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Título: “Evolución de las regions reguladoras de la transcripción en el complejo de 

Mycobacterium Tuberculosis” 

 

Resumen: La bacteria de la tuberculosis mata a más de un millón y medio de personas 

al año y representa un problema de salud global. Las técnicas genómicas están 

permitiendo entenderla mejor de tal manera que la cantidad de datos genómicos, 

transcriptómicos, proteómicos y metabolómicos ha ido aumentando. Puesto que es una 

enfermedad global, la bacteria que la causa es también heterogénea. Recientemente, en 

el laboratorio se ha caracterizado a nivel genómico una colección global de cepas de 

tuberculosis. Esto nos ha dado un arsenal de polimorfismos presentes en las cepas 

circulantes de todo el mundo que pueden tener un impacto en el fenotipo (diferencias en 

expresión génica y proteica, epidemiología, presentación clínica). Particularmente 

muchos de esos polimorfismos afectan zonas reguladoras de la transcipción. Para 

empezar a entender ese impacto se propone este trabajo de investigación. El hecho de 

que dichas zonas estén o no conservadas a nivel global puede indicar su importancia 

para la virulencia y el desarrollo de la enfermedad. En este trabajo se plantea estudiar 

dichas regiones. Para ello, se han identificado diferentes elementos reguladores (sitios 

de unión de factores de transcripción, regiones de inicio de la transcripción y la 

traducción así como ARNs pequeños). Usando la información de mutaciones 

acumuladas en nuestra muestra genómica global clasificaremos dichas regiones como 

esenciales (conservadas evolutivamente) y no esenciales. 

 
Title: ‘Evolution of transcriptional regulatory regions in the Mycobacterium 

Tuberculosis Complex’ 

 

Summary: Mycobacterium tuberculosis is a bacterium that kills more than one and a 

half million people each year, constituting a global health issue. Modern genomic 

techniques are allowing to understand it better, so the amount of genomic, 

transcriptomic, proteomic and metabolomic data is constantly rising. As it is a global 

disease, bacteria which cause it are heterogeneous. Recently, a global collection of M. 

tuberculosis strains has been characterized in the lab, providing us with a vast set of 

polymorphisms present in the different strains which could have a great impact on their 

phenotype and clinical presentation or epidemiology. Particularly lots of these 

polymorphisms affect transcriptional regulatory regions in the genome. This work’s 

goal is to begin understanding that impact studying those regions. For that purpose, 

different regulatory regions have been identified and using the information stacked in 

the global sample of strains, we can classify them as essential (evolutionarily 

conserved) or nonessential. 
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1. INTRODUCTION 
 

Tuberculosis remains one of the world’s deadliest diseases of today, caused by a 

genetically related group of bacteria called the Mycobacterium tuberculosis complex. 

According to data from the World Health Organization (WHO), over 9 million people 

developed tuberculosis in 2013, and 1.5 million of them died from it. Nevertheless, this 

disease is preventable and fortunately can be treated as well, so a great effort is being 

made in order to fully understand the bacterial molecular mechanisms which cause it 

and allow Mycobacterium tuberculosis to persist in the host. The bacteria usually 

establish a long asymptomatic infection and evolve to the active disease only in some 

hosts, adapting to a greatly changing environment. This has frustrated the effective 

control of the disease by needing long complex treatments and inefficient vaccines. The 

main challenge when approaching these problems is the fact that the bacterium is very 

heterogeneous, thus a huge collection of genomic, transcriptomic, proteomic and 

metabolomic data coming from modern techniques needs to be analyzed before actually 

developing effective treatments for the disease. 

 

 

 
 
Figure 1.  Estimated absolute numbers of TB cases and deaths (in millions per year), 1990–2013. This figure 

illustrates the growing nomber of cases and the decreasing number of deaths associated to research progress 

(extracted from the Global Tuberculosis Report, WHO 2104). 

