some techniques described in [10, 11, 12, 13], the usual
procedure to handle a MRS that is a time-variable system is to consider the
technique known as lifting (in control area) [14, 15, 16, 17] or blocking (in
signal processing) [18]. With this procedure the system is transformed into
a LTI system once the system description is enlarged over a “metaperiod”.
Using this technique, even from a single-input single-output (SISO) system
an artificial multi-input and multi-output (MIMO) system is obtained.

One of the classical problems in multirate control is derived from the
consideration that such MIMO lifted system can be controlled as any other
multivariable MIMO one. However, there are not different input and output
variables, but just one input and one output, “lifted” at different input and
output sampling times in a periodically-repeating metaperiod. In automatic
control field this procedure was originally denoted as Vectorial Switch De-
composition by Kranc [19]. Different authors proved that lifting and blocking
were actually the exact same operation providing an unified analysis with
that of periodic systems [20, 21]. Together to on-line identification of this
kind of systems [22, 23, 24, 25], one of the recurrent topics that has been
explored in this environment is the frequency response and its use in con-
trol [26, 27]. Indeed, frequency-response issues are still a current matter of
interest in control [28, 29] and estimation problems [25].

From the above-presented considerations, it is common to study the fre-
quency response of dual-rate plants by using singular value decomposition
(SVD) of the lifted MIMO system. The conclusions are correct, but the re-
sults are partial due to the fact that the frequency response is obtained up
to a metaperiod and lifting is disregarded. Hence, some relevant aspects for
control cannot be obtained, as the single-rate lifted SVD leaves out some
specific properties of the dual-rate setup.

An alternative approach is the lifting in “frequency” instead of the lifting
in “time” that the above literature proposed. This is the so-called AC (alias
component) matrix [30]. It is difficult and laborious to do this operation.
Actually it is a hard task and for this reason it motivated contributions like
[31] where a coprime periods were supposed in the dual-rate scheme.

Computation of the frequency response of non-conventionally-sampled
systems was addressed in, for instance, [32, 33]. In [33], the goal was to detect
ripples in the controlled variables as well as to generalize engineering-related



design criteria; the dual-rate frequency response to a sinusoidal input was
be evaluated by checking the “conventional” Bode diagram of a particular
discrete transfer function. However, the results only applied to the case when
input sampling period T, was an integer multiple or divisor of the output
one T,. This work will introduce a “generalized Bode diagram” which lifts
such restriction, and includes several harmonic frequency components.

Preliminary work by the authors in [34] is extended in this contribu-
tion. A basic formula was introduced to easily obtain the multiple sinusoidal
components of the dual-rate system’s exact frequency response, under the
assumption that the input and output periods were rationally related.

In the work here presented, the results are completed introducing a table
of frequency components with an arrangement based on Bezout identity.
Also, a generalised Bode diagram valid for coprime input/output periods is
presented: the several harmonic components of a dual-rate response can be
read as interleaved fragments of the frequency response of a particular single-
rate system. Importantly, apart from a first academic example, the results
are applied to feedback control systems, proposing a methodology to analyse
the frequent output-ripple phenomena, allowing to overcome this anomalous
performance which is not clearly detected from the SVD diagrams of the
frequency response of the lifted system from previous literature.

The structure of the paper is as follows: next section recalls some prelim-
inary material and founds definitions and notation; Section 3 presents the
main result on frequencial components of the output of a dual-rate system:;
some numerical examples are explained in Section 4, and then in section 5
we will show the advantages of this new tool in a dual-rate control scheme
analysis example where ripple effect appears and it is exactly detected by
this computation tool. A conclusion section closes the paper.

2. Preliminaries and notation

Let us consider the transfer function G(z) = B(z)/A(z), in the Z-transformed
input-output domain representing a single-rate discrete-time linear time-
invariant (LTT) system. When the above system is excited by an input
u(k) = a*, where a is not a pole of the system, the response admits a
particular solution y(k) = G(a)a¥, because there exists a polynomial S(z)
such that the Z-transform of the output can be expressed as:

y(z) = G(z)u(z) = A(jg”?j a) — ZZG_(aa) + jizi




In the same way, when the input is u(k) = e™?«* such particular solution

is G(e/“Tw)es“Tuk usually denoted as frequency response, and the stationary
response to sinusoidal signals can be easily determined from it by taking real
and imaginary parts. The scalar T,, may be interpreted as “input sampling
period”. Of course, the actual computation of that solution does only have
sense for stable systems or systems stabilized in closed loop.

