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ABBREVIATIONS AND DEFINITIONS 

 

 

 ADC: Analog to digital converter 

 

 API: In computer programming, an application programming interface (API) is a set 

of routines, protocols, and tools for building software applications. An API 

expresses a software component in terms of its operations, inputs, outputs, and 

underlying types. An API defines functionalities that are independent of their 

respective implementations, which allows definitions and implementations to vary 

without compromising each other. A good API makes it easier to develop a 

program by providing all the building blocks. A programmer then puts the blocks 

together. 

 

 ARM: ARM is a family of instruction set architectures for computer 

processors based on a reduced instruction set computing (RISC) 

architecture developed by British company ARM Holdings. 

 

 AVR microcontroller: The AVR is a modified Harvard architecture 8-

bit RISC single-chip microcontroller, which was developed by Atmel in 1996. The 

AVR was one of the first microcontroller families to use on-chip flash memory for 

program storage, as opposed to one-time programmable ROM,EPROM, 

or EEPROM used by other microcontrollers at the time. MegaAVR chips became 

popular after they were designed into the 8-bit Arduino platform. 

 

 CPU: Central Processing Unit 

 

 DAC: Digital to analog converter (DAC, D/A, D2A or D-to-A). 

 

 I2C: I²C (Inter-Integrated Circuit), pronounced I-squared-C, is a multi-master, 

multi-slave, single-ended, serial computer bus invented by Philips Semiconductor, 

known today as NXP Semiconductors, used for attaching low-speed peripherals to 

computer motherboards and embedded systems. Alternatively I²C is 

spelled I2C (pronounced I-two-C) or IIC (pronounced I-I-C). 

 

 ICSP: It is an AVRtiny programming header for the Arduino consisting of MOSI, 

MISO, SCK, RESET, VCC, GND.  It is often referred to as an SPI (Serial Peripheral 

Interface) which could be considered an "expansion" of the output, but really, you 

are slaving the output device to the master of the SPI bus.
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 JTAG: Joint Test Action Group (JTAG) is the common name for 

the IEEE 1149.1 Standard Test Access Port and Boundary-Scan Architecture. It was 

initially devised by electronic engineers for testing printed circuit 

boards using boundary scan and is still widely used for this application. 

Today, JTAG is also widely used for IC debug ports. In the embedded processor 

market, essentially all modern processors implement JTAG when they have enough 

pins. Embedded development relies on debuggers communicating with chips with 

JTAG to perform operations like single stepping and break pointing. 

 MCU: Microcontroller Unit 

 O.A.: Operational Amplifier    

 PCB: Printed Circuit Board 

 

 PWM: Pulse With Modulation 

 

 RAM: Random Access Memory 

 

 USB: Universal Serial Bus 

 

 USB OTG: USB On-The-Go, often abbreviated to USB OTG or just OTG, is a 

specification first used in late 2001, that allows USB devices such as digital audio 

players or mobile phones to act as a host, allowing other USB devices like a USB 

flash drive, digital camera, mouse or keyboard to be attached to them.  

 

 UART: Universal Asynchronous Receiver-Transmitter 

 

 SPI: The Serial Peripheral Interface (SPI) bus is a synchronous serial 

communication interface specification used for short distance communication, 

primarily in embedded systems.  

 

 SDA: Synchronous Data Adapter  

 

 SCL: Synchronous Clock 

 

 TTL: TTL serial (transistor-transistor logic). Serial communication at a TTL level 

will always remain between the limits of 0V and Vcc, which is often 5V or 3.3V. A 

logic high ('1') is represented by Vcc, while a logic low ('0') is 0V.
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INTRODUCTION 
 

 

It’s amazing how the light emitting diode (LED), which began as a faint glimmer in the 

sixties, has already surpassed incandescent and fluorescent lamps in terms of efficiency. 

Every time we are closer to the center of the era of LED, we use its light in many 

applications and many more are coming. In this project LED is one of the most important 

things, because of that, I am going to discuss a little about the evolution of LED lighting. 
 

We could say that the era of LED begins in 1962 with Nick Holonyak Jr., who developed 

the first visible LED. These LEDs emitted a faint red light. Shortly after was introduced 

to the market, but the light output was so small that only was used as an indicator light. 

 

For about 20 years the LED remained as a source of low brightness, until in the eighties 

the first high-brightness red LEDs were created. This transformed the faint glimmer of 

Holonyak, opening new applications for LEDs, mainly in traffic lights. But they remained 

indicator lights. The decisive event occurred in 1993 when Shuji Nakamura developed 

the first superluminescent blue LED. For the first time could be generated a white LED 

light. The blue LED superluminescent produced enough light to excite a phosphor 

coating and thereby generate white light. Thus was born an opened way to new LED 

lighting technology, also known as solid-state lighting. Shortly thereafter, in 1995, the 

Japanese company Nichia brought to market the first white LEDs. These LEDs had little 

luminous efficiency (~ 5 lm / W), and a very low colour rendering index (CRI ~ 60), 

among other limitations.  

 

Despite all disadvantages, many people began to glimpse the great potential of LEDs, 

and in 1999 Philips launched the first high-power LEDs 1W. LEDs quickly exceeded the 

limit of efficiency of 17 lm / W imposed by the incandescent bulb. In 2002, Philips 

introduced LEDs with luminous efficacies of up to 22 lm / W. Last year, the LED exceed 

the maximum luminous efficiency of fluorescent lamps. This, along with its other 

advantages, LED is standing in front of all lighting technologies. LED has more 

challenges remain, particularly the acquisition cost. According trends and predictions, 

LED prices will drop enough to enter the market in 2015 and it is expected that by 2020, 

dominate all markets.



In this project I want to develop an application for a 16*16 LED Matrix. It’s composed 

of 256 RGB 5050 programmable LEDs, in concrete the ws2812b LED. The idea is to use 

an Arduino board (microcontroller) to control the LED Matrix with a programming code 

and create, as a principal application, a digital equalizer and use two additional 

buttons for other modes.  

 

To create the application, we are going design a PCB with a microphone to receive 

the signal of the music or voice. Also, we'll add the two additional buttons in this PCB. 

 

The last step of this project is to improve the physical aspect of the LED Matrix. If we 

have time we would create a 3D CAD design that later would be printed in a 3D 

printer. 
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In this section we are going to define what Arduino is, describe the principal 

elements of an Arduino board and the development of the Arduino programming code, 

that’s mean hardware and software that works in Arduino. 

 

1.1 WHAT IS ARDUINO? 
 

Arduino is an “open-source” electronics platform based on “easy-to-use” hardware 

and software. It’s intended for anyone making interactive projects. 

 

1.2 HARDWARE 
 

Arduino senses the environment by receiving inputs from many sensors, and affects 

its surroundings by controlling lights, motors, and other actuators. 

Being free Arduino hardware platform, their design and their distribution can be freely 

used for the development of any project without acquiring a license. So there are 

different types of boards, ones created by the Arduino community (official) or others 

created by third parties but with similar features. In our project we used Arduino Due 

board. The features of it are described in the next point. 

 

1.2.1 ARDUINO DUE 

 

Figure 1: Front and back side of Arduino Due 
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INTRODUCTION 

 

The Arduino Due is a microcontroller board based on the Atmel SAM3X8E ARM 

Cortex-M3 CPU. It’s the first Arduino board based on a 32-bit ARM core microcontroller. 

It has 54 digital input/output pins (of which 12 can be used as PWM outputs), 12 analog 

inputs, 4 UARTs (hardware serial ports), a 84 MHz clock, an USB OTG capable 

connection, 2 DAC (digital to analog), 2 TWI, a power jack, an SPI header, a JTAG 

header, a reset button and an erase button. 

Warning: Unlike other Arduino boards, the Arduino Due board runs at 3.3V. The 

maximum voltage that the I/O pins can tolerate is 3.3V. Providing higher voltages, like 

5V to an I/O pin could damage the board. 

The board contains everything needed to support the microcontroller; simply connect 

it to a computer with a micro-USB cable or power it with an ADC adapter or battery to 

get started. The Due is compatible with all Arduino shields that work at 3.3V and are 

compliant with the 1.0 Arduino pinout. 

The Due follows the 1.0 pinout: 

 TWI: SDA and SCL pins that are near to the AREF pin. 

 

 The IOREF pin which allows an attached shield with the proper configuration to 

adapt to the voltage provided by the board. This enables shield compatibility 

with a 3.3V board like the Due and AVR-based boards which operate at 5V. 

 

 An unconnected pin, reserved for future use. 

 

ARM CORE BENEFITS  
 

The Due has a 32-bit ARM core that can outperform typical 8-bit microcontroller boards. 

The most significant differences are: 

 A 32-bit core, that allows operations on 4 bytes wide data within a single CPU 

clock.   
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 CPU Clock at 84 MHz 

 

 96 Kbytes of SRAM 

 

 512 Kbytes of Flash memory for code 

 

 A DMA controller that can relieve the CPU from doing memory intensive tasks 

 

FEATURES SUMMARY 
 

Microcontroller AT91SAM3X8E 

Operating Voltage 3.3V 

Input Voltage (recommended) 7-12V 

Input Voltage (limits) 6-16V 

Digital I/O Pins 54 (of which 12 provide PWM output) 

Analog Input Pins 12 

Analog Outputs Pins 2 (DAC) 

Total DC Output Current on all I/O 

lines 
130 mA 

DC Current for 3.3V Pin 800 mA 

DC Current for 5V Pin 800 mA 

Flash Memory 
512 KB all available for the user 

applications 

SRAM 96 KB (two banks: 64KB and 32KB) 

Clock Speed 84 MHz 

Length 101.52 mm 

Width 53.3 mm 

Weight 36 g 

 

Table 1. Summary of Arduino’s Due Features 
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POWER 
 

The Arduino Due can be powered via the USB connector or with an external power 

supply. The power source is selected automatically. 

External (non-USB) power can come either from an AC-to-DC adapter (wall-wart) or 

battery. The adapter can be connected by plugging a 2.1mm center-positive plug into 

the board's power jack. Leads from a battery can be inserted in the Gnd and Vin pin 

headers of the POWER connector. 

The board can operate on an external supply of 6 to 20 volts. If supplied with less than 

7V, however, the 5V pin may supply less than five volts and the board may be unstable. 

If using more than 12V, the voltage regulator may overheat and damage the board. The 

recommended range is 7 to 12 volts. 

The power pins are: 

 VIN. The input voltage to the Arduino board when it's using an external power 

source (as opposed to 5 volts from the USB connection or other regulated power 

source). You can supply voltage through this pin, or if supplying voltage via the 

power jack, access it through this pin. 

 

 

 5V. this pin outputs a regulated 5V from the regulator on the board. The board 

can be supplied with power either from the DC power jack (7 - 12V), the USB 

connector (5V), or the Vin pin of the board (7-12V). Supplying voltage via the 5V 

or 3.3V pins bypasses the regulator, and can damage your board. 

 

 3.3V. A 3.3 volt supply generated by the on-board regulator. Maximum current 

draw is 800 mA. This regulator also provides the power supply to 

the SAM3X microcontroller. 

 

 GND. Ground pins. 

 

 IOREF. This pin on the Arduino board provides the voltage reference with which 

the microcontroller operates. A properly configured shield can read the IOREF 

pin voltage and select the appropriate power source or enable voltage translators 

on the outputs for working with the 5V or 3.3V. 



                                                   

16 
 

Programming of a LED Matrix with a Digital VU Meter 
application 

 
 

 

MEMORY 
 

The SAM3X has 512 KB (2 blocks of 256 KB) of flash memory for storing code. The boot 

loader is preburned in factory from Atmel and is stored in a dedicated ROM memory. 

The available SRAM is 96 KB in two contiguous bank of 64 KB and 32 KB. All the available 

memory (Flash, RAM and ROM) can be accessed directly as a flat addressing space. 

It is possible to erase the Flash memory of the SAM3X with the onboard erase button. 

This will remove the currently loaded sketch from the MCU. To erase, press and hold 

the Erase button for a few seconds while the board is powered. 

INPUT AND OUTPUT 

 

 Digital I/O: pins from 0 to 53 

 

Each of the 54 digital pins on the Due can be used as an input or output, 

using pinMode (), digitalWrite (), and digitalRead () functions. They operate at 

3.3 volts. Each pin can provide a current of 3 mA or 15 mA, depending on the 

pin, or receive a current of 6 mA or 9 mA, depending on the pin.  

 

They also have an internal pull-up resistor (disconnected by default) of 

100 KOhm. In addition, some pins have specialized functions: 

 

 Serial: 0 (RX) and 1 (TX) 

 

 Serial 1: 19 (RX) and 18 (TX) 

 

 Serial 2: 17 (RX) and 16 (TX) 

 

 Serial 3: 15 (RX) and 14 (TX)  

 

Used to receive (RX) and transmit (TX) TTL serial data (with 3.3 V level). Pins 0 

and 1 are connected to the corresponding pins of theATmega16U2 USB-to-TTL 

Serial chip. 

 

http://arduino.cc/en/Reference/PinMode
http://arduino.cc/en/Reference/DigitalWrite
http://arduino.cc/en/Reference/DigitalRead
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 PWM: Pins 2 to 13. 

  

Provide 8-bit PWM output with the analogWrite () function. The resolution of the 

PWM can be changed with the analogWriteResolution () function. 

 

 SPI: SPI header (ICSP header on other Arduino boards). 

 

These pins support SPI communication using the SPI library. The SPI pins are 

broken out on the central 6-pin header, which is physically compatible with the 

Uno, Leonardo and Mega2560. The SPI header can be used only to communicate 

with other SPI devices, not for programming the SAM3X with the In-Circuit-Serial-

Programming technique. The SPI of the Due has also advanced features that can 

be used with the Extended SPI methods for Due. 

 

 CAN: CANRX and CANTX 

  

These pins support the CAN communication protocol but are not yet supported 

by Arduino APIs. 

 

 "L" LED: 13 

 

There is a built-in LED connected to digital pin 13. When the pin is HIGH, the LED 

is on, when the pin is LOW, it's off. It is also possible to dim the LED because the 

digital pin 13 is also a PWM output. 

 

 TWI 1: 20 (SDA) and 21 (SCL) 

 

 TWI 2: SDA1 and SCL1.  

 

 Support TWI communication using the Wire library. 

