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Computer-Aided Diagnosis Software for
Hypertensive Risk Determination through Fundus

Image Processing
Sandra Morales, Valery Naranjo, Amparo Navea, and Mariano Alcañiz

Abstract—The goal of the software proposed in this paper is
to assist ophthalmologists in diagnosis and disease prevention,
helping them to determine cardiovascular risk or other diseases
where the vessels can be altered, as well as to monitor the
pathology progression and response to different treatments. The
performance of the tool has been evaluated by means of a double-
blind study where its sensitivity, specificity and reproducibility
to discriminate between health fundus (without cardiovascular
risk) and hypertensive patients has been calculated in contrast
to expert ophthalmologist opinion obtained through visual in-
spection of the fundus image. An improvement of almost 20%
has been achieved comparing the system results with the clinical
visual classification.

Index Terms—Retinal vessels, retinal vascular tree, vessel
calibre, bifurcation angles, hypertension.

I. INTRODUCTION

RETINAL vasculature is able to indicate the status of
other vessels of the human body. Classically, its study

is included in the standard screening of any patients with
cardiovascular risk and other diseases in which the vessels
may be altered inasmuch as it is a non-invasive or minimally
invasive procedure.

Nowadays, retinopathies associated with systemic diseases
such as diabetes and hypertension are increasingly affecting
the population. A direct, regular and complete ophthalmologic
examination seems to be the best approach for risk population
assessment [1]. However, population growth, ageing, physical
inactivity and rising levels of obesity are contributing factors
in increasing this type of diseases, so that the number of
ophthalmologists required for a direct examination of the risk
population is high [2].

Due to high resolution of digital fundus images, they can be
automatically processed providing invaluable help to clinicians
in diagnosis and disease prevention. Most attempts to automate
the process of interpretation of retinal vascular imaging are
focused on a specific disease, diabetic retinopathy, a disease
of high incidence and a significant risk of blindness that
occupies a very important part of the medical-surgical activity

S. Morales, V. Naranjo, and M. Alcañiz are with the Instituto Interuni-
versitario de Investigación en Bioingenierı́a y Tecnologı́a Orientada al Ser
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of the ophthalmologic resources [3], [4]. In some of these
studies it has been possible to relate the evolution of the
disease and the positive or negative response to treatment
with retinal vessel calibre [5]–[7]. However, there is not too
much experience in the use of these methods to evaluate
other types of vascular pathology although fundus photography
allows also determination of cardiovascular risk factors [8].
Vascular changes produced in systemic diseases usually induce
particular modifications in the vessels, such as changes in the
angle of intersection between arteries and veins, and changes
in the vessel calibres. Based on these facts, a system capable of
detecting the retinal vessels and measuring some geometrical
properties from a fundus image has been developed. The goal
of the software proposed in this paper is to assist ophthal-
mologists in diagnosis and disease prevention, helping them
to establish objective relations between the different vessels,
to determine cardiovascular risk or other diseases where the
vessels can be altered, as well as to monitor the pathology
progression and response to different treatments. This tool
has been applied in a clinical study in order to evaluate
sensitivity, specificity and reproducibility of the developed
system to discriminate between a normal vascularization and
cardiovascular pathology in contrast to the opinion of an
expert ophthalmologist obtained through visual inspection of
the fundus image.