A dual-rate discrete LTI system is one in which the input and output
sequences are assumed to have different sampling periods, T, and 7,. If
they are rationaly related, it is possible to define the least common multiple
Ty = lem(T,,T,) usually known as "metaperiod” or ”frame period” and
there exist integers N,, N, such that 7, = T,,N, = T,N, (indeed, then
T./T, = N,/N, is a rational number). It is usual to define the “greatest
common divisor sampling period” T' = ged(T,,,T,) as well, such that Ty =
NT being N = lem(N,, Ny); therefore Ty = NT = N, T, = N,T,. With
these conditions, the behaviour of the dual-rate system may be characterised
via a “lifted” transfer function matrix:

ui(zN) = Grigtea(z™ )u(zV) (1)

where the variable 2V stands for the LTI z-transform argument at sampling
period Ty, y; is a vector of length N, wu; is a vector of length N,, and Gi;tteq
is a N, x N, transfer function matrix [15]. The lengths of the vectors are
increased in the case of MIMO systems (multiplied by the number of outputs
and inputs, respectively). For convenience, zero-based array element count
will be used in the sequel. For instance, the original T),-sequence y(k) and its
lifted one y;(k) (Tp related) are built in such a way that the i-th element of
yi(k), to be denoted as y;;(k), is y(k+« N +1), with ¢ = 0, N, ..., Ny (N, — 1).
In order to recover original sequences from lifted results in the Z-transformed
domain, an expand operator [35] may be used, sometimes padding with zeros
the intermediate samples.

Sampled-data lifted systems

If a strictly proper continuous system is discretised (assuming ZOH) at
period T, with a realization (A, B, C,0), then the lifted dual-rate model has a
realization (A;, B;, Cy, D;), at period NT', where these matrices are obtained
by repeated evaluations of the equations at sampling period T' giving rise to



well-known convolution-like formulae. For instance:

y(kN +v) = Cz(kN +v) = C(A’2(kN) + A" ' Bu(kN)+
+ A" 2Bu(kN + 1)+ ...+ Bu(kN + (v —1))) (2)

forv=0,...,N—1,1ie., y;,(kN) = y(kN +1i). However, the zero-order-hold
entails w(kN + dNy) = w(kN + (dN,+1)) =--- =u(kN + (d+1)N, — 1) =
u a(kN) for all d = 0,1...,(N, — 1), where u;4(kN) denotes each of the
distinct control actions in a metaperiod. Therefore the lifted matrices are
obtained by suitably stacking the results from the above equation. The reader
is referred for details, omitted here for brevity, to [15, 17, 36].

Let us also recall the following complex exponential formula for later use:
sequence t consisting on 1 for elements £k = 0, R,2R, ... and zero for the
rest can be described by:

=
_ j2nlk/R
1=0
By delaying such sequence, expressed as t;_,, the sequence with ones at
positions s, R + s,2R + s, ... and zeros elsewhere is also described.

3. Computation of frequency response

The purpose of this section is to introduce the calculation of the frequency
response of a dual-rate discrete system when a lifted LTI representation of
it (1) is available. Tt is assumed that the discrete-time input is the complex
exponential sequence e/“7** and the output sampling period is 7.

In many works in literature, the discrete frequency response operator
for a given system is defined as the result of substituting z = /70 in its
equivalent discrete lifting operator expression. As already mentioned, the
discrete lifting operator Gj;sieq is a transfer function matrix with dimensions
N, x N,, and so it is the complex-valued frequency response @lifted(ej‘”TO),
being, as previously mentioned, T the least common multiple of input 7,
and output 7}, periods.

