

PROGRAMMING OF A LED MATRIX WITH A

DIGITAL VU METER APPLICATION

WS 2015 BACHELOR ARBEIT

Student: Norberto Albujer
Matriculation Number: 2738245

Academic Supervisor: Prof. Dr. Roland Mandl

Technical Supervisor: Gerald Schickuber

INDEX

INTRODUCTION .. 9

CHAPTER 1 ... 11

ARDUINO BASIC FEATURES .. 11

1.1 WHAT IS ARDUINO? .. 12

1.2 HARDWARE ... 12

1.2.1 ARDUINO DUE .. 12

1.3 SOFTWARE ... 23

1.3.1 ARDUINO SOFTWARE ... 23

1.3.2 ADAFRUIT NEO PIXEL LIBRARY .. 26

CHAPTER 2 ... 27

DEVICES CONNECTED TO ARDUINO ... 27

2.1 LED MATRIX ... 28

2.2 WS2812b LED ... 30

2.3 ELECTRIC CIRCUIT.. 37

2.3.1THEORICAL ELECTRIC CIRCUIT .. 37

2.3.2 PRACTICAL CIRCUIT ON PROTOBOARD .. 50

2.3.3 PCB DESIGN .. 52

CHAPTER 3 ... 58

3D CAD DESIGN WITH SOLIDWORKS ... 58

3.1 WHAT IS SOLIDWORKS? .. 59

3.2 3D CAD LED MATRIX BOX DESIGNS ... 59

CHAPTER 4 ... 63

3D PRINTER .. 63

4.1 PRINTER SOFTWARE ... 64

4.2 PRINTER SLICER .. 65

4.3 RESULTS ... 66

CHAPTER 5 ... 69

APPLICATION .. 69

5.1 APPLICATION MODES... 70

5.2 PROGRAMMING USER FUNCTIONS ... 71

4

Programming of a LED Matrix with a Digital VU Meter
application

5.2 FLOW CHART .. 77

CHAPTER 6 ... 79

CONCLUSIONS AND VALUATIONS .. 79

6.1 CONCLUSION AND PROBLEMS .. 80

6.2 VALUATIONS .. 81

BIBLIOGRAPHY ... 82

ANNEX 1. ADAFRUIT NEOPIXEL LIBRARY .. 83

ANNEX 2. APPLICATION CODE .. 87

ANNEX 3. VU METER PCB ... 116

ANNEX 4. 3D CAD PLANS ... 120

LIST OF FIGURES

 Figure 1. Front and back side of Arduino Due

 Figure 2. Arduino Due PinOut diagram

 Figure 3. Arduino’s Due USB ports

 Figure 4. Composition of arduino’s software

 Figure 5. Ws2812b LED matrix

 Figure 6. Ws2812b LED mechanical dimensions

 Figure 7. Ws2812b LED pin configuration

 Figure 8. Ws2812b LED sequence chart

 Figure 9. Ws2812b LED cascade method

 Figure 10. Ws2812b LED data transmission code

 Figure 11. Ws2812b LED typical application circuit

 Figure 12. Schematic of an operational amplifier

 Figure 13. Schematic of TLV2772A operational amplifier

 Figure 14. Dual voltage power supply for an operational amplifier

 Figure 15. Artificial ground for an operational amplifier

 Figure 16. Operational amplifier with the inputs connected to the same potential.

 Figure 17. AC capacitive coupling in an operational amplifier

 Figure 18. Schematic of a differential amplifier

 Figure 19. Schematic of an inverter operational amplifier

 Figure 20. Schematic of a buffer

 Figure 21. Schematic circuit for bode diagram

 Figure 22. Bode diagram

 Figure 23. Microphone und amplifier signals

 Figure 24. Schematic of the final amplifier electric circuit

 Figure 25. Control panel of EAGLE software

 Figure 26. Schematic of the electronic board

 Figure 27. Layout of the electronic board

 Figure 28. PCB with elements solded

 Figure 29. Safety connections for the PCB

 Figure 30. SolidWorks software

 Figure 31. First 3D LED matrix box design

 Figure 32. Second 3D LED matrix box design

 Figure 33. Final 3D LED matrix box design

 Figure 34. X400 3D printer

 Figure 35. Simplify 3D software

 Figure 36. 3D printer parameters

 Figure 37. Failed printout

 Figure 38. Third trial results

 Figure 39. Application flow chart

 Figure 40. Application modes

LIST OF TABLES

 Table 1. Summary of Arduino’s Due features

 Table 2. Specifications LED matrix

 Table 3. WS2812b LED pin functions

 Table 4. WS2812b LED absolute maximum ratings

 Table 5. WS2812b LED electrical characteristics

 Table 6. WS2812b LED switching characteristics

 Table 7. WS2812b LED characteristics parameter

 Table 8. WS2812b LED data transfer time

 Table 9. Features of the TLV2772A Operational Amplifier.

ABBREVIATIONS AND DEFINITIONS

 ADC: Analog to digital converter

 API: In computer programming, an application programming interface (API) is a set

of routines, protocols, and tools for building software applications. An API

expresses a software component in terms of its operations, inputs, outputs, and

underlying types. An API defines functionalities that are independent of their

respective implementations, which allows definitions and implementations to vary

without compromising each other. A good API makes it easier to develop a

program by providing all the building blocks. A programmer then puts the blocks

together.

 ARM: ARM is a family of instruction set architectures for computer

processors based on a reduced instruction set computing (RISC)

architecture developed by British company ARM Holdings.

 AVR microcontroller: The AVR is a modified Harvard architecture 8-

bit RISC single-chip microcontroller, which was developed by Atmel in 1996. The

AVR was one of the first microcontroller families to use on-chip flash memory for

program storage, as opposed to one-time programmable ROM,EPROM,

or EEPROM used by other microcontrollers at the time. MegaAVR chips became

popular after they were designed into the 8-bit Arduino platform.

 CPU: Central Processing Unit

 DAC: Digital to analog converter (DAC, D/A, D2A or D-to-A).

 I2C: I²C (Inter-Integrated Circuit), pronounced I-squared-C, is a multi-master,

multi-slave, single-ended, serial computer bus invented by Philips Semiconductor,

known today as NXP Semiconductors, used for attaching low-speed peripherals to

computer motherboards and embedded systems. Alternatively I²C is

spelled I2C (pronounced I-two-C) or IIC (pronounced I-I-C).

 ICSP: It is an AVRtiny programming header for the Arduino consisting of MOSI,

MISO, SCK, RESET, VCC, GND. It is often referred to as an SPI (Serial Peripheral

Interface) which could be considered an "expansion" of the output, but really, you

are slaving the output device to the master of the SPI bus.

http://en.wikipedia.org/wiki/Computer_programming
http://en.wikipedia.org/wiki/Software_component
http://en.wikipedia.org/wiki/Instruction_set_architecture
http://en.wikipedia.org/wiki/Central_processing_unit
http://en.wikipedia.org/wiki/Central_processing_unit
http://en.wikipedia.org/wiki/Reduced_instruction_set_computing
http://en.wikipedia.org/wiki/Computer_architecture
http://en.wikipedia.org/wiki/ARM_Holdings
http://en.wikipedia.org/wiki/Modified_Harvard_architecture
http://en.wikipedia.org/wiki/8-bit
http://en.wikipedia.org/wiki/8-bit
http://en.wikipedia.org/wiki/Reduced_instruction_set_computer
http://en.wikipedia.org/wiki/Microcontroller
http://en.wikipedia.org/wiki/Atmel
http://en.wikipedia.org/wiki/Flash_memory
http://en.wikipedia.org/wiki/Programmable_read-only_memory
http://en.wikipedia.org/wiki/EPROM
http://en.wikipedia.org/wiki/EEPROM
http://en.wikipedia.org/wiki/Arduino
http://en.wikipedia.org/wiki/Master/slave_(technology)
http://en.wikipedia.org/wiki/Master/slave_(technology)
http://en.wikipedia.org/wiki/Single-ended_signaling
http://en.wikipedia.org/wiki/Serial_communications
http://en.wikipedia.org/wiki/Computer_bus
http://en.wikipedia.org/wiki/Philips
http://en.wikipedia.org/wiki/NXP_Semiconductors
http://en.wikipedia.org/wiki/Embedded_system

 JTAG: Joint Test Action Group (JTAG) is the common name for

the IEEE 1149.1 Standard Test Access Port and Boundary-Scan Architecture. It was

initially devised by electronic engineers for testing printed circuit

boards using boundary scan and is still widely used for this application.

Today, JTAG is also widely used for IC debug ports. In the embedded processor

market, essentially all modern processors implement JTAG when they have enough

pins. Embedded development relies on debuggers communicating with chips with

JTAG to perform operations like single stepping and break pointing.

 MCU: Microcontroller Unit

 O.A.: Operational Amplifier

 PCB: Printed Circuit Board

 PWM: Pulse With Modulation

 RAM: Random Access Memory

 USB: Universal Serial Bus

 USB OTG: USB On-The-Go, often abbreviated to USB OTG or just OTG, is a

specification first used in late 2001, that allows USB devices such as digital audio

players or mobile phones to act as a host, allowing other USB devices like a USB

flash drive, digital camera, mouse or keyboard to be attached to them.

 UART: Universal Asynchronous Receiver-Transmitter

 SPI: The Serial Peripheral Interface (SPI) bus is a synchronous serial

communication interface specification used for short distance communication,

primarily in embedded systems.

 SDA: Synchronous Data Adapter

 SCL: Synchronous Clock

 TTL: TTL serial (transistor-transistor logic). Serial communication at a TTL level

will always remain between the limits of 0V and Vcc, which is often 5V or 3.3V. A

logic high ('1') is represented by Vcc, while a logic low ('0') is 0V.

http://en.wikipedia.org/wiki/Institute_of_Electrical_and_Electronics_Engineers
http://en.wikipedia.org/wiki/Printed_circuit_board
http://en.wikipedia.org/wiki/Printed_circuit_board
http://en.wikipedia.org/wiki/Boundary_scan
http://en.wikipedia.org/wiki/Integrated_circuit
http://en.wikipedia.org/wiki/Debug_port
http://en.wikipedia.org/wiki/Debugger
http://en.wikipedia.org/wiki/Stepping_(debugging)
http://en.wikipedia.org/wiki/Breakpoint
http://en.wikipedia.org/wiki/USB_device
http://en.wikipedia.org/wiki/Digital_audio_player
http://en.wikipedia.org/wiki/Digital_audio_player
http://en.wikipedia.org/wiki/Mobile_phone
http://en.wikipedia.org/wiki/USB_flash_drive
http://en.wikipedia.org/wiki/USB_flash_drive
http://en.wikipedia.org/wiki/Digital_camera
http://en.wikipedia.org/wiki/Computer_mouse
http://en.wikipedia.org/wiki/Computer_keyboard
http://en.wikipedia.org/wiki/Bus_(computing)
http://en.wikipedia.org/wiki/Synchronous_circuit
http://en.wikipedia.org/wiki/Serial_communication
http://en.wikipedia.org/wiki/Serial_communication
http://en.wikipedia.org/wiki/Embedded_systems
http://en.wikipedia.org/wiki/Transistor-transistor_logic

INTRODUCTION

It’s amazing how the light emitting diode (LED), which began as a faint glimmer in the

sixties, has already surpassed incandescent and fluorescent lamps in terms of efficiency.

Every time we are closer to the center of the era of LED, we use its light in many

applications and many more are coming. In this project LED is one of the most important

things, because of that, I am going to discuss a little about the evolution of LED lighting.

We could say that the era of LED begins in 1962 with Nick Holonyak Jr., who developed

the first visible LED. These LEDs emitted a faint red light. Shortly after was introduced

to the market, but the light output was so small that only was used as an indicator light.

For about 20 years the LED remained as a source of low brightness, until in the eighties

the first high-brightness red LEDs were created. This transformed the faint glimmer of

Holonyak, opening new applications for LEDs, mainly in traffic lights. But they remained

indicator lights. The decisive event occurred in 1993 when Shuji Nakamura developed

the first superluminescent blue LED. For the first time could be generated a white LED

light. The blue LED superluminescent produced enough light to excite a phosphor

coating and thereby generate white light. Thus was born an opened way to new LED

lighting technology, also known as solid-state lighting. Shortly thereafter, in 1995, the

Japanese company Nichia brought to market the first white LEDs. These LEDs had little

luminous efficiency (~ 5 lm / W), and a very low colour rendering index (CRI ~ 60),

among other limitations.

Despite all disadvantages, many people began to glimpse the great potential of LEDs,

and in 1999 Philips launched the first high-power LEDs 1W. LEDs quickly exceeded the

limit of efficiency of 17 lm / W imposed by the incandescent bulb. In 2002, Philips

introduced LEDs with luminous efficacies of up to 22 lm / W. Last year, the LED exceed

the maximum luminous efficiency of fluorescent lamps. This, along with its other

advantages, LED is standing in front of all lighting technologies. LED has more

challenges remain, particularly the acquisition cost. According trends and predictions,

LED prices will drop enough to enter the market in 2015 and it is expected that by 2020,

dominate all markets.

In this project I want to develop an application for a 16*16 LED Matrix. It’s composed

of 256 RGB 5050 programmable LEDs, in concrete the ws2812b LED. The idea is to use

an Arduino board (microcontroller) to control the LED Matrix with a programming code

and create, as a principal application, a digital equalizer and use two additional

buttons for other modes.

To create the application, we are going design a PCB with a microphone to receive

the signal of the music or voice. Also, we'll add the two additional buttons in this PCB.

The last step of this project is to improve the physical aspect of the LED Matrix. If we

have time we would create a 3D CAD design that later would be printed in a 3D

printer.

11

Programming of a LED Matrix with a Digital VU Meter
application

CHAPTER 1

ARDUINO BASIC FEATURES

12

Programming of a LED Matrix with a Digital VU Meter
application

In this section we are going to define what Arduino is, describe the principal

elements of an Arduino board and the development of the Arduino programming code,

that’s mean hardware and software that works in Arduino.

1.1 WHAT IS ARDUINO?

Arduino is an “open-source” electronics platform based on “easy-to-use” hardware

and software. It’s intended for anyone making interactive projects.

1.2 HARDWARE

Arduino senses the environment by receiving inputs from many sensors, and affects

its surroundings by controlling lights, motors, and other actuators.

Being free Arduino hardware platform, their design and their distribution can be freely

used for the development of any project without acquiring a license. So there are

different types of boards, ones created by the Arduino community (official) or others

created by third parties but with similar features. In our project we used Arduino Due

board. The features of it are described in the next point.

1.2.1 ARDUINO DUE

Figure 1: Front and back side of Arduino Due

13

Programming of a LED Matrix with a Digital VU Meter
application

INTRODUCTION

The Arduino Due is a microcontroller board based on the Atmel SAM3X8E ARM

Cortex-M3 CPU. It’s the first Arduino board based on a 32-bit ARM core microcontroller.

It has 54 digital input/output pins (of which 12 can be used as PWM outputs), 12 analog

inputs, 4 UARTs (hardware serial ports), a 84 MHz clock, an USB OTG capable

connection, 2 DAC (digital to analog), 2 TWI, a power jack, an SPI header, a JTAG

header, a reset button and an erase button.

Warning: Unlike other Arduino boards, the Arduino Due board runs at 3.3V. The

maximum voltage that the I/O pins can tolerate is 3.3V. Providing higher voltages, like

5V to an I/O pin could damage the board.