Regarding vessel extraction techniques present in the liter-
ature, they can be mainly grouped into four categories: edge
detectors, matched filters, pattern recognition techniques and
morphological approaches. A more extensive classification can
be found in [9]. Most edge detection algorithms assess changes
between pixels values by calculating image gradient magnitude
and then it is thresholded to create a binary edge image [10],
[11]. Matched filters are filters rotated in different directions in
order to identify the cross section of blood vessels [12], [13].
Pattern recognition techniques can be divided into supervised
and unsupervised approaches. Supervised methods, such as
artificial neural networks [14] or support vector machines
[15], [16], exploit some prior labelling information to decide
whether a pixel belongs to a vessel or not, while unsupervised
algorithms [17] perform the vessel segmentation without any
prior labelling knowledge. Morphological processing is based
on vessels characteristics known a priori (line connected
segments) and combines morphological operators to achieve
the segmentation [18]–[20]. In general, techniques focused on
edge detectors lack of strength in distinguishing which are
desired edges and which are not, for example, in our case,
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the border of the vessels and the optic disc. Matched filters
have difficulty adapting to changes in width and orientation
of vessels, in all databases. Techniques that use supervised
methods get a better performance than those focused on
unsupervised ones and can produce very good results for
healthy retinal images. However, they need a large training
set of manually segmented reference images and it is difficult
to automate them for any dataset. Morphological processing
runs the risk of fragmenting the vessels.

As for state-of-the-art systems which compute measure-
ments of retinal vessels, most software is focused only on
calibre determination and no other measures are performed
[21]–[23]. Moreover, they are not used to detect retinal ves-
sels or measure geometrical properties automatically but the
diameters of all arterioles and venules are measured by trained
graders using different tools provided by the systems to make
this task simpler.

The rest of the paper is organized as follows: in Sec-
tion II the proposed method is presented, including material
definition, theoretical background and algorithm description.
Section III shows the system validation through a double-
blind study in addition to an intermediate validation of the
image processing. Finally, Section IV provides discussion and
Section V conclusions and some future areas for work.

II. METHOD

A. Material

Two different validations were performed to determine
effectiveness of the proposed work. One for validating the
main stage of the image processing and the other to validate
the results provided by the software. For each validation, a
different database was used due to its particular characteristics.

To validate the vessel segmentation, our method results were
compared with a public database of hand-segmented images
widely used in the literature. In the DRIVE database [24]
original images and the images manually segmented by two
different specialists are included. The first-observer images
were taken as reference (gold standard) to calculate similarity
degree between them and our segmentation.

For system validation, a set of 67 fundus images was used.
These images belong to a private database of the Fundación
Oftalmológica del Mediterráneo (Spain), which contains color
images of 2048 x 1536 pixels. The implemented system
was installed in this organization in order to be used by its
clinicians in their daily practice and be able to carry out a
clinic validation of the developed software based on a double-
blind study. The study was performed on 67 patients between
33 and 73 years old. Among them, a control group without
previous known pathology and the study group of hypertensive
patients were established. The control group was formed
by 38 healthy people and the study group by 29 diseased
patients previously diagnosed and treated or not for more
than 5 years of evolution. Both groups were established based
on the disease history of its members. Their fundus images
were evaluated twice. Once, by qualified ophthalmologists
who determined the presence or absence of vascular alteration
through visual inspection of the original image, and another

time using the developed system. A patient was considered
hypertensive if the clinician detected in their fundus at least
one sign of pathological arteriovenous crossing. The same tree
ophthalmologists rated the entire dataset with and without the
software. A minimum period of one month was established
between both rates to avoid the effect of the repeated exposure
to the images. The final expert rates were obtained taking the
majority vote among the three clinicians.

B. Theoretical background
Mathematical morphology is a non-linear image processing

methodology based on minimum and maximum operations
[25] whose aim is to extract relevant structures of an image.
Let f be a grey scale image and B be a sub-set or window,
called structuring element (SE) in morphological image pro-
cessing, whose shape is usually chosen according to some
a priori knowledge about the geometry of the relevant and
irrelevant image structures that want to be removed or kept.
The two basic morphological operators are: dilation (δB(f))
and erosion (εB(f)). Their purpose is to expand light or
dark regions, respectively, according to the size and shape
of the structuring element. Those elementary operations can
be combined to obtain a new set of operators or basic filters:
opening (γB(f)) and closing (ϕB(f)). Light or dark structures
are respectively filtered out from the image by these operators
regarding the structuring element chosen.

