

Anejo 3.6 Diseño de los nudos

ANEJO DISEÑO DE LOS NUDOS

Contenido

INTRODUCCIÓN	4
1. ESTUDIO DE SOLUCIONES, NUDO ESTE Y OESTE	5
1.1. PLANTEAMIENTO DE LAS ALTERNATIVAS DE NUDOS POSIBLES	5
1.1.1. Nudo Este	6
1.1.1.1. Glorieta Este	6
1.1.1.2. Glorieta Este con carril directo de giro a la derecha	9
1.1.1.3. Intersección en "T" Este	9
1.1.1.4. Enlace Este	11
1.1.2. Nudo Oeste	12
1.1.2.1 Glorieta Oeste	12
1.1.2.2 Glorieta Oeste con carril directo de giro a la derecha	14
1.1.2.3 Intersección en T Oeste	14
1.1.2.4 Enlace Oeste	16
1.2. ANÁLISIS DE FUNCIONALIDAD DE LAS ALTERNATIVAS	17
1.2.1. Capacidad Glorietas	17
1.2.2. Capacidad Intersecciones en T	19
1.2.3. Conclusión funcionalidad	21
1.3. ELECCIÓN MULTICRITERIO DE LA ALTERNATIVA ÓPTIMA	22
1.3.1. Parámetros a emplear	22
1.3.2. Estimación de pesos para la matriz multicriterio	22
1.3.3. Valoración diferentes alternativas	23
1.3.3.1. Coste económico	24
1.3.3.2. Impacto ambiental	24
1.3.3.3. Seguridad Vial	25
1.3.3.4. Funcionalidad	26
1.3.4. Conclusión elección final	27
1.3.5. Solución final adoptada	27

2.	DISENO DE LA SOLUCION	28
2.1.	DISEÑO GEOMÉTRICO DE LA SOLUCIÓN	28
2.1.1.	Nudo Oeste	28
2.1.2.	Nudo Este	30
2.2.	SEÑALIZACIÓN	37
2.2.1.	Señalización vertical	37
2.2.2.	Señalización horizontal:	37
2.3.	CUMPLIMIENTO CRITERIOS SEGURIDAD VIAL	38
2.3.1.	Visibilidades	38
2.3.1.	1 Distancia de parada	38
2.3.1.	2 Distancia de cruce	39
2.3.1.	3 Visibilidades dentro del nudo	40
2.3.2.	Ángulos entrada a glorietas e intersecciones	42
2.4.	ANÁLISIS TRAYECTORIAS	43
3.	CAMINOS Y SERVICIOS AFECTADOS	44
3.1.	IDENTIFICACIÓN CAMINOS AFECTADOS Y PROPUESTAS DE SOLUCIÓN	44
3.1.1	Cruce 1	44
3.1.2	Cruce 2 y 3	45
3.1.3	Cruce 4	45
3.1.4	Cruce 5, 6 y 7	45
3.1.5	Cruce 8	46
3.2.	IDENTIFICACIÓN Y SOLUCIÓN SERVICIOS AFECTADOS	47
3.2.1	Líneas eléctricas	47
3.2.2	Desvío del tráfico	49
Apénd	dice 1: Informe incremental de P.K	51
4.	BIBLIOGRAFIA	64
5.	AGRADECIMIENTOS	65

INTRODUCCIÓN

El anejo desarrolla la solución a los nudos generados por la construcción de la variante norte de la CV-190 (Figura 1) al paso por el municipio de Figueroles.

Se estudian en profundidad las diferentes alternativas existentes para resolver los dos principales nudos que se presentan en la variante a construir, este y oeste. También da solución a los caminos afectados por la construcción de la variante.

Trazado de la variante Figura 1

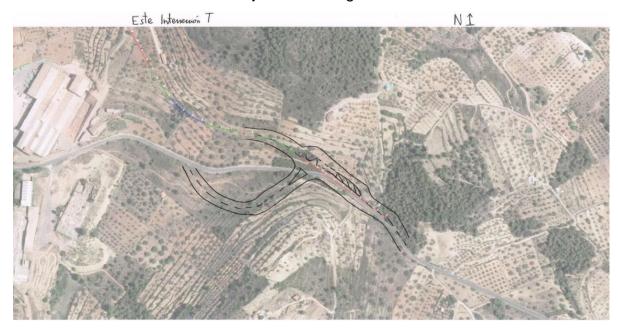
El nudo este distribuye la circulación entre la CV-190 (sentido Castellón), la variante realizada en este proyecto y la entrada oriental del pueblo de Figueroles.

El nudo oeste por el contrario es el encargado de conectar la CV-190 (sentido Lucena), la variante de esta carretera a su paso por el pueblo y la entrada occidental al pueblo de Figueroles.

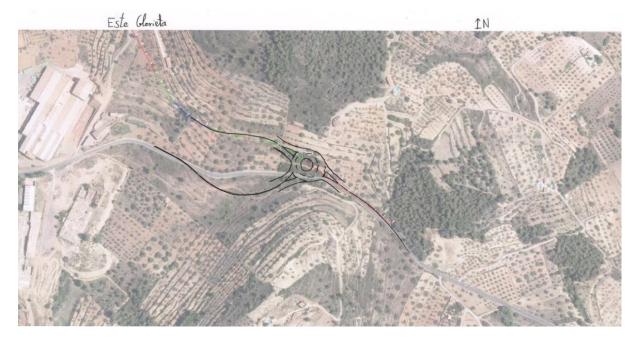
Se busca la forma más objetiva posible para la valoración de las diferentes alternativas, para ello se hará uso de estudios de capacidad, análisis de funcionalidad, simulaciones de trayectoria de los vehículos más conflictivos o encuestas que permitan dar unos pesos adecuados a cada uno de los parámetros existentes en todos los nudos.