In order to evaluate the gain of this frequency response matrix, the in-
duced 2-norm may be used as in the sigma plots of conventional multivariable
systems. That is, the maximum gain of the frequency response at a particular
frequency of a dual-rate system may be considered to be:

|Girea(e™™) ||z = T Gligrea(e™™)] (4)
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i.e., the maximum singular value & of the discrete lifting transfer matrix,
for each frequency. However, such frequency response is only evaluated at
the slow rate (meta-period) Tp = NT and, hence, the nuances of possible
resonances, ripples, etc. at faster frequences cannot be extracted because of
aliasing at frequencies larger than m/T,. This motivates the present work.

Turning back to the original computations to sinusoidal signals (under
the assumption that the frequency response is not computed at locations of
unit-circle poles), the following may be stated:

Theorem 1 The output y(k), when u(k) = e*T* of a SISO dual-rate
(N T, = N,T,) lifted system y;(2) = Glitea(2)wi(2) is a collection of compo-
nents y,(k) = g,e?Tvrt of frequencies w, = w—+2wir/Ny, forr =0,...,(N,—
1), with w, =« /T,, and ¥, is given by:

Ny—1

1
Yr = 7

N,

Nu—1
Z qu(ejw'rTyNy)6_jTywrpejWTuq (5)
Y p=0 ¢q=0
Proof: Let the lifted system be y;(2) = Giftea(2)wi(2), and denote elements
of Gliftea as Gpg (p=0,...,N, —1;¢=0,...,N, —1).
Consider the input signal u(k) = e7«¥. When lifted to a N, x 1 vector,
the ¢g-th element (¢ =0,..., N, — 1) of sample k will be

oI Tu(Nuk+q) _ ojwNuTu(k+q/Nu) (eijuTu)k eiwTua

Hence, the stationary sequence for output p will be:

Ny—1

ONAT N T " .
Yip(k) = Z G (€’ NuTu>€] Tugq (GJ NuTu) (6)

q=0

When undoing the lifting, the p-th element of y;(k), i.e., y;,(k) must
appear at time (kN, + p)T, in the non-lifted sequence, i.e., at positions p,
p+ Ny, p+ 2N, ... By using t; in (3) we may write that the elements at
positions k = 0, N,,2N,,... are given by tyy;0(k/N,). Those at positions
k=1N,+1,2N, +1,... are given by delaying one sample the sequence
tkyi1(k/Ny), i.e., the expression: t,_1y;1((k —1)/N,), and so on. Adding all



the sequences, we have?:

Ny—1

k) = Z tp - Yp (K —p)/Ny) (7)

Hence, replacing (6) in (7), we obtain:

Ny—1 Ny—1

NuTy \ k—p
Z br—p Z Gpg (7T ) T <€jw A > (8)

so that, using N, T, = N, T, and (3), we get y(k) to be:

Ny—1 Ny—1 j27rr(k P) N, —

Z Z Z GPQ(ejWN“T“)@j“’Tuqeijy(k_p)

q=0

Rearranging terms to recover the components:

Ny—1 ok
y(k) = Y E(w) (¢HHRD) (9)
r=0
where the component =, is given by:
Ny—1 N,—1 Lo
Z Z qu e]wNuTu)e]wTuq —J(wTy+ WT)
p=0 ¢q=0

Denoting w, = 7/T,, and also taking into account that

eijuTu — ej(w+2r7r/(NyTy))NyTy — eijTyNy (1())

we have the result stated in the theorem. 0

The above result may be easily extended to a multivariable case in which
G,, is a matrix, by considering the input to be u(k) = veT«* heing v an
arbitrary convex-valued vector indicating the amplitudes and phase shifts of
each input (details omitted for brevity).

ZNote that a slight abuse of notation has been used in (7): any arbitrary finite value
may be assigned to y;,(¢) for non-integer 1 because when multiplied by t;_, it will,
anyway, be zero. It will be non-zero only when ¢ = (k — p)/N, is an integer and so k —p
is multiple of N,.



3.1. Relationship to classic frequency-response computations

Discrete frequency-response computations in mainstream control software
are carried out by replacing z = ¢/“7 for some T'. It is easy to chech that, from
(5), the components will be given by the product of the frequency response
of a left factor:

{1 27272 Zi(Nyil)]Glifted(ZNy)

replacing z = e/*Tv | which gives a row vector, and the right factor (column

vector
) (1z2% .. 2N hHT

replacing z = ¢/“T«. In a MIMO case, the left factor would be
[[y Z_lly Z_(Ny_l)[y]Glifted<ZNy)

, and the right one (I, 2I, ...2N*7'I,)T  where I, is the N, x N, identity
matrix and [, is the N, x N, one. This is not, in general, an ordinary
frequency response computation because two different substitutions for z are
needed.