 

1.1. M. tuberculosis evolution, resistances and survival 

 

Evolution through genetic variability has produced seven different M. tuberculosis 

lineages from its origin 70 thousand years ago, distributed today across the planet. It has 

been proved that this evolution is associated to ancient human migrations and their 

changes in population, concluding that modern lineages of the bacteria have a potential 

higher virulence in the sense of shorter latency times (Comas et al, 2013). These 

lineages have evolved from adaptation to high host densities, while older lineages show 

lower virulence evolved from low host densities. More than 34,000 SNPs have been 

identified when analyzing diversity across lineages and strains, used to construct 

phylogenetic relationships between them. Genetic diversity among the lineages of M. 

tuberculosis has some important clinical and epidemiological considerations, as it rises 

differences in the way disease progresses and the host response to it. 
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M. tuberculosis has high survival and resistant capabilities that difficult the global 

control of the disease. Susceptible M. tuberculosis can be treated today with strict 

antibiotic therapies in two phases: an intensive two-month phase using isoniazid, 

rifampicin, pyracinamide and ethambutol; and a continuation four-month phase with 

just two of the later (Espinal et al, 2000). Still, resistance to those treatments increases 

over time and some strains require the use of second-line drugs which are more toxic 

and less effective. The mechanisms by which resistance develops and fixates in M. 

tuberculosis are not well understood yet, and involve a number of strategies used by 

mycobacteria to adapt and evolve (Fonseca et al, 2015). 

 

Moreover, M. tuberculosis ability to survive and adapt to changing microenvironments 

inside the host is surprisingly strong. Upon infection by aerosol spreading, the bacteria 

are fagocytosed by macrophages in the lung and able to replicate inside these cells by 

inhibiting the fusion between the phagosome and bactericidal lysosomes. Infection can 

persist for long periods of time without activating, surviving the dynamic host 

environment through a set of resources. Some of their challenges are reactive oxygen 

and nitrogen stress, or pronounced shifts in oxygen availability (Bartek et al, 2014). 

Figure 2 illustrates how the bacteria can adapt to anaerobiosis within a short period of 

time. 

 

 
 

Figure 2. Tuberculosis oxygen consumption during adaptation to anaerobiosis as measured by methylene blue 

decolorization. It shows how bacteria shift their metabolism and adapt to hypoxia through a set of transcriptional 

regulations within a few days (extracted from Bartek et al, 2014). 

These properties of M. tuberculosis, its latent persistence in the host combined with the 

easy transmission make it so difficult to control and eradicate worldwide. 

 

 

1.2. Research and data collection 

 

Collecting as much data as possible is crucial to understand M. tuberculosis. Studying 

the mechanisms by which it survives in the host and gathering a list of essential genes 

for the bacterium were the first actions that needed to be done. 

 

After a century of research with rising drug resistances, studies first tried to identify 

genes essentially required for bacterial growth (Sassetti et al, 2003). The main goal was 

to find new targets for antimycobacterial agents through the use of transposon site 
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hybridization, so those genes which could not sustain a transposon insertion were 

considered important for growth. This first set of essential genes was classified by gene 

function as shown in Table 1. At the same time, experiments in vivo (Sassetti and 

Rubin, 2003) managed to narrow a list of 194 genes essential for growth.  

 

Years later, the advent of RNA sequencing allowed the discovery of a considerable 

amount of non-coding RNA in the transcriptome of M. tuberculosis (Arnvig et al, 

2011). It was noted that a lot of sequence reads mapped intergenic regions over 

annotated genes, and those sRNAs accumulated up to a high degree in the lungs of 

infected mice in the lab, suggesting its relation with pathogenesis. Also, a potential 

post-transcriptional regulatory network was thought to control the adaptation responses 

of the bacteria.  

 
Table 1. Essential pathways in M. tuberculosis and M. bovis. Predicted essential genes play a central key role in 

metabolism. Essential steps are those that are performed by genes identified as being required for optimal growth 

(extracted from Sassetti et al, 2003). 
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Further studies employing new methods of global phenotypic profiling carried on 

characterizing essential genes in M. tuberculosis (Griffin et al, 2011), consisting on 

high-density mutagenesis and deep sequencing of libraries of complex mutants under 

different conditions and pointing out the importance of sterol catabolic functions related 

with survival within the host. This survival, achieved by alternating between replicating 

and non-replicating states, was further studied through the architecture and expression 

of promoters (Cortes et al, 2013). Over 4,000 transcription start sites were identified, 

many of them overlapping with start codons and revealing that a part of the 

transcriptome in M. tuberculosis was leaderless. It was also noted that the leaderless 

transcripts did not match essential genes, but these accumulated in models of starvation 

in vitro, indicating a possible importance related to the non-replicating state of the 

bacteria. 