The method proposed in this paper applies these basic filters
directly along with more complexes derived from them, such
as a dual top-hat (ρB(f) = ϕB(f) − f ) and a supremum of
openings which is defined as γsupB (f) = maxi=1...N{γBi(f)},
being i the number of openings and B a family of linear
structuring elements with different orientations. The dual top-
hat lets detect dark objects smaller than the SE and the
supremum of openings is used when an only opening is not
enough to remove certain objects because they have different
orientations.

Different morphological operators that complement the pre-
vious ones are geodesic transformations. In these transforma-
tions two images are required, a marker and a reference image.
The geodesic operator used in the algorithm proposed in this
paper is the geodesic dilation which allows to filter objects
that are present in the reference image but not in the marker.
It is used to simplify the original image removing no desired
objects and preserving the shape of the rest.

With the aim of detecting specific patterns in an image, other
binary morphological operation can be applied, the hit-or-miss
transformation (HMT) [26]. The structuring element employed
in this operation is called composite structuring element since
it contains two SE. The first, denoted by BFG, defines the set
of pixels that should match the foreground while the second,
denoted by BBG, defines the set of pixels that should match
the background. By definition, BFG and BBG share the same
origin and are disjoint sets, i.e., BFG ∩BBG = 0. Depending
on whether the origin belongs to BFG or BBG, the HMT
extracts foreground or background pixels.

The effect of these operators on an image will be shown in
the next subsection where they will be applied to the images
under study.
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C. Algorithm

The computer-aided diagnosis software presented in this
paper is based on digital fundus image processing for the de-
termination of hypertensive risk. In general, systemic diseases
produce vascular changes in our blood system and usually
induce specific modifications in the retinal vessels; hence, the
system is focused on vessel detection and the measurement
of some of their features to characterize any retinal morpho-
logical change. So, the main stages involved in the system
are: firstly, vessel segmentation process; secondly, retinal tree
labelling to identify the pixels that correspond to each vessel
and the existing relationship between the branches; and thirdly,
performing characteristic measurements on the retinal tree,
using the previous information, to quantify significant changes
in the vascular network. These data will be used to classify
an image as belonging to a healthy patient or to other with
cardiovascular risk. The mentioned stages can be observed
in the block diagram of the Fig.1 where the entire image
processing carried out by the proposed system is illustrated.

Fig. 1. Block diagram of the presented tool.

1) Pre-processing
Generally, based on a standard protocol, the measurement of

retinal vessel calibres is focused on a specific region of interest
(ROI) of the fundus image [21]–[23]. This area is concentric
to the optic disc and it is related to with its diameter. So, for
that reason, in first place, the proposed system detects the optic
disc (OD) in an automatic way in order to be able to determine
the ROI where all measures will be performed (Fig. 4b). The
method used for the extraction of the optic disc is mainly
based on mathematical morphology along with a principal

component analysis (PCA) [27]. First, PCA is applied on the
RGB fundus image in order to obtain a grey image in which
the different structures of the retina are differentiated more
clearly to get a more accurate detection of the OD. Then,
the vessels are removed through inpainting technique to make
the segmentation task easier. Next, a variant of the watershed
transformation, the stochastic watershed transformation, fol-
lowed by a stratified watershed, are implemented on a region
of the original image. Finally, it must be discriminated which
of the obtained watershed regions belong to the optic disc and
which ones are not. A geodesic transformation and a further
threshold are used to achieve that purpose.

Once the ROI has been established, although original fun-
dus images are RGB images, the system is only drawn on
monochrome images for vessel detection. They are obtained
from the green band because this band provides an improved
visibility of retinal blood vessels. Afterwards, an image en-
hancement [19] is applied to improve even more, if it is
possible, their visibility.