In the particular case of N, = 1, the right factor becomes equal to 1,
so the components can be computed as the usual frequency response of the
left factor with period T},. In the case N, = 1, the single component can be
obtained by plotting the frequency response of:

Glifted<ZNu)<1 z 22 T (11)
at period T, (note that, from (10), e/*rTvNy = eiwTulVu),

3.2. Coprime case

There is the possibility of computing the whole frequency response from
only one Bode plot in the case N, and NN, are coprime. Denote w, =
2/ (N,T,).

Then, the components of the frequency response are w, = w + rws.

Indeed, from (5), any of the terms e/“79 can be replaced by e/« Tua2mkud —
elwtwskuN)Tua for any integer k,. Similarly, for any integer k,, the terms
e~ 7rTuP can be replaced bye 7 (WHrwsthywsNy)Tup - Hence, if there exists w*, ky,
k, so that:

W' =w+ rws + kyws Ny = w + weky, N, (12)



then expression (5) can be computed as:

Ny—1N,—1
1 Yy u
— Jw*Ty N, —jTyw*p jw*Tuq
U= E E Gpy(e? v )e 1 Tvw Pe (13)
Yy = _
p=0 ¢=0

Note that (12) holds if and only if:
r = kyN, — k,N, (14)

The above equation is a well-known diophantine equation in the integer ring,
which has a solution for any r if N, and N, are coprime so that, finding a
particular solution k;, k; for the Bezout identity:

1= Fk,Ny — k,;Ny (15)
all solutions of (14) are, for any arbitrary integer p:
k., = kir + Nyp

hence:
W' =w+ ki1 * Nyws + pN, Nyws (16)

Based on the above, theorem 1 can be restated as:

Theorem 2 The output y(k), when u(k) = e*T* of a SISO dual-rate
(N T, = N,T,) lifted system y;(2) = Glirea(2)wi(2) is a collection of compo-
nents y.(k) = y.e?7vr% of frequencies w, = w + w,r, forr=20,..., (N, —1).
Denoting by Tpnin = Ty/N, = T,/Ny, U is given by the result of evaluating
at z = eITmin®" the matriz expression:

1

Gii rreq(2Nv N ~ Ny
(1 27N | g (NymDNuy Zhfledl” ) C;S; ) . (17)

Y .
Z(Nu_l)Ny

*

where w* 1s computed following the Diophantine equation approach above.

Note that the above result is not valid if N, and N, are not coprime.

Example. For N, = 3, N, = 2, the Bezout equation admits a solution
k; = 2,k; = 1. Hence, the components of the frequency response will be read
in the above transfer function at frequencies:

(r=0):w, (r=1):w+4w,, (r=2):w+ 2w



3.3. Bezout tables
In the previous example, the associated Bezout equation is closely related

to the table below:
m

0 2 1

n |0 0 0
E{0 1 2 3 45

which can be interpreted in the following terms: when the input is a sinusoidal
of frequency w + nws, the output component of frequency w + mw; is given
by the ordinary frequency response of (17) at w + kws.

Proof is evident by using an input frequency w + nws instead of w and
m = r + n in Theorem 2 and, then, realising that £ N, is obtained at the
position m = 1, n = 0. Indeed, (15) means that one plus k, times counting
N, numbers must be equal to counting N, integers a total of k, times, which
is what the table does.

As another example, for N, = 4, N, = 3 we would have a Bezout table:

0 3

m|01 23012301 2 3
n|0 120120120 1 2 (19)
k[0 123456789 10 11

as, indeed, the solution to the Bezout equation, i.e., 1 = 3N,, — 2N, is found
at k = 9 in the table. So, the three output harmonics when u has a frequency
w € [0,ws) would be found by reading the Bode diagram of (17) at w + 9ws,
at w+ 6w and at w + 3ws. When u has a frequency w € [1, 2)wy, the output
component in [0, ws) would be read at w + 4w;, that in in [1,2)w, would be
read at w4 wg, the component in [2, 3)ws would be read at w+ 10wy, and the
last component in [3,4)ws would be read at w + Tws.