 

 

 
 

Figure 3. TF-binding sites identified by ChIP-seq. The 4.4-Mb H37Rv strain chromosome is divided into 

nonoverlapping 50-bp windows, and green spikes represent the total number of TF-binding events within each 

window (extracted from Minch et al, 2015). 

 

Other projects analyzing the bacterial adaptations to hypoxia managed to map 

transcription factor binding sites by ChIP-Seq experiments, establishing an initial 

reconstruction of the transcriptional regulatory network of M. tuberculosis with 50 TFs 

(Galagan et al, 2013). Shortly after, this network was refined and extended to include 

154 TFs (Figure 3), identifying new binding events and several binding motifs and so 

providing a huge set of possible binding regions to analyze (Minch et al, 2015). 

 

All the previous data collected over time has helped to answer many questions and test 

hypothesis, and its global analysis as a whole could lead to important advances in the 

fight against tuberculosis. 
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1.3. Essential and nonessential genes in Mycobacterium tuberculosis 

 

Essential genes are the ones thought to be critically important for the growth and 

survival of an organism. Identifying essential genes helps to understand the physiology 

of a species, which in turn allows for the proposal of new drug targets (Grazziotin et al, 

2015). However, the essentiality of a gene is relative to the experimental conditions and 

the measured output variable like growth or colony formation in vitro (Fang et al, 

2005). Here, the concept of nonessential genes can be introduced, understood as those 

genes which are not absolutely vital for survival under certain conditions.  

 

In bacteria, essential genes seem to be more conserved than nonessential ones (Jordan et 

al, 2002), and the rate of evolution of these essential genes has traditionally been 

thought to be slower than the nonessential one. Analyses of evolutionary conservation 

have demonstrated that essential genes are generally conserved among bacteria 

compared to nonessential genes (Xiaodong et al, 2007). 

 

In the particular case of Mycobacterium tuberculosis, conservation of its genes has been 

addressed and as expected, essential genes were more conserved than nonessential ones 

through sequence comparative analyses (Comas et al, 2010). The average nucleotide 

diversity (π) for both sets of regions was calculated in that study, illustrating that 

nonessential genes accumulated more polymorphisms in average than essential ones 

(Figure 4). This parameter measures genic variation, in other words, the degree of 

polymorphism of a population (Nei and Li, 1979), in this case a population of 

sequences. It can be seen that essential gene regions have lower diversity in average and 

maximum range than nonessential gene regions. 

 

 

 

 
 

Figure 4. Average gene-by-gene nucleotide diversity across essential and nonessential genes. Box plot indicates 

median (horizontal line), interquartile range (box) and minimum and maximum values (whiskers) (extracted from 

Comas et al, 2010).  
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1.4. Analyzing transcription regulation: a systems biology approach 

 

Transcriptional regulation is the way cells control their gene activity by adjusting the 

rate of transcription. This control allows the cell to respond to signals and elaborate a 

response, and it is mediated by certain genomic regions, transcription factors and other 

proteins. The comprehension of this complex control mechanisms requires a systems 

biology approach. The understanding of a cell as something more than the sum of its 

parts calls for the integration of high-throughput omics data to build and refine 

predictive models of dynamics and interactions of cellular components (Aderem et al, 

2011). In M. tuberculosis, the pathogen-host system is especially important to model 

due to the complex relationships established by the bacteria and the immune system. 

Proteins that interact with other small molecules messengers, other proteins and DNA 

mediate M. tuberculosis adaptation inside the host. These form the bacterial 

transcriptional landscape by converting stimuli into responses in a coordinated fashion 

(Minch et al, 2015). However, genetic diversity is something to consider when 

constructing models, as it affects the outcome of predictions to search for global 

solutions to a disease. In this context, analyzing the transcription regulatory regions of 

M. tuberculosis means one more step towards the iterative refining of a model which 

goal is to identify potential new therapeutic targets. 