SDA1 and SCL1 can be controlled using the Wire1 class provided by the Wire 

library. While SDA and SCL have internal pull-up resistors, SDA1 and SCL1 have 

not. Adding two pull-up resistor on SDA1 and SCL1 lines is required for using 

Wire1. 

 Analog Inputs: pins from A0 to A11  

The Due has 12 analog inputs, each of which can provide 12 bits of resolution 

(i.e. 4096 different values). By default, the resolution of the readings is set at 

10 bits, for compatibility with other Arduino boards. It is possible to change the 

resolution of the ADC with analogReadResolution (). 

http://arduino.cc/en/Reference/AnalogWrite
http://arduino.cc/en/Reference/AnalogWriteResolution
http://arduino.cc/en/Reference/SPI
http://arduino.cc/en/Reference/DueExtendedSPI
http://arduino.cc/en/Reference/Wire
http://arduino.cc/en/Reference/AnalogReadResolution
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The Due’s analog inputs pins measure from ground to a maximum value of 3.3V. 

Applying more than 3.3V on the Due’s pins will damage the SAM3X chip. The 

analogReference () function is ignored on the Due. 

The AREF pin is connected to the SAM3X analog reference pin through a resistor 

bridge. To use the AREF pin, resistor BR1 must be desoldered from the PCB. 

 DAC1 and DAC2  

These pins provides true analog outputs with 12-bits resolution (4096 levels) with 

the analogWrite () function. These pins can be used to create an audio output 

using the Audio library. 

 

OTHER PINS ON THE BOARD: 
 

 AREF  

Reference voltage for the analog inputs. Used with analogReference (). 

 Reset  

Bring this line LOW to reset the microcontroller. Typically used to add a reset 

button to shields which block the one on the board. 

 

 

 

http://arduino.cc/en/Reference/AnalogWrite
http://arduino.cc/en/Reference/Audio
http://arduino.cc/en/Reference/AnalogReference
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Figure 2. Arduino Due PinOut Diagram 
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COMMUNICATION: 
 

The Arduino Due has a number of facilities for communicating with a computer, another 

Arduino or other microcontrollers, and different devices like phones, tablets, cameras 

and so on. The SAM3X provides one hardware UART and three hardware USARTs for TTL 

(3.3V) serial communication. 

The Programming port is connected to an ATmega16U2, which provides a virtual COM 

port to software on a connected computer (To recognize the device, Windows machines 

will need a .inf file, but OSX and Linux machines will recognize the board as a COM port 

automatically.). The 16U2 is also connected to the SAM3X hardware UART. Serial on 

pins RX0and TX0 provides Serial-to-USB communication for programming the board 

through the ATmega16U2 microcontroller. The Arduino software includes a serial 

monitor which allows simple textual data to be sent to and from the board. 

The RX and TX LEDs on the board will flash when data is being transmitted via 

the ATmega16U2 chip and USB connection to the computer (but not for serial 

communication on pins 0 and 1). 

The Native USB port is connected to the SAM3X. It allows for serial (CDC) communication 

over USB. This provides a serial connection to the Serial Monitor or other applications 

on your computer. It also enables the Due to emulate a USB mouse or keyboard to an 

attached computer. To use these features, see the Mouse and Keyboard library 

reference pages. 

The Native USB port can also act as a USB host for connected peripherals such as mice, 

keyboards, and smartphones. To use these features, see the USBHost reference pages. 

The SAM3X also supports TWI and SPI communication. The Arduino software includes a 

Wire library to simplify use of the TWI bus. For SPI communication, use the SPI library. 

 

 

 

 

http://arduino.cc/en/Reference/MouseKeyboard
http://arduino.cc/en/Reference/MouseKeyboard
http://arduino.cc/en/Reference/USBHost
http://arduino.cc/en/Reference/SPI
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PROGRAMMING 
 

Uploading sketches to the SAM3X is different than the AVR microcontrollers 

found in other Arduino boards because the flash memory needs to be erased before 

being re-programmed. Upload to the chip is managed by ROM on the SAM3X, which is 

run only when the chip's flash memory is empty. 

Figure 3. Arduino Due USB Ports 

Either of the USB ports can be used for programming the board, though it is 

recommended to use the Programming port due to the way the erasing of the chip is 

handled: 

 Programming port: To use this port, select "Arduino Due (Programming Port)" as 

your board in the Arduino IDE. Connect the Due's programming port to your 

computer. The programming port uses the 16U2 as a USB-to-serial chip 

connected to the first UART of the SAM3X (RX0 and TX0). The 16U2 has two pins 

connected to the Reset and Erase pins of the SAM3X. Opening and closing the 

Programming port connected at 1200bps triggers a “hard erase” procedure of 

the SAM3Xchip, activating the Erase and Reset pins on the SAM3X before 

communicating with the UART. This is the recommended port for programming 

the Due. It is more reliable than the "soft erase" that occurs on the Native port, 

and it should work even if the main MCU has crashed. 
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 Native port: To use this port, select "Arduino Due (Native USB Port)" as your 

board in the Arduino IDE. The Native USB port is connected directly to the SAM3X. 

Connect the Due's Native USB port (the one closest to the reset button) to your 

computer. Opening and closing the Native port at 1200bps triggers a 'soft erase' 

procedure: the flash memory is erased and the board is restarted with the 

bootloader. If the MCU crashed for some reason it is likely that the soft erase 

procedure won't work as this procedure happens entirely in software on 

the SAM3X. Opening and closing the native port at a different baudrate will not 

reset theSAM3X. 

The ATmega16U2 firmware source code is available in the Arduino repository. You can 

use the ISP header with an external programmer (overwriting the DFU bootloader). 

See this user-contributed tutorial for more information. 

*The Arduino Due can be programmed with the Arduino software. 

USB OVERCURRENT PROTECTION 
 

The Arduino Due has a resettable polyfuse that protects your computer's USB 

ports from shorts and overcurrent. Although most computers provide their own internal 

protection, the fuse provides an extra layer of protection. If more than 500 mA is 

applied to the USB port, the fuse will automatically break the connection until the short 

or overload is removed. 

PHYSICAL CHARACTERISTICS AND SHIELD COMPATIBILITY 
 

The maximum length and width of the Arduino Due PCB are 4 and 2.1 inches 

respectively, with the USB connectors and power jack extending beyond the former 

dimension. Three screw holes allow the board to be attached to a surface or case. Note 

that the distance between digital pins 7 and 8 is 160 mil (0.16"), not an even multiple 

of the 100 mil spacing of the other pins. 

The Arduino Due is designed to be compatible with most shields designed for the Uno, 

Diecimila or Duemilanove. Digital pins 0 to 13 (and the adjacent AREF and GND pins), 

analog inputs 0 to 5, the power header, and "ICSP" (SPI) header are all in equivalent 

locations. Further the main UART (serial port) is located on the same pins (0 and 

1). Please note that I2C is not located on the same pins on the Due (20 and 21) as the 

Duemilanove / Diecimila (analog inputs 4 and 5). 

 

http://github.com/arduino/Arduino/tree/master/hardware/arduino/firmwares/
http://arduino.cc/forum/index.php/topic,111.0.html
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1.3 SOFTWARE 
 

The Arduino platform has its own language that is based on C / C ++ and therefore 

supports standard C functions and some C ++. However, it is possible to use other 

programming languages and popular applications in Arduino like Java, Processing, 

Python, Mathematica, Matlab, Perl, Visual Basic, etc. This is possible because Arduino 

communicates by transmitting serial data which is a format that most of the above 

languages can support. For those who do not support natively series format, you can 

use a software to translate the messages sent by both sides to allow a fluid 

communication. 

It is quite interesting to be able to interact with Arduino by this variety of systems and 

languages. Depending on which are the needs of the problem that we are going to solve 

we can take advantage of the great media compatibility offered. 

The Arduino development environment is simple and intuitive. Also is available for free 

download from their official website and for different operating systems. It has been 

implemented with Processing that is similar to Java. Its latest version is 1.6.0 but in 

the project has been used 1.5.8.  

 

1.3.1 ARDUINO SOFTWARE 
 

Now we are going to discuss the usefulness of each program area focusing only on what's 

important. 

 

MENU 

The most important part is in Tools. From here we can configure the program so 

that it can communicate with the Arduino. Doing click in card will list the types of 

Arduino boards that the program understands. Here, we select Arduino Due because is 

the one that we are going to use. In the Serial Port field select the one that matches 

our board connect via USB. If you use Windows the port will have name more or less 

like this COMx but in Linux will be / dev / ttyUSBx where x is a number. In case there 

are multiple serial ports and do not know which is for our board, we disconnect our 

board, we note the ports that appear, we reconnect the board and turn to check again 

the list of ports. The new port that appear will be the port of our board. 
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COMMON BUTTONS 
 

These buttons are quick access to certain actions which are also available by the 

menu. The buttons are: 

 

 Verify: Verify and compile the code. 

 

 Upload: in addition to compile the code is injected into the board. 

 

  New: Creates a new sketch. 

 

 Open: Opens a previously saved sketch. 

 

 Save: stored on disk changes in the sketch. 

 

 Serial Monitor: opens a new window where you can communicate bidirectionally 

via serial with the board, we can read the information that Arduino send us or 

we can provide it. 

 

TEXT EDITOR 
 

In this area we will write the implementation (named for the sketch program) to 

load it into the Arduino board. The program has 3 parts. The first is the inclusion of 

libraries and the declaration of constants or global variables that can be used in any 

program function. The second is the setup() method, which is responsible for initializing 

the devices connected to the board and will be executed only after the system reboot. 

The third part is the loop() method, which you can run your code continuously. This is 

where the logic of the Arduino board will be written. As the language is very similar to 

C is possible to create other methods to separate functional blocks and leave ordered 

the program. 

 

MESSAGE AREA 

Displays the status of the program using one of the common buttons. 

 

TEXT CONSOLE 

Here appear in detail the events of message area. 
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Figure 4. Composition of Arduino’s Software 
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1.3.2 ADAFRUIT NEO PIXEL LIBRARY 
 

Controlling NeoPixels “from scratch” is quite a challenge, so we use Adafruit Neo 

Pixel Library in our project. This library is focus on the fun and interesting bits and 

works with most mainstream Arduino boards and derivatives with an Atmel AVR 8-bit 

processor from 8 to 16 MHz. Also works with the Arduino Due. 

Installation of the library is as follows: 

 

1. Visit the Adafruit_NeoPixel library page at Github.com. 

2. Select the “Download ZIP” button. 

3. Uncompress the ZIP file after it’s finished downloading. 

4. The resulting folder should contain the files “Adafruit_NeoPixel.cpp”, 

“Adafruit_NeoPixel.h” and an “examples” sub-folder. Sometimes in Windows 

you’ll get an intermediate-level folder and need to move things around. 

5. Rename the folder (containing the .cpp and .h files) to “Adafruit_NeoPixel” (with 

the underscore and everything), and place it alongside your other Arduino 

libraries, typically in your (home folder)/Documents/Arduino/Libraries folder. 

Libraries should not be installed alongside the Arduino application itself. 

6. Re-start the Arduino IDE if it’s currently running. 

 

Before you start with the code is important to know how are the LED of the matrix are 

connected. In our matrix are connected in serial, it means that is equal as a LED strip 

doing Zig-Zag. The most important functions of this library are explained in chapter 

five. 

 

 

 

 

 

 

 

 

 

 

https://github.com/adafruit/Adafruit_NeoPixel
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CHAPTER 2 

DEVICES CONNECTED TO ARDUINO 
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2.1 LED MATRIX 
 

The chosen LED Matrix display product is specially designed for the field of LED-

Clothing. 16 Pixels are placed in each line, and there are 16 lines on each panel. The 

space between each pixel is 1cm. This product is totally able to meet the basic 

requirement of displaying. When you used it with a controller, it can also display 

numbers, video and so on. It has small size, light weight, an arbitrary curved, is easy 

to carry, Low-voltage drive, green energy, high brightness, low power and long life. 

 

 
Figure 5. LED Matrix 

 

 

APPLICATIONS 

 

 Widely used for home, hotels, clubs and shopping malls decoration. 

 Architectural decorative lighting and boutique atmosphere lighting 

 Extensively applied in Backlighting, concealed lighting and channel letter lighting 

 Emergency & security lighting, advertisement sign lighting 

 Decorative lights for holiday, event, and show exhibition 

 Applicable for automobile and bicycle decoration, border or contour lighting 
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FEATURES 

 

 Super bright SMD top LED & viewing angle, high brightness output, no spot and 

shadow. 

 Colours can be chosen as Full colour 

 Low power consumption & operating voltage, safe and energy-saving. 

 Solid-state, high shock or vibration resistant, long lifetime, more than 50000 

hours. 

 Easy installation with mounting holes and 3M adhesive tape on the back. 

 ICRGB module with ws2812b 

 Individually Control 

 DMX 512 Controllable 

 Matrix compatible 

  

SPECIFICATIONS 
 

Light source: LED Item type: Light 

Strips 

Type: Flex LED Strips Input voltage(v): 5 

Lamp luminous flux(lm): 4500 Cri (ra>): 80 

Working temperature(℃): -20 - 60 Working lifetime(hour): 50000 

Emitting color: RGB Place of origin: China 

(Mainland) 

Model number: WS2812B1616 Color: RGB 

Waterproof: IP68 Angle: 180 

Chip brand: Epistar Brand name: LC 

Led light source: Epistar Voltage: DC5V 

Lamp power: 76.8W Ic: ws2801 

ws2811 

ipd8806 

Color temperature(cct): 2700-7000 Chip type: 5050 

Size: 170x170mm FPCB Color: Black 

 

 
Table 2. Specifications LED Matrix 
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2.2 WS2812b LED  
 

In this section we are going to see the features of the LEDs that are in the matrix. 

The model of the LED is IC RGB WS2812b. 

 

FEATURES AND BENEFITS: 

 

 Intelligent reverse connect protection that does not damage the IC.  

 The control circuit and the LED share the only power source.  

 Control circuit and RGB chip are integrated in a package of 5050 components.  

 Built in signal reshaping circuit.  

 Built-in electric reset circuit and power lost reset circuit.  

 Each pixel of the three primary color can achieve 256 brightness display, 

completed 16777216 color full color display, and scan frequency not less than 

400Hz/s.  