La metodología empleada es la siguiente:

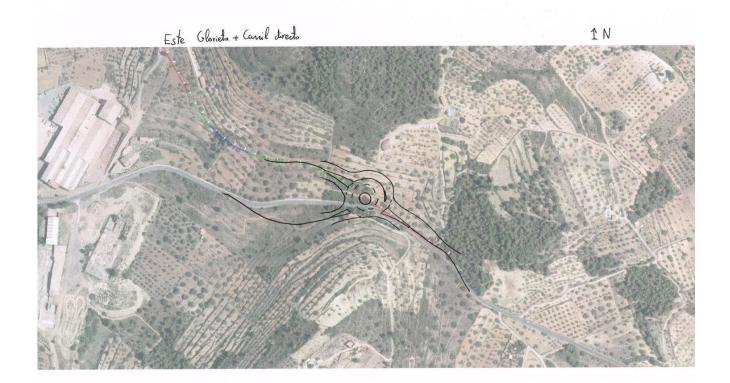
- -Croquis de las posibles alternativas en la zona de convergencia de la variante diseñada con la CV-190
- -Diseño con el programa AutoCAD Civil 3D a tal nivel de detalle que permita vislumbrar los principales problemas que presenta cada solución.
- -Encuesta a una muestra de personas relacionadas con el mundo de la ingeniería civil con el fin de establecer los pesos atribuibles a los diferentes inputs considerados en la matriz multicriterio.
- -Análisis de funcionalidad con estudios de capacidad y niveles de servicio para cada alternativa propuesta.
- -Creación matriz multicriterio, que nos muestre cuál es la mejor alternativa en cada caso, teniendo en cuenta seguridad vial, funcionalidad, impacto ambiental y coste económico de forma conjunta con el uso de los pesos obtenidos en la encuesta.
- -Cumplimiento criterios de seguridad vial en la solución, principalmente visibilidades dentro y fuera de la intersección. También la correcta adecuación del trazado previo a la llegada al nudo.
- -Diseño geométrico de las opciones elegidas al máximo nivel de detalle
- -Comprobación de que los desplazamientos dentro de los nudos se pueden llevar a cabo con la herramienta *vehicle tracker*, un programa que desarrolla las trayectorias de los vehículos en recta y curva, analizando la superficie total requerida para cada movimiento.
- -Diseño final de los nudos principales
- -Señalización horizontal y vertical, previa y en el propio nudo.
- -Identificación y solución de los caminos y servicios afectados antes, durante y tras la obra

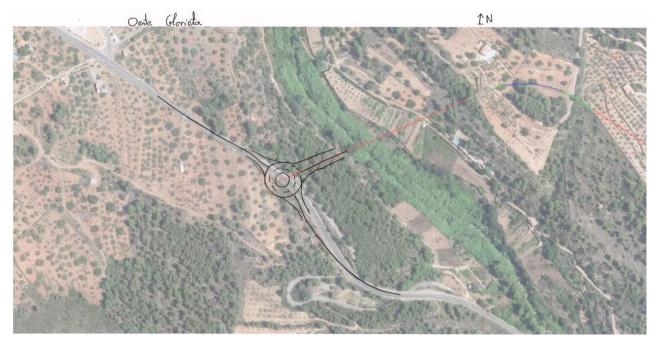


1. ESTUDIO DE SOLUCIONES, NUDO ESTE Y OESTE

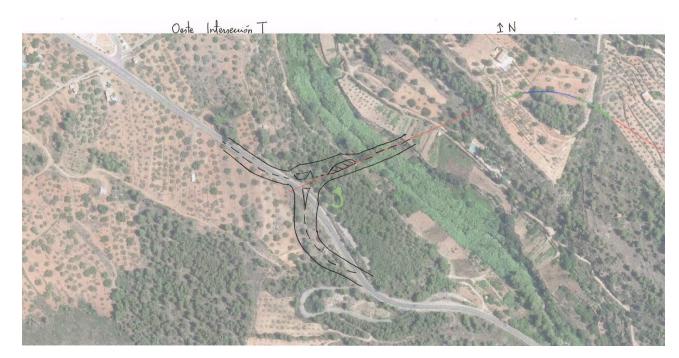

1.1. PLANTEAMIENTO DE LAS ALTERNATIVAS DE NUDOS POSIBLES

Inicialmente se desarrollan croquis a mano alzada sobre el terreno mostrado por la ortofoto para intuir la posible ubicación final del nudo.


Estos croquis emplean la superficie existente en combinación con la alineación de la variante CV-190 existente en Anejo de Diseño geométrico.


Croquis del nudo Este Intersección en "T" (Figura 1.1.1)

Croquis del nudo Este Glorieta (Figura 1.1.2)



Croquis del nudo Este Glorieta + Carril de giro directo (Figura 1.1.3)

Croquis del nudo Oeste Glorieta (Figura 1.1.4)

Croquis del nudo Oeste Intersección en "T" (Figura 1.1.5)

1.1.1. **NUDO ESTE**

Se han considerado cuatro opciones para solventar este nudo:

Glorieta, Glorieta con carril segregado de giro a la derecha, Intersección en "T" y Enlace

A continuación se describen cada una de las citadas alternativas.

1.1.1.1. Glorieta Este

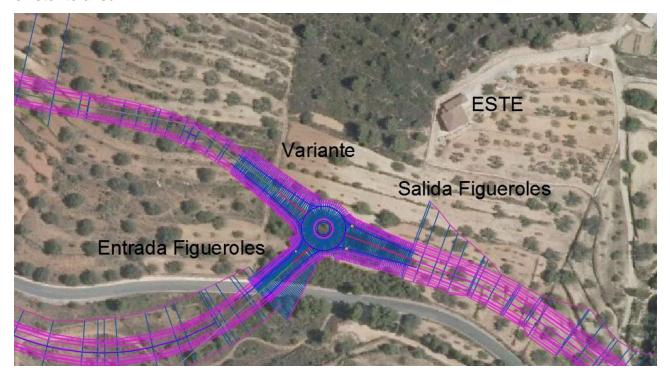
Se pretendía implementar un acceso perpendicular del ramal que procede del pueblo, mediante un giro de radio mayor pero la orografía provocaba unas pendientes inadmisibles llegando incluso al 10,5% en sus primeros metros. (Ver en la zona señalada en la figura 1.3 mediante rectángulo en rojo)

La primera solución a este problema fue desplazar hacia el sur la glorieta pero de este modo, las curvas posteriores del ramal hacia Castellón encontraban un montículo insalvable que encarecería la obra enormemente. (Ver en figura 1.3 mediante rectángulo morado)