 

Recently, a global collection of M. tuberculosis strains has been characterized in the lab 

(Comas et al, 2013), providing us with a set of more than 34,000 polymorphisms that 

can influence the bacterial phenotype through differences in gene and protein 

expression, epidemiology or clinical presentation. A high number of these 

polymorphisms particularly affect genomic regions which regulate transcription, and the 

fact that the regions are conserved or not could indicate its importance for the virulence 

and development of the disease. Analyzing the genetic diversity of all regions that 

regulate transcription across the strain collection may shed some light on the 

understanding of how significant their functions are for the bacteria and how evolution 

has affected and selected these regions among the different strains. 

 

 

2. OBJECTIVE 
 

1. To calculate the genetic diversity of essential and nonessential gene regions 

from a global genetic sample of 216 Mycobacterium tuberculosis strains as 

proof of concept. The values obtained will serve as reference to classify other 

regions as conserved (values similar to essential genes) or not conserved (values 

similar to nonessential genes). 

2. To calculate the genetic diversity of five transcription regulatory regions from 

the same sample of sequences: 

a. 16S RNA 

b. Antisense RNA (asRNA) 

c. Noncoding RNA (ncRNA) 

d. Transcription factor binding sites (TFBS) 

e. tRNAs 

3. To compare the former genetic diversity values to the reference ones and 

classify every transcription regulatory region as conserved or non-conserved 

based on statistical tests. 
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3. MATERIALS AND METHODS 
 

 

3.1. Data sources 

 

The first data source was the open tuberculosis database TubercuList 

(tuberculist.epfl.ch; Lew et al, 2011), from where data for 16S, ncRNA and tRNA 

regions was extracted. For this purpose, an advanced search was performed in the 

database looking for the entire annotated genome of the bacterium. The website 

generated a list of every annotated gene and region which was downloaded as a 

spreadsheet. This file containing the genomic position of every region was filtered with 

a custom Python script to select and keep the three sets of regions mentioned before, 

resulting in three individual files with the format ‘start – end – annotation’. 

 

The second data source was the MTB Network Portal database 

(networks.systemsbiology.net/mtb), from where data for the transcription factor binding 

regions was extracted. Browsing to the ‘Networks’ section, ‘ChIP-Seq binding Dataset’, 

a table containing the TF genomic binding locations was downloaded, and again 

processed with a custom Python script to achieve the format start – end – annotation. 

Regions selected were ±15 nucleotides from the center of the ChIP-Seq peak. 

 

The third data source was bibliography (Arnvig et al, 2011; Arnvig et al, 2014), where 

experimental data for asRNA and complementary data for ncRNA regions was 

extracted and given the same format than the rest of the regions. Finally, the list of 

essential and nonessential genes was provided by Dr. I. Comas from his previous 

research, as well as the multiple alignment file of M. tuberculosis strains and a reference 

sequence of a predicted ancestor to those strains (Comas et al, 2013). 

 

 

3.2. Extraction of regions 

 

From the multiple sequence alignment file containing the genomes of 216 

Mycobacterium tuberculosis strains, four different region datasets were extracted 

(Figure 5) using a combination of custom Python scripts and the ‘extractalign’ Emboss 

script (Rice et al, 2000). The datasets consisted on: 

 

 Dataset 1: subalignments of each type of region, one file per region. 

 Dataset 2: subalignments of each type of region, one file per region and 

containing an extra reference sequence from the ancestor. 

 Dataset 3: concatenated subalignment of all regions and the ancestor reference 

sequence, one file per type of region. 

 Dataset 4: concatenated subalignment of all regions and the ancestor reference 

sequence, one file per region. 
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Dataset 1 Dataset 2 

  
Dataset 3 Dataset 4 

  
 

Figure 5. Example of an essential region for each type of dataset. It can be seen that Dataset 1 contains a region 

for each strain, Dataset 2 contains an extra last ancestor sequence, Dataset 3 starts with ancestor and then the rest of 

regions concatenated for all strains, and Dataset 4 has the ancestor sequence and a concatenated for just one strain. 

 

Each dataset was meant to provide a different type of results after analysis. Dataset 1 

and 2 were intended to compare the resulting values of genetic diversity with and 

without the presence of the ancestor reference sequence as outgroup. Dataset 3 was used 

to find out the global number of mutations across the concatenated of each particular 

type of region. Dataset 4 paired the ancestor sequence with each separated strain 

concatenate to calculate its average divergence per site. 