The board contains everything needed to support the microcontroller; simply connect

it to a computer with a micro-USB cable or power it with an ADC adapter or battery to

get started. The Due is compatible with all Arduino shields that work at 3.3V and are

compliant with the 1.0 Arduino pinout.

The Due follows the 1.0 pinout:

 TWI: SDA and SCL pins that are near to the AREF pin.

 The IOREF pin which allows an attached shield with the proper configuration to

adapt to the voltage provided by the board. This enables shield compatibility

with a 3.3V board like the Due and AVR-based boards which operate at 5V.

 An unconnected pin, reserved for future use.

ARM CORE BENEFITS

The Due has a 32-bit ARM core that can outperform typical 8-bit microcontroller boards.

The most significant differences are:

 A 32-bit core, that allows operations on 4 bytes wide data within a single CPU

clock.

14

Programming of a LED Matrix with a Digital VU Meter
application

 CPU Clock at 84 MHz

 96 Kbytes of SRAM

 512 Kbytes of Flash memory for code

 A DMA controller that can relieve the CPU from doing memory intensive tasks

FEATURES SUMMARY

Microcontroller AT91SAM3X8E

Operating Voltage 3.3V

Input Voltage (recommended) 7-12V

Input Voltage (limits) 6-16V

Digital I/O Pins 54 (of which 12 provide PWM output)

Analog Input Pins 12

Analog Outputs Pins 2 (DAC)

Total DC Output Current on all I/O

lines
130 mA

DC Current for 3.3V Pin 800 mA

DC Current for 5V Pin 800 mA

Flash Memory
512 KB all available for the user

applications

SRAM 96 KB (two banks: 64KB and 32KB)

Clock Speed 84 MHz

Length 101.52 mm

Width 53.3 mm

Weight 36 g

Table 1. Summary of Arduino’s Due Features

15

Programming of a LED Matrix with a Digital VU Meter
application

POWER

The Arduino Due can be powered via the USB connector or with an external power

supply. The power source is selected automatically.

External (non-USB) power can come either from an AC-to-DC adapter (wall-wart) or

battery. The adapter can be connected by plugging a 2.1mm center-positive plug into

the board's power jack. Leads from a battery can be inserted in the Gnd and Vin pin

headers of the POWER connector.

The board can operate on an external supply of 6 to 20 volts. If supplied with less than

7V, however, the 5V pin may supply less than five volts and the board may be unstable.

If using more than 12V, the voltage regulator may overheat and damage the board. The

recommended range is 7 to 12 volts.

The power pins are:

 VIN. The input voltage to the Arduino board when it's using an external power

source (as opposed to 5 volts from the USB connection or other regulated power

source). You can supply voltage through this pin, or if supplying voltage via the

power jack, access it through this pin.

 5V. this pin outputs a regulated 5V from the regulator on the board. The board

can be supplied with power either from the DC power jack (7 - 12V), the USB

connector (5V), or the Vin pin of the board (7-12V). Supplying voltage via the 5V

or 3.3V pins bypasses the regulator, and can damage your board.

 3.3V. A 3.3 volt supply generated by the on-board regulator. Maximum current

draw is 800 mA. This regulator also provides the power supply to

the SAM3X microcontroller.

 GND. Ground pins.

 IOREF. This pin on the Arduino board provides the voltage reference with which

the microcontroller operates. A properly configured shield can read the IOREF

pin voltage and select the appropriate power source or enable voltage translators

on the outputs for working with the 5V or 3.3V.

16

Programming of a LED Matrix with a Digital VU Meter
application

MEMORY

The SAM3X has 512 KB (2 blocks of 256 KB) of flash memory for storing code. The boot

loader is preburned in factory from Atmel and is stored in a dedicated ROM memory.

The available SRAM is 96 KB in two contiguous bank of 64 KB and 32 KB. All the available

memory (Flash, RAM and ROM) can be accessed directly as a flat addressing space.

It is possible to erase the Flash memory of the SAM3X with the onboard erase button.

This will remove the currently loaded sketch from the MCU. To erase, press and hold

the Erase button for a few seconds while the board is powered.

INPUT AND OUTPUT

 Digital I/O: pins from 0 to 53

Each of the 54 digital pins on the Due can be used as an input or output,

using pinMode (), digitalWrite (), and digitalRead () functions. They operate at

3.3 volts. Each pin can provide a current of 3 mA or 15 mA, depending on the

pin, or receive a current of 6 mA or 9 mA, depending on the pin.

They also have an internal pull-up resistor (disconnected by default) of

100 KOhm. In addition, some pins have specialized functions:

 Serial: 0 (RX) and 1 (TX)

 Serial 1: 19 (RX) and 18 (TX)

 Serial 2: 17 (RX) and 16 (TX)

 Serial 3: 15 (RX) and 14 (TX)

Used to receive (RX) and transmit (TX) TTL serial data (with 3.3 V level). Pins 0

and 1 are connected to the corresponding pins of theATmega16U2 USB-to-TTL

Serial chip.

http://arduino.cc/en/Reference/PinMode
http://arduino.cc/en/Reference/DigitalWrite
http://arduino.cc/en/Reference/DigitalRead

17

Programming of a LED Matrix with a Digital VU Meter
application

 PWM: Pins 2 to 13.

Provide 8-bit PWM output with the analogWrite () function. The resolution of the

PWM can be changed with the analogWriteResolution () function.

 SPI: SPI header (ICSP header on other Arduino boards).

These pins support SPI communication using the SPI library. The SPI pins are

broken out on the central 6-pin header, which is physically compatible with the

Uno, Leonardo and Mega2560. The SPI header can be used only to communicate

with other SPI devices, not for programming the SAM3X with the In-Circuit-Serial-

Programming technique. The SPI of the Due has also advanced features that can

be used with the Extended SPI methods for Due.

 CAN: CANRX and CANTX

These pins support the CAN communication protocol but are not yet supported

by Arduino APIs.

 "L" LED: 13

There is a built-in LED connected to digital pin 13. When the pin is HIGH, the LED

is on, when the pin is LOW, it's off. It is also possible to dim the LED because the

digital pin 13 is also a PWM output.

 TWI 1: 20 (SDA) and 21 (SCL)

 TWI 2: SDA1 and SCL1.

 Support TWI communication using the Wire library.

SDA1 and SCL1 can be controlled using the Wire1 class provided by the Wire

library. While SDA and SCL have internal pull-up resistors, SDA1 and SCL1 have

not. Adding two pull-up resistor on SDA1 and SCL1 lines is required for using

Wire1.

 Analog Inputs: pins from A0 to A11

The Due has 12 analog inputs, each of which can provide 12 bits of resolution

(i.e. 4096 different values). By default, the resolution of the readings is set at

10 bits, for compatibility with other Arduino boards. It is possible to change the

resolution of the ADC with analogReadResolution ().

http://arduino.cc/en/Reference/AnalogWrite
http://arduino.cc/en/Reference/AnalogWriteResolution
http://arduino.cc/en/Reference/SPI
http://arduino.cc/en/Reference/DueExtendedSPI
http://arduino.cc/en/Reference/Wire
http://arduino.cc/en/Reference/AnalogReadResolution

18

Programming of a LED Matrix with a Digital VU Meter
application

The Due’s analog inputs pins measure from ground to a maximum value of 3.3V.

Applying more than 3.3V on the Due’s pins will damage the SAM3X chip. The

analogReference () function is ignored on the Due.

The AREF pin is connected to the SAM3X analog reference pin through a resistor

bridge. To use the AREF pin, resistor BR1 must be desoldered from the PCB.

 DAC1 and DAC2

These pins provides true analog outputs with 12-bits resolution (4096 levels) with

the analogWrite () function. These pins can be used to create an audio output

using the Audio library.

OTHER PINS ON THE BOARD:

 AREF

Reference voltage for the analog inputs. Used with analogReference ().

 Reset

Bring this line LOW to reset the microcontroller. Typically used to add a reset

button to shields which block the one on the board.

http://arduino.cc/en/Reference/AnalogWrite
http://arduino.cc/en/Reference/Audio
http://arduino.cc/en/Reference/AnalogReference

19

Programming of a LED Matrix with a Digital VU Meter
application

Figure 2. Arduino Due PinOut Diagram

20

Programming of a LED Matrix with a Digital VU Meter
application

COMMUNICATION:

The Arduino Due has a number of facilities for communicating with a computer, another

Arduino or other microcontrollers, and different devices like phones, tablets, cameras

and so on. The SAM3X provides one hardware UART and three hardware USARTs for TTL

(3.3V) serial communication.

The Programming port is connected to an ATmega16U2, which provides a virtual COM

port to software on a connected computer (To recognize the device, Windows machines

will need a .inf file, but OSX and Linux machines will recognize the board as a COM port

automatically.). The 16U2 is also connected to the SAM3X hardware UART. Serial on

pins RX0and TX0 provides Serial-to-USB communication for programming the board

through the ATmega16U2 microcontroller. The Arduino software includes a serial

monitor which allows simple textual data to be sent to and from the board.

The RX and TX LEDs on the board will flash when data is being transmitted via

the ATmega16U2 chip and USB connection to the computer (but not for serial

communication on pins 0 and 1).

The Native USB port is connected to the SAM3X. It allows for serial (CDC) communication

over USB. This provides a serial connection to the Serial Monitor or other applications

on your computer. It also enables the Due to emulate a USB mouse or keyboard to an

attached computer. To use these features, see the Mouse and Keyboard library

reference pages.

The Native USB port can also act as a USB host for connected peripherals such as mice,

keyboards, and smartphones. To use these features, see the USBHost reference pages.

The SAM3X also supports TWI and SPI communication. The Arduino software includes a

Wire library to simplify use of the TWI bus. For SPI communication, use the SPI library.

http://arduino.cc/en/Reference/MouseKeyboard
http://arduino.cc/en/Reference/MouseKeyboard
http://arduino.cc/en/Reference/USBHost
http://arduino.cc/en/Reference/SPI

21

Programming of a LED Matrix with a Digital VU Meter
application

PROGRAMMING

Uploading sketches to the SAM3X is different than the AVR microcontrollers

found in other Arduino boards because the flash memory needs to be erased before

being re-programmed. Upload to the chip is managed by ROM on the SAM3X, which is

run only when the chip's flash memory is empty.

Figure 3. Arduino Due USB Ports

Either of the USB ports can be used for programming the board, though it is

recommended to use the Programming port due to the way the erasing of the chip is

handled:

 Programming port: To use this port, select "Arduino Due (Programming Port)" as

your board in the Arduino IDE. Connect the Due's programming port to your

computer. The programming port uses the 16U2 as a USB-to-serial chip

connected to the first UART of the SAM3X (RX0 and TX0). The 16U2 has two pins

connected to the Reset and Erase pins of the SAM3X. Opening and closing the

Programming port connected at 1200bps triggers a “hard erase” procedure of

the SAM3Xchip, activating the Erase and Reset pins on the SAM3X before

communicating with the UART. This is the recommended port for programming

the Due. It is more reliable than the "soft erase" that occurs on the Native port,

and it should work even if the main MCU has crashed.

22

Programming of a LED Matrix with a Digital VU Meter
application

 Native port: To use this port, select "Arduino Due (Native USB Port)" as your

board in the Arduino IDE. The Native USB port is connected directly to the SAM3X.

Connect the Due's Native USB port (the one closest to the reset button) to your

computer. Opening and closing the Native port at 1200bps triggers a 'soft erase'

procedure: the flash memory is erased and the board is restarted with the

bootloader. If the MCU crashed for some reason it is likely that the soft erase

procedure won't work as this procedure happens entirely in software on

the SAM3X. Opening and closing the native port at a different baudrate will not

reset theSAM3X.

The ATmega16U2 firmware source code is available in the Arduino repository. You can

use the ISP header with an external programmer (overwriting the DFU bootloader).

See this user-contributed tutorial for more information.

*The Arduino Due can be programmed with the Arduino software.

USB OVERCURRENT PROTECTION

The Arduino Due has a resettable polyfuse that protects your computer's USB

ports from shorts and overcurrent. Although most computers provide their own internal

protection, the fuse provides an extra layer of protection. If more than 500 mA is

applied to the USB port, the fuse will automatically break the connection until the short

or overload is removed.

PHYSICAL CHARACTERISTICS AND SHIELD COMPATIBILITY

The maximum length and width of the Arduino Due PCB are 4 and 2.1 inches

respectively, with the USB connectors and power jack extending beyond the former

dimension. Three screw holes allow the board to be attached to a surface or case. Note

that the distance between digital pins 7 and 8 is 160 mil (0.16"), not an even multiple

of the 100 mil spacing of the other pins.

The Arduino Due is designed to be compatible with most shields designed for the Uno,

Diecimila or Duemilanove. Digital pins 0 to 13 (and the adjacent AREF and GND pins),

analog inputs 0 to 5, the power header, and "ICSP" (SPI) header are all in equivalent

locations. Further the main UART (serial port) is located on the same pins (0 and

1). Please note that I2C is not located on the same pins on the Due (20 and 21) as the

Duemilanove / Diecimila (analog inputs 4 and 5).

http://github.com/arduino/Arduino/tree/master/hardware/arduino/firmwares/
http://arduino.cc/forum/index.php/topic,111.0.html

23

Programming of a LED Matrix with a Digital VU Meter
application

1.3 SOFTWARE

The Arduino platform has its own language that is based on C / C ++ and therefore

supports standard C functions and some C ++. However, it is possible to use other

programming languages and popular applications in Arduino like Java, Processing,

Python, Mathematica, Matlab, Perl, Visual Basic, etc. This is possible because Arduino

communicates by transmitting serial data which is a format that most of the above

languages can support. For those who do not support natively series format, you can

use a software to translate the messages sent by both sides to allow a fluid

communication.

It is quite interesting to be able to interact with Arduino by this variety of systems and

languages. Depending on which are the needs of the problem that we are going to solve

we can take advantage of the great media compatibility offered.

The Arduino development environment is simple and intuitive. Also is available for free

download from their official website and for different operating systems. It has been

implemented with Processing that is similar to Java. Its latest version is 1.6.0 but in

the project has been used 1.5.8.

1.3.1 ARDUINO SOFTWARE

Now we are going to discuss the usefulness of each program area focusing only on what's

important.

MENU

The most important part is in Tools. From here we can configure the program so

that it can communicate with the Arduino. Doing click in card will list the types of

Arduino boards that the program understands. Here, we select Arduino Due because is

the one that we are going to use. In the Serial Port field select the one that matches

our board connect via USB. If you use Windows the port will have name more or less

like this COMx but in Linux will be / dev / ttyUSBx where x is a number. In case there

are multiple serial ports and do not know which is for our board, we disconnect our

board, we note the ports that appear, we reconnect the board and turn to check again

the list of ports. The new port that appear will be the port of our board.

24

Programming of a LED Matrix with a Digital VU Meter
application

COMMON BUTTONS

These buttons are quick access to certain actions which are also available by the

menu. The buttons are:

 Verify: Verify and compile the code.

 Upload: in addition to compile the code is injected into the board.

 New: Creates a new sketch.

 Open: Opens a previously saved sketch.

 Save: stored on disk changes in the sketch.

 Serial Monitor: opens a new window where you can communicate bidirectionally

via serial with the board, we can read the information that Arduino send us or

we can provide it.