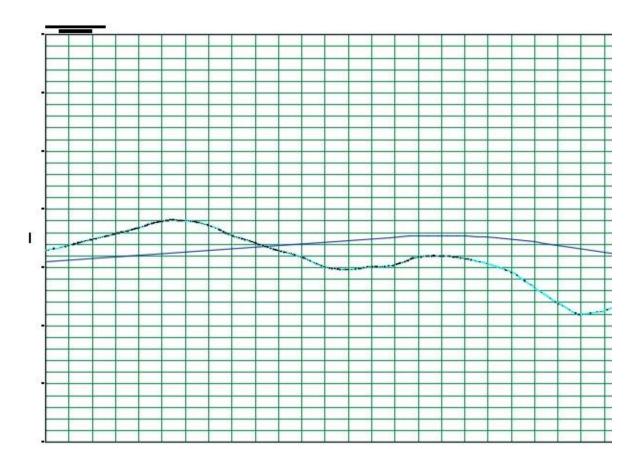
(Figura 1.3)

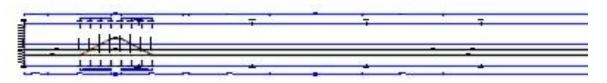
La segunda opción fue tender la alineación sur "entrada Figueroles" (Figura 1.4) de forma paralela a la existente hasta 30 metros antes de la glorieta, de tal forma que se reducía enormemente la pendiente. Sin embargo esta posibilidad exigía una curva de radio reducido previo al acceso a la glorieta que resultaba peligroso desde el punto de vista de la seguridad vial.

(Figura 1.4)



Ubicación final de la glorieta ESTE (Figura 1.5)

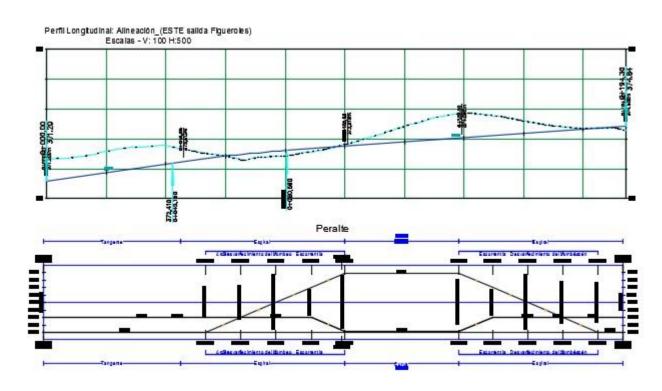

Aquí disponemos de un adecuado radio de giro mayor a 15 metros (ver en Figura 1.6) para entrar a la glorieta desde el municipio y a su vez suavizamos la fuerte pendiente encontrada inicialmente en el ramal de acceso, por otra parte se evita el montículo existente al sur.



Glorieta este con obras lineales (Figura 1.6)

Se detalla de forma desglosada los perfiles longitudinales con las oportunas rasantes y diagrama de peraltes junto a los 3 estados de rasantes de cada uno de los ramales que llegan a la glorieta Este.

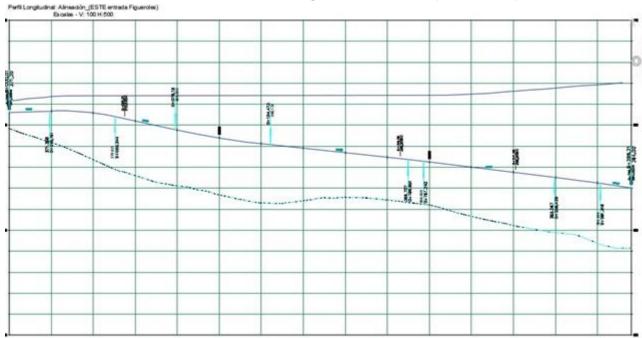
Perfil ESTE Variante Glorieta (Gráfico 1.1)

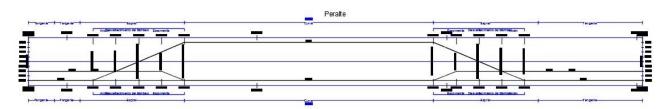


			Inclinación	Inclinación	Tipo de		Longitud	
	P.K. de	Elevación	de rasante	de rasante	curva de	Valor de	de curva	
Nο	VAV	de VAV	T.E.	T.S.	perfil	K	de perfil	Radio de curva
1	0+000.00m	371.000m		1.41%				
2	0+361.86m	376.115m	1.41%	-2.94%	Convexo	30.500	132.854m	3050.000m
3	0+689.11m	366.487m	-2.94%	2.62%	Cóncavo	26.360	146.699m	2636.000m
4	1+499.82m	387.752m	2.62%	1.36%	Convexo	26.360	33.164m	2636.000m
5	1+650.58m	389.809m	1.36%	4.62%	Cóncavo	22.669	96.469m	2266.925m
6	1+917.34m	404.802m	5.62%	-2.76%	Convexo	30.500	255.639m	3050.000m
7	2+357.72m	392.642m	-2.76%	-0.35%	Cóncavo	26.360	63.442m	2636.000m
8	2+746.27m	391.265m	-0.35%	-0.86%	Convexo	30.500	15.522m	3050.000m
9	2+892.78m	390.000m	-0.86%					

(Tabla 1)

Perfil ESTE salida Figueroles Glorieta (Gráfico 1.2)




			Inclinación	Inclinación	Tipo de		Longitud	
	P.K. de	Elevación	de rasante	de rasante	curva de		de curva	
Ν°	VAV	de VAV	T.E.	T.S.	perfil	Valor de K	de perfil	
1	0+061.38m	372.961m	2.87%	1.41%	Convexo	26.360	38.430m	
2	0+194.30m	374.838m	1.41%					

(Tabla 2)

*VAV = Vértices de los acuerdos verticales.