 

 

3.3. Analyses of genetic diversity 

 

Following extraction, every file in the datasets was converted from FASTA to PHYLIP 

(interleaved format) by using the ‘seqret’ Emboss script (Rice et al, 2000). After that, 

datasets were ready to be analyzed with the software VariScan to calculate several 

genetic diversity population parameters. VariScan is a package for the analysis of DNA 

sequence polymorphisms at the whole-genome scale that performs sliding window or 

wavelet-transform based runs to capture information about the number and position of 

polymorphisms in an alignment (Vilella et al, 2005; Hutter et al, 2006). A different 

configuration was used for every dataset in the analyses (Table 2). 
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Table 2. Summary of relevant configuration parameters for running VariScan with every dataset. 

Parameter Dataset 1 Dataset 2 Dataset 3 Dataset 4 

StartPos 1 1 1 1 

EndPos 0 0 0 0 

RefPos 0 1 1 1 

Outgroup none last first first 

RunMode 12 22 22 21 

SlidingWindow 1 0 0 0 

WidthSW 50 - - - 

 

 

All output files from the VariScan software were loaded into a custom Python script 

which extracted and calculated the averages of the following diversity parameters from 

the sequences (some of them for each dataset): number of segregating sites (S), total 

number of mutations (Eta), nucleotide diversity (π), Waterson’s nucleotide diversity per 

site (Theta), average divergence per site (K), Tajima’s D, Fu and Li’s D and F, and Fay 

and Wu’s H. 

 

 

3.4. Statistical tests 

 

All statistical tests were conducted using the software package R (R-project.org). The 

following tests were applied to data coming from the results of VariScan analyses: 

 

 Wilcoxon rank-sum test: this non-parametric method tests if two sets of samples 

originate from the same distribution. It is more efficient than a t-test on non-

normal distributions. This test was performed in R through the function 

‘wilcox.test ( )’ for testing the independence of essential versus nonessential 

nucleotide diversity (π) value’s populations from Dataset 1. 

 

 Kruskal-Wallis one-way analysis of variance by ranks: this non-parametric 

method extends the Wilcoxon test to more than two groups with the same 

purpose. It was performed in R through the function ‘kruskal.test ( )’ on the 

whole set of nucleotide diversity (π) values from all regions of Dataset 1 to test 

their independence. 

 

 Pearson’s chi-squared test: this method tests a null hypothesis that the frequency 

distribution of certain events observed in a sample fits the chi-squared 

distribution. This evaluated how likely it is that differences between the sets are 

by chance. It was performed on R through the function ‘chisq.test ( )’ on several 

tables with values of segregating and non-segregating sites from Dataset 3 to 

find out the relationships between them. 
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4. RESULTS AND DISCUSSION 

 
In this section, results for the genetic diversity of each dataset will be presented along 

with plots to illustrate them. In addition, interpretation and validation of these results 

will be discussed and compared to initial hypothesis. 

 

4.1. Dataset 1 and 2 results 

 
Starting with the results from Dataset 1 (Table 3) and Dataset 2 (Table 4), average 

values for several genetic diversity parameters are shown. These two datasets had the 

same structure but the second one included the sequence of the ancestor. The goal was 

to evaluate the impact of the presence of this sequence in the analysis. Taking a quick 

look at the pi (π) column from both tables, it is seen that there is little difference in the 

results from including the ancestor sequence, so values from Table 1 were used in the 

following plots and calculations. 

 
Table 3.  Genetic diversity results for Dataset 1, showing the average values for different parameters. Values 

were calculated averaging all individual values from each type of region. 