1 0 2
1 1 1

(18)

3.4. Multi-sine input (system interconnection)

As the output of a dual-rate system when subject to a sinusoidal input is a
combination of sinusoidal components, in general, the response of a cascaded
or closed-loop system to such a combination of input components will be
obtained by means of the superposition principle and application of previous
results.

Let us consider the input to be:

Nu—1
Uy = Z el @TTws) Tuk (20)

n=0

with w € [0, ws). Denote with w,, = w + nws.

10



Theorem 3 The output y(k), when u(k) is given by (20), of a SISO dual-
rate (N, T, = N,T,) lifted system y(z) = Gufrea(z)wi(z) is a collection
of components y,.(k) = y.e/Tvrk of frequencies w, = w + w,r, for r =
0,...,(Ny, — 1), with ws = 2w /(N,T,), and g, is given by:

Ny—1Ny—=1N,—1

1 A . A
= D D D GuleTM)eiTierre, elentia (21)
Yy

n=0 p=0 g¢g=0

The proof has no difficulty from previous results and superposition, as
above commented.

In the coprime case, given that all terms in the frequency response can
be computed from that of a single transfer function, we have the following
practical result:

Theorem 4 The output component at frequency w + mws is given by the
m-th component of the vector (starting index equal to zero) C, given by:

Y = GrprCy, (22)

where C, is a column vector which contains the input components c,, and
Grr 1s a Ny x N, frequency response matriz whose element m,n 1is given
by Gp(w + kws), where Gp is the result of (17), and k is obtained from the
Bezout table.

Example. In the case N, = 4, N,, = 3, from the Bezout table in previous
examples, denoting wy = w+ kwy the frequency response matrix will be given
by:

Gp(wo) Gplws) Gplws)
G (wg) Gp (wl) Gp (w;,) (23>
Gp(ws) Gp(wio) Gplws)
Gplws) Gplwr) Gplwn)

4. Examples of computation of frequency response
Ezample 1. In [34], an example on a continuous-time system with transfer

function G.(s) = 1/(s? + s + 2) ZOH-discretised at T = 0.2 seconds, with
N, = N, = 3 shows that Theorem 1 actually discovers that such sampling

11



pattern is a “conventional” sampling disguised as a multirate one. So, the
AC representation results (see reference for details), as expected, in:

G(elvT) 0 0
0 G (7 wtws)T) 0 (24)
0 0 G(ej(erQws)T)

Ezxample 2. For the same continous-time plant as in the previous example,
consider a realization of an auxiliary ZOH discretisation at 7' = 0.1 seconds,
with matrices A, B, C, D = 0. Denote B" = (A+1)B. Setting N, = 3, T, =
0.2, N, = 2, T, = 0.3, and metaperiod Ty = NT, being N = lem(N,, N,)
and T = ged(T,,T,), the following dual-rate lifted model is obtained:

r(k+1) = ASz(k) + (A*B" A2B" BM)uy (k)
uk) = ( 0?43 >“‘(k‘) * < C/?Bh COB 8 )“l(k) =

Computing its transfer function, we have a left factor for Theorem 1
Q(z) = (1 273)3Gip(25), and a right factor (1 2% 2*)”. Setting, for instance,
w = 4, the obtained components are —0.0664 + 0.00811: for the fundamental
component (4 rad/s) and 0.0000911—0.0000489; for the second one (4+/0.3
rad/s). In order to check the results, the actual time response will be com-
puted. Consider the lifted input sequence:

u (k) = (cos(wTpk) cos(wTpk +wT,) cos(wTok + 2wT,))"

Transformed to Z-domain, for w = 4, we get:

) , 2 (2~ cos ()
"0 e | Sl )

The discrete lifting operator is the transfer function matrix from (25).