TEXT EDITOR

In this area we will write the implementation (named for the sketch program) to

load it into the Arduino board. The program has 3 parts. The first is the inclusion of

libraries and the declaration of constants or global variables that can be used in any

program function. The second is the setup() method, which is responsible for initializing

the devices connected to the board and will be executed only after the system reboot.

The third part is the loop() method, which you can run your code continuously. This is

where the logic of the Arduino board will be written. As the language is very similar to

C is possible to create other methods to separate functional blocks and leave ordered

the program.

MESSAGE AREA

Displays the status of the program using one of the common buttons.

TEXT CONSOLE

Here appear in detail the events of message area.

25

Programming of a LED Matrix with a Digital VU Meter
application

Figure 4. Composition of Arduino’s Software

26

Programming of a LED Matrix with a Digital VU Meter
application

1.3.2 ADAFRUIT NEO PIXEL LIBRARY

Controlling NeoPixels “from scratch” is quite a challenge, so we use Adafruit Neo

Pixel Library in our project. This library is focus on the fun and interesting bits and

works with most mainstream Arduino boards and derivatives with an Atmel AVR 8-bit

processor from 8 to 16 MHz. Also works with the Arduino Due.

Installation of the library is as follows:

1. Visit the Adafruit_NeoPixel library page at Github.com.

2. Select the “Download ZIP” button.

3. Uncompress the ZIP file after it’s finished downloading.

4. The resulting folder should contain the files “Adafruit_NeoPixel.cpp”,

“Adafruit_NeoPixel.h” and an “examples” sub-folder. Sometimes in Windows

you’ll get an intermediate-level folder and need to move things around.

5. Rename the folder (containing the .cpp and .h files) to “Adafruit_NeoPixel” (with

the underscore and everything), and place it alongside your other Arduino

libraries, typically in your (home folder)/Documents/Arduino/Libraries folder.

Libraries should not be installed alongside the Arduino application itself.

6. Re-start the Arduino IDE if it’s currently running.

Before you start with the code is important to know how are the LED of the matrix are

connected. In our matrix are connected in serial, it means that is equal as a LED strip

doing Zig-Zag. The most important functions of this library are explained in chapter

five.

https://github.com/adafruit/Adafruit_NeoPixel

27

Programming of a LED Matrix with a Digital VU Meter
application

CHAPTER 2

DEVICES CONNECTED TO ARDUINO

28

Programming of a LED Matrix with a Digital VU Meter
application

2.1 LED MATRIX

The chosen LED Matrix display product is specially designed for the field of LED-

Clothing. 16 Pixels are placed in each line, and there are 16 lines on each panel. The

space between each pixel is 1cm. This product is totally able to meet the basic

requirement of displaying. When you used it with a controller, it can also display

numbers, video and so on. It has small size, light weight, an arbitrary curved, is easy

to carry, Low-voltage drive, green energy, high brightness, low power and long life.

Figure 5. LED Matrix

APPLICATIONS

 Widely used for home, hotels, clubs and shopping malls decoration.

 Architectural decorative lighting and boutique atmosphere lighting

 Extensively applied in Backlighting, concealed lighting and channel letter lighting

 Emergency & security lighting, advertisement sign lighting

 Decorative lights for holiday, event, and show exhibition

 Applicable for automobile and bicycle decoration, border or contour lighting

29

Programming of a LED Matrix with a Digital VU Meter
application

FEATURES

 Super bright SMD top LED & viewing angle, high brightness output, no spot and

shadow.

 Colours can be chosen as Full colour

 Low power consumption & operating voltage, safe and energy-saving.

 Solid-state, high shock or vibration resistant, long lifetime, more than 50000

hours.

 Easy installation with mounting holes and 3M adhesive tape on the back.

 ICRGB module with ws2812b

 Individually Control

 DMX 512 Controllable

 Matrix compatible

SPECIFICATIONS

Light source: LED Item type: Light

Strips

Type: Flex LED Strips Input voltage(v): 5

Lamp luminous flux(lm): 4500 Cri (ra>): 80

Working temperature(℃): -20 - 60 Working lifetime(hour): 50000

Emitting color: RGB Place of origin: China

(Mainland)

Model number: WS2812B1616 Color: RGB

Waterproof: IP68 Angle: 180

Chip brand: Epistar Brand name: LC

Led light source: Epistar Voltage: DC5V

Lamp power: 76.8W Ic: ws2801

ws2811

ipd8806

Color temperature(cct): 2700-7000 Chip type: 5050

Size: 170x170mm FPCB Color: Black

Table 2. Specifications LED Matrix

30

Programming of a LED Matrix with a Digital VU Meter
application

2.2 WS2812b LED

In this section we are going to see the features of the LEDs that are in the matrix.

The model of the LED is IC RGB WS2812b.

FEATURES AND BENEFITS:

 Intelligent reverse connect protection that does not damage the IC.

 The control circuit and the LED share the only power source.

 Control circuit and RGB chip are integrated in a package of 5050 components.

 Built in signal reshaping circuit.

 Built-in electric reset circuit and power lost reset circuit.

 Each pixel of the three primary color can achieve 256 brightness display,

completed 16777216 color full color display, and scan frequency not less than

400Hz/s.

 Cascading port transmission signal by single line.

 Any two point the distance more than 5m transmission signal without any

increase circuit.

 When the refresh rate is 30fps, cascade number are not less than1024 points.

 Send data at speeds of 800Kbps.

 The color of the light were highly consistent.

APPLICATIONS

 Full color module. Full color soft lights a lamp strip.

 LED decorative lighting. Indoor/outdoor LED video irregular screen.

31

Programming of a LED Matrix with a Digital VU Meter
application

 GENERAL DESCRIPTION

WS2812B is an intelligent control LED light source that the control circuit and

RGB chip are integrated in a package of 5050 components. It internal include intelligent

digital port data latch and signal reshaping amplification drive circuit. Also include a

precision internal oscillator and a 12V voltage programmable constant current control

part, effectively ensuring the pixel point light color height consistent. The data transfer

protocol use single NZR communication mode. After the pixel power-on reset, the DIN

port receive data from controller, the first pixel collect initial 24bit data then sent to

the internal data latch, the other data which reshaping by the internal signal reshaping

amplification circuit sent to the next cascade pixel through the DO port. After

transmission for each pixel，the signal to reduce 24bit. pixel adopt auto reshaping

transmit technology, making the pixel cascade number is not limited the signal

transmission, only depend on the speed of signal transmission. LED with low driving

voltage, environmental protection and energy saving, high brightness, scattering angle

is large, good consistency, low power, long life and other advantages. The control chip

integrated in LED above becoming more simple circuit, small volume and convenient

installation.

LED MECHANICAL DIMENSIONS

Figure 6. LED Mechanical Dimensions

32

Programming of a LED Matrix with a Digital VU Meter
application

PIN CONFIGURATION

Figure 7. LED Pin Configuration

PIN FUNCTION

Table 3. LED Pin Functions

ABSOLUTE MAXIMUM RATINGS

Table 4. Absolute Maximum LED Ratings

33

Programming of a LED Matrix with a Digital VU Meter
application

ELECTRICAL CHARACTERISTICS

Table 5. LED Electrical Characteristics

SWITCHING CHARACTERISTICS

Table 6. LED Switching Characteristics

LED CHARACTERISTICS PARAMETER

 Table 7. LED Characteristics Parameter

34

Programming of a LED Matrix with a Digital VU Meter
application

DATA TRANSFER TIME

Table 8. LED Data Transfer Time

SEQUENCE CHART

Figure 8. LED Sequence Chart

CASCADE METHOD

Figure 9. Cascade LED Method

35

Programming of a LED Matrix with a Digital VU Meter
application

DATA TRANSMISSION METHOD

Figure 10. LED Data Transmission Code

COMPOSITION OF 24 BIT DATA

36

Programming of a LED Matrix with a Digital VU Meter
application

TYPICAL APPLICATION CIRCUIT

Figure 11. LED Typical Application Circuit

37

Programming of a LED Matrix with a Digital VU Meter
application

2.3 ELECTRIC CIRCUIT

As we are working on a project that responds to sounds, our circuit will require

some type of microphone to transduce the sound into a modulated voltage and, most

likely, some type of amplification of this modulated voltage.

We are going to use an electret microphones to transduce sound because they require

relatively simple circuits.

2.3.1THEORICAL ELECTRIC CIRCUIT

Whenever we need to pick up a signal, we have to look all the way from its origin until

we checked it. Particularly for a beep, I mean things like:

 A good reconditioning, observing the ideal conditions to generate the signal

with minimal noise. This includes for example an anechoic chamber, a quiet

room, isolate the system from mechanical vibrations, etc. When is possible, using

a directional microphone we can prevent that ambient noise signals are captured.

If we capture noise at such an early stage, will be almost impossible then to

remove it, so we will find ways to grasp the signal as clean as possible.

 A right microphone: It doesn’t means the most expensive. Sometimes it is better

a carbon microphone and sometimes is preferable one condenser or electret

microphone.

To choose the right microphone we will have to answer the next questions about

the microphones:

o Directional or omnidirectional?

o What is the output impedance?

o What maximum SPL?

o Pre-amplified or not?

If the microphone is not well shielded also could capture electrical noise, that

once amplified, can mask the useful signal.

38

Programming of a LED Matrix with a Digital VU Meter
application

 Shielded conductors: We must pay special attention not to pick up noise

through the cables connecting the microphone with the preamplifier, and the

different stages between them.

 A low noise preamplifier: Depending on the origin, the signal can be very

weak. In this case, we can use several cascaded amplifier stages. It’s important

to minimize the noise, especially in at the beginning, not to amplify it with the

signal.

 Further treatment: Whether we record the signal on a PC or we send it to a

recorder, amplifier, etc. Maybe we will have to use different filters. These

depend on the characteristics of the signal that interest us.

WHAT IS AN OPERATIONAL AMPLIFIER?

An operational amplifier is a DC coupled high gain electronic voltage amplifier with

a differential input and, usually, a single-ended output. In this configuration, an op-

amp produces an output potential (relative to circuit ground) that is typically hundreds

of thousands of times larger than the potential difference

IDEAL OP-AMPS

An ideal op-amp is usually considered to have the following properties:

 Infinite open-loop gain G = vout / 'vin

 Infinite input impedance Rin, and so zero input

current

 Zero input offset voltage

 Infinite voltage range available at the output

 Infinite bandwidth with zero phase shift and

infinite slew rate

 Zero output impedance Rout

 Zero noise

 Infinite Common-mode rejection ratio (CMRR)

 Infinite Power supply rejection ratio.

Figure 12. Schematic of an O.A.

http://en.wikipedia.org/wiki/Direct_current
http://en.wikipedia.org/wiki/Direct_coupling
http://en.wikipedia.org/wiki/Gain
http://en.wikipedia.org/wiki/Electronic_amplifier
http://en.wikipedia.org/wiki/Differential_input
http://en.wikipedia.org/wiki/Open-loop_gain
http://en.wikipedia.org/wiki/Input_impedance
http://en.wikipedia.org/wiki/Input_offset_voltage
http://en.wikipedia.org/wiki/Bandwidth_(signal_processing)
http://en.wikipedia.org/wiki/Phase_shift
http://en.wikipedia.org/wiki/Slew_rate
http://en.wikipedia.org/wiki/Output_impedance
http://en.wikipedia.org/wiki/Electronic_noise
http://en.wikipedia.org/wiki/Common-mode_rejection_ratio
http://en.wikipedia.org/wiki/Power_supply_rejection_ratio

39

Programming of a LED Matrix with a Digital VU Meter
application

These ideals can be summarized by the two "golden rules":

1. The output attempts to do whatever is necessary to make the voltage difference

between the inputs zero.

2. The inputs draw no current.

The first rule only applies in the usual case where the op-amp is used in a closed-loop

design (negative feedback, where there is a signal path of some sort feeding back from

the output to the inverting input). These rules are commonly used as a good first

approximation for analysing or designing op-amp circuits.

None of these ideals can be perfectly realized. A real op-amp may be modelled with

non-infinite or non-zero parameters using equivalent resistors and capacitors in the op-

amp model. The designer can then include these effects into the overall performance

of the final circuit. Some parameters may turn out to have negligible effect on the final

design while others represent actual limitations of the final performance that must be

evaluated.

TLV2772x OP AMP FAMILY

The TLV277x CMOS operational amplifier family combines

high slew rate and bandwidth, rail-to-rail output swing, high

output drive, and excellent dc precision. The device

provides 10.5 V/µs of slew rate and 5.1 MHz of bandwidth

while only consuming 1 mA of supply current per channel.

This ac performance is much higher than current

competitive CMOS amplifiers. The rail-to-rail output swing

and high output drive make these devices a good choice for driving the analog input or

reference of analog-to-digital converters. These devices also have low distortion while

driving a 600- load for use in telecom systems.

These amplifiers have a 360-µV input offset voltage, a 17 nV/ Hz input noise voltage,

and a 2-pA input bias current for measurement, medical, and industrial applications.

The TLV277x family is also specified across an extended temperature range (–40°C to

125°C), making it useful for automotive systems, and the military temperature range

(–55°C to 125°C), for military systems.

40

Programming of a LED Matrix with a Digital VU Meter
application

These devices operate from a 2.5-V to 5.5-V single

supply voltage and are characterized at 2.7 V and 5

V. The single-supply operation and low power

consumption make these devices a good solution for

portable applications. The following table lists the

packages available.

Figure 13. Schematic of TLV2772A O.A.

The meaning of rail to rail is that the input of the op amp is very similar to the output

voltage. With this kind of op amp we can use more efficiently the low voltage rate with

which they work.

Table 9. Features of the TLV2772A O.A.

 TLV2772A

Number of Channels (#) 2

Total Supply Voltage (Min) (+5V=5, +/-5V=10) 2.5

Total Supply Voltage (Max) (+5V=5, +/-5V=10) 5.5

Iq per channel (Max) (mA) 2

Slew Rate (Typ) (V/us) 10.5

Vos (Offset Voltage @ 25C) (Max) (mV) 1.6

Offset Drift (Typ) (uV/C) 2

CMRR (Min) (dB) 70

GBW (Typ) (MHz) 5.1

IIB (Max) (pA) 60

Vn at 1kHz (Typ) (nV/rtHz) 17

Rail-Rail OUT

Rating Catalog

Operating Temperature Range (C) -40 to 125

Pin/Package 8PDIP

8SOIC

8TSSOP

41

Programming of a LED Matrix with a Digital VU Meter
application

DUAL AND SINGLE POWER SUPPLY:

Operational amplifiers generally operate with dual voltage. That is, to supply 0,

+ V and -V. It would be something like:

Figure 14. Operational Amplifier of Dual Voltage Power Supply

But often we only have a single source, 0 power, and + V, as a battery. When measuring

voltages we always look a benchmark and as what we measure are potential differences,

the 0 is an arbitrary point that depending on where we put the black lead of the

multimeter we measure different voltages.

The trick to use operational amplifiers in circuits that do not have dual voltage is to

create an artificial ground. Using a resistive divider with two resistors of equal value

the intermediate node is just half the supply voltage.

Suppose we have a 5V battery. We put our reference, negative tip of the tester, on the

negative side. We measure 0V in the negative thread, normal, there is no potential

difference between our reference and herself. At the midpoint we measure 2.5V and

5V on the positive terminal of the battery. Now we change our reference and we put

the negative lead at the halfway point. Will be measured -2.5V in the negative battery

terminal, 0V at the junction and in the upper +2.5V.