Region S Eta Eta_E Pi Theta Tajima_D FuLi_D FuLi_F 

16S 9,000000 9,000000 7,000000 0,000066 0,000984 -2,100872 -4,56664 -4,25686 

asRNA 3,947368 3,947368 2,473684 0,000405 0,001329 -1,219222 -2,15631 -2,09963 

essential 8,441860 8,441860 5,412145 0,000256 0,001183 -1,605096 -3,21734 -3,04158 

ncRNA 1,515152 1,515152 0,969697 0,000646 0,001968 -0,909566 -1,77851 -1,70353 

nonessential 7,404422 7,404422 4,765646 0,000299 0,001356 -1,547591 -3,05893 -2,90256 

tfactors 0,325310 0,325310 0,204407 0,000486 0,001764 -0,775153 -1,33295 -1,31046 

tRNA 0,200000 0,200000 0,133333 0,000038 0,000438 -0,913855 -1,32889 -1,35424 

 

 
Table 4. Genetic diversity results for Dataset 2, showing the average values for different parameters. Values 

were calculated averaging all individual values from each type of region. 

Region S Eta Eta_E Pi FuLi_D FuLi_F FayWu_H 

16S_out 9,000000 9,000000 7,000000 0,000066 -4,633470 -4,453795 0,101034 

asRNA_out 3,684211 3,684211 2,315789 0,000395 -2,220612 -2,230967 0,051090 

essential_out 8,001292 8,001292 5,140827 0,000244 -3,236812 -3,152948 0,215645 

ncRNA_out 1,363636 1,363636 0,909091 0,000600 -1,764253 -1,757162 0,050406 

nonessential_out 6,512245 6,512245 4,194558 0,000266 -3,020020 -2,962339 0,178684 

tfactors_out 0,292037 0,292037 0,180741 0,000455 -1,305171 -1,338023 0,009060 

tRNA_out 0,200000 0,200000 0,133333 0,000038 -1,333447 -1,416456 0,002840 

 

 

 

An initial plot of the nucleotide diversity (π) values of all individual regions from 

Dataset 1 was made to have a general view of what type of regions had the most 

diversity (Figure 6). However, to better appreciate these results, a boxplot was built 

where the differences in diversity ranges were far more clear. Looking at these π values, 
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nonessential gene regions have a wider box than the essential ones, which means that 

their range of diversity is higher. 16S and tRNA regions have low diversity, asRNA 

regions are similar to essential regions, and ncRNA and TFBS regions have higher 

diversity. In reference to Tajima’s D, values of every region type are negative due to a 

high number of segregating sites being singletons (mutations occurring just in one 

sequence). A negative Tajimas’s D can have several explanations, including purifying 

selection, presence of deleterious mutations or population expansion. This last one has 

more sense, since modern lineages of M. tuberculosis evolved from adaptation to high 

host densities (Comas et al, 2013). 

 

 
 

Figure 6. Scatterplot of nucleotide diversity values of every region from Dataset 1. Black squares represent every 

data point, and red circles the median value of each region subset. 

 

 
 
Figure 7. Boxplot of nucleotide diversity values of every region from Dataset 1. Extreme outliers of nonessential 

and TFBS regions are left out of the plot for better clarity. 
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The next step was the statistical validation of the differences between the values of 

nucleotide diversity across the regions. For this purpose, a Kruskal-Wallis test was 

performed selecting each region type as a different category and with the null 

hypothesis that all samples come from the same distribution. A pi-value of 2.2x10-16 

was obtained in the test. As it is much lower than 0.05 (accepted α), the null hypothesis 

is rejected and it is assumed that the differences between region diversity are 

significant. 

 

Now, in order to validate the statistical difference between essential and nonessential 

gene regions as proof of concept, those two categories were individually compared in a 

Wilcoxon test, obtaining a p-value of 0.0271. Again, this value is lower than 0.05 and 

the difference between both regions is now statistically verified. 

 

4.2. Dataset 3 results 

 

Dataset 3 consisted on a concatenate of all region sequences against the ancestor 

reference.  One file per region type was analyzed in order to get the total number of 

polymorphisms of that region type (Table 5). 

 

 
Table 5. Number of segregating sites (polymorphisms) and non-segregating sites. Second one was calculated as 

the difference between the first and the total length of the alignment. 

Region Segregating 
sites 

Non-segregating 
sites 

essential 6193 921746 

nonessential 19146 2712669 

16S 9 1528 

asRNA 70 9257 

ncRNA 45 4481 

TFBS 1577 165823 

tRNA 9 3376 

 

 

Using Table 5, a Pearson’s chi-squared test of independence was performed to check if 

the presence of  polymorphisms had any relationship with the region analyzed. The 

result was a pi-value of 2.2x10-16, so it is statistically accurate to say that some regions 

have higher and lower levels of diversity than others, in other words, there are more and 

less genetically conserved regions. 