 Cascading port transmission signal by single line.  

 Any two point the distance more than 5m transmission signal without any 

increase circuit. 

 When the refresh rate is 30fps, cascade number are not less than1024 points.  

 Send data at speeds of 800Kbps. 

 The color of the light were highly consistent.  

 

 

 

 

APPLICATIONS  

 

 Full color module. Full color soft lights a lamp strip. 

 LED decorative lighting. Indoor/outdoor LED video irregular screen. 
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 GENERAL DESCRIPTION 

 

WS2812B is an intelligent control LED light source that the control circuit and 

RGB chip are integrated in a package of 5050 components. It internal include intelligent 

digital port data latch and signal reshaping amplification drive circuit. Also include a 

precision internal oscillator and a 12V voltage programmable constant current control 

part, effectively ensuring the pixel point light color height consistent. The data transfer 

protocol use single NZR communication mode. After the pixel power-on reset, the DIN 

port receive data from controller, the first pixel collect initial 24bit data then sent to 

the internal data latch, the other data which reshaping by the internal signal reshaping 

amplification circuit sent to the next cascade pixel through the DO port. After 

transmission for each pixel，the signal to reduce 24bit. pixel adopt auto reshaping 

transmit technology, making the pixel cascade number is not limited the signal 

transmission, only depend on the speed of signal transmission. LED with low driving 

voltage, environmental protection and energy saving, high brightness, scattering angle 

is large, good consistency, low power, long life and other advantages. The control chip 

integrated in LED above becoming more simple circuit, small volume and convenient 

installation. 

 

LED MECHANICAL DIMENSIONS 

 

 

Figure 6. LED Mechanical Dimensions 
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PIN CONFIGURATION 
 

 

 

 

 

 

 

 

Figure 7. LED Pin Configuration 

 

PIN FUNCTION 

 

 

Table 3. LED Pin Functions 

 

ABSOLUTE MAXIMUM RATINGS 

 

Table 4. Absolute Maximum LED Ratings 
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ELECTRICAL CHARACTERISTICS 

 

 

Table 5. LED Electrical Characteristics 

 

SWITCHING CHARACTERISTICS 
 

 

Table 6. LED Switching Characteristics 

 

LED CHARACTERISTICS PARAMETER 
 

 

  Table 7. LED Characteristics Parameter 



                                                   

34 
 

Programming of a LED Matrix with a Digital VU Meter 
application 

 
 

DATA TRANSFER TIME 
 

 

Table 8. LED Data Transfer Time 

SEQUENCE CHART 
 

 

 

 

 

 

 

 

 

Figure 8. LED Sequence Chart 

 

 

CASCADE METHOD 
 

 

 

 

 

Figure 9. Cascade LED Method 
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DATA TRANSMISSION METHOD 
 

 

 

 

Figure 10. LED Data Transmission Code 

 

 

COMPOSITION OF 24 BIT DATA 
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TYPICAL APPLICATION CIRCUIT 

 

 

 

 

Figure 11. LED Typical Application Circuit 
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2.3 ELECTRIC CIRCUIT 
 

As we are working on a project that responds to sounds, our circuit will require 

some type of microphone to transduce the sound into a modulated voltage and, most 

likely, some type of amplification of this modulated voltage. 

We are going to use an electret microphones to transduce sound because they require 

relatively simple circuits.  

 

2.3.1THEORICAL ELECTRIC CIRCUIT 
 

Whenever we need to pick up a signal, we have to look all the way from its origin until 

we checked it. Particularly for a beep, I mean things like: 

 

 A good reconditioning, observing the ideal conditions to generate the signal 

with minimal noise. This includes for example an anechoic chamber, a quiet 

room, isolate the system from mechanical vibrations, etc. When is possible, using 

a directional microphone we can prevent that ambient noise signals are captured. 

If we capture noise at such an early stage, will be almost impossible then to 

remove it, so we will find ways to grasp the signal as clean as possible. 

 

 A right microphone: It doesn’t means the most expensive. Sometimes it is better 

a carbon microphone and sometimes is preferable one condenser or electret 

microphone.  

 

To choose the right microphone we will have to answer the next questions about 

the microphones: 

 

o Directional or omnidirectional?  

o What is the output impedance?  

o What maximum SPL?  

o Pre-amplified or not? 

 

If the microphone is not well shielded also could capture electrical noise, that 

once amplified, can mask the useful signal. 
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 Shielded conductors: We must pay special attention not to pick up noise 

through the cables connecting the microphone with the preamplifier, and the 

different stages between them. 

 

 A low noise preamplifier: Depending on the origin, the signal can be very 

weak. In this case, we can use several cascaded amplifier stages. It’s important 

to minimize the noise, especially in at the beginning, not to amplify it with the 

signal. 

 

 Further treatment: Whether we record the signal on a PC or we send it to a 

recorder, amplifier, etc. Maybe we will have to use different filters. These 

depend on the characteristics of the signal that interest us. 

 

 

WHAT IS AN OPERATIONAL AMPLIFIER?  
 

An operational amplifier is a DC coupled high gain electronic voltage amplifier with 

a differential input and, usually, a single-ended output. In this configuration, an op-

amp produces an output potential (relative to circuit ground) that is typically hundreds 

of thousands of times larger than the potential difference  

 

IDEAL OP-AMPS 

An ideal op-amp is usually considered to have the following properties: 

 Infinite open-loop gain G = vout / 'vin 

 Infinite input impedance Rin, and so zero input 

current 

 Zero input offset voltage 

 Infinite voltage range available at the output 

 Infinite bandwidth with zero phase shift and 

infinite slew rate 

 Zero output impedance Rout 

 Zero noise 

 Infinite Common-mode rejection ratio (CMRR) 

 Infinite Power supply rejection ratio. 

Figure 12. Schematic of an O.A. 

http://en.wikipedia.org/wiki/Direct_current
http://en.wikipedia.org/wiki/Direct_coupling
http://en.wikipedia.org/wiki/Gain
http://en.wikipedia.org/wiki/Electronic_amplifier
http://en.wikipedia.org/wiki/Differential_input
http://en.wikipedia.org/wiki/Open-loop_gain
http://en.wikipedia.org/wiki/Input_impedance
http://en.wikipedia.org/wiki/Input_offset_voltage
http://en.wikipedia.org/wiki/Bandwidth_(signal_processing)
http://en.wikipedia.org/wiki/Phase_shift
http://en.wikipedia.org/wiki/Slew_rate
http://en.wikipedia.org/wiki/Output_impedance
http://en.wikipedia.org/wiki/Electronic_noise
http://en.wikipedia.org/wiki/Common-mode_rejection_ratio
http://en.wikipedia.org/wiki/Power_supply_rejection_ratio
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These ideals can be summarized by the two "golden rules": 

 

1. The output attempts to do whatever is necessary to make the voltage difference 

between the inputs zero. 

 

2. The inputs draw no current. 

The first rule only applies in the usual case where the op-amp is used in a closed-loop 

design (negative feedback, where there is a signal path of some sort feeding back from 

the output to the inverting input). These rules are commonly used as a good first 

approximation for analysing or designing op-amp circuits.  

None of these ideals can be perfectly realized. A real op-amp may be modelled with 

non-infinite or non-zero parameters using equivalent resistors and capacitors in the op-

amp model. The designer can then include these effects into the overall performance 

of the final circuit. Some parameters may turn out to have negligible effect on the final 

design while others represent actual limitations of the final performance that must be 

evaluated. 

 

TLV2772x OP AMP FAMILY 

 

The TLV277x CMOS operational amplifier family combines 

high slew rate and bandwidth, rail-to-rail output swing, high 

output drive, and excellent dc precision. The device 

provides 10.5 V/µs of slew rate and 5.1 MHz of bandwidth 

while only consuming 1 mA of supply current per channel. 

This ac performance is much higher than current 

competitive CMOS amplifiers. The rail-to-rail output swing 

and high output drive make these devices a good choice for driving the analog input or 

reference of analog-to-digital converters. These devices also have low distortion while 

driving a 600-  load for use in telecom systems. 

These amplifiers have a 360-µV input offset voltage, a 17 nV/ Hz input noise voltage, 

and a 2-pA input bias current for measurement, medical, and industrial applications. 

The TLV277x family is also specified across an extended temperature range (–40°C to 

125°C), making it useful for automotive systems, and the military temperature range 

(–55°C to 125°C), for military systems. 
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These devices operate from a 2.5-V to 5.5-V single 

supply voltage and are characterized at 2.7 V and 5 

V. The single-supply operation and low power 

consumption make these devices a good solution for 

portable applications. The following table lists the 

packages available. 

Figure 13. Schematic of TLV2772A O.A. 

The meaning of rail to rail is that the input of the op amp is very similar to the output 

voltage. With this kind of op amp we can use more efficiently the low voltage rate with 

which they work.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 9. Features of the TLV2772A O.A. 

 

 

 

 

 TLV2772A 

Number of Channels (#) 2 

Total Supply Voltage (Min) (+5V=5, +/-5V=10) 2.5 

Total Supply Voltage (Max) (+5V=5, +/-5V=10) 5.5 

Iq per channel (Max) (mA) 2 

Slew Rate (Typ) (V/us) 10.5 

Vos (Offset Voltage @ 25C) (Max) (mV) 1.6 

Offset Drift (Typ) (uV/C) 2 

CMRR (Min) (dB) 70 

GBW (Typ) (MHz) 5.1 

IIB (Max) (pA) 60 

Vn at 1kHz (Typ) (nV/rtHz) 17 

Rail-Rail OUT 

Rating Catalog 

Operating Temperature Range (C) -40 to 125 

Pin/Package 8PDIP 

8SOIC 

8TSSOP 
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DUAL AND SINGLE POWER SUPPLY: 
 

Operational amplifiers generally operate with dual voltage. That is, to supply 0, 

+ V and -V. It would be something like: 

Figure 14. Operational Amplifier of Dual Voltage Power Supply 

 

But often we only have a single source, 0 power, and + V, as a battery. When measuring 

voltages we always look a benchmark and as what we measure are potential differences, 

the 0 is an arbitrary point that depending on where we put the black lead of the 

multimeter we measure different voltages. 

 

The trick to use operational amplifiers in circuits that do not have dual voltage is to 

create an artificial ground. Using a resistive divider with two resistors of equal value 

the intermediate node is just half the supply voltage. 

 

Suppose we have a 5V battery. We put our reference, negative tip of the tester, on the 

negative side. We measure 0V in the negative thread, normal, there is no potential 

difference between our reference and herself. At the midpoint we measure 2.5V and 

5V on the positive terminal of the battery. Now we change our reference and we put 

the negative lead at the halfway point. Will be measured -2.5V in the negative battery 

terminal, 0V at the junction and in the upper +2.5V. 
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Figure 15. Artificial Ground for an Operational Amplifier 

 

 

That will be the reference voltage for the operational amplifier. When using 5V it will 

believed that we are supplying with a dual voltage of ± 2.5V. As inputs require little 

current, the resistor value is not critical, it’s enough if we have a stable voltage. 

Sometimes two small-capacity capacitors are added in parallel with the resistors, their 

function is to absorb any transients; normally can be removed without problem and are 

only used when the power supply is particularly noisy, such as in a car. It’s often used 

a value of nF. 

 

Another option for our artificial ground is to use another operational amplifier and 

connect together its inputs. In the image of the amplifier you can see that the inputs 

are connected at the same potential. Then its output should be 0V (with a minimum 

offset). But the operational amplifier thinks that is being supplying with dual voltage, 

its output will be 0 addressed to the dual voltage. Really the voltage in the output will 

be provided so that there the same potential between this and the positive supply 

voltage, between this and the negative voltage. In practice, this is just half the supply 

voltage, which is what we wanted. 
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Figure 16: Operational Amplifier with the inputs connected to the same potential 

 

The problem using the artificial ground for the non-inverting input is that it is not at 

the same potential as the real ground. In the last circuit the artificial ground (midpoint 

of the divisor) was 2.5V above the real ground (negative pole of the battery). It’s 

necessary to remove the DC component at the input and the output and leave only the 

AC signal. This is achieved interposing a capacitor and is called AC capacitive coupling. 

 

 

 

 

 

Figure 17. AC Capacitive Coupling in an O.A. 
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The value of these capacitors determine the minimum frequency that can amplify our 

circuit, thus acting as a high pass filter. If they have very little capacity, low frequencies 

are strongly attenuated. If they are too large you can have significant losses and we do 

not want that. It is often used a value between 100nF and 10μF. 

 

WHAT IS AN INVERTER AMPLIFIER?  
 

Before explaining what an inverter O.A. 

is. I am going to show you some equations about 

the differential amplifier that will help you to 

understand how an inverter amplifier works. 

 

 

 

Figure 18. Schematic of a Differential Amplifier 

 

The circuit shown before computes the difference of two voltages, multiplied by some 

gain factor. The output voltage: 

 

Or, expressed as a function of the common mode input Vcom and difference input Vdif 

 

The output voltage is: 

 

http://en.wikipedia.org/wiki/Subtraction
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In order for this circuit to produce a signal proportional to the voltage difference of the 

input terminals, the coefficient of the Vcom term (the common-mode gain) must be 

zero, or 

 

With this constraint in place, the common-mode rejection ratio of this circuit is infinitely 

large and the output is: 

 

 

*The simple expression Rf / R1 represents the closed-loop gain of the differential amplifier. 

The special case when the closed-loop gain is unity is a differential follower, with: 

 

 

  

On the other hand the inverter amplifier is 

the most used to connect a micro electret 

and it is very easy to build. It is so named 

because the output signal is inverse to the 

input, in polarity, but could be higher, 

equal or lower depending on the gain we 

give the amplifier in closed loop. The 

signal, as shown in the figure, is applied to 

the inverter or negative terminal of the 

amplifier and the positive or non-inverting 

is connected to masa. The resistance Rf, 

which runs from the outlet to the negative 

input terminal is called feedback. 

 

Figure 19. Schematic of an Inverter Operational Amplifier  

 

http://en.wikipedia.org/wiki/Common-mode_rejection_ratio
http://en.wikipedia.org/wiki/File:Op-Amp_Inverting_Amplifier.svg
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An inverting amplifier is a special case of the differential amplifier in which that 

circuit's non-inverting input V2 is grounded, and the signal is applied in the inverting 

input V1, identified in this case, with Vin in the last picture. The closed-loop gain 

is Rf / Rin, hence Vout is: 

. 