Perfil ESTE entrada Figueroles Glorieta (Gráfico 1.3)

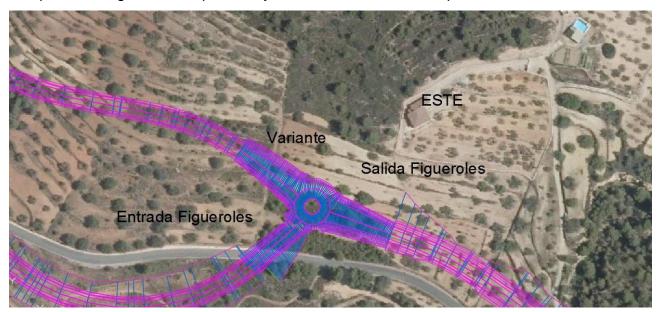
Nº	P.K. de VAV		de rasante	Inclinación de rasante T.S.	•	Valor de	Longitud de curva de perfil	Radio de curva
	-							
1	0+020.25m	371.200m		0.46%				
2	0+041.58m	371.487m	0.46%	-3.05%	Convexo	20.124	70.657m	2012.400m
3	0+200.37m	366.648m	-3.05%	-2.40%	Cóncavo	30.500	19.794m	3050.000m
4	0+277.20m	364.805m	-2.40%	-3.12%	Convexo	30.500	21.881m	3050.000m
5	0+303.03m	364.000m	-3.12%					

(Tabla 3)

Al analizar los estados de rasantes se elige la cota de 371,2 msnm pues en función de las tres cotas de las alineaciones que llegan a la intersección (369,2; 371 y 372,8) esta cota favorece realizar el menor movimiento de tierras.

Se han adecuado por tanto las rasantes de las distintas alineaciones para buscar esta cota, permitiendo una glorieta con menores pendientes.

1.1.1.2. Glorieta Este con carril directo de giro a la derecha

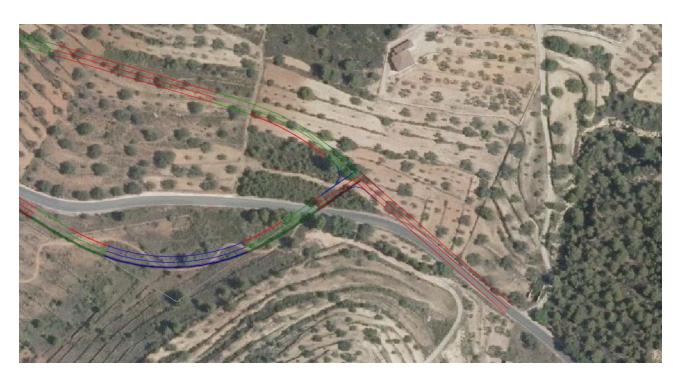


(Figura 1.7)

El único cambio observado aquí (Figura 1.7) respecto a la glorieta previa es la creación de un carril de giro directo que permite la incorporación a la variante sin pasar por la glorieta, eliminando los tiempos de espera.

Los problemas a solventar respecto al emplazamiento han sido los mismos que con la glorieta anterior.

Los perfiles longitudinales, peraltes y estado de rasantes son prácticamente idénticos.

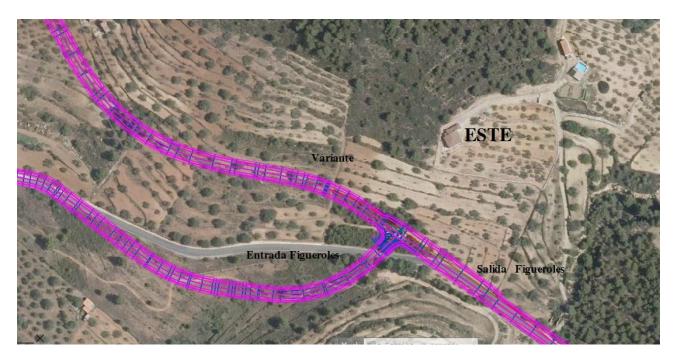

Glorieta este con giro directo y obras lineales (Figura 1.8)

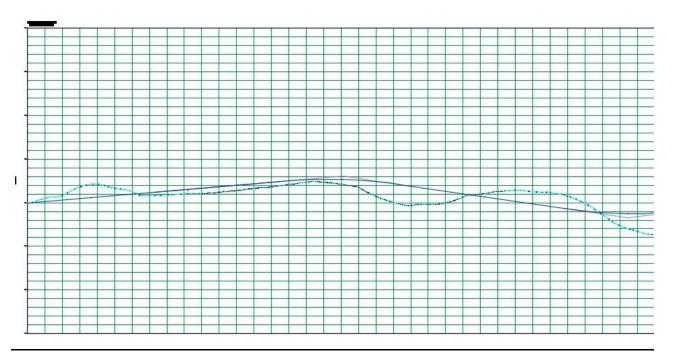
1.1.1.3. Intersección en "T" Este

Esta alternativa presenta mucha menos flexibilidad respecto a la glorieta, pues se debe alterar lo menos posible la alineación de la vía principal proyectada.

Este hecho restringe en mayor medida la búsqueda de solución.

Aprovechado lo ejecutado en la colocación de la glorieta este, se establece la intersección en una zona cercana. (Figura 1.9)

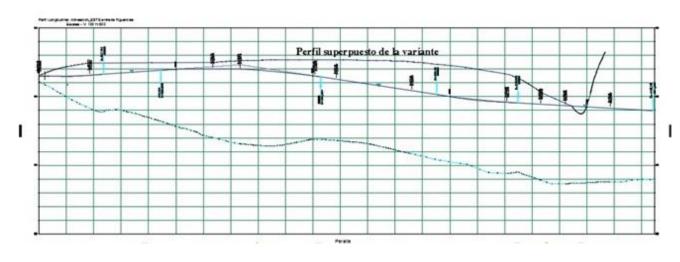

(Figura 1.9)

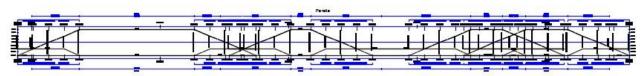

Se adecuan las curvas para cumplir la normativa de trazado pero sobre todo para aumentar el ángulo de cruce de ambas alineaciones (Figura 1.10). La falta de perpendicularidad reduciría la visibilidad del cruce de forma notable pudiendo generar problemas de seguridad vial.

Intersección en "T" Este con obra lineal (Figura 1.10)

Se detalla perfil, rasante, peralte y estado de rasantes de ambas alineaciones participantes en la intersección.