 

Assuming that essential gene regions are conserved through evolution and once proved 

that their genetic diversity is lower than the nonessential gene regions, it is possible to 

perform additional chi-square tests using the values of essential regions and every of the 

other regions individually. In this case, values of the two regions are taken with the null 

hypothesis that the occurrence of their polymorphism distribution is statistically 

independent, so finding a pi-value lower than 0.05 means that both regions have some 

kind of association or relationship. This way, comparing essential gene regions to the 

rest can give an idea of their evolutionary conservation: 
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 Essential vs. nonessential, pi-value = 0.000805: the comparison between those 

two yields a very low pi-value, meaning once more that both types of regions do 

not share a common polymorphism distribution. They have a negative 

relationship where essential regions are more conserved than nonessential ones. 

 

 Essential vs. 16S, pi-value = 0.8127: 16S RNA is a component of the 30S small 

subunit of bacterial ribosomes which rate of evolution is very slow and so it has 

been widely used to construct phylogenies. It is then not surprising to find a high 

pi-value in this test, meaning that the high conservation of the 16S region is 

closely similar to the essential gene regions. 

 

 Essential vs. asRNA, pi-value = 0.3594: antisense RNAs are single-stranded 

RNAs complementary to messenger RNAs which function generally is to inhibit 

translation of that mRNA. They are encoded inside the same gene region than 

the mRNA they regulate, and so it is expected for them to have the same 

diversity than the gene they belong to. This relatively high pi-value means that 

they are well-conserved, as they are subjected to a double evolutionary pressure. 

A first pressure is the one that they gene they are encoded into suffers, and then 

the second is relative to their true regulatory function (Arnvig et al, 2014). 

 

 Essential vs. ncRNA, pi-value = 0.0093: non-coding RNAs are functional RNA 

molecules that are not translated into proteins but have a broad set of regulatory 

functions. This pi-value points out to think that they are less conserved than 

essential gene regions, but it must be taken into account that inside the variety of 

regulatory roles they play, some may be very important and then conserved, and 

many more may be not subjected to evolutionary pressure and then much more 

free to accumulate mutations. So the individual conservation of this type of 

regions relies to a great extent whether they play an important role or not 

(Arnvig et al, 2014). 

 

 Essential vs. TFBS, pi-value = 2.2x10-16: data for transcription factor binding 

sites was extracted from ChIP-Seq experiments, and it is sure that lots of the 

peaks originate from random affinity binding to non-regulatory DNA sequences, 

so many of the analyzed regions may be inaccurate. The pi-value obtained 

indicates there is no conservation in relation to essential genes, but keeping in 

mind the discussed experimental bias, it is needed to further study this regions in 

the lab trying to prove if there is expression associated to every TFBS analyzed. 

 

 Essential vs. tRNA, pi-value = 0.00576: transfer RNAs are adaptor molecules 

that carry amino acids to the ribosomal translation machinery. One of the ends 

of a tRNA matches the genetic code in a sequence of three nucleotides called the 

anticodon. The pi-value shows that they are less conserved than essential gene 

regions, which could be explained by the fact that as the genetic code is 

degenerate, more than one anticodon can carry a given amino acid, so 

evolutionary pressure diminishes due to this phenomenon. The difference in 

codon usage of the different strains also support this theory (Andersson and 

Sharp, 1996; Cole et al, 1998). 
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In addition to comparing essential gene regions to the rest, every region was compared 

in the same way (chi-squared independence test) to the others, getting a matrix of values 

represented in Figure 8 as a heatmap. A multiple test correction using Bonferroni and 

Hochberg corrections was made but it yielded no significant changes in the p-values. 

This figure tries to represent all relationships between categories in a quick graphical 

way. Green squares mean that both regions share common levels of diversity, while 

orange tones indicate the opposite.  

 

 

 
 
Figure 8. Heatmap of the chi-square test comparisons between every pair of region types. Color key establishes 

the degree of relationship between two regions according to the pi-value. 