42

Programming of a LED Matrix with a Digital VU Meter
application

Figure 15. Artificial Ground for an Operational Amplifier

That will be the reference voltage for the operational amplifier. When using 5V it will

believed that we are supplying with a dual voltage of ± 2.5V. As inputs require little

current, the resistor value is not critical, it’s enough if we have a stable voltage.

Sometimes two small-capacity capacitors are added in parallel with the resistors, their

function is to absorb any transients; normally can be removed without problem and are

only used when the power supply is particularly noisy, such as in a car. It’s often used

a value of nF.

Another option for our artificial ground is to use another operational amplifier and

connect together its inputs. In the image of the amplifier you can see that the inputs

are connected at the same potential. Then its output should be 0V (with a minimum

offset). But the operational amplifier thinks that is being supplying with dual voltage,

its output will be 0 addressed to the dual voltage. Really the voltage in the output will

be provided so that there the same potential between this and the positive supply

voltage, between this and the negative voltage. In practice, this is just half the supply

voltage, which is what we wanted.

43

Programming of a LED Matrix with a Digital VU Meter
application

Figure 16: Operational Amplifier with the inputs connected to the same potential

The problem using the artificial ground for the non-inverting input is that it is not at

the same potential as the real ground. In the last circuit the artificial ground (midpoint

of the divisor) was 2.5V above the real ground (negative pole of the battery). It’s

necessary to remove the DC component at the input and the output and leave only the

AC signal. This is achieved interposing a capacitor and is called AC capacitive coupling.

Figure 17. AC Capacitive Coupling in an O.A.

44

Programming of a LED Matrix with a Digital VU Meter
application

The value of these capacitors determine the minimum frequency that can amplify our

circuit, thus acting as a high pass filter. If they have very little capacity, low frequencies

are strongly attenuated. If they are too large you can have significant losses and we do

not want that. It is often used a value between 100nF and 10μF.

WHAT IS AN INVERTER AMPLIFIER?

Before explaining what an inverter O.A.

is. I am going to show you some equations about

the differential amplifier that will help you to

understand how an inverter amplifier works.

Figure 18. Schematic of a Differential Amplifier

The circuit shown before computes the difference of two voltages, multiplied by some

gain factor. The output voltage:

Or, expressed as a function of the common mode input Vcom and difference input Vdif

The output voltage is:

http://en.wikipedia.org/wiki/Subtraction

45

Programming of a LED Matrix with a Digital VU Meter
application

In order for this circuit to produce a signal proportional to the voltage difference of the

input terminals, the coefficient of the Vcom term (the common-mode gain) must be

zero, or

With this constraint in place, the common-mode rejection ratio of this circuit is infinitely

large and the output is:

*The simple expression Rf / R1 represents the closed-loop gain of the differential amplifier.

The special case when the closed-loop gain is unity is a differential follower, with:

On the other hand the inverter amplifier is

the most used to connect a micro electret

and it is very easy to build. It is so named

because the output signal is inverse to the

input, in polarity, but could be higher,

equal or lower depending on the gain we

give the amplifier in closed loop. The

signal, as shown in the figure, is applied to

the inverter or negative terminal of the

amplifier and the positive or non-inverting

is connected to masa. The resistance Rf,

which runs from the outlet to the negative

input terminal is called feedback.

Figure 19. Schematic of an Inverter Operational Amplifier

http://en.wikipedia.org/wiki/Common-mode_rejection_ratio
http://en.wikipedia.org/wiki/File:Op-Amp_Inverting_Amplifier.svg

46

Programming of a LED Matrix with a Digital VU Meter
application

An inverting amplifier is a special case of the differential amplifier in which that

circuit's non-inverting input V2 is grounded, and the signal is applied in the inverting

input V1, identified in this case, with Vin in the last picture. The closed-loop gain

is Rf / Rin, hence Vout is:

.

The simplified circuit above is like the differential amplifier in the limit

of R2 and Rg very small. In this case, though, the circuit will be susceptible to input bias

current drift because of the mismatch between Rf and Rin.

To intuitively see the gain equation above, calculate the current in Rin:

*recall that this same current must be passing through Rf, therefore (because V− = V+ = 0):

A mechanical analogy is a seesaw, with the V− node (between Rin and Rf) as the fulcrum,

at ground potential. Vin is at a length Rin from the fulcrum; Vout is at a length Rf. When

Vin descends "below ground", the output Vout rises proportionately to balance the

seesaw, and vice versa.

If we want a very high gain we have two options:

1. Turn up the gain of the stage. It means decreasing Rin and increasing Rf as much

as we need. It's very simple to do but the disadvantages are numerous: reduced

input impedance, increased electronic noise (grows with the gain), decreased

bandwidth and may appear autoswaying.

2. Add another stage. We can get a high gain using two or more cascaded stages.

We got rid of the above disadvantages but instead we have, an increased

consumption, a more complicated schematic and the difficulty to adjust each

stage to not saturate to the next.

http://en.wikipedia.org/wiki/Operational_amplifier_applications#Differential_amplifier

47

Programming of a LED Matrix with a Digital VU Meter
application

It’s recommend using a single operational amplifier for minor gains × 20 and two

or more stages over x 20 gain.

Figure 20. Buffer’s Schematic

In some cases a buffer that is an x1 gain amplifier that means that nothing is amplified.

Its mission is to adapt the impedance, owing to it presents a high impedance input,

useful for taking the microphone's signal; and a low output impedance, which is

applicable to the following stages.

FREQUENCY RESPONSE

In the frequency band in where we can use the amplifier it is important to keep three

factors in mind:

 Resistor R1. Which determines the input impedance.

 Capacitor C1. That along with the input impedance forms a high-pass filter,

cutting the DC component, but also the frequencies below the cut-off frequency.

 The slew-rate of the integrated. The operational amplifiers have an internal

compensation to prevent oscillate spontaneously when they are working with

high gain. This limitation restricts the speed with can vary the output voltage,

and thus imposes a maximum frequency. This will depend on the gain and

amplitude of the input signal.

48

Programming of a LED Matrix with a Digital VU Meter
application

So we have a high-pass filter (first order) at the entrance and one low pass to the output.

Let's take the following circuit and simulate to obtain a bode diagram.

Figure 21. Schematic Circuit for Bode Diagram

WHAT IS A BODE DIAGRAM?

A Bode diagram is a graphical representation used to characterize the frequency

response of a system. Normally consists of two separate graphs, one corresponding to

the magnitude of said function and other to the matching phase. Named after the

American scientist who developed it, Hendrik Wade Bode.

It is very used in the analysis of electronic circuits, being fundamental to the design

and analysis for filters and amplifiers.

The Bode magnitude plot module draws the transfer function (gain) in decibels as a

function of frequency (or angular frequency) in logarithmic scale. Is often used in signal

processing to show the frequency response of a linear, time invariant system.

Being the next values:

R1 = 10K R2 = 100K C1 = 220nF IC = 0P90

49

Programming of a LED Matrix with a Digital VU Meter
application

Figure 22. Bode Diagram

The graph is divided into three colors. The green area is the gain x 10 (or 20 dB), R2 /

R1. To the left is the cutoff frequency of the filter C1 / R1. This begins when the gain

is already 3dB lower than it was expected, in this graph is 72Hz, yellow zone. From

there begins a downward slope of -20dB per decade till reach the red zone that begins

at 7.2Hz. Here not only there is no amplification, in addition the circuit attenuates the

lower frequencies. On the right side the high frequencies begin to decay to 27 kHz,

higher switching frequency, yellow zone. It is enough if you have in mind that we do

not hear tones above 20 kHz.

50

Programming of a LED Matrix with a Digital VU Meter
application

2.3.2 PRACTICAL CIRCUIT ON PROTOBOARD

Before building our PCB with EAGLE, we did several electric circuits in a

protoboard to be sure of the properly functioning of our LED Matrix. We measured

several times the data exit with an oscilloscope to see the difference between the

normal microphone’s signal and the amplification of it.

Figure 23: Microphone und amplifier signals

The blue line that we can see in the last pictures is the signal of the amplification and

the yellow one, the signal of the microphone. In the picture on the left, the

potentiometer was in the lowest point of amplification and in the picture on the right,

the potentiometer was the highest point and we get the maximum amplification. In the

blue line of the right picture we can see that the range peak to peak is 5V. As the

voltage supply is 5V and we have, more or less, the same value in range peak to peak,

we can say that we have a good amplification.

We tried with different resistors, capacitors and operational amplifiers and we obtained

the results of the last pictures with the next circuit. R3 and R4 are our artificial ground,

which is half of the supply voltage. R5 is the polarization resistance of the electret

microphone while R1 and C1 form a filter to remove the DC component from the

microphone. R2 and R6 are the feedback resistor that determines the gain by R1.

I have colored the positive voltage in red, negative voltage in black, blue it would be

the artificial ground and green the signal path.

51

Programming of a LED Matrix with a Digital VU Meter
application

Figure 24. Schematic of our electric circuit

If you need more amplification the best option is chaining another stage just below.

Another option is to change the value of R2 to be worth 50 or 100 times R1.

In our case what we did to have more amplification was to add a 500K potentiometer

(R6) after R2. Like this we can regulate the gain turning only the potentiometer to the

right or to the left. Now we calculate the gain of our circuit:

Gain:

𝐴 =
𝑅2 + 𝑅3

𝑅1

𝐴𝑚𝑖𝑛.=
𝑅2 + 0

𝑅1
=
220𝐾

10𝐾
= 22𝐾

𝐴𝑚𝑎𝑥.=
𝑅2 + 𝑅3

𝑅1
=
220𝐾 + 500𝐾

10𝐾
= 72𝐾

52

Programming of a LED Matrix with a Digital VU Meter
application

In conclusion we have a gain x22 when the potentiometer works with the minimum

value. When the potentiometer works with the maximum value (500K) the gain is x

72. Like this we can play with a gain until we find the correct one.

Whenever you use an operational amplifier you must pay attention in:

 The supply voltage. With dual sources no problem, but when using simple

sources for operational amplifier remember that it is as if the voltage is divided

in half and can to not reach the minimum voltage recommended by the

manufacturer. In addition, with lower power we will obtain a lower output and

the signal can be distort.

 The noise factor. Important if we want to capture faint sounds.

 The passband. There amplifiers that are slower than others but instead have

other desirable properties, such as low voltage or noise. We need to reach a

compromise between what we need on the one hand and on the other. The most

common datasheets are seamlessly Internet

2.3.3 PCB DESIGN

As in the protoboard is possible to have loses because of the poor connections,

we decided to design a PCB making our project nicer and more efficiently. A PCB is

a printed circuit board mechanically supports and electrically connects electronic

components using conductive tracks, pads and other features etched from copper

sheets laminated onto a non-conductive substrate. PCBs can be single sided (one

copper layer), double sided (two copper layers) or multi-layer.

Conductors on different layers are connected with plated through holes called vias.

Advanced PCBs may contain components capacitors, resistors or active devices

embedded in the substrate. The Software used for the PCB design was EAGLE.

http://en.wikipedia.org/wiki/Electronic_component
http://en.wikipedia.org/wiki/Electronic_component
http://en.wikipedia.org/wiki/Electrical_conductor
http://en.wikipedia.org/wiki/Industrial_etching
http://en.wikipedia.org/wiki/Laminated
http://en.wikipedia.org/wiki/Substrate_(electronics)
http://en.wikipedia.org/wiki/Via_(electronics)

53

Programming of a LED Matrix with a Digital VU Meter
application

WHAT IS EAGLE?

EAGLE (Easily Applicable Graphical Layout Editor) by CadSoft

Computer is a flexible, expandable and scriptable EDA application

with schematic capture editor, PCB layout editor, autorouter and

CAM and BOM tools developed by CadSoft Computer GmbH, Germany,

since 1988. Famous worldwide for the design of electronic projects

DiY, because many versions of this program have a Freeware license

and lots of component libraries around the net. EAGLE contains an

electronic diagrams editor where components can be placed in the

diagram with a single click and easily routable with other components based on "cables"

or labels. Also EAGLE contains a PCB editor with a rather efficient autorouter. The

editor is able to produce GERBER files and others, which are used at the time of

production. Eagle brings component libraries included, easy to make and available from

companies such as SparkFun or fans that spread them around the net for free.

STARTING WITH EAGLE

In the next picture we can see EAGLE’s panel control. To start with a new project we

have to click on “file” “new” “project”. After that we will have to write a name

for our new project.

Figure 25. Control Panel of EAGLE Software

http://en.wikipedia.org/wiki/Electronic_design_automation
http://en.wikipedia.org/wiki/Computer-aided_manufacturing
http://en.wikipedia.org/wiki/Bill_of_materials
http://en.wikipedia.org/wiki/CadSoft_Computer_GmbH

54

Programming of a LED Matrix with a Digital VU Meter
application

Once we have crated the file for our new Project we must do the schematic design of

the electronic circuit that we did in the protoboard. For it we have to click on the file

of our project with the right button and click on “New” “Schematic”. Than it is time

to crate the schematic of the circuit using EAGLE’s toolbar. In the next picture you will

see the Schematic of my PCB.

Figure 26. Schematic of the electronic board

The next step is to design the physical appearance of our electronic board. So, when

we finish and save our Schematic, in the Schematic window we have to click on

and a different window will appear to design the board. As you will see in the next

picture, you will have to order and connect all the elements of the electronic circuit

on the real delimited board space. Sometimes this operation can be difficult.

55

Programming of a LED Matrix with a Digital VU Meter
application

Figure 27. Layout of the electronic board

56

Programming of a LED Matrix with a Digital VU Meter
application

PCB PRINCIAL COMPONENTS

With the board physically printed over our table, we started solding our smallest

components with a microscope where we used compressed stain liquid. The biggest

components we sold them with a normal electronic solder and a small bobbin of stain.

The components that we sold to the board were:

7X SMD Resistor 1X Operational Amplifier

 1X SMD Capacitor 1X 1X Potentiometer

 2X SMD Button 1X Electret microphone

Figure 28: PCB with elements solded

57

Programming of a LED Matrix with a Digital VU Meter
application

PROBLEMS

 Designing our board we noticed that we had to use the two faces on it. That

means that we had to use some “vias” to connect the electric lines of the different

sides.

Other thing that was a bit complicate was to put the pins of this board in the correct

position not to have problems after with the connection pins of Arduino. To solve this

problem we printed in paper the design of the board, we put the paper over the

Arduino’s board and we probed that the holes that were drew in the paper for our

future electronic board ran into the Arduino’s board. Also, as we have to sold very small

components we made thicker the width of the paths.

The first time we connect together both boards something strange happened. Button 1

and 2 worked properly but meanwhile were not pushed, the equalizer did not worked

properly. We measured the current and the voltage in different parts of the circuit and

we checked the signal in the oscilloscope until we found the problem. One side of the

capacitor was not well solded and because of that, the AC capacitive coupling didn’t

work.

IMPROVEMENTS

As our board are going to be together inside the matrix’s box. We had to do some

modifications for the buttons and the microphone of the board. We design a witty

connection to keep some liberty between the board, buttons and microphone. We

evolved the solded points of our witty connections with pieces of thermoretractable

plastic tube not to make a short circuit and for the safety of everyone.