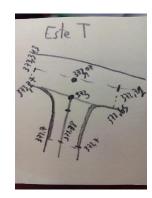
Perfil ESTE Variante Intersección en "T" (Gráfico 1.4)





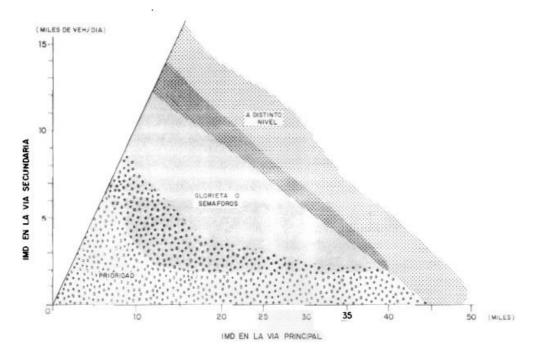
				Inclinación	Inclinación	Tipo de		Longitud de	
			Elevación	de rasante	de rasante	curva de		curva de	Radio de
Nο		P.K. de VAV	de VAV	T.E.	T.S.	perfil	Valor de K	perfil	curva
	1	0+000.00m	369.885m		1.72%				
	2	0+145.77m	372.388m	1.72%	1.58%				
	3	0+184.46m	373.000m	1.58%	1.75%				
	4	0+362.27m	376.115m	1.75%	-2.95%	Convexo	30.500	143.290m	3050.000m
	5	0+689.11m	366.487m	-2.95%	2.62%	Cóncavo	26.360	146.796m	2636.000m
	6	1+499.82m	387.752m	2.62%	1.36%	Convexo	26.360	33.164m	2636.000m
				(Tab	ola 4)				

Perfil ESTE entrada Figueroles Intersección en "T" (Gráfico 1.5)



Nº	P.K. de VAV	Elevación de VAV		Inclinación de rasante T.S.	Tipo de curva de perfil	Valor de K	Longitud de curva de perfil	Radio de curva
	-							
1	0+002.88m	372.206m		-3.08%				
2	0+034.86m	371.043m	-3.08%	0.06%	Cóncavo	11.685	36.703m	1168.454m
3	0+149.32m	371.112m	0.06%	-2.30%	Convexo	26.360	62.301m	2636.000m
4	0+309.18m	367.429m	-2.30%	-2.42%	Convexo	30.500	3.687m	3050.000m
5	0+418.59m	364.777m	-2.42%	4.07%	Cóncavo	8.940	58.093m	893.956m
6	0+449.17m	366.023m	4.07%					

(Tabla 5)


Las cotas características (Figura 1.11) de esta intersección son 373 msnm en la unión entre el fin del arcén de la calzada principal con la alineación secundaria y 371,7 que marca el fin de la curva de incorporación en la carretera secundaria.

(Figura 1.11)

1.1.1.4. Enlace Este

El Anejo de tráfico muestra una IMD en año horizonte muy baja (1.979 vehículos/día) incluso para la creación de una glorieta, se descarta de forma automática la creación de este enlace que sería una construcción desproporcionada en lo económico y lógico para solventar la problemática actual que presenta la carretera en estudio. Los enlaces empiezan a ser adecuados con IMD de 20.000 vehículos, según el gráfico de la guía de nudos. (Figura 1.11 b)

(Figura 1.11 b)

1.1.2. Nudo OESTE

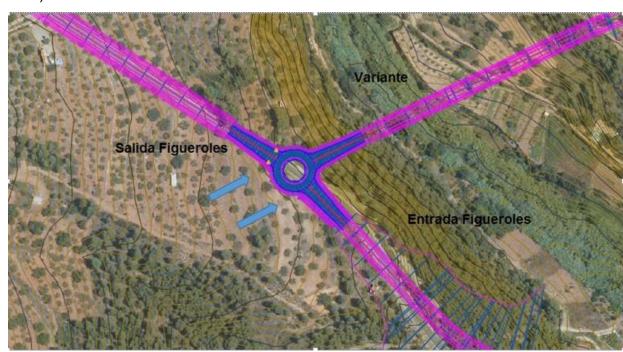
De nuevo se han considerado cuatro opciones para solventar este nudo:

Glorieta, Glorieta con carril segregado de giro a la derecha, Intersección en "T" y Enlace

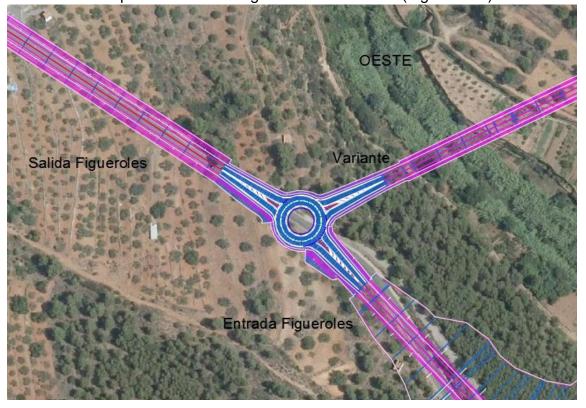
A continuación se describen cada una de las citadas alternativas.

1.1.2.1 Glorieta Oeste

En este caso el tipo de limitación es diferente, la altura del puente de la variante que entronca en la glorieta (Figura 1.12) y la problemática asegurada desde el departamento de estructuras que supondría aumentar la altura del puente unos metros más, no deja muchas opciones en cuanto al emplazamiento.



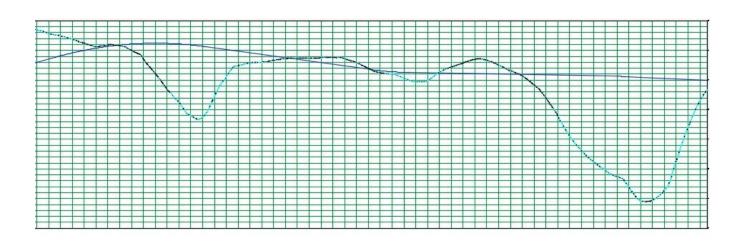
(Figura 1.12)

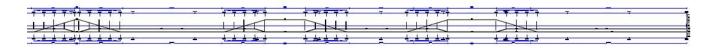

La única variación posible motivada por la insuficiencia de espacio para instalar la glorieta estriba en la elección entre situar la glorieta cerca del relleno del valle del río con su correspondiente relleno y muro de reducidas dimensiones, o desplazarla al interior de la montaña con la excavación necesaria que de ello deriva. (Figura 1.13)

Como habitualmente resulta más barato terraplenar y los taludes geotécnicos son 2/1 para terraplén y hasta 4/1 en desmonte aspecto que cumple con el planteamiento propuesto se opta por esta opción.