The simplified circuit above is like the differential amplifier in the limit 

of R2 and Rg very small. In this case, though, the circuit will be susceptible to input bias 

current drift because of the mismatch between Rf and Rin. 

To intuitively see the gain equation above, calculate the current in Rin: 

 

*recall that this same current must be passing through Rf, therefore (because V− = V+ = 0): 

 

 

A mechanical analogy is a seesaw, with the V− node (between Rin and Rf) as the fulcrum, 

at ground potential. Vin is at a length Rin from the fulcrum; Vout is at a length Rf. When 

Vin descends "below ground", the output Vout rises proportionately to balance the 

seesaw, and vice versa.  

If we want a very high gain we have two options: 

 

1. Turn up the gain of the stage. It means decreasing Rin and increasing Rf as much 

as we need. It's very simple to do but the disadvantages are numerous: reduced 

input impedance, increased electronic noise (grows with the gain), decreased 

bandwidth and may appear autoswaying.   

 

2. Add another stage. We can get a high gain using two or more cascaded stages. 

We got rid of the above disadvantages but instead we have, an increased 

consumption, a more complicated schematic and the difficulty to adjust each 

stage to not saturate to the next. 

http://en.wikipedia.org/wiki/Operational_amplifier_applications#Differential_amplifier
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It’s recommend using a single operational amplifier for minor gains × 20 and two 

or more stages over x 20 gain. 

 

Figure 20. Buffer’s Schematic 

 

In some cases a buffer that is an x1 gain amplifier that means that nothing is amplified. 

Its mission is to adapt the impedance, owing to it presents a high impedance input, 

useful for taking the microphone's signal; and a low output impedance, which is 

applicable to the following stages. 

 

FREQUENCY RESPONSE 

 

In the frequency band in where we can use the amplifier it is important to keep three 

factors in mind: 

 

 Resistor R1. Which determines the input impedance. 

 

 Capacitor C1. That along with the input impedance forms a high-pass filter, 

cutting the DC component, but also the frequencies below the cut-off frequency. 

 

 The slew-rate of the integrated. The operational amplifiers have an internal 

compensation to prevent oscillate spontaneously when they are working with 

high gain. This limitation restricts the speed with can vary the output voltage, 

and thus imposes a maximum frequency. This will depend on the gain and 

amplitude of the input signal. 
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So we have a high-pass filter (first order) at the entrance and one low pass to the output. 

Let's take the following circuit and simulate to obtain a bode diagram. 

 

Figure 21.  Schematic Circuit for Bode Diagram 

 

WHAT IS A BODE DIAGRAM? 
 

A Bode diagram is a graphical representation used to characterize the frequency 

response of a system. Normally consists of two separate graphs, one corresponding to 

the magnitude of said function and other to the matching phase. Named after the 

American scientist who developed it, Hendrik Wade Bode. 

 

It is very used in the analysis of electronic circuits, being fundamental to the design 

and analysis for filters and amplifiers. 

 

The Bode magnitude plot module draws the transfer function (gain) in decibels as a 

function of frequency (or angular frequency) in logarithmic scale. Is often used in signal 

processing to show the frequency response of a linear, time invariant system. 

 

Being the next values: 

R1 = 10K R2 = 100K C1 = 220nF IC = 0P90 
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Figure 22. Bode Diagram 

 

The graph is divided into three colors. The green area is the gain x 10 (or 20 dB), R2 / 

R1. To the left is the cutoff frequency of the filter C1 / R1. This begins when the gain 

is already 3dB lower than it was expected, in this graph is 72Hz, yellow zone. From 

there begins a downward slope of -20dB per decade till reach the red zone that begins 

at 7.2Hz. Here not only there is no amplification, in addition the circuit attenuates the 

lower frequencies. On the right side the high frequencies begin to decay to 27 kHz, 

higher switching frequency, yellow zone. It is enough if you have in mind that we do 

not hear tones above 20 kHz. 

 

 

 

 

 

 



                                                   

50 
 

Programming of a LED Matrix with a Digital VU Meter 
application 

 
 

2.3.2 PRACTICAL CIRCUIT ON PROTOBOARD 
 

Before building our PCB with EAGLE, we did several electric circuits in a 

protoboard to be sure of the properly functioning of our LED Matrix. We measured 

several times the data exit with an oscilloscope to see the difference between the 

normal microphone’s signal and the amplification of it.  

 

Figure 23: Microphone und amplifier signals 

 

The blue line that we can see in the last pictures is the signal of the amplification and 

the yellow one, the signal of the microphone. In the picture on the left, the 

potentiometer was in the lowest point of amplification and in the picture on the right, 

the potentiometer was the highest point and we get the maximum amplification. In the 

blue line of the right picture we can see that the range peak to peak is 5V. As the 

voltage supply is 5V and we have, more or less, the same value in range peak to peak, 

we can say that we have a good amplification. 

We tried with different resistors, capacitors and operational amplifiers and we obtained 

the results of the last pictures with the next circuit. R3 and R4 are our artificial ground, 

which is half of the supply voltage. R5 is the polarization resistance of the electret 

microphone while R1 and C1 form a filter to remove the DC component from the 

microphone. R2 and R6 are the feedback resistor that determines the gain by R1.  

I have colored the positive voltage in red, negative voltage in black, blue it would be 

the artificial ground and green the signal path. 
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Figure 24. Schematic of our electric circuit 

 

If you need more amplification the best option is chaining another stage just below. 

Another option is to change the value of R2 to be worth 50 or 100 times R1. 

In our case what we did to have more amplification was to add a 500K potentiometer 

(R6) after R2. Like this we can regulate the gain turning only the potentiometer to the 

right or to the left. Now we calculate the gain of our circuit: 

 

Gain: 

 

𝐴 =
𝑅2 + 𝑅3

𝑅1
 

 

𝐴𝑚𝑖𝑛.=
𝑅2 + 0

𝑅1
=
220𝐾

10𝐾
= 22𝐾 

 

𝐴𝑚𝑎𝑥.=
𝑅2 + 𝑅3

𝑅1
=
220𝐾 + 500𝐾

10𝐾
= 72𝐾 
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In conclusion we have a gain x22 when the potentiometer works with the minimum 

value. When the potentiometer works with the maximum value (500K) the gain is x 

72. Like this we can play with a gain until we find the correct one. 

 

Whenever you use an operational amplifier you must pay attention in: 

 

 The supply voltage. With dual sources no problem, but when using simple 

sources for operational amplifier remember that it is as if the voltage is divided 

in half and can to not reach the minimum voltage recommended by the 

manufacturer. In addition, with lower power we will obtain a lower output and 

the signal can be distort.  

 

 The noise factor. Important if we want to capture faint sounds. 

 

 The passband. There amplifiers that are slower than others but instead have 

other desirable properties, such as low voltage or noise. We need to reach a 

compromise between what we need on the one hand and on the other. The most 

common datasheets are seamlessly Internet 

 

2.3.3 PCB DESIGN 
 

As in the protoboard is possible to have loses because of the poor connections, 

we decided to design a PCB making our project nicer and more efficiently. A PCB is 

a printed circuit board mechanically supports and electrically connects electronic 

components using conductive tracks, pads and other features etched from copper 

sheets laminated onto a non-conductive substrate. PCBs can be single sided (one 

copper layer), double sided (two copper layers) or multi-layer.  

Conductors on different layers are connected with plated through holes called vias. 

Advanced PCBs may contain components capacitors, resistors or active devices 

embedded in the substrate. The Software used for the PCB design was EAGLE. 

 

 

 

http://en.wikipedia.org/wiki/Electronic_component
http://en.wikipedia.org/wiki/Electronic_component
http://en.wikipedia.org/wiki/Electrical_conductor
http://en.wikipedia.org/wiki/Industrial_etching
http://en.wikipedia.org/wiki/Laminated
http://en.wikipedia.org/wiki/Substrate_(electronics)
http://en.wikipedia.org/wiki/Via_(electronics)
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WHAT IS EAGLE? 
 

EAGLE (Easily Applicable Graphical Layout Editor) by CadSoft 

Computer is a flexible, expandable and scriptable EDA application 

with schematic capture editor, PCB layout editor, autorouter and 

CAM and BOM tools developed by CadSoft Computer GmbH, Germany, 

since 1988.  Famous worldwide for the design of electronic projects 

DiY, because many versions of this program have a Freeware license 

and lots of component libraries around the net. EAGLE contains an 

electronic diagrams editor where components can be placed in the 

diagram with a single click and easily routable with other components based on "cables" 

or labels. Also EAGLE contains a PCB editor with a rather efficient autorouter. The 

editor is able to produce GERBER files and others, which are used at the time of 

production. Eagle brings component libraries included, easy to make and available from 

companies such as SparkFun or fans that spread them around the net for free. 

 

STARTING WITH EAGLE 

In the next picture we can see EAGLE’s panel control. To start with a new project we 

have to click on “file”    “new”    “project”. After that we will have to write a name 

for our new project.  

 

Figure 25. Control Panel of EAGLE Software 

http://en.wikipedia.org/wiki/Electronic_design_automation
http://en.wikipedia.org/wiki/Computer-aided_manufacturing
http://en.wikipedia.org/wiki/Bill_of_materials
http://en.wikipedia.org/wiki/CadSoft_Computer_GmbH
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Once we have crated the file for our new Project we must do the schematic design of 

the electronic circuit that we did in the protoboard. For it we have to click on the file 

of our project with the right button and click on “New”    “Schematic”. Than it is time 

to crate the schematic of the circuit using EAGLE’s toolbar. In the next picture you will 

see the Schematic of my PCB.  

 

Figure 26. Schematic of the electronic board 

 

The next step is to design the physical appearance of our electronic board. So, when 

we finish and save our Schematic, in the Schematic window we have to click on    

and a different window will appear to design the board. As you will see in the next 

picture, you will have to order and connect all the elements of the electronic circuit 

on the real delimited board space. Sometimes this operation can be difficult. 
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Figure 27. Layout of the electronic board 
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PCB PRINCIAL COMPONENTS 

 

With the board physically printed over our table, we started solding our smallest 

components with a microscope where we used compressed stain liquid. The biggest 

components we sold them with a normal electronic solder and a small bobbin of stain. 

 

The components that we sold to the board were: 

 

 

7X SMD Resistor    1X Operational Amplifier 

                       

 

 

 

 

 1X SMD Capacitor 1X   1X Potentiometer 

 

 

 

 

     2X SMD Button                         1X Electret microphone 

 

 

 

 

 

 

 

 

 

Figure 28: PCB with elements solded 
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PROBLEMS 

 

 Designing our board we noticed that we had to use the two faces on it. That 

means that we had to use some “vias” to connect the electric lines of the different 

sides.  

Other thing that was a bit complicate was to put the pins of this board in the correct 

position not to have problems after with the connection pins of Arduino. To solve this 

problem we printed in paper the design of the board, we put the paper over the 

Arduino’s board and we probed that the holes that were drew in the paper for our 

future electronic board ran into the Arduino’s board. Also, as we have to sold very small 

components we made thicker the width of the paths. 

The first time we connect together both boards something strange happened. Button 1 

and 2 worked properly but meanwhile were not pushed, the equalizer did not worked 

properly. We measured the current and the voltage in different parts of the circuit and 

we checked the signal in the oscilloscope until we found the problem. One side of the 

capacitor was not well solded and because of that, the AC capacitive coupling didn’t 

work. 

 

IMPROVEMENTS 

 

As our board are going to be together inside the matrix’s box. We had to do some 

modifications for the buttons and the microphone of the board. We design a witty 

connection to keep some liberty between the board, buttons and microphone. We 

evolved the solded points of our witty connections with pieces of thermoretractable 

plastic tube not to make a short circuit and for the safety of everyone.  

 

Figure 29: Safety Connections for the PCB 
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CHAPTER 3 
3D CAD DESIGN WITH SOLIDWORKS 
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In order to compact this project and to make it look prettier, a 3D CAD design has 

been built. This 3D CAD design will be then printed by a 3D printed. In this chapter are 

introduced different step followed to design the model as well as the relevant technical 

data. For this project, the chosen program was SolidWorks. 

 

3.1 WHAT IS SOLIDWORKS? 
 

 SolidWorks is a CAD Software (computer 

aided design) for mechanical 3D modelling, now 

developed by SolidWorks Corp., a subsidiary of 

Dassault Systèmes SA (Suresnes, France) for the 

Microsoft Windows operating system. Its first 

version was launched in 1995 with the purpose 

of making CAD technology more accessible. 

 

The program allows modelling pieces and assemblies and obtain technical drawings and 

other information necessary for production. It is a program that works based on new 

modelling techniques with CAD systems. The process is to transfer the mental idea of 

the designer to the CAD system, "building virtually" the piece or assembly. Than all 

extractions (plans and swap files) are made automatically.  

 

3.2 3D CAD LED MATRIX BOX DESIGNS 
 

If it is the first time you are going to use SolidWorks, you can find very good tutorials 

of how to use it, in YouTube. As no one taught me how to use this software, all I know 

about it, I learnt it watching the tutorials in YouTube and was enough to do my 3D 

design. 

  

Remember that this design has to contain the following devices:  

 LED Matrix 

 Arduino Due 

 PCB 

 2x Additional Buttons 

 1x Microphone 
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Therefore the basic parameters of the design are the following: 

 Case Size: 182x70x200mm. We designed a box with a bigger size than the LED 

matrix to have enough space to put inside the LED matrix and the holes for the 

buttons and the microphone on the front side. The cables, PCB and Arduino are 

hidden in the back side.  

 

 Holes: We made three holes, two for the mode buttons (r=4.5mm) and one for the 

microphone (5mm). Also we made a 3x3 round holes matrix in the base where the 

LED matrix will be support to save some plastic material of the 3D printer. 

 

 Inclination: We inclined 15º the front side to have better view of the LED lights. 

 

To create a new project in SolidWorks open the program and click in New Document. 

After that a new window will appear on our screen and we will have to choose one of 

the three options. To make a simple 3D design we chose the first option that appears 

on the top “3D representation of a single design component”. 