Then, the lifted output sequence is y;(2) = Giifiea(2)wi(2), and the actual
output one (reversing the lifting operator) is: (1 z7!)y(z?) where an expand
operator (z + z?) has been applied prior to multiplication. The resulting
inverse Z-transform y(k) is a transient regime (decaying to zero):

Yerans(k) = (0.03313 + 0.026814)(0.793812 — 0.332687)F +
+(0.03313 — 0.026814)(0.793812 + 0.3326874)"

12



plus a steady-state frequency response with two components given by:

Ysteady(k) = (0.00004583 — 0.0000245¢)(—0.362358 — 0.9320394 )"+
+ (0.00004583 + 0.00002457) (—0.362358 + 0.932039:)F —
— (0.03318 + 0.0040574)(0.362358 — 0.9320397)" —
— (0.03318 — 0.0040574)(0.362358 + 0.932039:)"

corresponding to e*4Ty = (—0.3623584-0.932039:) and =47y ™ = (0.362358+
0.932039:), i.e., the two frequency components (4 rad/s and (4 + 7/0.3) =
14.472 rad/s, respectively). The coefficients associated to those terms cor-
respond to the results of Theorem 1, taking into account the fact that
cos(wT) = 0.5(e’“T + 77T} and round-off numerical errors.

Ezxample 3. If N, = 3, N,, = 2 is chosen and a lifted model is suitably gener-
ated from the realisation of the ZOH discretization at 7' = 0.1, application
of Theorem 1 for different frequencies results in the frequency plot (gener-
alized Bode diagram) in Figure 1: at low frequencies, the non-fundamental
components have a negligible amplitude and the response is, basically, the
same as the conventionally-sampled single-rate system at 7;,, = 0.3. Indeed,
at very low frequencies, the plant output is basically constant.

In order to check Theorem 2, the Bode diagram of the conventionally-
sampled system generated from (17), i.e.:

0.001612° + 0.0031672% + 0.003167z + 0.001557
24 — 1.88623 + 0.904822

is depicted in Figure 2. It can be seen that the components in the con-
ventional Bode diagram in Figure 2 are, indeed, portions of the diagram in
Figure 1 (in order to suitably compare the figures, note that all axis are in
logarithmic scale).

5. Application: Multirate Control Design Ripple Frequency De-
tection and Suppression

In this section an example leads to explain the advantages of using the
methodology exposed before. Consider the plant to be controlled:

1.5

(5+05)(s + 1.5) (26)

Gy(s) =

13
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Figure 1: Generalized dual-rate Bode diagram (7, = 0.3,7, = 0.2), depicting induced
components (at frequency w in the abscissae axis there appear the amplitude of components
at frequency w, w+27/(0.2-3), w+4x/(0.2-3)). For comparison, the frequency response
of the system with conventional sampling at T;, = 0.3s is presented in dotted-green line.

vl

-100 - Bl

1201 L L
10 10 10

Figure 2: Dual-rate Bode diagram (T, = 0.3,7,, = 0.2), depicting the harmonics in Fig. 1
(Coprime Case: single TF)

14



A suitable temporal behavior in the continuous response of the plant
called M (s) will be found by using a convenient PID continuous regulator;
for example: X
=] 27)
with K, = 8, T; = 0.2s., and T; = 3.2s. This regulator will be discretised
with, for instante, the discretisation in [37]:

GR(S) = Kp[l + TdS +

o+ 12~ + @2z
Gr(z) = 2T T (28)
with parameters defined by
Q@ = K,p(1+ %)T .
q1 = —Kp(l + 2Td — i) (29)
q2 = Kp(%)

As the sampling period increases, the performance of the loop decreases.
It is reasonably close to the continous-time one for 7' < 0.2, it degrades quite
a lot for T'> 0.4 and, in fact, it gets unstable for T" ~ 0.5.

Of course, the regulator can be designed taking this scarcer sampling into
account but, as discussed in [35], dual-rate schemes can extend the validity
of discretization-based designs for longer periods. As the objective of the
paper is not designing optimal-performance controllers but using the dual-
rate frequency response tools to detect potential problems in the loops, the
redesign of the controller departing from the discretised PID framework will
be pursued no further.

So, taking the PID again, we will assume that, for some reason, it is not
possible to take samples of the output process with period smaller than 0.4s,
but we will also assume that it is possible to design a dual-rate regulator that
operates with sampling intervals 7, = 0.4 s and T, = 0.4/3 s in the output
and input, respectively. So let us choose the setting NT' = 0.4 s, N, = 1,
N, = 3.