 

 

4.3. Dataset 4 results 

 

Dataset 4 was constructed by concatenating every region of a certain type for a given 

strain and comparing the resulting concatenate to the ancestor reference sequence. This 

way, values of divergence (K) from the ancestor for each strain and region could be 

obtained. Genetic divergence is the process of independently accumulating mutations 

over time, so analyzing theses values gives an idea of how evolutionarily distant is a 

strain from the ancestor.  

 

All values for each region type were grouped by lineage (from 1 to 7) and averaged to 

obtain the average divergence from the ancestor of every lineage and for each region. 

The resulting values were represented by bar plots (Figure 9).  

 

Looking at the essential and nonessential regions graphs, both share a common shape. 

lineages 2, 3 and 4 (the modern ones) appear to be more conserved than the rest for 

these regions. The rest of lineages show some more diversity, which could mean they 

have undergone more purifying selection. For asRNA, lineages 4 and 7 have the most
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Figure 9.  Average divergence of each M. tuberculosis lineage for every region type. 

Average divergence of essential regions Average divergence of nonessential regions 

Average divergence of asRNA regions Average divergence of ncRNA regions Average divergence of 16S regions 

Average divergence of tRNA regions Average divergence of TFBS regions 
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diversity, the rest are more conserved, especially lineage 6. For ncRNA, lineage 1 

stands out as the most divergent, while the others show little diversity, especially 

lineage 7. For the 16S region, the one which stands out is lineage 6, and the rest appear 

conserved, particularly lineages 5 and 7. For tRNA, lineages 1 and 6 have the highest 

diversity, while lineages 2, 5 and 7 are very conserved. Finally, every lineage shows 

high divergence in TFBS, the lowest ones being 4, 5 and 6. This is an exploratory 

analysis, and raises a lot of questions about why some regions are so conserved in 

certain lineages. This disparity could translate into differences in clinical manifestation 

of the strains of a lineage, something that should be further studies in the future. 

 

 

5. CONCLUSION 

 
This report presents an initial step in the understanding of how important transcriptional 

regulatory regions are in the Mycobacterium tuberculosis complex. It tries to address their 

levels of genetic diversity and conservation by comparison to essential and nonessential 

gene regions.  

 

From a global sample of 216 M. tuberculosis strains, nucleotide diversity, polymorphic 

sites and divergence of all the aforementioned regions were calculated using the software 

package VariScan. After it was statistically validated that essential regions were more 

conserved than nonessential regions, comparisons to every other region were assessed to 

check for relationships. Chi-square tests revealed that 16S and antisense RNA regions were 

conserved showing a diversity degree similar to essential regions. As expected, the 16S 

gene had few polymorphisms across the sample collection, thus presenting a low value of 

nucleotide diversity. Antisense RNA regions similarity to essential regions was explained 

by their double evolutionary pressure which difficults polymorphism fixation. Non-coding 

RNA regions and transcription factor binding sites appeared to be poorly conserved, but 

their complete dataset contained both many regions with high variability and many with 

zero variability. In the case of non-coding RNA, this fact suggests that regions with 

important regulatory roles in the cell do not allow diversity while other less essential 

regions are free from this pressure. Regarding the binding sites of transcription factors, the 

fact that the dataset comes from ChIP-Seq experiments where random affinity bindings can 

happen, could explain why the results are so polarized. Further experiments need to be 

done to check for active transcription associated to every predicted binding site. This way, 

new analyses could be performed to precisely determine which transcription factors are 

more essential for the cell and why. Finally, transfer RNA regions showed less 

conservation than essential genes, hinting that the particular codon usage of the bacteria, 

together with codon degeneracy, allows for some diversity within these regions. 

 

Future projects following this line of study could further analyze single regions from the 

datasets and perform lab experiments involving the most conserved regulatory regions to 

see if they could constitute a therapeutic target. Developing a global regulatory network 

model of M. tuberculosis which can predict this kind of outcomes is also a critical 

milestone in the fight against the pathogen. The results in this report could help in the 

refining of such complex models which need all the possible data of the different strains 

from around the world to better understand bacterial adaptation and intracellular 

persistence, and develop strain-specific therapeutics in the future. 
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