 

 

Figure 30. SolidWorks Software 
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FIRST DESIGN: 

 

In this design we did it very simple. We 

created a sketch with a square of 182x182mm. Than 

we extruded the square 100mm to form a kind of 

cube. Later we shelled the back side of the cube 

and on the front side made two steps, one for the 

base of the LED matrix and other for the glass that 

covers the LED matrix. To finish we made the holes 

for Arduino connections, buttons and microphone. 

In the picture we can see the result.  

 

 

 

Figure 31. First 3D LED matrix case design 

 

 

SECOND DESIGN: 

 

In our second design we followed more or less 

the same steps that in the first design. We created 

a sketch with a rectangle 182x200mm. Then we 

extruded the rectangle 70.3mm to form a kind of 

cube and we shelled the back side of the cube. The 

different in this design is that we inclined a little bit 

the LED matrix base and the buttons and 

microphone are situated in the front side. We 

thought that with this small inclination the visual 

effect of the LED Matrix will be nicer and the 

microphone in the front side would works properly. 

 

             

 Figure 32. Second 3D LED matrix case design  
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THIRD DESIGN 
 

In our final design we did a small improvement. The 

design is equal as the second one but we made a round 

holes matrix to save some material of the 3D printer. 

 

 

 

 

 

 

Figure 33. Final 3D LED Matrix Box Design 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                   

63 
 

Programming of a LED Matrix with a Digital VU Meter 
application 

 
 

 

 

 

 

 

 

 

 

 

 

CHAPTER 4 

3D PRINTER 
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The printer used was the X400 from German RepRap. This is a company which produces 

big and high quality in Germany. Philosophy of RepRap is open source and open 

hardware, so everybody is able to build an own printer. What makes the different 

between the X400 and the others low cost printer is the size of them, almost double 

than biggest printers in market. 

Technical Specifications: 

 Build Volume: 400 x 400 x 350 mm 

 Overall size:  700 x 770 x 700 mm 

 Print Volume: 56 l 

 Layer thickness:  min 0.1mm 

 Weight: 65 kg 

 Material: PLA, ABS, PP, PVA 

 nozzle size: 0.3, 0.4, 0.5 mm 

 Accuracy: 0.1mm 

 Confection material: 3mm 

 Power Consumption: 50W 

 Extruder: Dual Extruder 

 Extruder Temperature: max 275ºC 

Figure 34. X400 3D Printer 

 

 

4.1 PRINTER SOFTWARE 
 

In order to control the printer and communicate with 

it per serial port, the used software was Simplify 3D. 

There are others software and many of them are free, 

but as Simplify3D is software specific for German 

RepRap and OTH Regensburg bought the licenses; this 

was the proper software to use.  
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Figure 35. Simplify 3D Software 

 

4.2 PRINTER SLICER 
 

The Slicer is the software in charge of translating the CAD (STL) design into the 

machine code (Gcode). There are many different kind of slicer, like Skinforge or Slic3r 

among others. For this particular case has been used Slic3r, as it has been proof that 

it is the better for this purpose because of its easy usage and quality of Gcode 

parameters generation. 

Main parameters of Slic3r: 

 Extruder Temperature: 200ºC for PLA 

 Bed: Temperature: 70ºC for a better adherence of the printed part 

 Layer height: 0.25 mm for a good ratio between speed and quality. 

 Infill: 0.25 to spare material 

 Brim: 3mm to provide better adherence. 

 Support material:  

o Pattern: Rectilinear 

o Pattern Spacing: 2 mm 

o Overhang support: 45º 

o Interface layers: 1 
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Figure 36. 3D Printer Parameters 

 

4.3 RESULTS 
 

 First trial: Huge print requires lot of time. The energy supply failed on the 

extruder at 50% of printing, then cold extrusion prevent made unable to keep 

printing.  

 

 Second trial: As supply energy failed, recalibration of extruders after 

reparation. The calibration was wrong breaking adherence sheet of the plate. 

Reparation took 2 days. 
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Figure 37. Failed Printout 

 

 Third trial: With one of the failed print I notice that the printer needed to 

create a big support base to make the top of the box and the measures were a 

bit smaller than in the software. Because of that I decide to crate the third 

design where I modified some parameters, I made the round holes and I put down 

the front side to save material.  
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With the modifications made we reduce the printing time from 42h to 18h and at the 

end we success. 

 

 

 

 

 

 

Figure 38. Third Trial Results 
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CHAPTER 5 

APPLICATION 
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Building our project we realised that we can use the LED Matrix for different 

things. Depending on the programming we can do: 

 Night lamp 

 KID lamp 

 Decoration lamp 

 VU meter 

 Digital Clock 

 LED animations 

 Equalizer 

 

5.1 APPLICATION MODES 
 

In our Arduino Software we created a basic program with different functions. With 

two buttons and a microphone we have created three different modes. 

 Mode 1: When the buttons are not pushed, in the LED Matrix appear an 

animated digital VU meter with three different colours that indicates the 

intensity of the volume. 

 

o Green: low 

o Yellow: medium 

o Red: high  

 

 Mode 2: It’s activated when green button is pushed. This mode is interrupt 

Mode 1 and red heart appears in the LED Matrix for 2 seconds. 

 

 Mode 3: It’s activated when the orange button is pushed. This mode interrupt 

Mode 1 and a yellow flash appear in the LED Matrix for 2 seconds. 

 

Figure 40: Application Modes 
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5.2 PROGRAMMING USER FUNCTIONS 
 

 

 

 

Function: Adafruit_NeoPixel 

Description: 

We use this function to declare a NeoPixel object. We will refer to “Adafruit_NeoPixel strip” to 

control the strip or matrix of pixels. 

Syntax: Adafruit_NeoPixel strip = Adafruit_NeoPixel (PIXEL_COUNT, PIXEL_PIN, NEO_GRB + 

NEO_KHZ800) 

Parameters: 

PIXEL_COUNT: number of pixels in the matrix. 

PIXEL_PIN: pin number to which the pixels matrix is connected. 

NEO_GRB+NEO_KHZ800: A value indicating the type of NeoPixels that are connected. 

Return: 

None 

 

Function: Serial.begin() 

Description:  

Sets the data rate in bits per second (baud) for serial data transmission. For communicating with 

the computer, use one of these rates: 300, 600, 1200, 2400, 4800, 9600, 14400, 19200, 28800, 

38400, 57600, or 115200. You can, however, specify other rates - for example, to communicate 

over pins 0 and 1 with a component that requires a particular baud rate. An optional second 

argument configures the data, parity, and stop bits. The default is 8 data bits, no parity, one stop 

bit. 

Syntax:  

Serial.begin(speed) 

Parameters: 

 speed: data rate in bits per second for serial data transmission. 

Return: 

None 
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Function: pinMode() 

Description: 

Configures the specified pin to behave either as an input or an output. 

Syntax:  

pinMode(pin,mode) 

Parameters: 

pin: the number of the pin whose mode you wish to set 

mode: INPUT, OUTPUT, or INPUT_PULLUP. 

Returns: 

None 

 

Function: strip.begin() 

Description:  

The data pin is prepared for NeoPixel output 

Syntax: 

strip.begin() 

Parameters 

None 

Return: 

None 

 

 

 Function: strip.show() 

Description: 

Initialize all pixels to "off" 

Syntax: 

Strip.show() 

Parameters 

None 

Return: 

None 

 

http://arduino.cc/en/Reference/Constants
http://arduino.cc/en/Reference/Constants
http://arduino.cc/en/Reference/Constants
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Function attachInterrupt() 

Description: 

 Specifies a named Interrupt Service Routine (ISR) to call when an interrupt occurs. Replaces any 

previous function that was attached to the interrupt.  

The Arduino Due board has powerful interrupt capabilities that allows you to attach an interrupt 

function on all available pins. You can directly specify the pin number in attachInterrupt(). 

Syntax 

attachInterrupt(interrupt, ISR, mode) 
attachInterrupt(pin, ISR, mode) 
 
Parameters 

 interrupt: The number of the interrupt(int) 

 pin: the pin number (Arduino Due only) 

ISR: the ISR to call when the interrupt  occours; this function must take no parameters and 

returns nothing. 

mode: defines when the interrupt should be triggered. Five constants are predefined as 

valid values:  

 LOW: to trigger the interrupt whenever the pin is low. 

 CHANGE: to trigger the interrupt whenever the the pin changes the value. 

 RISING: to trigger the interrupt when the pins goes from high to low 

 FALLING: when pin goes from high to low 

 HIGH: to trigger the interrupt whenever the pin is high 

Return: 

None 
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Function: millis() 

Description:  

Returns the number of milliseconds since the Arduino board began running the current program. 

This number will overflow (go back to zero), after approximately 50 days. 

Syntax:  

unsigned long startMillis= millis() 

Parameters: 

None 

Return:  

Number of milliseconds since the program started (unsigned long) 

 

 

Function: analogRead() 

Description: 

Reads the value from the specified analog pin. This means that it will map input voltages between 0 

and 5 volts into integer values between 0 and 1023. It takes about 100 microseconds (0.0001 s) to 

read an analog input, so the maximum reading rate is about 10,000 times a second. 

Syntax: 

analogRead(pin) 

Parameters: 

pin: the number of the analog input pin to read from. 

Return: 

int (0 to 1023) 
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Function: delayMicroseconds() 

Description: Pauses the program for the amount of time (in microseconds) specified as 

parameter. There are a thousand microseconds in a millisecond, and a million microseconds in a 

second. 

Syntax: delayMicroseconds(us) 

 

Parameters: us: the number of microseconds to pause (unsigned int) 

  

Return: None 

 

Function: print() 

Description:  

Prints data to the serial port as human-readable ASCII text. This command can take many forms. 

Numbers are printed using an ASCII character for each digit. Floats are similarly printed as ASCII 

digits, defaulting to two decimal places. Bytes are sent as a single character.  

Syntax:  

Serial.print(val)  

Serial.print(val, format) 

Parameters: 

val: the value to print - any data type 

format: specifies the number base (for integral data types) or number of decimal places (for 

floating point types) 

Return:  

size_t (long): print() returns the number of bytes written, though reading that number is optional 

 

 

Function: setBrightness() 

Description: 

The overall brightness of all the LEDs can be adjusted using setBrightness(). 

 

Syntax:  

strip.setBrightness(brightness value); 

Parameters: 

Brightness value: This takes a single argument, a number in the range 0 (off) to 255 (max 

brightness). For example, to set a strip to 1/4 brightness: 

Return:  

None 
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Function: setPixelColor 

Description:  

Is the way to set the color of a pixel.The first argument — n in this example — is the pixel number 

along the strip, starting from 0closest to the Arduino. If you have a strip of 30 pixels, they’re 

numbered 0 through 29. It’s a computer thing. You’ll see various places in the code using 

a for loop, passing the loop counter variable as the pixel number to this function, to set the values 

of multiple pixels. 

 

Syntax: 

 strip.setPixelColor(n, red, green, blue); 

Parameters: 

 n: pixel number along the strip 

(red, green,blue): The hree arguments are the pixel color, expressed as red, green and blue 

brightness levels, where 0 is dimmest (off) and 255 is maximum brightness. 

Return:  

None 
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5.2 FLOW CHART 
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CONCLUSIONS AND VALUATIONS 
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6.1 CONCLUSION AND PROBLEMS 
 

Now that our project is completed, is time to analyse carefully the problems we 

have found on the way and the conclusions over them. 

As I am a Student of electrical engineering, during my studies I have done very few 

about programming and electronics. I decided to do a project associated with this topics 

and on the way, I found problems that I was able to solve with help of some colleagues, 

searching and analysing information. The most important is that I learnt things I didn’t 

know yet. 

The main idea of the project was to develop an application for a LED Matrix. At the end, 

I decided to do a lighting application with three different modes. The principal idea 

was to create a kind of lamp with a digital equalizer, and then with two additional 

buttons create other modes, a yellow flash for boys and the red heart for girls. 

To start with it, first I had to see some tutorial and study a little bit about C++ 

Programming. Once done, I did some practices with simple codes and then I began with 

our application code. For it, also we had to check the Adafruit NeoPixel library that we 

had to use for the LED Matrix. We studied how the LED matrix works and we made the 

codes for the flash and the heart. Unfortunately we run out of time and was not possible 

to make the equalizer. Instead the equalizer, we made a code for a digital VU Meter 

that simulates an equalizer. 

Also we had to design a PCB for our Application. For it, I had to see some tutorials in 

you tube of EAGLE software. When I printed the PCB and I solded, for the first time in 

my life, the components to it, the PCB doesn’t work properly. It took us some days until 

the problem was solved. One side of the condensator was not solded to the PCB and 

the AC signal coupling didn’t work. Also, because of the distance, when we speak not 

always the VU works properly. 

As in the PCB design, I have to watch some tutorials of SolidWorks software. With it we 

designed a Box for the LED Matrix that later would be printed with a 3D Printer. When 

the design was finished in SolidWorks, we had some problems with the 3D printer, but 

in the third trial the solid object was good printed. In one of the failed printouts I 

noticed that the parameters were reduce with the printer. So, before our third trial, I 

modified the value of some parameters and I made the design more efficiently saving 

material.  

With the VU application sometimes the LEDs flicker very quickly. After searching some 

information on the internet, we discovered that each individual NeoPixel draws up to 

60 milliamps at maximum brightness white (red + green + blue). 
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In actual use though, it’s rare for all pixels to be turned on that way. When mixing 

colours and displaying animations, the current draw will be much less.  

It’s impossible to estimate a single number for all circumstances, but we’ve been using 

1/3 this (20 mA per pixel) as a gross rule of thumb with no ill effects.  

 

To estimate power supply needs, multiply the number of pixels by 20, then divide the 

result by 1,000 for the “rule of thumb” power supply rating in Amps. Or use 60 (instead 

of 20) if you want to guarantee an absolute margin of safety for all situations. For 

example: 

 

256 NeoPixels × 20 mA ÷ 1,000 = 5.2 Amps minimum 

256 NeoPixels × 60 mA ÷ 1,000 = 15.4 Amps minimum 

 

In conclusion, for the properly working of the LEDs and the application we need a power 

supply between 5.2 – 15.4 Amps. The power supply that we used only had 1.0 Amps. 