Figure 29: Safety Connections for the PCB

58

Programming of a LED Matrix with a Digital VU Meter
application

CHAPTER 3
3D CAD DESIGN WITH SOLIDWORKS

59

Programming of a LED Matrix with a Digital VU Meter
application

In order to compact this project and to make it look prettier, a 3D CAD design has

been built. This 3D CAD design will be then printed by a 3D printed. In this chapter are

introduced different step followed to design the model as well as the relevant technical

data. For this project, the chosen program was SolidWorks.

3.1 WHAT IS SOLIDWORKS?

 SolidWorks is a CAD Software (computer

aided design) for mechanical 3D modelling, now

developed by SolidWorks Corp., a subsidiary of

Dassault Systèmes SA (Suresnes, France) for the

Microsoft Windows operating system. Its first

version was launched in 1995 with the purpose

of making CAD technology more accessible.

The program allows modelling pieces and assemblies and obtain technical drawings and

other information necessary for production. It is a program that works based on new

modelling techniques with CAD systems. The process is to transfer the mental idea of

the designer to the CAD system, "building virtually" the piece or assembly. Than all

extractions (plans and swap files) are made automatically.

3.2 3D CAD LED MATRIX BOX DESIGNS

If it is the first time you are going to use SolidWorks, you can find very good tutorials

of how to use it, in YouTube. As no one taught me how to use this software, all I know

about it, I learnt it watching the tutorials in YouTube and was enough to do my 3D

design.

Remember that this design has to contain the following devices:

 LED Matrix

 Arduino Due

 PCB

 2x Additional Buttons

 1x Microphone

60

Programming of a LED Matrix with a Digital VU Meter
application

Therefore the basic parameters of the design are the following:

 Case Size: 182x70x200mm. We designed a box with a bigger size than the LED

matrix to have enough space to put inside the LED matrix and the holes for the

buttons and the microphone on the front side. The cables, PCB and Arduino are

hidden in the back side.

 Holes: We made three holes, two for the mode buttons (r=4.5mm) and one for the

microphone (5mm). Also we made a 3x3 round holes matrix in the base where the

LED matrix will be support to save some plastic material of the 3D printer.

 Inclination: We inclined 15º the front side to have better view of the LED lights.

To create a new project in SolidWorks open the program and click in New Document.

After that a new window will appear on our screen and we will have to choose one of

the three options. To make a simple 3D design we chose the first option that appears

on the top “3D representation of a single design component”.

Figure 30. SolidWorks Software

61

Programming of a LED Matrix with a Digital VU Meter
application

FIRST DESIGN:

In this design we did it very simple. We

created a sketch with a square of 182x182mm. Than

we extruded the square 100mm to form a kind of

cube. Later we shelled the back side of the cube

and on the front side made two steps, one for the

base of the LED matrix and other for the glass that

covers the LED matrix. To finish we made the holes

for Arduino connections, buttons and microphone.

In the picture we can see the result.

Figure 31. First 3D LED matrix case design

SECOND DESIGN:

In our second design we followed more or less

the same steps that in the first design. We created

a sketch with a rectangle 182x200mm. Then we

extruded the rectangle 70.3mm to form a kind of

cube and we shelled the back side of the cube. The

different in this design is that we inclined a little bit

the LED matrix base and the buttons and

microphone are situated in the front side. We

thought that with this small inclination the visual

effect of the LED Matrix will be nicer and the

microphone in the front side would works properly.

 Figure 32. Second 3D LED matrix case design

62

Programming of a LED Matrix with a Digital VU Meter
application

THIRD DESIGN

In our final design we did a small improvement. The

design is equal as the second one but we made a round

holes matrix to save some material of the 3D printer.

Figure 33. Final 3D LED Matrix Box Design

63

Programming of a LED Matrix with a Digital VU Meter
application

CHAPTER 4

3D PRINTER

64

Programming of a LED Matrix with a Digital VU Meter
application

The printer used was the X400 from German RepRap. This is a company which produces

big and high quality in Germany. Philosophy of RepRap is open source and open

hardware, so everybody is able to build an own printer. What makes the different

between the X400 and the others low cost printer is the size of them, almost double

than biggest printers in market.

Technical Specifications:

 Build Volume: 400 x 400 x 350 mm

 Overall size: 700 x 770 x 700 mm

 Print Volume: 56 l

 Layer thickness: min 0.1mm

 Weight: 65 kg

 Material: PLA, ABS, PP, PVA

 nozzle size: 0.3, 0.4, 0.5 mm

 Accuracy: 0.1mm

 Confection material: 3mm

 Power Consumption: 50W

 Extruder: Dual Extruder

 Extruder Temperature: max 275ºC

Figure 34. X400 3D Printer

4.1 PRINTER SOFTWARE

In order to control the printer and communicate with

it per serial port, the used software was Simplify 3D.

There are others software and many of them are free,

but as Simplify3D is software specific for German

RepRap and OTH Regensburg bought the licenses; this

was the proper software to use.

65

Programming of a LED Matrix with a Digital VU Meter
application

Figure 35. Simplify 3D Software

4.2 PRINTER SLICER

The Slicer is the software in charge of translating the CAD (STL) design into the

machine code (Gcode). There are many different kind of slicer, like Skinforge or Slic3r

among others. For this particular case has been used Slic3r, as it has been proof that

it is the better for this purpose because of its easy usage and quality of Gcode

parameters generation.

Main parameters of Slic3r:

 Extruder Temperature: 200ºC for PLA

 Bed: Temperature: 70ºC for a better adherence of the printed part

 Layer height: 0.25 mm for a good ratio between speed and quality.

 Infill: 0.25 to spare material

 Brim: 3mm to provide better adherence.

 Support material:

o Pattern: Rectilinear

o Pattern Spacing: 2 mm

o Overhang support: 45º

o Interface layers: 1

66

Programming of a LED Matrix with a Digital VU Meter
application

Figure 36. 3D Printer Parameters

4.3 RESULTS

 First trial: Huge print requires lot of time. The energy supply failed on the

extruder at 50% of printing, then cold extrusion prevent made unable to keep

printing.

 Second trial: As supply energy failed, recalibration of extruders after

reparation. The calibration was wrong breaking adherence sheet of the plate.

Reparation took 2 days.

67

Programming of a LED Matrix with a Digital VU Meter
application

Figure 37. Failed Printout

 Third trial: With one of the failed print I notice that the printer needed to

create a big support base to make the top of the box and the measures were a

bit smaller than in the software. Because of that I decide to crate the third

design where I modified some parameters, I made the round holes and I put down

the front side to save material.

68

Programming of a LED Matrix with a Digital VU Meter
application

With the modifications made we reduce the printing time from 42h to 18h and at the

end we success.

Figure 38. Third Trial Results

69

Programming of a LED Matrix with a Digital VU Meter
application

CHAPTER 5

APPLICATION

70

Programming of a LED Matrix with a Digital VU Meter
application

Building our project we realised that we can use the LED Matrix for different

things. Depending on the programming we can do:

 Night lamp

 KID lamp

 Decoration lamp

 VU meter

 Digital Clock

 LED animations

 Equalizer

5.1 APPLICATION MODES

In our Arduino Software we created a basic program with different functions. With

two buttons and a microphone we have created three different modes.

 Mode 1: When the buttons are not pushed, in the LED Matrix appear an

animated digital VU meter with three different colours that indicates the

intensity of the volume.

o Green: low

o Yellow: medium

o Red: high

 Mode 2: It’s activated when green button is pushed. This mode is interrupt

Mode 1 and red heart appears in the LED Matrix for 2 seconds.

 Mode 3: It’s activated when the orange button is pushed. This mode interrupt

Mode 1 and a yellow flash appear in the LED Matrix for 2 seconds.

Figure 40: Application Modes

71

Programming of a LED Matrix with a Digital VU Meter
application

5.2 PROGRAMMING USER FUNCTIONS

Function: Adafruit_NeoPixel

Description:

We use this function to declare a NeoPixel object. We will refer to “Adafruit_NeoPixel strip” to

control the strip or matrix of pixels.

Syntax: Adafruit_NeoPixel strip = Adafruit_NeoPixel (PIXEL_COUNT, PIXEL_PIN, NEO_GRB +

NEO_KHZ800)

Parameters:

PIXEL_COUNT: number of pixels in the matrix.

PIXEL_PIN: pin number to which the pixels matrix is connected.

NEO_GRB+NEO_KHZ800: A value indicating the type of NeoPixels that are connected.

Return:

None

Function: Serial.begin()

Description:

Sets the data rate in bits per second (baud) for serial data transmission. For communicating with

the computer, use one of these rates: 300, 600, 1200, 2400, 4800, 9600, 14400, 19200, 28800,

38400, 57600, or 115200. You can, however, specify other rates - for example, to communicate

over pins 0 and 1 with a component that requires a particular baud rate. An optional second

argument configures the data, parity, and stop bits. The default is 8 data bits, no parity, one stop

bit.

Syntax:

Serial.begin(speed)

Parameters:

 speed: data rate in bits per second for serial data transmission.

Return:

None

72

Programming of a LED Matrix with a Digital VU Meter
application

Function: pinMode()

Description:

Configures the specified pin to behave either as an input or an output.

Syntax:

pinMode(pin,mode)

Parameters:

pin: the number of the pin whose mode you wish to set

mode: INPUT, OUTPUT, or INPUT_PULLUP.

Returns:

None

Function: strip.begin()

Description:

The data pin is prepared for NeoPixel output

Syntax:

strip.begin()

Parameters

None

Return:

None

 Function: strip.show()

Description:

Initialize all pixels to "off"

Syntax:

Strip.show()

Parameters

None

Return:

None

http://arduino.cc/en/Reference/Constants
http://arduino.cc/en/Reference/Constants
http://arduino.cc/en/Reference/Constants

73

Programming of a LED Matrix with a Digital VU Meter
application

Function attachInterrupt()

Description:

 Specifies a named Interrupt Service Routine (ISR) to call when an interrupt occurs. Replaces any

previous function that was attached to the interrupt.

The Arduino Due board has powerful interrupt capabilities that allows you to attach an interrupt

function on all available pins. You can directly specify the pin number in attachInterrupt().

Syntax

attachInterrupt(interrupt, ISR, mode)
attachInterrupt(pin, ISR, mode)

Parameters

 interrupt: The number of the interrupt(int)

 pin: the pin number (Arduino Due only)

ISR: the ISR to call when the interrupt occours; this function must take no parameters and

returns nothing.

mode: defines when the interrupt should be triggered. Five constants are predefined as

valid values:

 LOW: to trigger the interrupt whenever the pin is low.

 CHANGE: to trigger the interrupt whenever the the pin changes the value.

 RISING: to trigger the interrupt when the pins goes from high to low

 FALLING: when pin goes from high to low

 HIGH: to trigger the interrupt whenever the pin is high

Return:

None

74

Programming of a LED Matrix with a Digital VU Meter
application

Function: millis()

Description:

Returns the number of milliseconds since the Arduino board began running the current program.

This number will overflow (go back to zero), after approximately 50 days.

Syntax:

unsigned long startMillis= millis()

Parameters:

None

Return:

Number of milliseconds since the program started (unsigned long)

Function: analogRead()

Description:

Reads the value from the specified analog pin. This means that it will map input voltages between 0

and 5 volts into integer values between 0 and 1023. It takes about 100 microseconds (0.0001 s) to

read an analog input, so the maximum reading rate is about 10,000 times a second.

Syntax:

analogRead(pin)

Parameters:

pin: the number of the analog input pin to read from.

Return:

int (0 to 1023)

75

Programming of a LED Matrix with a Digital VU Meter
application

Function: delayMicroseconds()

Description: Pauses the program for the amount of time (in microseconds) specified as

parameter. There are a thousand microseconds in a millisecond, and a million microseconds in a

second.

Syntax: delayMicroseconds(us)

Parameters: us: the number of microseconds to pause (unsigned int)

Return: None

Function: print()

Description:

Prints data to the serial port as human-readable ASCII text. This command can take many forms.

Numbers are printed using an ASCII character for each digit. Floats are similarly printed as ASCII

digits, defaulting to two decimal places. Bytes are sent as a single character.

Syntax:

Serial.print(val)

Serial.print(val, format)

Parameters:

val: the value to print - any data type

format: specifies the number base (for integral data types) or number of decimal places (for

floating point types)

Return:

size_t (long): print() returns the number of bytes written, though reading that number is optional

Function: setBrightness()

Description:

The overall brightness of all the LEDs can be adjusted using setBrightness().

Syntax:

strip.setBrightness(brightness value);

Parameters:

Brightness value: This takes a single argument, a number in the range 0 (off) to 255 (max

brightness). For example, to set a strip to 1/4 brightness:

Return:

None

76

Programming of a LED Matrix with a Digital VU Meter
application

Function: setPixelColor

Description:

Is the way to set the color of a pixel.The first argument — n in this example — is the pixel number

along the strip, starting from 0closest to the Arduino. If you have a strip of 30 pixels, they’re

numbered 0 through 29. It’s a computer thing. You’ll see various places in the code using

a for loop, passing the loop counter variable as the pixel number to this function, to set the values

of multiple pixels.

Syntax:

 strip.setPixelColor(n, red, green, blue);

Parameters:

 n: pixel number along the strip

(red, green,blue): The hree arguments are the pixel color, expressed as red, green and blue

brightness levels, where 0 is dimmest (off) and 255 is maximum brightness.

Return:

None

77

Programming of a LED Matrix with a Digital VU Meter
application

5.2 FLOW CHART

START

INITIALIZING

DEVICES

(MATRIX,ARDUI.)

INITIALIZING

ARDUINO’S

PORTS

DEVICES

CONECTED?

SEND THE

ARDUINO C++

PROGRAM

LED

MATRIX

ON?

YES

YES

NO

NO

Note: Sometimes we have to plug in

and plug out twice the power supply

of the Arduino Due to turn on the LED

Matrix.

78

Programming of a LED Matrix with a Digital VU Meter
application

VU METER

BUTTONS

MODE 1 AND 2

GREEN

BUTTON

PUSHED?

ORANGE

BUTTON

PUSHED?

YELLOW FLASH

ON
RED HEART ON

VU METER

NO NO

YES YES

79

Programming of a LED Matrix with a Digital VU Meter
application

CHAPTER 6

CONCLUSIONS AND VALUATIONS

80

Programming of a LED Matrix with a Digital VU Meter
application

6.1 CONCLUSION AND PROBLEMS

Now that our project is completed, is time to analyse carefully the problems we

have found on the way and the conclusions over them.

As I am a Student of electrical engineering, during my studies I have done very few

about programming and electronics. I decided to do a project associated with this topics

and on the way, I found problems that I was able to solve with help of some colleagues,

searching and analysing information. The most important is that I learnt things I didn’t

know yet.

The main idea of the project was to develop an application for a LED Matrix. At the end,

I decided to do a lighting application with three different modes. The principal idea

was to create a kind of lamp with a digital equalizer, and then with two additional

buttons create other modes, a yellow flash for boys and the red heart for girls.

To start with it, first I had to see some tutorial and study a little bit about C++

Programming. Once done, I did some practices with simple codes and then I began with

our application code. For it, also we had to check the Adafruit NeoPixel library that we

had to use for the LED Matrix. We studied how the LED matrix works and we made the

codes for the flash and the heart. Unfortunately we run out of time and was not possible

to make the equalizer. Instead the equalizer, we made a code for a digital VU Meter

that simulates an equalizer.