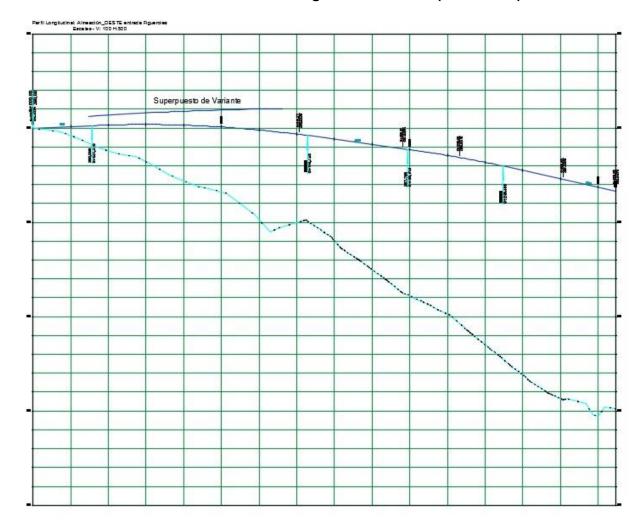
El desplazamiento efectuado acerca la glorieta al precipicio y la aleja de la ladera (Figura 1.13)

Desplazamiento de la glorieta hacia el este (Figura 1.13)




Glorieta Oeste con obra lineal (Figura 1.13 b)

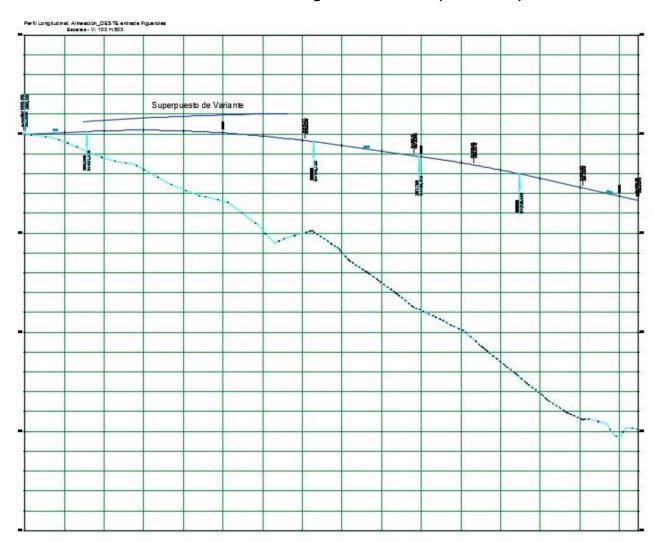
Perfil OESTE Variante Glorieta (Gráfico 1.6)



			Inclinación	Inclinación	Tipo de		Longitud		
Nº	P.K. de VAV			de rasante T.S.			de curva de perfil	Radio de curva	
5	1+650.58m	389.809m	1.36%	5.62%	Cóncavo	22.669	96.469m	2266.925m	
6	1+917.34m	404.802m	5.62%	-2.76%	Convexo	30.500	255.639m	3050.000m	
7	2+357.72m	392.642m	-2.76%	-0.35%	Cóncavo	26.360	63.442m	2636.000m	
8	2+746.27m	391.265m	-0.35%	-0.86%	Convexo	30.500	15.522m	3050.000m	
9	2+892.78m	390.000m	-0.86%						

(Tabla 6)

Perfil OESTE entrada Figueroles Glorieta (Gráfico 1.7)



Nº	P.K. de VAV		Inclinación de rasante T.E.	Inclinación de rasante T.S.	Tipo de curva de perfil	Valor de K	Longitud de curva de perfil	Radio de curva
1	0+000.00m	390.000m		0.86%				
2	0+088.50m	390.761m	0.86%	-2.72%	Convexo	31.953	114.462m	3195.300m
3	0+224.19m	387.068m	-2.72%	-4.38%	Convexo	30.560	50.556m	3056.000m
4	0+340.00m	382.000m	-4.38%					

(Tabla 7)

Perfil OESTE salida Figueroles Glorieta (Gráfico 1.8)

Nota: No tiene curvas por lo que no existe diagrama de peralte.

			Inclinación	Inclinación	Tipo de		Longitud
	P.K. de	Elevación	de rasante	de rasante	curva de	Valor de	de curva
Nο	VAV	de VAV	T.E.	T.S.	perfil	K	de perfil
1	0+000.00m	390.000m		3.84%			
2	0+088.29m	393.394m	3.84%	2.74%	Convexo	50.360	55.604m
3	0+199.45m	396.439m	2.74%	3.65%			
4	0+267.53m	398.924m	3.65%				

(Tabla 8)

1.1.2.2 Glorieta Oeste con carril directo de giro a la derecha

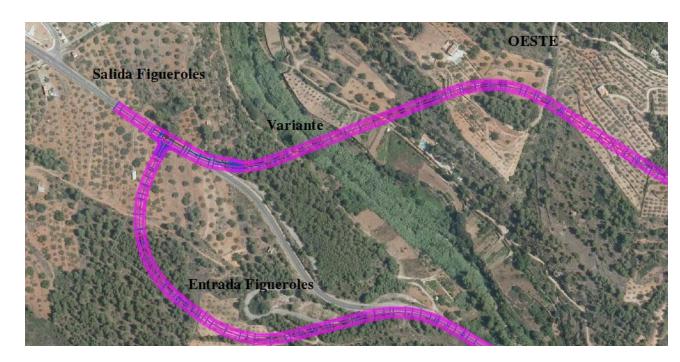
La mayor ventaja que presentaría esta solución sería la desviación directa del mayor caudal de tráfico existente sin perturbar al resto.

En este caso el flujo principal de desplazamientos toma la variante así que se descarta automáticamente esta posibilidad pues no se aprovecha la principal baza que aporta este tipo de solución.