Also you must remember this rule not to kill your LEDs: 

 

Extra Amps = Good but extra Volts = bad 

 

 

6.2 VALUATIONS 
 

During this semester, I have realised that electronic and programming is the 

technology for the future. This technology is very intensive and interesting, and 

knowing programming is possible to do a lot off new application for different devices 

then later can be improved with no high economic costs. 

Regarding the project, it could be improved finishing the idea an equalizer. With the 

other two modes it should be nice to do one of the next applications: 

 Digital alarm clock 

 A lamp that is turn on/off with a clap 

 Add thermometer to see the temperature on the LED Matrix 

More complicate but not impossible would be programming a capacitive screen and 

crate a code only to turn on the LEDs sliding your fingers over them. That will make 

easier drawing forms and shapes in the LED Matrix.
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  This file is part of the Adafruit NeoPixel library. 

 

  NeoPixel is free software: you can redistribute it and/or modify 

  it under the terms of the GNU Lesser General Public License as 

  published by the Free Software Foundation, either version 3 of 

  the License, or (at your option) any later version. 

 

  NeoPixel is distributed in the hope that it will be useful, 

  but WITHOUT ANY WARRANTY; without even the implied warranty of 

  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 

  GNU Lesser General Public License for more details. 

 

  You should have received a copy of the GNU Lesser General Public 

  License along with NeoPixel.  If not, see 

  <http://www.gnu.org/licenses/>. 

  --------------------------------------------------------------------*/ 

 

 

#ifndef ADAFRUIT_NEOPIXEL_H 

#define ADAFRUIT_NEOPIXEL_H 

 

 

#if (ARDUINO >= 100) 

 #include <Arduino.h> 

#else 

 #include <WProgram.h> 

 #include <pins_arduino.h> 

#endif 

 

 

// 'type' flags for LED pixels (third parameter to constructor): 

#define NEO_RGB     0x00 // Wired for RGB data order 

#define NEO_GRB     0x01 // Wired for GRB data order 

#define NEO_BRG     0x04 

   

#define NEO_COLMASK 0x01 

#define NEO_KHZ800  0x02 // 800 KHz datastream 

#define NEO_SPDMASK 0x02 

// Trinket flash space is tight, v1 NeoPixels aren't handled by default. 

// Remove the ifndef/endif to add support -- but code will be bigger. 

// Conversely, can comment out the #defines to save space on other MCUs. 

#ifndef __AVR_ATtiny85__ 

#define NEO_KHZ400  0x00 // 400 KHz datastream 

#endif 
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class Adafruit_NeoPixel { 

 

 

 public: 

 

 

  // Constructor: number of LEDs, pin number, LED type 

  Adafruit_NeoPixel(uint16_t n, uint8_t p=6, uint8_t t=NEO_GRB + NEO_KHZ800); 

  ~Adafruit_NeoPixel(); 

 

 

  void 

    begin(void), 

    show(void), 

    setPin(uint8_t p), 

    setPixelColor(uint16_t n, uint8_t r, uint8_t g, uint8_t b), 

    setPixelColor(uint16_t n, uint32_t c), 

    setBrightness(uint8_t), 

    clear(); 

  uint8_t 

   *getPixels(void) const, 

    getBrightness(void) const; 

  uint16_t 

    numPixels(void) const; 

  static uint32_t 

    Color(uint8_t r, uint8_t g, uint8_t b); 

  uint32_t 

    getPixelColor(uint16_t n) const; 

  inline bool 

    canShow(void) { return (micros() - endTime) >= 50L; } 

 

 

 private: 

 

 

  const uint16_t 

    numLEDs,       // Number of RGB LEDs in strip 

    numBytes;      // Size of 'pixels' buffer below 

  uint8_t 

    pin,           // Output pin number 

    brightness, 

   *pixels,        // Holds LED color values (3 bytes each) 

    rOffset,       // Index of red byte within each 3-byte pixel 

    gOffset,       // Index of green byte 

    bOffset;       // Index of blue byte 

  const uint8_t 

    type;          // Pixel flags (400 vs 800 KHz, RGB vs GRB color) 



                                                   

86 
 

Programming of a LED Matrix with a Digital VU Meter 
application 

 
  uint32_t 

    endTime;       // Latch timing reference 

#ifdef __AVR__ 

  const volatile uint8_t 

    *port;         // Output PORT register 

  uint8_t 

    pinMask;       // Output PORT bitmask 

#endif 

 

 

}; 

 

 

#endif // ADAFRUIT_NEOPIXEL_H 
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ANNEX 2 

APPLICATION CODE 
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#include <Adafruit_NeoPixel.h> // To recognise Adafruit_NeoPixel library functions.  

 

#define BUTTON_PIN7   7 // The green button is define in PIN 7 

 

#define BUTTON_PIN2   2 //The orange button is define in PIN 2 

 

#define PIXEL_PIN     6 //The data pin is define in PIN 6 

 

#define PIXEL_COUNT  256 // The nº of LED we are going to use are define 

 

int i = 0,j,h,k; 

 

// we declare a NeoPixel object. We will refer to "Adafruit_NeoPixel strip" to control the strip of pixels 

 

Adafruit_NeoPixel strip = Adafruit_NeoPixel(PIXEL_COUNT, PIXEL_PIN, NEO_GRB + NEO_KHZ800); 

 

const int sampleWindow = 20; // It is a window in msSample window width (50 mS = 20Hz) 

unsigned int sample; 

 

/*The setup() function is called when a sketch starts.  

Use it to initialize variables,pin modes, start using libraries, etc.  

The setup function will only run once, after each powerup or reset of the Arduino board*/ 

 

void setup()  

{ 

  //Opens serial port, sets data rate to 9600 bps 

   Serial.begin(9600); 

    

   //Set the digital pin 2 and 7 as pull up 

   pinMode(BUTTON_PIN2, INPUT_PULLUP); 

   pinMode(BUTTON_PIN7, INPUT_PULLUP); 
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   //Replaces any previous function that was attached to the interrupt with pin 7 and 2 

   attachInterrupt(7, flash, HIGH); 

   attachInterrupt(2, heart,HIGH); 

    

  //The data pin is prepared for NeoPixel output 

   strip.begin(); 

    

   //We introduce LED brightness value and we Initialize all pixels to "off" 

   strip.setBrightness(255); 

   strip.show(); 

} 

 

/*After creating a setup() function, which initializes and sets the initial values,  

the loop() function does precisely what its name suggests, and loops consecutively, 

allowing your program to change and respond.*/  

 

void loop()  

{ 

   

   /*With the next functions we will see the signal 

   of the  microphone on a sampling window*/ 

    

   unsigned long startMillis= millis();  //We start sampling window 

   unsigned int peakToPeak = 0;   // Level peak to peak 

  

   unsigned int signalMax = 0; 

   unsigned int signalMin = 1024; 

    

    

 while (millis() - startMillis < sampleWindow) // We recive data with an speed of 50ms 

   { 
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      sample = analogRead(0); // The output of the amplifier is connected to the analog A0 input of 

Arduino 

      if (sample < 1024)   

      { 

         if (sample > signalMax) 

         { 

            signalMax = sample;  // Max. Signal, sampling 

         } 

         else if (sample < signalMin) 

         { 

            signalMin = sample;  // Min. Signal, sampling 

         } 

      } 

   } 

   peakToPeak = signalMax - signalMin;  // Max - Min = range peak to peak 

   Serial.print(peakToPeak); 

   double volts = (peakToPeak * 5) / 1024;  // To convert to Volts 

    

   /*Now we defne the code to creat the VU Meter.  

   We have created five bands with differents parameters*/ 

    

   //BANDA 1  

    

    if (peakToPeak>1){  //Peaktopeak>1 the LED will turn on in green 

     strip.setPixelColor(16, 0, 255, 0); 

     strip.setPixelColor(17, 0, 255, 0); 

     strip.setPixelColor(46, 0, 255, 0); 

     strip.setPixelColor(47, 0, 255, 0); 

     } 

      

   else{  //peaktopeak<1 The LED will turn off 

    strip.setPixelColor(16, 0, 0, 0); 

    strip.setPixelColor(17, 0, 0, 0); 

    strip.setPixelColor(46, 0, 0, 0); 

    strip.setPixelColor(47, 0, 0, 0); 
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   } 

 

    

   if (peakToPeak>250){ 

     strip.setPixelColor(18, 0, 255, 0); 

     strip.setPixelColor(19, 0, 255, 0); 

     strip.setPixelColor(44, 0, 255, 0); 

     strip.setPixelColor(45, 0, 255, 0); 

   } 

   else{ 

    strip.setPixelColor(18, 0, 0, 0); 

    strip.setPixelColor(19, 0, 0, 0); 

    strip.setPixelColor(44, 0, 0, 0); 

    strip.setPixelColor(45, 0, 0, 0); 

   } 

    

    if (peakToPeak>260){ 

     strip.setPixelColor(20, 0, 255, 0); 

     strip.setPixelColor(21, 0, 255, 0); 

     strip.setPixelColor(42, 0, 255, 0); 

     strip.setPixelColor(43, 0, 255, 0); 

   } 

    else{ 

    strip.setPixelColor(20, 0, 0, 0); 

    strip.setPixelColor(21, 0, 0, 0); 

    strip.setPixelColor(42, 0, 0, 0); 

    strip.setPixelColor(43, 0, 0, 0); 

   } 

    

    

   if (peakToPeak>270){ 

     strip.setPixelColor(22, 204, 204, 0); 

     strip.setPixelColor(23, 204, 204, 0); 
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     strip.setPixelColor(40, 204, 204, 0); 

     strip.setPixelColor(41, 204, 204, 0); 

   } 

 

   else{ 

    strip.setPixelColor(22, 0, 0, 0); 

    strip.setPixelColor(23, 0, 0, 0); 

    strip.setPixelColor(40, 0, 0, 0); 

    strip.setPixelColor(41, 0, 0, 0); 

   } 

    

    

   if (peakToPeak>280){ 

     strip.setPixelColor(24, 204, 204, 0); 

     strip.setPixelColor(25, 204, 204, 0); 

     strip.setPixelColor(38, 204, 204, 0); 

     strip.setPixelColor(39, 204, 204, 0); 

   } 

   else{ 

    strip.setPixelColor(24, 0, 0, 0); 

    strip.setPixelColor(25, 0, 0, 0); 

    strip.setPixelColor(38, 0, 0, 0); 

    strip.setPixelColor(39, 0, 0, 0); 

   } 

    

    

   if (peakToPeak>290){ 

     strip.setPixelColor(26, 204, 204, 0); 

     strip.setPixelColor(37, 204, 204, 0); 

    } 

   else{ 

    strip.setPixelColor(26, 0, 0, 0); 

    strip.setPixelColor(37, 0, 0, 0); 

   } 
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    if (peakToPeak>300){ 

     strip.setPixelColor(27, 255, 128, 0); 

     strip.setPixelColor(28, 255, 128, 0); 

     strip.setPixelColor(35, 255, 128, 0); 

     strip.setPixelColor(36, 255, 128, 0); 

   } 

   else{ 

    strip.setPixelColor(27, 0, 0, 0); 

    strip.setPixelColor(28, 0, 0, 0); 

    strip.setPixelColor(35, 0, 0, 0); 

    strip.setPixelColor(36, 0, 0, 0); 

   } 

    

    

   if (peakToPeak>310){ 

     strip.setPixelColor(29, 255, 128, 0); 

     strip.setPixelColor(34, 255, 128, 0); 

    } 

   else{ 

    strip.setPixelColor(29, 0, 0, 0); 

    strip.setPixelColor(34, 0, 0, 0); 

   } 

    

    

   if (peakToPeak>320){ 

     strip.setPixelColor(30, 255, 0, 0); 

     strip.setPixelColor(33, 255, 0, 0); 

    } 

   else{ 

    strip.setPixelColor(30, 0, 0, 0); 

    strip.setPixelColor(33, 0, 0, 0); 

   } 
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   if (peakToPeak>330){ 

     strip.setPixelColor(31, 255, 0, 0); 

     strip.setPixelColor(32, 255, 0, 0); 

    } 

   else{ 

    strip.setPixelColor(31, 0, 0, 0); 

    strip.setPixelColor(32, 0, 0, 0); 

   } 

  

 //BANDA 2 

  

 if(peakToPeak>1){ 

     strip.setPixelColor(78, 0, 255, 0); 

     strip.setPixelColor(79, 0, 255, 0); 

     strip.setPixelColor(80, 0, 255, 0); 

     strip.setPixelColor(81, 0, 255, 0); 

   } 

   else{ 

    strip.setPixelColor(78, 0, 0, 0); 

    strip.setPixelColor(79, 0, 0, 0); 

    strip.setPixelColor(80, 0, 0, 0); 

    strip.setPixelColor(81, 0, 0, 0); 

   } 

    

    

    if (peakToPeak>350){ 

     strip.setPixelColor(76, 0, 255, 0); 

     strip.setPixelColor(77, 0, 255, 0); 

     strip.setPixelColor(82, 0, 255, 0); 

     strip.setPixelColor(83, 0, 255, 0); 

   } 

   else{ 
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    strip.setPixelColor(76, 0, 0, 0); 

    strip.setPixelColor(77, 0, 0, 0); 

    strip.setPixelColor(82, 0, 0, 0); 

    strip.setPixelColor(83, 0, 0, 0); 

   } 

    

    

    if (peakToPeak>370){ 

     strip.setPixelColor(74, 0, 255, 0); 

     strip.setPixelColor(75, 0, 255, 0); 

     strip.setPixelColor(84, 0, 255, 0); 

     strip.setPixelColor(85, 0, 255, 0); 

   } 

    else{ 

    strip.setPixelColor(74, 0, 0, 0); 

    strip.setPixelColor(75, 0, 0, 0); 

    strip.setPixelColor(84, 0, 0, 0); 

    strip.setPixelColor(85, 0, 0, 0); 

   } 

    

    

   if (peakToPeak>390){ 

     strip.setPixelColor(72, 204, 204, 0); 

     strip.setPixelColor(73, 204, 204, 0); 

     strip.setPixelColor(86, 204, 204, 0); 

     strip.setPixelColor(87, 204, 204, 0); 

   } 

   else{ 

    strip.setPixelColor(72, 0, 0, 0); 

    strip.setPixelColor(73, 0, 0, 0); 

    strip.setPixelColor(86, 0, 0, 0); 

    strip.setPixelColor(87, 0, 0, 0); 