Also we had to design a PCB for our Application. For it, I had to see some tutorials in

you tube of EAGLE software. When I printed the PCB and I solded, for the first time in

my life, the components to it, the PCB doesn’t work properly. It took us some days until

the problem was solved. One side of the condensator was not solded to the PCB and

the AC signal coupling didn’t work. Also, because of the distance, when we speak not

always the VU works properly.

As in the PCB design, I have to watch some tutorials of SolidWorks software. With it we

designed a Box for the LED Matrix that later would be printed with a 3D Printer. When

the design was finished in SolidWorks, we had some problems with the 3D printer, but

in the third trial the solid object was good printed. In one of the failed printouts I

noticed that the parameters were reduce with the printer. So, before our third trial, I

modified the value of some parameters and I made the design more efficiently saving

material.

With the VU application sometimes the LEDs flicker very quickly. After searching some

information on the internet, we discovered that each individual NeoPixel draws up to

60 milliamps at maximum brightness white (red + green + blue).

81

Programming of a LED Matrix with a Digital VU Meter
application

In actual use though, it’s rare for all pixels to be turned on that way. When mixing

colours and displaying animations, the current draw will be much less.

It’s impossible to estimate a single number for all circumstances, but we’ve been using

1/3 this (20 mA per pixel) as a gross rule of thumb with no ill effects.

To estimate power supply needs, multiply the number of pixels by 20, then divide the

result by 1,000 for the “rule of thumb” power supply rating in Amps. Or use 60 (instead

of 20) if you want to guarantee an absolute margin of safety for all situations. For

example:

256 NeoPixels × 20 mA ÷ 1,000 = 5.2 Amps minimum

256 NeoPixels × 60 mA ÷ 1,000 = 15.4 Amps minimum

In conclusion, for the properly working of the LEDs and the application we need a power

supply between 5.2 – 15.4 Amps. The power supply that we used only had 1.0 Amps.

Also you must remember this rule not to kill your LEDs:

Extra Amps = Good but extra Volts = bad

6.2 VALUATIONS

During this semester, I have realised that electronic and programming is the

technology for the future. This technology is very intensive and interesting, and

knowing programming is possible to do a lot off new application for different devices

then later can be improved with no high economic costs.

Regarding the project, it could be improved finishing the idea an equalizer. With the

other two modes it should be nice to do one of the next applications:

 Digital alarm clock

 A lamp that is turn on/off with a clap

 Add thermometer to see the temperature on the LED Matrix

More complicate but not impossible would be programming a capacitive screen and

crate a code only to turn on the LEDs sliding your fingers over them. That will make

easier drawing forms and shapes in the LED Matrix.

BIBLIOGRAPHY

1. Arduino Due board features

http://arduino.cc/en/Main/arduinoBoardDue

2. Working with Adafruit Neo Pixel Library

https://learn.adafruit.com/adafruit-neopixel-uberguide/arduino-library

3. Programming of a LED Matrix with Adafruit Neo Pixel Library

https://learn.adafruit.com/adafruit-neopixel-uberguide/arduino-library

4. WS 2812b LED features

http://www.world-semi.com/en/

5. Tutorials EAGLE Software

https://www.youtube.com/results?search_query=tutoria+eagle

6. Tutorials SolidWorks Software

https://www.youtube.com/results?q=tutorial+solidworks+2013

7. Tutorials Arduino Software(C++)

https://www.youtube.com/results?search_query=tutorial+c%2B%2B

8. 3D X400 Printer

https://shop.germanreprap.com/en/x400-standard

9. Op Amp and Microphone Electric Circuit Information

http://es.wikipedia.org/wiki/Amplificador_operacional

http://electronicayciencia.blogspot.de/2010/05/preamplificador-microfono-electret.html

http://www.electronicafacil.net/tutoriales/AMPLIFICADOR-INVERSOR.php

10. VU Meter Information

http://playingwitharduino.blogspot.de/2011/12/vumetro-leds-al-ritmo-de-la-musica.html

https://geekytheory.com/vu-meter-con-arduino-2/

11. TLV 2772A T.I. Amplifier

http://www.ti.com/product/tlv2772a

http://arduino.cc/en/Main/arduinoBoardDue
https://learn.adafruit.com/adafruit-neopixel-uberguide/arduino-library
https://learn.adafruit.com/adafruit-neopixel-uberguide/arduino-library
http://www.world-semi.com/en/
https://www.youtube.com/results?search_query=tutoria+eagle
https://www.youtube.com/results?q=tutorial+solidworks+2013
https://www.youtube.com/results?search_query=tutorial+c%2B%2B
https://shop.germanreprap.com/en/x400-standard
http://es.wikipedia.org/wiki/Amplificador_operacional
http://electronicayciencia.blogspot.de/2010/05/preamplificador-microfono-electret.html
http://www.electronicafacil.net/tutoriales/AMPLIFICADOR-INVERSOR.php
http://playingwitharduino.blogspot.de/2011/12/vumetro-leds-al-ritmo-de-la-musica.html
https://geekytheory.com/vu-meter-con-arduino-2/
http://www.ti.com/product/tlv2772a

ANNEX 1

ADAFRUIT NEOPIXEL LIBRARY

84

Programming of a LED Matrix with a Digital VU Meter
application

 This file is part of the Adafruit NeoPixel library.

 NeoPixel is free software: you can redistribute it and/or modify

 it under the terms of the GNU Lesser General Public License as

 published by the Free Software Foundation, either version 3 of

 the License, or (at your option) any later version.

 NeoPixel is distributed in the hope that it will be useful,

 but WITHOUT ANY WARRANTY; without even the implied warranty of

 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

 GNU Lesser General Public License for more details.

 You should have received a copy of the GNU Lesser General Public

 License along with NeoPixel. If not, see

 <http://www.gnu.org/licenses/>.

 --*/

#ifndef ADAFRUIT_NEOPIXEL_H

#define ADAFRUIT_NEOPIXEL_H

#if (ARDUINO >= 100)

 #include <Arduino.h>

#else

 #include <WProgram.h>

 #include <pins_arduino.h>

#endif

// 'type' flags for LED pixels (third parameter to constructor):

#define NEO_RGB 0x00 // Wired for RGB data order

#define NEO_GRB 0x01 // Wired for GRB data order

#define NEO_BRG 0x04

#define NEO_COLMASK 0x01

#define NEO_KHZ800 0x02 // 800 KHz datastream

#define NEO_SPDMASK 0x02

// Trinket flash space is tight, v1 NeoPixels aren't handled by default.

// Remove the ifndef/endif to add support -- but code will be bigger.

// Conversely, can comment out the #defines to save space on other MCUs.

#ifndef __AVR_ATtiny85__

#define NEO_KHZ400 0x00 // 400 KHz datastream

#endif

85

Programming of a LED Matrix with a Digital VU Meter
application

class Adafruit_NeoPixel {

 public:

 // Constructor: number of LEDs, pin number, LED type

 Adafruit_NeoPixel(uint16_t n, uint8_t p=6, uint8_t t=NEO_GRB + NEO_KHZ800);

 ~Adafruit_NeoPixel();

 void

 begin(void),

 show(void),

 setPin(uint8_t p),

 setPixelColor(uint16_t n, uint8_t r, uint8_t g, uint8_t b),

 setPixelColor(uint16_t n, uint32_t c),

 setBrightness(uint8_t),

 clear();

 uint8_t

 *getPixels(void) const,

 getBrightness(void) const;

 uint16_t

 numPixels(void) const;

 static uint32_t

 Color(uint8_t r, uint8_t g, uint8_t b);

 uint32_t

 getPixelColor(uint16_t n) const;

 inline bool

 canShow(void) { return (micros() - endTime) >= 50L; }

 private:

 const uint16_t

 numLEDs, // Number of RGB LEDs in strip

 numBytes; // Size of 'pixels' buffer below

 uint8_t

 pin, // Output pin number

 brightness,

 *pixels, // Holds LED color values (3 bytes each)

 rOffset, // Index of red byte within each 3-byte pixel

 gOffset, // Index of green byte

 bOffset; // Index of blue byte

 const uint8_t

 type; // Pixel flags (400 vs 800 KHz, RGB vs GRB color)

86

Programming of a LED Matrix with a Digital VU Meter
application

 uint32_t

 endTime; // Latch timing reference

#ifdef __AVR__

 const volatile uint8_t

 *port; // Output PORT register

 uint8_t

 pinMask; // Output PORT bitmask

#endif

};

#endif // ADAFRUIT_NEOPIXEL_H

87

Programming of a LED Matrix with a Digital VU Meter
application

ANNEX 2

APPLICATION CODE

88

Programming of a LED Matrix with a Digital VU Meter
application

#include <Adafruit_NeoPixel.h> // To recognise Adafruit_NeoPixel library functions.

#define BUTTON_PIN7 7 // The green button is define in PIN 7

#define BUTTON_PIN2 2 //The orange button is define in PIN 2

#define PIXEL_PIN 6 //The data pin is define in PIN 6

#define PIXEL_COUNT 256 // The nº of LED we are going to use are define

int i = 0,j,h,k;

// we declare a NeoPixel object. We will refer to "Adafruit_NeoPixel strip" to control the strip of pixels

Adafruit_NeoPixel strip = Adafruit_NeoPixel(PIXEL_COUNT, PIXEL_PIN, NEO_GRB + NEO_KHZ800);

const int sampleWindow = 20; // It is a window in msSample window width (50 mS = 20Hz)

unsigned int sample;

/*The setup() function is called when a sketch starts.

Use it to initialize variables,pin modes, start using libraries, etc.

The setup function will only run once, after each powerup or reset of the Arduino board*/

void setup()

{

 //Opens serial port, sets data rate to 9600 bps

 Serial.begin(9600);

 //Set the digital pin 2 and 7 as pull up

 pinMode(BUTTON_PIN2, INPUT_PULLUP);

 pinMode(BUTTON_PIN7, INPUT_PULLUP);

89

Programming of a LED Matrix with a Digital VU Meter
application

 //Replaces any previous function that was attached to the interrupt with pin 7 and 2

 attachInterrupt(7, flash, HIGH);

 attachInterrupt(2, heart,HIGH);

 //The data pin is prepared for NeoPixel output

 strip.begin();

 //We introduce LED brightness value and we Initialize all pixels to "off"

 strip.setBrightness(255);

 strip.show();

}

/*After creating a setup() function, which initializes and sets the initial values,

the loop() function does precisely what its name suggests, and loops consecutively,

allowing your program to change and respond.*/

void loop()

{

 /*With the next functions we will see the signal

 of the microphone on a sampling window*/

 unsigned long startMillis= millis(); //We start sampling window

 unsigned int peakToPeak = 0; // Level peak to peak

 unsigned int signalMax = 0;

 unsigned int signalMin = 1024;

 while (millis() - startMillis < sampleWindow) // We recive data with an speed of 50ms

 {

90

Programming of a LED Matrix with a Digital VU Meter
application

 sample = analogRead(0); // The output of the amplifier is connected to the analog A0 input of

Arduino

 if (sample < 1024)

 {

 if (sample > signalMax)

 {

 signalMax = sample; // Max. Signal, sampling

 }

 else if (sample < signalMin)

 {

 signalMin = sample; // Min. Signal, sampling

 }

 }

 }

 peakToPeak = signalMax - signalMin; // Max - Min = range peak to peak

 Serial.print(peakToPeak);

 double volts = (peakToPeak * 5) / 1024; // To convert to Volts

 /*Now we defne the code to creat the VU Meter.

 We have created five bands with differents parameters*/

 //BANDA 1

 if (peakToPeak>1){ //Peaktopeak>1 the LED will turn on in green

 strip.setPixelColor(16, 0, 255, 0);

 strip.setPixelColor(17, 0, 255, 0);

 strip.setPixelColor(46, 0, 255, 0);

 strip.setPixelColor(47, 0, 255, 0);

 }

 else{ //peaktopeak<1 The LED will turn off

 strip.setPixelColor(16, 0, 0, 0);

 strip.setPixelColor(17, 0, 0, 0);

 strip.setPixelColor(46, 0, 0, 0);

 strip.setPixelColor(47, 0, 0, 0);

91

Programming of a LED Matrix with a Digital VU Meter
application

 }

 if (peakToPeak>250){

 strip.setPixelColor(18, 0, 255, 0);

 strip.setPixelColor(19, 0, 255, 0);

 strip.setPixelColor(44, 0, 255, 0);

 strip.setPixelColor(45, 0, 255, 0);

 }

 else{

 strip.setPixelColor(18, 0, 0, 0);

 strip.setPixelColor(19, 0, 0, 0);

 strip.setPixelColor(44, 0, 0, 0);

 strip.setPixelColor(45, 0, 0, 0);

 }

 if (peakToPeak>260){

 strip.setPixelColor(20, 0, 255, 0);

 strip.setPixelColor(21, 0, 255, 0);

 strip.setPixelColor(42, 0, 255, 0);

 strip.setPixelColor(43, 0, 255, 0);

 }

 else{

 strip.setPixelColor(20, 0, 0, 0);

 strip.setPixelColor(21, 0, 0, 0);

 strip.setPixelColor(42, 0, 0, 0);

 strip.setPixelColor(43, 0, 0, 0);

 }

 if (peakToPeak>270){

 strip.setPixelColor(22, 204, 204, 0);

 strip.setPixelColor(23, 204, 204, 0);

92

Programming of a LED Matrix with a Digital VU Meter
application

 strip.setPixelColor(40, 204, 204, 0);

 strip.setPixelColor(41, 204, 204, 0);

 }

 else{

 strip.setPixelColor(22, 0, 0, 0);

 strip.setPixelColor(23, 0, 0, 0);

 strip.setPixelColor(40, 0, 0, 0);

 strip.setPixelColor(41, 0, 0, 0);

 }

 if (peakToPeak>280){

 strip.setPixelColor(24, 204, 204, 0);

 strip.setPixelColor(25, 204, 204, 0);

 strip.setPixelColor(38, 204, 204, 0);

 strip.setPixelColor(39, 204, 204, 0);

 }

 else{

 strip.setPixelColor(24, 0, 0, 0);

 strip.setPixelColor(25, 0, 0, 0);

 strip.setPixelColor(38, 0, 0, 0);

 strip.setPixelColor(39, 0, 0, 0);

 }

 if (peakToPeak>290){

 strip.setPixelColor(26, 204, 204, 0);

 strip.setPixelColor(37, 204, 204, 0);

 }

 else{

 strip.setPixelColor(26, 0, 0, 0);

 strip.setPixelColor(37, 0, 0, 0);

 }

93

Programming of a LED Matrix with a Digital VU Meter
application

 if (peakToPeak>300){

 strip.setPixelColor(27, 255, 128, 0);

 strip.setPixelColor(28, 255, 128, 0);

 strip.setPixelColor(35, 255, 128, 0);

 strip.setPixelColor(36, 255, 128, 0);

 }

 else{

 strip.setPixelColor(27, 0, 0, 0);

 strip.setPixelColor(28, 0, 0, 0);

 strip.setPixelColor(35, 0, 0, 0);

 strip.setPixelColor(36, 0, 0, 0);

 }

 if (peakToPeak>310){

 strip.setPixelColor(29, 255, 128, 0);

 strip.setPixelColor(34, 255, 128, 0);

 }

 else{

 strip.setPixelColor(29, 0, 0, 0);

 strip.setPixelColor(34, 0, 0, 0);