In the work developed by [35] and according to the scheme shown in
Figure 3, the sub-regulators equations will be found by means of

. 1

G rsiow(2s1) = T=ri0y (30)
M(z¢s

GRyast(2fs) = G((z;s))

where:
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Figure 3: Dual-Rate Control Scheme

Y(s)

e The z variables zg and zy, are related to slow and fast periods respec-
tively Tq =T, = NT and Ty, = T,

e In the same way M (zy) and M (zy,) represents the desired behavior of
the closed loop system M (s) discretized with zero order hold to Ty and
Tys respectively *. G(zss) will be the ZOH-discretization of the plant
at the fast rate.

In the simulation, the output is found that follows M(s) perfectly but
shows a ripple between samples at a frequency of

2 2T
Wripple = =
PP T omte 0266

= 23.6Rad/s (31)

In the reference [35], an alternative method in order to avoid this problem
is introduced. All of the above can be observed in plots in Figure 4, in the
time domain.

The objective of this example is to show that the frequency computation
tool developed here is able to observe these different behaviours at the correct
frequencies instead of at the “aliased” ones arising from considering only the
slow-rate meta-period.

Figures 5 and 6 (detail) show the generalised Bode diagram of two dif-
ferent control strategies, as well as the maximum singular value plot of the
low-rate lifted representation for comparison.

The frequency response curve of the closed loop system with the dual-rate
regulator obtained like in [35], shows the oscillating behavior between samples
with the presentation of a significant response peak in the area of close to
the slow-rate Nyquist frequency. This results in aliasing which conceals such
peak in such a way that it is barely distinghishable in the singular-value lifted

3For simplicity a stable and minimum phase system will be assumed. There is a valid
procedure in those cases. See [38]
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Figure 4: Dual-Rate Control. Unit step response

diagram. Also, the peak is detected at several higher-frequency aliases. From
the svd lifted diagram it is not possible to truly apprehend the actual ripple
frequency and its amplitude. However, with the generalised Bode diagram,
the ripple amplitude and frequency are clearly depiced. Hence, the proposals
in this paper seem to be better suited for analysing this kind of problems
than the sigma-plot of the lifted plant.

Following with the example, an attempt will be made to diminish the
magnitude of the response peak causing the oscillatory behavior by applying
a discrete-time single notch filter in the form of

Zgs +0.995

F(zp5) = 0.72
(21s) 2+ 04

(32)
operating at a period Tts. With this filter one zero next to the Nyquist fre-
quency is introduced in order to cancel the ripple on the dual-rate scheme.
Some reasonable dynamic is added an then the gain is adjusted. This behav-
ior of selective rejection, shown in Figure 7, produce the elimination of the
undesired intersample ripple while maintaining the other frequency domain
characteristics of the system relatively unchanged. See figures 7 and 8 for
frequency and time-domain results.
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Figure 7: Filter F'(zy,) frequency response

As previously discussed, the generalised frequency-response diagram clearly
shows how the notch elliminates the ripple, and there is no aliasing to disguise
at which frequencies and amplitudes the filter effect is present.

Finally, the time response to the unit step when this compensating notch
filter is added is now presented; see results in Figure 9.

6. Conclusions

The output of a dual-rate sampled system is a sum of component sinu-
soids when the input is a discrete sinuosidal input. An easy way to compute
this frequency response of a dual-rate system is presented in this paper com-
pleting previous preliminary work by the authors. The procedure leads to
a generalised Bode diagram; in the case of coprime input-ouput sampling
periods a conventional Bode diagram (suitably rearranged) can describe all
components of the system response. The different frequency components can
be arranged on a table arising from Bezout’s identities and lifting proce-
dures. The techniques are applied to dual-rate automatic feedback control
problems; they lead to an exact procedure useful to detect and overcome
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ripple phenomena in that kind of systems. This overcomes some conserva-
tiveness issues from using a multivariable frequency-response (singular value)
description of single-rate lifted systems in literature: such approach leaves
out specific properties of the multirate systems wich are kept in the proposed
methodology.
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