   } 
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   if (peakToPeak>410){ 

     strip.setPixelColor(70, 204, 204, 0); 

     strip.setPixelColor(71, 204, 204, 0); 

     strip.setPixelColor(88, 204, 204, 0); 

     strip.setPixelColor(89, 204, 204, 0); 

   } 

   else{ 

    strip.setPixelColor(70, 0, 0, 0); 

    strip.setPixelColor(71, 0, 0, 0); 

    strip.setPixelColor(88, 0, 0, 0); 

    strip.setPixelColor(89, 0, 0, 0); 

   } 

    

   if (peakToPeak>430){ 

     strip.setPixelColor(69, 204, 204, 0); 

     strip.setPixelColor(90, 204, 204, 0); 

    } 

   else{ 

    strip.setPixelColor(69, 0, 0, 0); 

    strip.setPixelColor(90, 0, 0, 0); 

   } 

    

    

     if (peakToPeak>450){ 

     strip.setPixelColor(67, 255, 128, 0); 

     strip.setPixelColor(68, 255, 128, 0); 

     strip.setPixelColor(91, 255, 128, 0); 

     strip.setPixelColor(92, 255, 128, 0); 

   } 

   else{ 

    strip.setPixelColor(67, 0, 0, 0); 

    strip.setPixelColor(68, 0, 0, 0); 

    strip.setPixelColor(91, 0, 0, 0); 
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    strip.setPixelColor(92, 0, 0, 0); 

   } 

    

    

   if (peakToPeak>470){ 

     strip.setPixelColor(66, 255, 128, 0); 

     strip.setPixelColor(93, 255, 128, 0); 

    } 

   else{ 

    strip.setPixelColor(66, 0, 0, 0); 

    strip.setPixelColor(93, 0, 0, 0); 

   } 

    

    

   if (peakToPeak>490){ 

     strip.setPixelColor(65, 255, 0, 0); 

     strip.setPixelColor(94, 255, 0, 0); 

    } 

   else{ 

    strip.setPixelColor(65, 0, 0, 0); 

    strip.setPixelColor(94, 0, 0, 0); 

   } 

    

    

   if (peakToPeak>510){ 

     strip.setPixelColor(64, 255, 0, 0); 

     strip.setPixelColor(95, 255, 0, 0); 

    } 

   else{ 

    strip.setPixelColor(64, 0, 0, 0); 

    strip.setPixelColor(95, 0, 0, 0); 

   } 
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   //BANDA 3 

   if (peakToPeak>1){ 

     strip.setPixelColor(112, 0, 255, 0); 

     strip.setPixelColor(113, 0, 255, 0); 

     strip.setPixelColor(142, 0, 255, 0); 

     strip.setPixelColor(143, 0, 255, 0); 

   } 

   else{ 

    strip.setPixelColor(112, 0, 0, 0); 

    strip.setPixelColor(113, 0, 0, 0); 

    strip.setPixelColor(142, 0, 0, 0); 

    strip.setPixelColor(143, 0, 0, 0); 

   } 

    

    if (peakToPeak>160){ 

     strip.setPixelColor(114, 0, 255, 0); 

     strip.setPixelColor(115, 0, 255, 0); 

     strip.setPixelColor(140, 0, 255, 0); 

     strip.setPixelColor(141, 0, 255, 0); 

   } 

   else{ 

    strip.setPixelColor(114, 0, 0, 0); 

    strip.setPixelColor(115, 0, 0, 0); 

    strip.setPixelColor(140, 0, 0, 0); 

    strip.setPixelColor(141, 0, 0, 0); 

   } 

    

    if (peakToPeak>180){ 

     strip.setPixelColor(116, 0, 255, 0); 

     strip.setPixelColor(117, 0, 255, 0); 

     strip.setPixelColor(138, 0, 255, 0); 

     strip.setPixelColor(139, 0, 255, 0); 

   } 

    else{ 
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    strip.setPixelColor(116, 0, 0, 0); 

    strip.setPixelColor(117, 0, 0, 0); 

    strip.setPixelColor(138, 0, 0, 0); 

    strip.setPixelColor(139, 0, 0, 0); 

   } 

    

   if (peakToPeak>200){ 

     strip.setPixelColor(118, 204, 204, 0); 

     strip.setPixelColor(119, 204, 204, 0); 

     strip.setPixelColor(136, 204, 204, 0); 

     strip.setPixelColor(137, 204, 204, 0); 

   } 

   else{ 

    strip.setPixelColor(118, 0, 0, 0); 

    strip.setPixelColor(119, 0, 0, 0); 

    strip.setPixelColor(136, 0, 0, 0); 

    strip.setPixelColor(137, 0, 0, 0); 

   } 

    

   if (peakToPeak>220){ 

     strip.setPixelColor(120, 204, 204, 0); 

     strip.setPixelColor(121, 204, 204, 0); 

     strip.setPixelColor(134, 204, 204, 0); 

     strip.setPixelColor(135, 204, 204, 0); 

   } 

   else{ 

    strip.setPixelColor(120, 0, 0, 0); 

    strip.setPixelColor(121, 0, 0, 0); 

    strip.setPixelColor(134, 0, 0, 0); 

    strip.setPixelColor(135, 0, 0, 0); 

   } 

    

   if (peakToPeak>230){ 

     strip.setPixelColor(122, 204, 204, 0); 
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     strip.setPixelColor(133, 204, 204, 0); 

    } 

   else{ 

    strip.setPixelColor(122, 0, 0, 0); 

    strip.setPixelColor(133, 0, 0, 0); 

   } 

    

    if (peakToPeak>240){ 

     strip.setPixelColor(123, 255, 128, 0); 

     strip.setPixelColor(124, 255, 128, 0); 

     strip.setPixelColor(132, 255, 128, 0); 

     strip.setPixelColor(131, 255, 128, 0); 

   } 

   else{ 

    strip.setPixelColor(123, 0, 0, 0); 

    strip.setPixelColor(124, 0, 0, 0); 

    strip.setPixelColor(132, 0, 0, 0); 

    strip.setPixelColor(131, 0, 0, 0); 

   } 

    

   if (peakToPeak>250){ 

     strip.setPixelColor(125, 255, 128, 0); 

     strip.setPixelColor(130, 255, 128, 0); 

    } 

   else{ 

    strip.setPixelColor(125, 0, 0, 0); 

    strip.setPixelColor(130, 0, 0, 0); 

   } 

    

   if (peakToPeak>260){ 

     strip.setPixelColor(126, 255, 0, 0); 

     strip.setPixelColor(129, 255, 0, 0); 

    } 

   else{ 
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    strip.setPixelColor(126, 0, 0, 0); 

    strip.setPixelColor(129, 0, 0, 0); 

   } 

    

   if (peakToPeak>270){ 

     strip.setPixelColor(127, 255, 0, 0); 

     strip.setPixelColor(128, 255, 0, 0); 

    } 

   else{ 

    strip.setPixelColor(127, 0, 0, 0); 

    strip.setPixelColor(128, 0, 0, 0); 

   } 

    

   //BANDA 4 

  

 if(peakToPeak>1){ 

     strip.setPixelColor(174, 0, 255, 0); 

     strip.setPixelColor(175, 0, 255, 0); 

     strip.setPixelColor(176, 0, 255, 0); 

     strip.setPixelColor(177, 0, 255, 0); 

   } 

   else{ 

    strip.setPixelColor(174, 0, 0, 0); 

    strip.setPixelColor(175, 0, 0, 0); 

    strip.setPixelColor(176, 0, 0, 0); 

    strip.setPixelColor(177, 0, 0, 0); 

   } 

    

    if (peakToPeak>200){ 

     strip.setPixelColor(172, 0, 255, 0); 

     strip.setPixelColor(173, 0, 255, 0); 

     strip.setPixelColor(178, 0, 255, 0); 

     strip.setPixelColor(179, 0, 255, 0); 

   } 
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   else{ 

    strip.setPixelColor(172, 0, 0, 0); 

    strip.setPixelColor(173, 0, 0, 0); 

    strip.setPixelColor(178, 0, 0, 0); 

    strip.setPixelColor(179, 0, 0, 0); 

   } 

    

    if (peakToPeak>240){ 

     strip.setPixelColor(170, 0, 255, 0); 

     strip.setPixelColor(171, 0, 255, 0); 

     strip.setPixelColor(180, 0, 255, 0); 

     strip.setPixelColor(181, 0, 255, 0); 

   } 

    else{ 

    strip.setPixelColor(170, 0, 0, 0); 

    strip.setPixelColor(171, 0, 0, 0); 

    strip.setPixelColor(180, 0, 0, 0); 

    strip.setPixelColor(181, 0, 0, 0); 

   } 

    

   if (peakToPeak>280){ 

     strip.setPixelColor(168, 204, 204, 0); 

     strip.setPixelColor(169, 204, 204, 0); 

     strip.setPixelColor(182, 204, 204, 0); 

     strip.setPixelColor(183, 204, 204, 0); 

     } 

      

     else{ 

     strip.setPixelColor(168, 0, 0, 0); 

    strip.setPixelColor(169, 0, 0, 0); 

    strip.setPixelColor(182, 0, 0, 0); 

    strip.setPixelColor(183, 0, 0, 0); 

   } 
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   if (peakToPeak>320){ 

     strip.setPixelColor(166, 204, 204, 0); 

     strip.setPixelColor(167, 204, 204, 0); 

     strip.setPixelColor(184, 204, 204, 0); 

     strip.setPixelColor(185, 204, 204, 0); 

   } 

   else{ 

    strip.setPixelColor(166, 0, 0, 0); 

    strip.setPixelColor(167, 0, 0, 0); 

    strip.setPixelColor(184, 0, 0, 0); 

    strip.setPixelColor(185, 0, 0, 0); 

   } 

    

   if (peakToPeak>360){ 

     strip.setPixelColor(165, 204, 204, 0); 

     strip.setPixelColor(186, 204, 204, 0); 

    } 

   else{ 

    strip.setPixelColor(165, 0, 0, 0); 

    strip.setPixelColor(186, 0, 0, 0); 

   } 

    

     if (peakToPeak>400){ 

     strip.setPixelColor(163, 255, 128, 0); 

     strip.setPixelColor(164, 255, 128, 0); 

     strip.setPixelColor(187, 255, 128, 0); 

     strip.setPixelColor(188, 255, 128, 0); 

   } 

   else{ 

    strip.setPixelColor(163, 0, 0, 0); 

    strip.setPixelColor(164, 0, 0, 0); 

    strip.setPixelColor(187, 0, 0, 0); 

    strip.setPixelColor(188, 0, 0, 0); 

   } 
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   if (peakToPeak>450){ 

     strip.setPixelColor(162, 255, 128, 0); 

     strip.setPixelColor(189, 255, 128, 0); 

    } 

   else{ 

    strip.setPixelColor(162, 0, 0, 0); 

    strip.setPixelColor(189, 0, 0, 0); 

   } 

    

   if (peakToPeak>500){ 

     strip.setPixelColor(161, 255, 0, 0); 

     strip.setPixelColor(190, 255, 0, 0); 

    } 

   else{ 

    strip.setPixelColor(161, 0, 0, 0); 

    strip.setPixelColor(190, 0, 0, 0); 

   } 

    

   if (peakToPeak>600){ 

     strip.setPixelColor(160, 255, 0, 0); 

     strip.setPixelColor(191, 255, 0, 0); 

      //strip.show(); 

    } 

   else{ 

    strip.setPixelColor(160, 0, 0, 0); 

    strip.setPixelColor(191, 0, 0, 0); 

     //strip.show(); 

   } 

    

    

   //BANDA 5 

  

 if(peakToPeak>1){ 
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     strip.setPixelColor(208, 0, 255, 0); 

     strip.setPixelColor(209, 0, 255, 0); 

     strip.setPixelColor(238, 0, 255, 0); 

     strip.setPixelColor(239, 0, 255, 0); 

   } 

   else{ 

    strip.setPixelColor(208, 0, 0, 0); 

    strip.setPixelColor(209, 0, 0, 0); 

    strip.setPixelColor(238, 0, 0, 0); 

    strip.setPixelColor(239, 0, 0, 0); 

   } 

    

    if (peakToPeak>350){ 

     strip.setPixelColor(210, 0, 255, 0); 

     strip.setPixelColor(211, 0, 255, 0); 

     strip.setPixelColor(236, 0, 255, 0); 

     strip.setPixelColor(237, 0, 255, 0); 

   } 

   else{ 

    strip.setPixelColor(210, 0, 0, 0); 

    strip.setPixelColor(211, 0, 0, 0); 

    strip.setPixelColor(236, 0, 0, 0); 

    strip.setPixelColor(237, 0, 0, 0); 

   } 

    

    if (peakToPeak>370){ 

     strip.setPixelColor(212, 0, 255, 0); 

     strip.setPixelColor(213, 0, 255, 0); 

     strip.setPixelColor(234, 0, 255, 0); 

     strip.setPixelColor(235, 0, 255, 0); 

   } 

    else{ 

    strip.setPixelColor(212, 0, 0, 0); 

    strip.setPixelColor(213, 0, 0, 0); 
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    strip.setPixelColor(234, 0, 0, 0); 

    strip.setPixelColor(235, 0, 0, 0); 

   } 

    

   if (peakToPeak>390){ 

     strip.setPixelColor(214, 204, 204, 0); 

     strip.setPixelColor(215, 204, 204, 0); 

     strip.setPixelColor(232, 204, 204, 0); 

     strip.setPixelColor(233, 204, 204, 0); 

   } 

   else{ 

    strip.setPixelColor(214, 0, 0, 0); 

    strip.setPixelColor(215, 0, 0, 0); 

    strip.setPixelColor(232, 0, 0, 0); 

    strip.setPixelColor(233, 0, 0, 0); 

   } 

    

   if (peakToPeak>410){ 

     strip.setPixelColor(216, 204, 204, 0); 

     strip.setPixelColor(217, 204, 204, 0); 

     strip.setPixelColor(230, 204, 204, 0); 

     strip.setPixelColor(231, 204, 204, 0); 

   } 

   else{ 

    strip.setPixelColor(216, 0, 0, 0); 

    strip.setPixelColor(217, 0, 0, 0); 

    strip.setPixelColor(230, 0, 0, 0); 

    strip.setPixelColor(231, 0, 0, 0); 