 }

 if (peakToPeak>320){

 strip.setPixelColor(30, 255, 0, 0);

 strip.setPixelColor(33, 255, 0, 0);

 }

 else{

 strip.setPixelColor(30, 0, 0, 0);

 strip.setPixelColor(33, 0, 0, 0);

 }

94

Programming of a LED Matrix with a Digital VU Meter
application

 if (peakToPeak>330){

 strip.setPixelColor(31, 255, 0, 0);

 strip.setPixelColor(32, 255, 0, 0);

 }

 else{

 strip.setPixelColor(31, 0, 0, 0);

 strip.setPixelColor(32, 0, 0, 0);

 }

 //BANDA 2

 if(peakToPeak>1){

 strip.setPixelColor(78, 0, 255, 0);

 strip.setPixelColor(79, 0, 255, 0);

 strip.setPixelColor(80, 0, 255, 0);

 strip.setPixelColor(81, 0, 255, 0);

 }

 else{

 strip.setPixelColor(78, 0, 0, 0);

 strip.setPixelColor(79, 0, 0, 0);

 strip.setPixelColor(80, 0, 0, 0);

 strip.setPixelColor(81, 0, 0, 0);

 }

 if (peakToPeak>350){

 strip.setPixelColor(76, 0, 255, 0);

 strip.setPixelColor(77, 0, 255, 0);

 strip.setPixelColor(82, 0, 255, 0);

 strip.setPixelColor(83, 0, 255, 0);

 }

 else{

95

Programming of a LED Matrix with a Digital VU Meter
application

 strip.setPixelColor(76, 0, 0, 0);

 strip.setPixelColor(77, 0, 0, 0);

 strip.setPixelColor(82, 0, 0, 0);

 strip.setPixelColor(83, 0, 0, 0);

 }

 if (peakToPeak>370){

 strip.setPixelColor(74, 0, 255, 0);

 strip.setPixelColor(75, 0, 255, 0);

 strip.setPixelColor(84, 0, 255, 0);

 strip.setPixelColor(85, 0, 255, 0);

 }

 else{

 strip.setPixelColor(74, 0, 0, 0);

 strip.setPixelColor(75, 0, 0, 0);

 strip.setPixelColor(84, 0, 0, 0);

 strip.setPixelColor(85, 0, 0, 0);

 }

 if (peakToPeak>390){

 strip.setPixelColor(72, 204, 204, 0);

 strip.setPixelColor(73, 204, 204, 0);

 strip.setPixelColor(86, 204, 204, 0);

 strip.setPixelColor(87, 204, 204, 0);

 }

 else{

 strip.setPixelColor(72, 0, 0, 0);

 strip.setPixelColor(73, 0, 0, 0);

 strip.setPixelColor(86, 0, 0, 0);

 strip.setPixelColor(87, 0, 0, 0);

 }

96

Programming of a LED Matrix with a Digital VU Meter
application

 if (peakToPeak>410){

 strip.setPixelColor(70, 204, 204, 0);

 strip.setPixelColor(71, 204, 204, 0);

 strip.setPixelColor(88, 204, 204, 0);

 strip.setPixelColor(89, 204, 204, 0);

 }

 else{

 strip.setPixelColor(70, 0, 0, 0);

 strip.setPixelColor(71, 0, 0, 0);

 strip.setPixelColor(88, 0, 0, 0);

 strip.setPixelColor(89, 0, 0, 0);

 }

 if (peakToPeak>430){

 strip.setPixelColor(69, 204, 204, 0);

 strip.setPixelColor(90, 204, 204, 0);

 }

 else{

 strip.setPixelColor(69, 0, 0, 0);

 strip.setPixelColor(90, 0, 0, 0);

 }

 if (peakToPeak>450){

 strip.setPixelColor(67, 255, 128, 0);

 strip.setPixelColor(68, 255, 128, 0);

 strip.setPixelColor(91, 255, 128, 0);

 strip.setPixelColor(92, 255, 128, 0);

 }

 else{

 strip.setPixelColor(67, 0, 0, 0);

 strip.setPixelColor(68, 0, 0, 0);

 strip.setPixelColor(91, 0, 0, 0);

97

Programming of a LED Matrix with a Digital VU Meter
application

 strip.setPixelColor(92, 0, 0, 0);

 }

 if (peakToPeak>470){

 strip.setPixelColor(66, 255, 128, 0);

 strip.setPixelColor(93, 255, 128, 0);

 }

 else{

 strip.setPixelColor(66, 0, 0, 0);

 strip.setPixelColor(93, 0, 0, 0);

 }

 if (peakToPeak>490){

 strip.setPixelColor(65, 255, 0, 0);

 strip.setPixelColor(94, 255, 0, 0);

 }

 else{

 strip.setPixelColor(65, 0, 0, 0);

 strip.setPixelColor(94, 0, 0, 0);

 }

 if (peakToPeak>510){

 strip.setPixelColor(64, 255, 0, 0);

 strip.setPixelColor(95, 255, 0, 0);

 }

 else{

 strip.setPixelColor(64, 0, 0, 0);

 strip.setPixelColor(95, 0, 0, 0);

 }

98

Programming of a LED Matrix with a Digital VU Meter
application

 //BANDA 3

 if (peakToPeak>1){

 strip.setPixelColor(112, 0, 255, 0);

 strip.setPixelColor(113, 0, 255, 0);

 strip.setPixelColor(142, 0, 255, 0);

 strip.setPixelColor(143, 0, 255, 0);

 }

 else{

 strip.setPixelColor(112, 0, 0, 0);

 strip.setPixelColor(113, 0, 0, 0);

 strip.setPixelColor(142, 0, 0, 0);

 strip.setPixelColor(143, 0, 0, 0);

 }

 if (peakToPeak>160){

 strip.setPixelColor(114, 0, 255, 0);

 strip.setPixelColor(115, 0, 255, 0);

 strip.setPixelColor(140, 0, 255, 0);

 strip.setPixelColor(141, 0, 255, 0);

 }

 else{

 strip.setPixelColor(114, 0, 0, 0);

 strip.setPixelColor(115, 0, 0, 0);

 strip.setPixelColor(140, 0, 0, 0);

 strip.setPixelColor(141, 0, 0, 0);

 }

 if (peakToPeak>180){

 strip.setPixelColor(116, 0, 255, 0);

 strip.setPixelColor(117, 0, 255, 0);

 strip.setPixelColor(138, 0, 255, 0);

 strip.setPixelColor(139, 0, 255, 0);

 }

 else{

99

Programming of a LED Matrix with a Digital VU Meter
application

 strip.setPixelColor(116, 0, 0, 0);

 strip.setPixelColor(117, 0, 0, 0);

 strip.setPixelColor(138, 0, 0, 0);

 strip.setPixelColor(139, 0, 0, 0);

 }

 if (peakToPeak>200){

 strip.setPixelColor(118, 204, 204, 0);

 strip.setPixelColor(119, 204, 204, 0);

 strip.setPixelColor(136, 204, 204, 0);

 strip.setPixelColor(137, 204, 204, 0);

 }

 else{

 strip.setPixelColor(118, 0, 0, 0);

 strip.setPixelColor(119, 0, 0, 0);

 strip.setPixelColor(136, 0, 0, 0);

 strip.setPixelColor(137, 0, 0, 0);

 }

 if (peakToPeak>220){

 strip.setPixelColor(120, 204, 204, 0);

 strip.setPixelColor(121, 204, 204, 0);

 strip.setPixelColor(134, 204, 204, 0);

 strip.setPixelColor(135, 204, 204, 0);

 }

 else{

 strip.setPixelColor(120, 0, 0, 0);

 strip.setPixelColor(121, 0, 0, 0);

 strip.setPixelColor(134, 0, 0, 0);

 strip.setPixelColor(135, 0, 0, 0);

 }

 if (peakToPeak>230){

 strip.setPixelColor(122, 204, 204, 0);

100

Programming of a LED Matrix with a Digital VU Meter
application

 strip.setPixelColor(133, 204, 204, 0);

 }

 else{

 strip.setPixelColor(122, 0, 0, 0);

 strip.setPixelColor(133, 0, 0, 0);

 }

 if (peakToPeak>240){

 strip.setPixelColor(123, 255, 128, 0);

 strip.setPixelColor(124, 255, 128, 0);

 strip.setPixelColor(132, 255, 128, 0);

 strip.setPixelColor(131, 255, 128, 0);

 }

 else{

 strip.setPixelColor(123, 0, 0, 0);

 strip.setPixelColor(124, 0, 0, 0);

 strip.setPixelColor(132, 0, 0, 0);

 strip.setPixelColor(131, 0, 0, 0);

 }

 if (peakToPeak>250){

 strip.setPixelColor(125, 255, 128, 0);

 strip.setPixelColor(130, 255, 128, 0);

 }

 else{

 strip.setPixelColor(125, 0, 0, 0);

 strip.setPixelColor(130, 0, 0, 0);

 }

 if (peakToPeak>260){

 strip.setPixelColor(126, 255, 0, 0);

 strip.setPixelColor(129, 255, 0, 0);

 }

 else{

101

Programming of a LED Matrix with a Digital VU Meter
application

 strip.setPixelColor(126, 0, 0, 0);

 strip.setPixelColor(129, 0, 0, 0);

 }

 if (peakToPeak>270){

 strip.setPixelColor(127, 255, 0, 0);

 strip.setPixelColor(128, 255, 0, 0);

 }

 else{

 strip.setPixelColor(127, 0, 0, 0);

 strip.setPixelColor(128, 0, 0, 0);

 }

 //BANDA 4

 if(peakToPeak>1){

 strip.setPixelColor(174, 0, 255, 0);

 strip.setPixelColor(175, 0, 255, 0);

 strip.setPixelColor(176, 0, 255, 0);

 strip.setPixelColor(177, 0, 255, 0);

 }

 else{

 strip.setPixelColor(174, 0, 0, 0);

 strip.setPixelColor(175, 0, 0, 0);

 strip.setPixelColor(176, 0, 0, 0);

 strip.setPixelColor(177, 0, 0, 0);

 }

 if (peakToPeak>200){

 strip.setPixelColor(172, 0, 255, 0);

 strip.setPixelColor(173, 0, 255, 0);

 strip.setPixelColor(178, 0, 255, 0);

 strip.setPixelColor(179, 0, 255, 0);

 }

102

Programming of a LED Matrix with a Digital VU Meter
application

 else{

 strip.setPixelColor(172, 0, 0, 0);

 strip.setPixelColor(173, 0, 0, 0);

 strip.setPixelColor(178, 0, 0, 0);

 strip.setPixelColor(179, 0, 0, 0);

 }

 if (peakToPeak>240){

 strip.setPixelColor(170, 0, 255, 0);

 strip.setPixelColor(171, 0, 255, 0);

 strip.setPixelColor(180, 0, 255, 0);

 strip.setPixelColor(181, 0, 255, 0);

 }

 else{

 strip.setPixelColor(170, 0, 0, 0);

 strip.setPixelColor(171, 0, 0, 0);

 strip.setPixelColor(180, 0, 0, 0);

 strip.setPixelColor(181, 0, 0, 0);

 }

 if (peakToPeak>280){

 strip.setPixelColor(168, 204, 204, 0);

 strip.setPixelColor(169, 204, 204, 0);

 strip.setPixelColor(182, 204, 204, 0);

 strip.setPixelColor(183, 204, 204, 0);

 }

 else{

 strip.setPixelColor(168, 0, 0, 0);

 strip.setPixelColor(169, 0, 0, 0);

 strip.setPixelColor(182, 0, 0, 0);

 strip.setPixelColor(183, 0, 0, 0);

 }

103

Programming of a LED Matrix with a Digital VU Meter
application

 if (peakToPeak>320){

 strip.setPixelColor(166, 204, 204, 0);

 strip.setPixelColor(167, 204, 204, 0);

 strip.setPixelColor(184, 204, 204, 0);

 strip.setPixelColor(185, 204, 204, 0);

 }

 else{

 strip.setPixelColor(166, 0, 0, 0);

 strip.setPixelColor(167, 0, 0, 0);

 strip.setPixelColor(184, 0, 0, 0);

 strip.setPixelColor(185, 0, 0, 0);

 }

 if (peakToPeak>360){

 strip.setPixelColor(165, 204, 204, 0);

 strip.setPixelColor(186, 204, 204, 0);

 }

 else{

 strip.setPixelColor(165, 0, 0, 0);

 strip.setPixelColor(186, 0, 0, 0);

 }

 if (peakToPeak>400){

 strip.setPixelColor(163, 255, 128, 0);

 strip.setPixelColor(164, 255, 128, 0);

 strip.setPixelColor(187, 255, 128, 0);

 strip.setPixelColor(188, 255, 128, 0);

 }

 else{

 strip.setPixelColor(163, 0, 0, 0);

 strip.setPixelColor(164, 0, 0, 0);

 strip.setPixelColor(187, 0, 0, 0);

 strip.setPixelColor(188, 0, 0, 0);

 }

104

Programming of a LED Matrix with a Digital VU Meter
application

 if (peakToPeak>450){

 strip.setPixelColor(162, 255, 128, 0);

 strip.setPixelColor(189, 255, 128, 0);

 }

 else{

 strip.setPixelColor(162, 0, 0, 0);

 strip.setPixelColor(189, 0, 0, 0);

 }

 if (peakToPeak>500){

 strip.setPixelColor(161, 255, 0, 0);

 strip.setPixelColor(190, 255, 0, 0);

 }

 else{

 strip.setPixelColor(161, 0, 0, 0);

 strip.setPixelColor(190, 0, 0, 0);

 }

 if (peakToPeak>600){

 strip.setPixelColor(160, 255, 0, 0);

 strip.setPixelColor(191, 255, 0, 0);

 //strip.show();

 }

 else{

 strip.setPixelColor(160, 0, 0, 0);

 strip.setPixelColor(191, 0, 0, 0);

 //strip.show();

 }

 //BANDA 5

 if(peakToPeak>1){

105

Programming of a LED Matrix with a Digital VU Meter
application

 strip.setPixelColor(208, 0, 255, 0);

 strip.setPixelColor(209, 0, 255, 0);

 strip.setPixelColor(238, 0, 255, 0);

 strip.setPixelColor(239, 0, 255, 0);

 }

 else{

 strip.setPixelColor(208, 0, 0, 0);

 strip.setPixelColor(209, 0, 0, 0);

 strip.setPixelColor(238, 0, 0, 0);

 strip.setPixelColor(239, 0, 0, 0);

 }

 if (peakToPeak>350){

 strip.setPixelColor(210, 0, 255, 0);

 strip.setPixelColor(211, 0, 255, 0);

 strip.setPixelColor(236, 0, 255, 0);

 strip.setPixelColor(237, 0, 255, 0);

 }

 else{

 strip.setPixelColor(210, 0, 0, 0);

 strip.setPixelColor(211, 0, 0, 0);

 strip.setPixelColor(236, 0, 0, 0);

 strip.setPixelColor(237, 0, 0, 0);

 }

 if (peakToPeak>370){

 strip.setPixelColor(212, 0, 255, 0);

 strip.setPixelColor(213, 0, 255, 0);

 strip.setPixelColor(234, 0, 255, 0);

 strip.setPixelColor(235, 0, 255, 0);

 }

 else{

 strip.setPixelColor(212, 0, 0, 0);

 strip.setPixelColor(213, 0, 0, 0);