1.1.2.3 Intersección en T Oeste

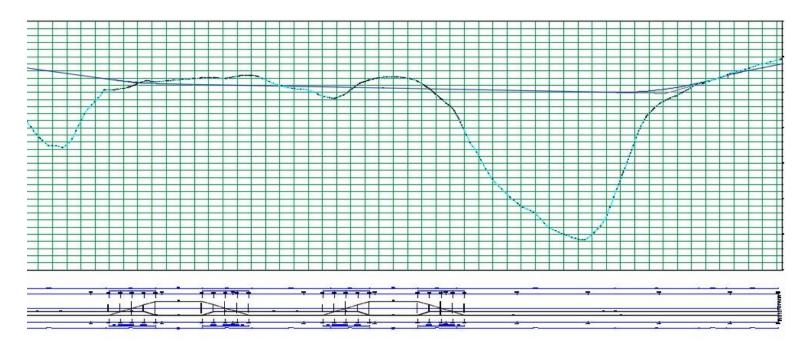

(Figura 1.13)

Radion de al mente como se observa en el croquis (Figura 1.13) se plantea colocar el ramal de la curva, a la llegada del puente. Con los primeros estudios de seguridad vial esto rápidamente se rechaza pues además de no disponer de suficiente visibilidad, la totalidad del giro se 5036.000 m2a en la curva de la nueva alineación, aspecto muy peligroso.



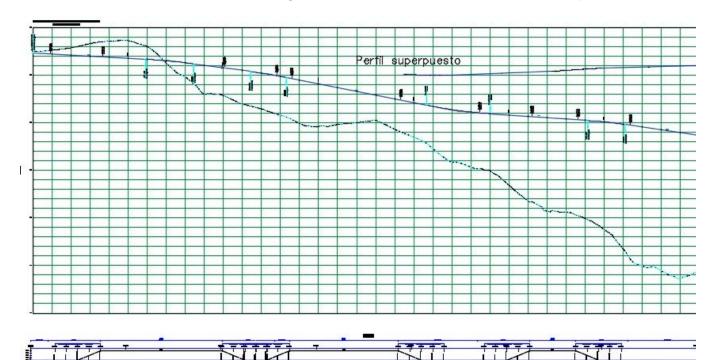
La solución más acertada pasa por desplazar el nudo hacia el norte (Figura 1.14) alejándolo de la curva.

Este cambio requiere del empleo de mayor superficie, lo que deberá tenerse en cuenta en el impacto ambiental a valorar de la matriz multicriterio así como en el aspecto económico.



(Figura 1.14)

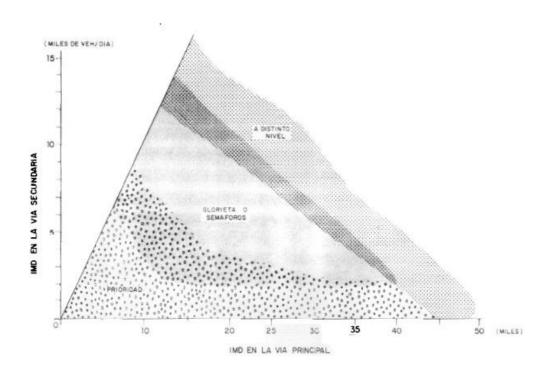
Intersección en "T" Oeste (Figura 1.15)


Perfil OESTE Variante Intersección en "T" (Gráfico 1.9)

Nº		P.K. de VAV	Elevación de VAV	Inclinación de rasante T.E.	Inclinación de rasante T.S.	Tipo de curva de perfil	Valor de K	Longitud de curva de perfil	Radio de curva
	7	1+650.58m	389.809m	1.36%	5.62%	Cóncavo	22.669	96.469m	2266.925m
	8	1+917.34m	404.802m	5.62%	-2.76%	Convexo	30.500	255.639m	3050.000m
	9	2+357.72m	392.642m	-2.76%	-0.40%	Cóncavo	26.360	62.272m	2636.000m
,	0	3+103.10m	389.669m	-0.40%	5.75%	Cóncavo	26.360	162.153m	2636.000m
,	1	3+205.59m	395.565m	5.75%	3.76%	Convexo	7.292	14.534m	729.178m
	2	3+268.06m	397.913m	3.76%					

(Tabla 9)

Perfil OESTE Entrada Figueroles Intersección en "T" (Gráfico 1.10)


			Inclinación	Inclinación	Tipo de		Longitud	
	P.K. de	Elevación	de rasante	de rasante	curva de	Valor de	de curva	Radio de
Nο	VAV	de VAV	T.E.	T.S.	perfil	K	de perfil	curva
1	0+000.00m	394.640m		-1.07%				
2	0+143.58m	393.099m	-1.07%	-2.72%	Convexo	30.500	50.141m	3050.000m
3	0+247.27m	390.281m	-2.72%	-3.94%	Convexo	30.500	37.370m	3050.000m
4	0+447.13m	382.402m	-3.94%	-1.40%	Cóncavo	26.360	66.901m	2636.000m
5	0+602.53m	380.219m	-1.40%	-2.88%	Convexo	26.360	38.931m	2636.000m
6	0+710.92m	377.096m	-2.88%					

(Tabla 10)

1.1.2.4 Enlace Oeste

Al igual que ocurría en el nudo Este, el bajo nivel de tráfico diario desaconseja la inversión en este tipo de infraestructura.

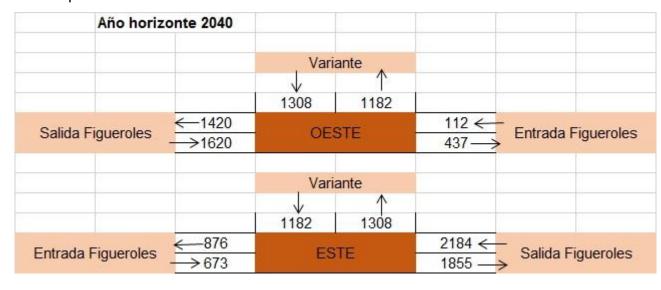
Debería multiplicarse el número de vehículos por 20 para comenzarse a valorar esta alternativa.

(Figura 1.15b)

17

1.2. Análisis de funcionalidad de las alternativas

A continuación se van a llevar a cabo diferentes estudios de capacidad y nivel de servicio de las distintas alternativas propuestas para obtener un dato objetivo con el cual posteriomente realizar una elección multicriterio.

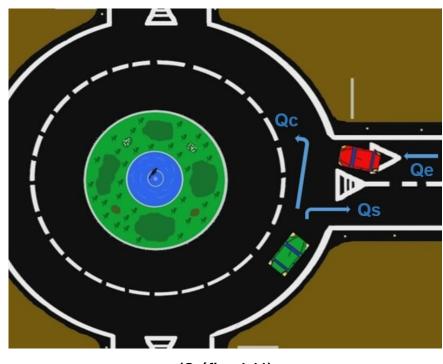

- Para el estudio de las glorietas, se empleará el CETUR-86.
- Por otra parte para el estudio de capacidad de las intersecciones en "T" se hará uso del **High Capacity Manual (HCM 2010).**

Ambos estudios se llevarán a cabo suponiendo el tráfico de año horizonte 2040.