2) Processing
The segmentation method used by the system is based on

mathematical morphology [26], curvature evaluation and k-
means clustering [28] for the detection of a vascular tree [29].
First, a small opening, using a disc of radius 1 (B1) as the
structuring element (SE), is performed on the enhanced green
component image to fill in any gaps of the vessels which
could induce errors in segmentation. In particular, the image
enhancement is carried out through a local shade correction
[19]. Then, a dual top-hat, with a circular SE larger than the
biggest vessel (B2), is applied with the goal of extracting all
of them and eliminating structures with high curvature that are
not vessels, as occurs in the optic disc. After that, to highlight
the vessels on the background, the next steps are followed.
Principal curvature is calculated as the maximum eigenvalue
of the Hessian matrix (H) [10]. Subsequently, a reconstruction
by dilation is applied to reconstruct the principal curvature
from a supremum of openings which were calculated using a
line of size 31 as SE every 15◦ (B3 = {B31 , B32 , ..., B3N },
with N the total number of openings). This operation removes
any structure smaller than this SE in any orientation obtaining
a cleaner background. Finally, to binarize the resulting image
a k-means clustering [28] is used with a k value equals to 3,
giving rise to fkm = (f1, f2, f3). Afterwards, a modification
of the k-means output is carried out; two of the three obtained
clusters are defined as vessel (fout = f1∪f2), considering that
f3 corresponds to the background. Three classes are required
because thick and thin vessels can be very different.

The next algorithm summarizes the main steps of the
segmentation method and Fig. 2 depicts the resulting images.

After the vessels have been detected, they must be labelled.
Retinal vascular tree labelling is focused on obtaining the
skeleton of vascular tree, detecting significant points (terminal,
bifurcation and crossing points) and a tracking process [29].
They are necessary steps to perform later the desired measures.

The skeleton of the vascular tree is obtained by a thinning
process from the segmented binary image [26]. Next, a pruning
process is applied to eliminate possible spurs and to avoid
multiple paths that are inherent in a 8-connected boundary.
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Algorithm: Segmentation.
Data: Original RGB fundus image f = (fR, fG, fB)
Result: Vessel binary mask, fout
initialization: B1, B2,B3 ;
fin ← fG Green component selection ;
fenh ← LSC(fin) Local shade correction ;
fop ← γB1(fenh) Opening ;
fdth ← ρB2

(fop) Dual top-hat ;
fκ ← max[eig(H(fdth))] Principal curvature ;
fso ← γsupB3

(fκ) Supremum of openings ;
frec ← γrec(fκ, fso) Reconstruction by dilation ;
fout ←MKM(frec) Modified k-means clustering ;

(a) (b)

(c) (d)

(e) (f)
Fig. 2. Vessel segmentation steps: (a) Original fundus image, (b) Green
component enhancement, (c) Dual top-hat filtering, (d) Principal curvature,
(e) Reconstruction by dilation and (f) k-means clustering (segmented image).

In a vascular tree skeleton there are three types of significant
points and all of them must be detected: terminal, bifurcation
and crossing points. To locate the terminal and bifurcation
points the hit-or-miss transform [26] is used. Fig. 3 shows
the SEs used to detect these points on a skeleton. 1’s define

the set of pixels that should match the foreground and 0’s
the background. Notice that all of them must be used in
all its orientations, one every 90o. On the other hand, to
detect the crossing points it will be necessary to have a
manual intervention as some of them are incorrectly defined
as bifurcation points.

1
0 1
1 0 1

(a)

1
1

1 0 1

(b)

1
1 1

1

(c)

0 1 0
0 0 0

(d)
Fig. 3. Structuring elements used to detect significant points: (a-c) bifurcation
points and (d) terminal points.

The tracking purpose is to analyse the direction of every
pixel of the skeleton and to identify which pixels belong
to each branch. The method used is proposed in [30]. The
algorithm is able to specify the direction of any skeleton point
from a starting point. In order to keep the relation information
between the branches, a specific numbering scheme is used.

3) Post-processing
Certain geometric measurements of blood vessels can help

to establish whether they have undergone morphological
changes over time and facilitate disease diagnosis. The remain-
ing parameters have been chosen due to the fact that they have
particular interest for the early hypertension detection:

Bifurcation angle: Angle formed by the daughter branches
for each bifurcation point. The branches are fitted for straight
lines by least-squares into a circular window centred on these
points.