106

Programming of a LED Matrix with a Digital VU Meter
application

 strip.setPixelColor(234, 0, 0, 0);

 strip.setPixelColor(235, 0, 0, 0);

 }

 if (peakToPeak>390){

 strip.setPixelColor(214, 204, 204, 0);

 strip.setPixelColor(215, 204, 204, 0);

 strip.setPixelColor(232, 204, 204, 0);

 strip.setPixelColor(233, 204, 204, 0);

 }

 else{

 strip.setPixelColor(214, 0, 0, 0);

 strip.setPixelColor(215, 0, 0, 0);

 strip.setPixelColor(232, 0, 0, 0);

 strip.setPixelColor(233, 0, 0, 0);

 }

 if (peakToPeak>410){

 strip.setPixelColor(216, 204, 204, 0);

 strip.setPixelColor(217, 204, 204, 0);

 strip.setPixelColor(230, 204, 204, 0);

 strip.setPixelColor(231, 204, 204, 0);

 }

 else{

 strip.setPixelColor(216, 0, 0, 0);

 strip.setPixelColor(217, 0, 0, 0);

 strip.setPixelColor(230, 0, 0, 0);

 strip.setPixelColor(231, 0, 0, 0);

 }

 if (peakToPeak>430){

 strip.setPixelColor(218, 204, 204, 0);

 strip.setPixelColor(229, 204, 204, 0);

 }

107

Programming of a LED Matrix with a Digital VU Meter
application

 else{

 strip.setPixelColor(218, 0, 0, 0);

 strip.setPixelColor(229, 0, 0, 0);

 }

 if (peakToPeak>450){

 strip.setPixelColor(219, 255, 128, 0);

 strip.setPixelColor(220, 255, 128, 0);

 strip.setPixelColor(227, 255, 128, 0);

 strip.setPixelColor(228, 255, 128, 0);

 }

 else{

 strip.setPixelColor(219, 0, 0, 0);

 strip.setPixelColor(220, 0, 0, 0);

 strip.setPixelColor(227, 0, 0, 0);

 strip.setPixelColor(228, 0, 0, 0);

 }

 if (peakToPeak>470){

 strip.setPixelColor(221, 255, 128, 0);

 strip.setPixelColor(226, 255, 128, 0);

 }

 else{

 strip.setPixelColor(221, 0, 0, 0);

 strip.setPixelColor(226, 0, 0, 0);

 }

 if (peakToPeak>490){

 strip.setPixelColor(222, 255, 0, 0);

 strip.setPixelColor(225, 255, 0, 0);

 }

 else{

 strip.setPixelColor(222, 0, 0, 0);

108

Programming of a LED Matrix with a Digital VU Meter
application

 strip.setPixelColor(225, 0, 0, 0);

 }

 if (peakToPeak>510){

 strip.setPixelColor(223, 255, 0, 0);

 strip.setPixelColor(224, 255, 0, 0);

 }

 else{

 strip.setPixelColor(223, 0, 0, 0);

 strip.setPixelColor(224, 0, 0, 0);

 strip.show();

 }

 Serial.print("\t");

 Serial.println(volts);

 if (volts>0.4){ // Si el valor leído supera al umbral damos una alarma visual

 }

 else if (volts<0.4){ // De lo contrario, no damos ninguna alarma

 }

}

//With the next functions we activate the yellow flash when we push the green button

void flash(){

 //We reset all the LED before the flash not to mix the it with the VU meter

 for(i=0;i<256;i++){

 strip.setPixelColor(i, 0, 0, 0);

109

Programming of a LED Matrix with a Digital VU Meter
application

 }

 strip.show();

 //We define the LED that form the Flash

 strip.setPixelColor(51, 204, 204, 0);

 strip.setPixelColor(77, 204, 204, 0);

 strip.setPixelColor(76, 204, 204, 0);

 strip.setPixelColor(81, 204, 204, 0);

 strip.setPixelColor(82, 204, 204, 0);

 strip.setPixelColor(83, 204, 204, 0);

 strip.setPixelColor(84, 204, 204, 0);

 strip.setPixelColor(90, 204, 204, 0);

 strip.setPixelColor(100, 204, 204, 0);

 strip.setPixelColor(101, 204, 204, 0);

 strip.setPixelColor(106, 204, 204, 0);

 strip.setPixelColor(107, 204, 204, 0);

 strip.setPixelColor(108, 204, 204, 0);

 strip.setPixelColor(109, 204, 204, 0);

 strip.setPixelColor(110, 204, 204, 0);

 strip.setPixelColor(111, 204, 204, 0);

 strip.setPixelColor(114, 204, 204, 0);

 strip.setPixelColor(113, 204, 204, 0);

 strip.setPixelColor(115, 204, 204, 0);

 strip.setPixelColor(116, 204, 204, 0);

 strip.setPixelColor(117, 204, 204, 0);

 strip.setPixelColor(118, 204, 204, 0);

 strip.setPixelColor(124, 204, 204, 0);

 strip.setPixelColor(123, 204, 204, 0);

 strip.setPixelColor(122, 204, 204, 0);

 strip.setPixelColor(130, 204, 204, 0);

 strip.setPixelColor(131, 204, 204, 0);

 strip.setPixelColor(132, 204, 204, 0);

 strip.setPixelColor(133, 204, 204, 0);

110

Programming of a LED Matrix with a Digital VU Meter
application

 strip.setPixelColor(136, 204, 204, 0);

 strip.setPixelColor(137, 204, 204, 0);

 strip.setPixelColor(140, 204, 204, 0);

 strip.setPixelColor(141, 204, 204, 0);

 strip.setPixelColor(147, 204, 204, 0);

 strip.setPixelColor(152, 204, 204, 0);

 strip.setPixelColor(151, 204, 204, 0);

 strip.setPixelColor(155, 204, 204, 0);

 strip.setPixelColor(152, 204, 204, 0);

 strip.setPixelColor(155, 204, 204, 0);

 strip.setPixelColor(154, 204, 204, 0);

 strip.setPixelColor(157, 204, 204, 0);

 strip.setPixelColor(158, 204, 204, 0);

 strip.setPixelColor(160, 204, 204, 0);

 strip.setPixelColor(161, 204, 204, 0);

 strip.setPixelColor(164, 204, 204, 0);

 strip.setPixelColor(165, 204, 204, 0);

 strip.setPixelColor(166, 204, 204, 0);

 strip.setPixelColor(167, 204, 204, 0);

 strip.setPixelColor(187, 204, 204, 0);

 strip.setPixelColor(186, 204, 204, 0);

 strip.setPixelColor(185, 204, 204, 0);

 strip.setPixelColor(196, 204, 204, 0);

 strip.setPixelColor(197, 204, 204, 0);

 strip.setPixelColor(219, 204, 204, 0);

 strip.setPixelColor(191, 204, 204, 0);

 strip.show();

 //The flash is on for 2 sec. and then the application turns to the VU Meter

 delayMicroseconds(900000);

 strip.setPixelColor(51, 0, 0, 0);

 strip.setPixelColor(77, 0, 0, 0);

111

Programming of a LED Matrix with a Digital VU Meter
application

 strip.setPixelColor(76, 0, 0, 0);

 strip.setPixelColor(81, 0, 0, 0);

 strip.setPixelColor(82, 0, 0, 0);

 strip.setPixelColor(83, 0, 0, 0);

 strip.setPixelColor(84, 0, 0, 0);

 strip.setPixelColor(90, 0, 0, 0);

 strip.setPixelColor(100, 0, 0, 0);

 strip.setPixelColor(101, 0, 0, 0);

 strip.setPixelColor(106, 0, 0, 0);

 strip.setPixelColor(107, 0, 0, 0);

 strip.setPixelColor(108, 0, 0, 0);

 strip.setPixelColor(109, 0, 0, 0);

 strip.setPixelColor(110, 0, 0, 0);

 strip.setPixelColor(111, 0, 0, 0);

 strip.setPixelColor(114, 0, 0, 0);

 strip.setPixelColor(113, 0, 0, 0);

 strip.setPixelColor(115, 0, 0, 0);

 strip.setPixelColor(116, 0, 0, 0);

 strip.setPixelColor(117, 0, 0, 0);

 strip.setPixelColor(118, 0, 0, 0);

 strip.setPixelColor(124, 0, 0, 0);

 strip.setPixelColor(123, 0, 0, 0);

 strip.setPixelColor(122, 0, 0, 0);

 strip.setPixelColor(130, 0, 0, 0);

 strip.setPixelColor(131, 0, 0, 0);

 strip.setPixelColor(132, 0, 0, 0);

 strip.setPixelColor(133, 0, 0, 0);

 strip.setPixelColor(136, 0, 0, 0);

 strip.setPixelColor(137, 0, 0, 0);

 strip.setPixelColor(140, 0, 0, 0);

 strip.setPixelColor(141, 0, 0, 0);

 strip.setPixelColor(147, 0, 0, 0);

 strip.setPixelColor(152, 0, 0, 0);

 strip.setPixelColor(151, 0, 0, 0);

112

Programming of a LED Matrix with a Digital VU Meter
application

 strip.setPixelColor(155, 0, 0, 0);

 strip.setPixelColor(152, 0, 0, 0);

 strip.setPixelColor(155, 0, 0, 0);

 strip.setPixelColor(154, 0, 0, 0);

 strip.setPixelColor(157, 0, 0, 0);

 strip.setPixelColor(158, 0, 0, 0);

 strip.setPixelColor(160, 0, 0, 0);

 strip.setPixelColor(161, 0, 0, 0);

 strip.setPixelColor(164, 0, 0, 0);

 strip.setPixelColor(165, 0, 0, 0);

 strip.setPixelColor(166, 0, 0, 0);

 strip.setPixelColor(167, 0, 0, 0);

 strip.setPixelColor(187, 0, 0, 0);

 strip.setPixelColor(186, 0, 0, 0);

 strip.setPixelColor(185, 0, 0, 0);

 strip.setPixelColor(196, 0, 0, 0);

 strip.setPixelColor(197, 0, 0, 0);

 strip.setPixelColor(219, 0, 0, 0);

 strip.setPixelColor(191, 0, 0, 0);

 strip.show();

 }

 void heart(){

 for(i=0;i<256;i++){

 strip.setPixelColor(i, 0, 0, 0);

 }

 strip.show();

 strip.setPixelColor(4, 255, 0, 0);

 strip.setPixelColor(5, 255, 0, 0);

 strip.setPixelColor(6, 255, 0, 0);

113

Programming of a LED Matrix with a Digital VU Meter
application

 strip.setPixelColor(23, 255, 0, 0);

 strip.setPixelColor(7, 255, 0, 0);

 strip.setPixelColor(3, 255, 0, 0);

 strip.setPixelColor(34, 255, 0, 0);

 strip.setPixelColor(29, 255, 0, 0);

 strip.setPixelColor(41, 255, 0, 0);

 strip.setPixelColor(53, 255, 0, 0);

 strip.setPixelColor(61, 255, 0, 0);

 strip.setPixelColor(66, 255, 0, 0);

 strip.setPixelColor(75, 255, 0, 0);

 strip.setPixelColor(92, 255, 0, 0);

 strip.setPixelColor(83, 255, 0, 0);

 strip.setPixelColor(100, 255, 0, 0);

 strip.setPixelColor(109, 255, 0, 0);

 strip.setPixelColor(113, 255, 0, 0);

 strip.setPixelColor(122, 255, 0, 0);

 strip.setPixelColor(133, 255, 0, 0);

 strip.setPixelColor(134, 255, 0, 0);

 strip.setPixelColor(143, 255, 0, 0);

 strip.setPixelColor(145, 255, 0, 0);

 strip.setPixelColor(155, 255, 0, 0);

 strip.setPixelColor(163, 255, 0, 0);

 strip.setPixelColor(173, 255, 0, 0);

 strip.setPixelColor(179, 255, 0, 0);

 strip.setPixelColor(189, 255, 0, 0);

 strip.setPixelColor(194, 255, 0, 0);

 strip.setPixelColor(203, 255, 0, 0);

 strip.setPixelColor(213, 255, 0, 0);

 strip.setPixelColor(221, 255, 0, 0);

 strip.setPixelColor(226, 255, 0, 0);

 strip.setPixelColor(252, 255, 0, 0);

 strip.setPixelColor(247, 255, 0, 0);

 strip.setPixelColor(233, 255, 0, 0);

 strip.setPixelColor(248, 255, 0, 0);

114

Programming of a LED Matrix with a Digital VU Meter
application

 strip.setPixelColor(249, 255, 0, 0);

 strip.setPixelColor(250, 255, 0, 0);

 strip.setPixelColor(251, 255, 0, 0);

 strip.show();

 delayMicroseconds(900000);

 strip.setPixelColor(4, 0, 0, 0);

 strip.setPixelColor(5, 0, 0, 0);

 strip.setPixelColor(6, 0, 0, 0);

 strip.setPixelColor(23, 0, 0, 0);

 strip.setPixelColor(7, 0, 0, 0);

 strip.setPixelColor(3, 0, 0, 0);

 strip.setPixelColor(34, 0, 0, 0);

 strip.setPixelColor(29, 0, 0, 0);

 strip.setPixelColor(41, 0, 0, 0);

 strip.setPixelColor(53, 0, 0, 0);

 strip.setPixelColor(61, 0, 0, 0);

 strip.setPixelColor(66, 0, 0, 0);

 strip.setPixelColor(75, 0, 0, 0);

 strip.setPixelColor(92, 0, 0, 0);

 strip.setPixelColor(83, 0, 0, 0);

 strip.setPixelColor(100, 0, 0, 0);

 strip.setPixelColor(109, 0, 0, 0);

 strip.setPixelColor(113, 0, 0, 0);

 strip.setPixelColor(122, 0, 0, 0);

 strip.setPixelColor(133, 0, 0, 0);

 strip.setPixelColor(134, 0, 0, 0);

 strip.setPixelColor(143, 0, 0, 0);

 strip.setPixelColor(145, 0, 0, 0);

 strip.setPixelColor(155, 0, 0, 0);

 strip.setPixelColor(163, 0, 0, 0);

 strip.setPixelColor(173, 0, 0, 0);

 strip.setPixelColor(179, 0, 0, 0);

115

Programming of a LED Matrix with a Digital VU Meter
application

 strip.setPixelColor(189, 0, 0, 0);

 strip.setPixelColor(194, 0, 0, 0);

 strip.setPixelColor(203, 0, 0, 0);

 strip.setPixelColor(213, 0, 0, 0);

 strip.setPixelColor(221, 0, 0, 0);

 strip.setPixelColor(226, 0, 0, 0);

 strip.setPixelColor(252, 0, 0, 0);

 strip.setPixelColor(247, 0, 0, 0);

 strip.setPixelColor(233, 0, 0, 0);

 strip.setPixelColor(248, 0, 0, 0);

 strip.setPixelColor(249, 0, 0, 0);

 strip.setPixelColor(250, 0, 0, 0);

 strip.setPixelColor(251, 0, 0, 0);

 strip.show();

}

116

Programming of a LED Matrix with a Digital VU Meter
application

ANNEX 3

VU METER PCB

A. SCHEMATIC

B. TOP LAYER

C. BOTTOM LAYER

120

Programming of a LED Matrix with a Digital VU Meter
application

ANNEX 4

3D CAD PLANS

121

Programming of a LED Matrix with a Digital VU Meter
application