   } 

    

   if (peakToPeak>430){ 

     strip.setPixelColor(218, 204, 204, 0); 

     strip.setPixelColor(229, 204, 204, 0); 

    } 
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   else{ 

    strip.setPixelColor(218, 0, 0, 0); 

    strip.setPixelColor(229, 0, 0, 0); 

   } 

    

     if (peakToPeak>450){ 

     strip.setPixelColor(219, 255, 128, 0); 

     strip.setPixelColor(220, 255, 128, 0); 

     strip.setPixelColor(227, 255, 128, 0); 

     strip.setPixelColor(228, 255, 128, 0); 

   } 

   else{ 

    strip.setPixelColor(219, 0, 0, 0); 

    strip.setPixelColor(220, 0, 0, 0); 

    strip.setPixelColor(227, 0, 0, 0); 

    strip.setPixelColor(228, 0, 0, 0); 

   } 

    

   if (peakToPeak>470){ 

     strip.setPixelColor(221, 255, 128, 0); 

     strip.setPixelColor(226, 255, 128, 0); 

    } 

   else{ 

    strip.setPixelColor(221, 0, 0, 0); 

    strip.setPixelColor(226, 0, 0, 0); 

   } 

    

   if (peakToPeak>490){ 

     strip.setPixelColor(222, 255, 0, 0); 

     strip.setPixelColor(225, 255, 0, 0); 

       

    } 

   else{ 

    strip.setPixelColor(222, 0, 0, 0); 
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    strip.setPixelColor(225, 0, 0, 0); 

      

   } 

    

   if (peakToPeak>510){ 

     strip.setPixelColor(223, 255, 0, 0); 

     strip.setPixelColor(224, 255, 0, 0); 

      

    } 

   else{ 

    strip.setPixelColor(223, 0, 0, 0); 

    strip.setPixelColor(224, 0, 0, 0); 

    strip.show(); 

   } 

    

 

  

 Serial.print("\t"); 

    Serial.println(volts); 

   if (volts>0.4){              // Si el valor leído supera al umbral damos una alarma visual 

   } 

    

   else if (volts<0.4){        // De lo contrario, no damos ninguna alarma 

   } 

    

} 

 

//With the next functions we activate the yellow flash when we push the green button 

void flash(){ 

    

  //We reset all the LED before the flash not to mix the it with the VU meter 

   for(i=0;i<256;i++){ 

      

     strip.setPixelColor(i, 0, 0, 0); 
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     } 

     strip.show(); 

      

      

  //We define the LED that form the Flash 

  strip.setPixelColor(51, 204, 204, 0); 

  strip.setPixelColor(77, 204, 204, 0); 

  strip.setPixelColor(76, 204, 204, 0); 

  strip.setPixelColor(81, 204, 204, 0); 

  strip.setPixelColor(82, 204, 204, 0); 

  strip.setPixelColor(83, 204, 204, 0); 

  strip.setPixelColor(84, 204, 204, 0); 

  strip.setPixelColor(90, 204, 204, 0); 

  strip.setPixelColor(100, 204, 204, 0); 

  strip.setPixelColor(101, 204, 204, 0); 

  strip.setPixelColor(106, 204, 204, 0); 

  strip.setPixelColor(107, 204, 204, 0); 

  strip.setPixelColor(108, 204, 204, 0); 

  strip.setPixelColor(109, 204, 204, 0); 

  strip.setPixelColor(110, 204, 204, 0); 

  strip.setPixelColor(111, 204, 204, 0); 

  strip.setPixelColor(114, 204, 204, 0); 

  strip.setPixelColor(113, 204, 204, 0); 

  strip.setPixelColor(115, 204, 204, 0); 

  strip.setPixelColor(116, 204, 204, 0); 

  strip.setPixelColor(117, 204, 204, 0); 

  strip.setPixelColor(118, 204, 204, 0); 

  strip.setPixelColor(124, 204, 204, 0); 

  strip.setPixelColor(123, 204, 204, 0); 

  strip.setPixelColor(122, 204, 204, 0); 

  strip.setPixelColor(130, 204, 204, 0); 

  strip.setPixelColor(131, 204, 204, 0); 

  strip.setPixelColor(132, 204, 204, 0); 

  strip.setPixelColor(133, 204, 204, 0); 
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  strip.setPixelColor(136, 204, 204, 0); 

  strip.setPixelColor(137, 204, 204, 0); 

  strip.setPixelColor(140, 204, 204, 0); 

  strip.setPixelColor(141, 204, 204, 0); 

  strip.setPixelColor(147, 204, 204, 0); 

  strip.setPixelColor(152, 204, 204, 0); 

  strip.setPixelColor(151, 204, 204, 0); 

  strip.setPixelColor(155, 204, 204, 0); 

  strip.setPixelColor(152, 204, 204, 0); 

  strip.setPixelColor(155, 204, 204, 0); 

  strip.setPixelColor(154, 204, 204, 0); 

  strip.setPixelColor(157, 204, 204, 0); 

  strip.setPixelColor(158, 204, 204, 0); 

  strip.setPixelColor(160, 204, 204, 0); 

  strip.setPixelColor(161, 204, 204, 0); 

  strip.setPixelColor(164, 204, 204, 0); 

  strip.setPixelColor(165, 204, 204, 0); 

  strip.setPixelColor(166, 204, 204, 0); 

  strip.setPixelColor(167, 204, 204, 0); 

  strip.setPixelColor(187, 204, 204, 0); 

  strip.setPixelColor(186, 204, 204, 0); 

  strip.setPixelColor(185, 204, 204, 0); 

  strip.setPixelColor(196, 204, 204, 0); 

  strip.setPixelColor(197, 204, 204, 0); 

  strip.setPixelColor(219, 204, 204, 0); 

  strip.setPixelColor(191, 204, 204, 0); 

  strip.show(); 

   

  //The flash is on for 2 sec. and then the application turns to the VU Meter 

  delayMicroseconds(900000);   

  

   

  strip.setPixelColor(51, 0, 0, 0); 

  strip.setPixelColor(77, 0, 0, 0); 
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  strip.setPixelColor(76, 0, 0, 0); 

  strip.setPixelColor(81, 0, 0, 0); 

  strip.setPixelColor(82, 0, 0, 0); 

  strip.setPixelColor(83, 0, 0, 0); 

  strip.setPixelColor(84, 0, 0, 0); 

  strip.setPixelColor(90, 0, 0, 0); 

  strip.setPixelColor(100, 0, 0, 0); 

  strip.setPixelColor(101, 0, 0, 0); 

  strip.setPixelColor(106, 0, 0, 0); 

  strip.setPixelColor(107, 0, 0, 0); 

  strip.setPixelColor(108, 0, 0, 0); 

  strip.setPixelColor(109, 0, 0, 0); 

  strip.setPixelColor(110, 0, 0, 0); 

  strip.setPixelColor(111, 0, 0, 0); 

  strip.setPixelColor(114, 0, 0, 0); 

  strip.setPixelColor(113, 0, 0, 0); 

  strip.setPixelColor(115, 0, 0, 0); 

  strip.setPixelColor(116, 0, 0, 0); 

  strip.setPixelColor(117, 0, 0, 0); 

  strip.setPixelColor(118, 0, 0, 0); 

  strip.setPixelColor(124, 0, 0, 0); 

  strip.setPixelColor(123, 0, 0, 0); 

  strip.setPixelColor(122, 0, 0, 0); 

  strip.setPixelColor(130, 0, 0, 0); 

  strip.setPixelColor(131, 0, 0, 0); 

  strip.setPixelColor(132, 0, 0, 0); 

  strip.setPixelColor(133, 0, 0, 0); 

  strip.setPixelColor(136, 0, 0, 0); 

  strip.setPixelColor(137, 0, 0, 0); 

  strip.setPixelColor(140, 0, 0, 0); 

  strip.setPixelColor(141, 0, 0, 0); 

  strip.setPixelColor(147, 0, 0, 0); 

  strip.setPixelColor(152, 0, 0, 0); 

  strip.setPixelColor(151, 0, 0, 0); 
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  strip.setPixelColor(155, 0, 0, 0); 

  strip.setPixelColor(152, 0, 0, 0); 

  strip.setPixelColor(155, 0, 0, 0); 

  strip.setPixelColor(154, 0, 0, 0); 

  strip.setPixelColor(157, 0, 0, 0); 

  strip.setPixelColor(158, 0, 0, 0); 

  strip.setPixelColor(160, 0, 0, 0); 

  strip.setPixelColor(161, 0, 0, 0); 

  strip.setPixelColor(164, 0, 0, 0); 

  strip.setPixelColor(165, 0, 0, 0); 

  strip.setPixelColor(166, 0, 0, 0); 

  strip.setPixelColor(167, 0, 0, 0); 

  strip.setPixelColor(187, 0, 0, 0); 

  strip.setPixelColor(186, 0, 0, 0); 

  strip.setPixelColor(185, 0, 0, 0); 

  strip.setPixelColor(196, 0, 0, 0); 

  strip.setPixelColor(197, 0, 0, 0); 

  strip.setPixelColor(219, 0, 0, 0); 

  strip.setPixelColor(191, 0, 0, 0); 

  strip.show(); 

   

  } 

   

  void heart(){ 

     

    for(i=0;i<256;i++){ 

      

     strip.setPixelColor(i, 0, 0, 0); 

     } 

     strip.show(); 

   

  strip.setPixelColor(4, 255, 0, 0); 

  strip.setPixelColor(5, 255, 0, 0); 

  strip.setPixelColor(6, 255, 0, 0); 
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  strip.setPixelColor(23, 255, 0, 0); 

  strip.setPixelColor(7, 255, 0, 0); 

  strip.setPixelColor(3, 255, 0, 0); 

  strip.setPixelColor(34, 255, 0, 0); 

  strip.setPixelColor(29, 255, 0, 0); 

  strip.setPixelColor(41, 255, 0, 0); 

  strip.setPixelColor(53, 255, 0, 0); 

  strip.setPixelColor(61, 255, 0, 0); 

  strip.setPixelColor(66, 255, 0, 0); 

  strip.setPixelColor(75, 255, 0, 0); 

  strip.setPixelColor(92, 255, 0, 0); 

  strip.setPixelColor(83, 255, 0, 0); 

  strip.setPixelColor(100, 255, 0, 0); 

  strip.setPixelColor(109, 255, 0, 0); 

  strip.setPixelColor(113, 255, 0, 0); 

  strip.setPixelColor(122, 255, 0, 0); 

  strip.setPixelColor(133, 255, 0, 0); 

  strip.setPixelColor(134, 255, 0, 0); 

  strip.setPixelColor(143, 255, 0, 0); 

  strip.setPixelColor(145, 255, 0, 0); 

  strip.setPixelColor(155, 255, 0, 0); 

  strip.setPixelColor(163, 255, 0, 0); 

  strip.setPixelColor(173, 255, 0, 0); 

  strip.setPixelColor(179, 255, 0, 0); 

  strip.setPixelColor(189, 255, 0, 0); 

  strip.setPixelColor(194, 255, 0, 0); 

  strip.setPixelColor(203, 255, 0, 0); 

  strip.setPixelColor(213, 255, 0, 0); 

  strip.setPixelColor(221, 255, 0, 0); 

  strip.setPixelColor(226, 255, 0, 0); 

  strip.setPixelColor(252, 255, 0, 0); 

  strip.setPixelColor(247, 255, 0, 0); 

  strip.setPixelColor(233, 255, 0, 0); 

  strip.setPixelColor(248, 255, 0, 0); 
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  strip.setPixelColor(249, 255, 0, 0); 

  strip.setPixelColor(250, 255, 0, 0); 

  strip.setPixelColor(251, 255, 0, 0); 

  strip.show(); 

   

  delayMicroseconds(900000);   

 

  strip.setPixelColor(4, 0, 0, 0); 

  strip.setPixelColor(5, 0, 0, 0); 

  strip.setPixelColor(6, 0, 0, 0); 

  strip.setPixelColor(23, 0, 0, 0); 

  strip.setPixelColor(7, 0, 0, 0); 

  strip.setPixelColor(3, 0, 0, 0); 

  strip.setPixelColor(34, 0, 0, 0); 

  strip.setPixelColor(29, 0, 0, 0); 

  strip.setPixelColor(41, 0, 0, 0); 

  strip.setPixelColor(53, 0, 0, 0); 

  strip.setPixelColor(61, 0, 0, 0); 

  strip.setPixelColor(66, 0, 0, 0); 

  strip.setPixelColor(75, 0, 0, 0); 

  strip.setPixelColor(92, 0, 0, 0); 

  strip.setPixelColor(83, 0, 0, 0); 

  strip.setPixelColor(100, 0, 0, 0); 

  strip.setPixelColor(109, 0, 0, 0); 

  strip.setPixelColor(113, 0, 0, 0); 

  strip.setPixelColor(122, 0, 0, 0); 

  strip.setPixelColor(133, 0, 0, 0); 

  strip.setPixelColor(134, 0, 0, 0); 

  strip.setPixelColor(143, 0, 0, 0); 

  strip.setPixelColor(145, 0, 0, 0); 

  strip.setPixelColor(155, 0, 0, 0); 

  strip.setPixelColor(163, 0, 0, 0); 

  strip.setPixelColor(173, 0, 0, 0); 

  strip.setPixelColor(179, 0, 0, 0); 
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  strip.setPixelColor(189, 0, 0, 0); 

  strip.setPixelColor(194, 0, 0, 0); 

  strip.setPixelColor(203, 0, 0, 0); 

  strip.setPixelColor(213, 0, 0, 0); 

  strip.setPixelColor(221, 0, 0, 0); 

  strip.setPixelColor(226, 0, 0, 0); 

  strip.setPixelColor(252, 0, 0, 0); 

  strip.setPixelColor(247, 0, 0, 0); 

  strip.setPixelColor(233, 0, 0, 0); 

  strip.setPixelColor(248, 0, 0, 0); 

  strip.setPixelColor(249, 0, 0, 0); 

  strip.setPixelColor(250, 0, 0, 0); 

  strip.setPixelColor(251, 0, 0, 0); 

  strip.show(); 

} 
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VU METER PCB 
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3D CAD PLANS 
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