Vessel calibre: It has been estimated as two times the
average of the geodesic distance [26] calculated from the
skeleton points of the branch to the edge of the corresponding
vessel.

Fig. 4 shows different stages of the image processing
performed by the developed software.

III. RESULTS

A. Segmentation validation

The performance of the vessel segmentation algorithm was
evaluated based on three concepts: accuracy (Ac) and true
positive (TPF) and false positive (FPF) fractions. In table
I these results can be observed. In summary, the average
values obtained by the proposed method are: Ac=0.9417,
TPF=0.6570 and FPF=0.0166. The segmented images by the
second observer was also compared with the gold standard in
order to note that there are also differences between the two
experts. See Table I.

In a parallel way, a study about the accuracy of differ-
ent vessel segmentation methods on the same database was
carried out in [31]. This study compared several approaches:
matched filter [32], scale-space analysis and region growing
[33], mathematical morphology and curvature estimation [18],
verification-based local thresholding [11] and pixel classifica-
tion [31]. Table II shows a comparison between the afore-
mentioned methods and ours. To sum up, it can be concluded
that our method has achieved a higher accuracy ratio and its
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(a) (b) (c) (d)
Fig. 4. Image processing performed by the developed software: (a) Original fundus image, (b) ROI determination, (c) Vessel segmentation, (d) Bifurcation
angles (up) and vessel calibres (down).

false positive fraction is, even, lower than the second observer
fraction. Moreover, apart from improving the accuracy ratio, it
must be understood out the optic disc edge is not detected as a
vessel unlike most edge detection methods, for example [10].
Figure 5 shows the resulting image of our method along with
the image obtained by [10]. The non-detection of this feature
is crucial to avoid multiple errors in the tracking process.

TABLE I
COMPARISON BETWEEN THE RESULTS OF THE PROPOSED METHOD AND
THE 2nd OBSERVER (AVERAGE VALUES AND STANDARD DEVIATIONS)

REGARDING THE GOLD STANDARD.

Proposed method 2nd observer
Ac 0.9417 (0.0076) 0.9473 (0.0048)

TPF 0.6570 (0.0668) 0.7757 (0.0596)
FPF 0.0166 (0.0093) 0.0275 (0.0083)

TABLE II
ACCURACY (AVERAGE AND STANDARD DESVIATION) OF SEVERAL

METHODS ON THE SAME PUBLIC DATABASE.

Ac
Proposed method 0.9417 (0.0076)
2nd observer 0.9473 (0.0048)
Niemeijer et al. [31] 0.9416 (0.0065)
Zana and Klein [18] 0.9377 (0.0077)
Jiang and Mojon [11] 0.9212 (0.0076)
Martinez-Perez et al. [33] 0.9181 (0.0240)
Chaudhuri et al. [32] 0.8773 (0.0232)

The optic disc segmentation is needed to establish the region
of interest where the measurements are performed. In [27], a
wide validation of this intermediate processing can be found.

B. Computer-aided diagnosis software validation

With the implemented tool, bifurcation angles, inside of an
existing region of the original image concentric to the optic
disc, were measured along with the calibre of a vein and an
artery manually selected and situated at the same distance from
the optic disc. Subsequently, a statistical analysis on different
variables, extracted from data provided by the system, was
conducted to see if any of them were able to discriminate
whether a patient belonged to the group of hypertensive or

without cardiovascular disease. Statistical Package for the
Social Sciences (SPSS, IBM SPSS Data Collection) version
17.0 was used for this purpose.

Two parallel statistical studies were performed, one
analysing the variables related to the calibre and other
analysing those related to the bifurcation angles. The reason
for the distinction was that only fundus images with at least
five measured bifurcation angles were considered valid for this
specific study. In both, the comparison between control and
study groups was conducted using one-way ANOVA, where
the dependent variables were each of the parameters calculated
from the data provided by the software (vein calibre, artery
calibre, relative calibre of the vein and artery (A/V ratio),
average, median, deviation and variance of the branching
angles, minimum and maximum angle and difference between
the maximum and minimum angle) and the factor was the
group formed by the control (no known disease) and study
(hypertension) subgroups.

Previous to the analysis, the normality of the calculated
parameters was checked using the Kolmogorov-Smirnov test.
From the obtained values, it can be concluded that only the
calibre of the artery (F (1; 66) = 4.471; p < 0.05) and the ratio
between the calibre of the vein and the artery (F (1; 66) =
4.161; p < 0.05) show statistically significant differences
between the control and study subgroups. Afterwards, using
only these parameters, the optimal threshold to separate both
classes was established and then the sensitivity, specificity
and accuracy of the system to discriminate between healthy
patients and with hypertensive pathology were calculated.

Sensitivity =
TP

TP + FN
= 56.41% (1)

Specificity =
TN

TN + FP
= 67.86%, (2)

Accuracy =
TP + TN

TP + FP + FN + TN
= 61.19%, (3)

where TP = 22, FN = 17, TN = 19 and FP = 9
are the true positives, false negatives, true negatives and
false positives, respectively. If the proportion of true results
of the analysed population is taken into account (i.e. the
system accuracy), ophthalmologist visual diagnoses agreed
with patient history 42% of the time without the computer
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(a) (b) (c)
Fig. 5. Vessel segmentation comparison: (a) Proposed method, (b) [10] method and (c) Manually segmented image belonging to the DRIVE database.

assistance and that value increases up to 61% with the
computer assistance. Their sensitivity and specificity are also
improved from 38% and 50% to 56% and 68%, respectively.
Therefore, it can be concluded that the use of this computer-
aided diagnosis software provides an improvement of almost
20% in hypertension detection.

IV. DISCUSSION

Thanks to the software validation, it has been demonstrated
that the calibre of the arteries and the relative calibre of the
veins and arteries show significant differences when patients
are classified either healthy or hypertensive. Despite these
results, it cannot be concluded that bifurcation angles are not
significant for this purpose because only 54% of the fundus of
the dataset could be analysed due to the fact that the remainder
contains less than 5 angles per image. Thus, the region where
the measures are taken, should be enlarged or the database
increased to repeat the same analysis.

Although the values of accuracy, sensitivity and specificity
of the system are not too much high in the hypertension
discrimination, it must be stressed that the results achieved
by clinicians by visual inspection of the fundus are improved
almost 20%.

With regard to the obtained measures, they are accurate and
reliable but also dependent on a correct skeleton detection and
significant point classification.

V. CONCLUSION

A computer-aided diagnosis software for hypertensive risk
determination has been presented. From a fundus image, the
tool automatically detects blood vessels and allows measure-
ment of bifurcation angles and selection of branches to deter-
mine their calibre. These data facilitate expert medical diag-
nosis and study of the progression of the disease. In particular,
the software has been used by expert ophthalmologists to help
them to discriminate between a normal vascularization and
cardiovascular pathology. It has improved by almost 20% the
accuracy, sensitivity and specificity in hypertension detection
achieved by direct visual inspection of the fundus.

In future work, the system will be applied to analyse
the retinal microvascular architecture of children with low
birthweight in order to establish the relationship between the
measurements obtained in these children and diseases such as
hypertension and cardiovascular problems in adult life, using it

as a prognostic marker of cardiovascular risk. The base of this
study (carried out by the Department of Paediatrics of General
Hospital of Valencia (Spain)) is that bifurcation angles, which
are determined at birth, are predictors of future development
of hypertension and cardiovascular disease. Moreover, the
analysis of the angles should be repeated enlarging the region
of measures or increasing the database, as has been mentioned
in the previous section. Regarding the values of sensitivity
and specificity of the system, they could be improved if other
classifiers were used, such as SVM, among others, or by
increasing the database size. In addition, the study to correlate
segmentation parameters and hypertensive pathologies will be
widen.
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