La totalidad de cálculos para obtener el tráfico en año horizonte están desarrollados en:

Anejo- Estudio de tráfico

El croquis (Gráfico 1.10), resume el reparto por dirección y sentidos de los movimientos realizados por los vehículos en ambos nudos.



(Gráfico 1.10)

1.2.1. Capacidad Glorietas

El CETUR-86 estima en 1500 vehículos a la hora (Qe), la capacidad máxima de entrada por cada pata. Teniendo en cuenta los vehículos que circulan por delante de la pata (Qc) y los que salen por esa misma pata (Qs), se obtienen los parámetros buscados.

(Gráfico 1.11)

(Gráfico 1.11)

Aunque la fórmula básica es:

$$Q_e = 1.500 - \frac{5}{6} \cdot (Q_c + 0.2 \cdot Q_s)$$

ALTERNATIVA NORTE. DISEÑO DE LOS NUDOS

Se estima oportuno proyectar doble carril en el interior de la glorieta debido al alto porcentaje de vehículos pesados en las inmediaciones, con ello la calzada anular cercana a los 8 metros de anchura puede generar circulación en paralelo.

Además de lo anterior la glorieta oeste supera los 30 metros de diámetro en su anillo exterior (por lo que sufre menor Qc) pero no ocurre de igual modo en la glorieta este (25m) y las fórmulas resultantes a emplear son:

Glorieta oeste

$$Q_e = 1.500 - \frac{5}{6} \cdot (Q_c + 0.2 \cdot Q_s) \cdot 0.7$$

Glorieta este

$$Q_e = 1.500 - \frac{5}{6} \cdot (Q_c + 0.2 \cdot Q_s) \cdot 0.9$$

En el croquis anterior (Gráfico 1.10) se observa la distribución de intensidad de tráfico diario por sentido y variante, esto ayuda a deducir los tráficos empleados en cada cálculo. (Tabla 11 y tabla 12)

Transformados los datos de partida en intensidades horarias.

	IH=13%IMD	IMD (2040)
	185	1420
	211	1620
OESTE	170	1308
OESTE	154	1182
	15	112
	57	437

	IH=13%IMD	IMD (2040)
	114	876
	87	673
ESTE	241	1855
ESIE	284	2184
	170	1308
	154	1182

(Tabla 11)

(Tabla 12)

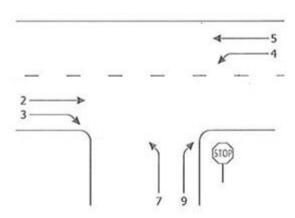
Los resultados son los siguientes:

OESTE	Qe (veh/h)	Demanda	Potencial
Pata Variante	1474	170	8
Pata entrada Figueroles	1404	15	95
Pata salida Figueroles	1478	173	8

ESTE	Qe (veh/h)	Demanda	Potencial
Pata Variante	1389	154	8
Pata Entrada Figueroles	1368	87	15
Pata Salida Figueroles	1464	284	4

Resultados estudio glorietas (Tabla 13)

^{*}IH=13%IMD por tratarse de una carretera rural básica


^{*} Para un chequeo rápido se crea la columna "potencial", que muestra el número de veces que la demanda por pata podría incrementarse sin colapsar.

1.2.2. Capacidad Intersecciones en T

Los movimientos de la intersección son:

T-Intersection

(Figura 1.16)

En la imagen anterior (Figura 1.16) se marcan los distintos movimientos encontrados en las intersecciones a analizar.

El único movimiento algo peculiar es el movimiento 7, que se realiza en dos fases. La primera cruza la vía principal que tiene a la izquierda mientras que en la segunda se incorpora en paralelo a la vía principal procedente de la derecha.

De las IMD por dirección y sentido representadas en el gráfico 1.10

Intensidades horarias máximas (Tabla 14 y 15)

	IH=13%IMD	IMD (2040)
OESTE	185	1420
	211	1620
	170	1308
	154	1182
	15	112
	57	437

	IH=13%IMD	IMD (2040)
ESTE	114	876
	87	673
	241	1855
LOIL	284	2184
	170	1308
	154	1182

(Tabla 14) (Tabla 15)

*IH=13%IMD por tratarse de una carretera rural básica

Tráfico rea	aliza:		
2W	154	2E	170
3W	57	3E	0
4W	0	4E	114
5W	170	5E	163
7W	15	7E	0
9W	0	9E	88

(Tabla 16)

*W= Oeste // E= Este

En función del criterio del HCM para cada movimiento a realizar el tráfico que puede llegar a ser conflictivo se estima así.

Los movimientos prioritarios (rango1) no tienen tráfico conflictivo.

- -Movimiento 4 (giro a la izquierda desde carretera principal) = V2 + V3
- -Movimiento 7 (giro a la izquierda desde carretera secundaria)= V2+0,5* V3
- -Movimiento 7.2 (fase 2)= 2*V4+ V5
- -Movimiento 9 (giro a la derecha desde carretera secundaria)= V2+ 0,5*V3

Vc.x (tráfico	conflictivo para mo	ovimiento x)	
, ,	OESTE ESTE		
Vc 2	0	0	
Vc 3	0	0	
Vc 4	211	170	
Vc 5	0	0	
Vc 7	183	170	
Vc 7.2	170	391	
Vc 9	183	170	

(Tabla 17)

Tc,x= tc,base+Tc,hv*Phv+tc,gG-t3,LT (Intervalo crítico)

Tc,2	0,15
Tc,3	0,15
Tc,4	4,25
Tc,5	0,15
Tc,7	6,75
Tc,7.2	5,75
Тс,9	6,45

(Tabla 18)

Tf,x= tf,base+Tf,HV*Phv (Intervalo de seguimiento)

Tf,2	0,13
Tf,3	0,13
Tf,4	2,33
Tf,5	0,13
Tf,7	3,63
Tf,7.2	3,63
Tf,9	3,43

(Tabla 19)

Tabla de datos base y complementarios a los cálculos. (Tabla 20)

Movimiento	Tc.base	Tc,G	t3,LT	Tf,base
2	0	0	0	0
3	0	0	0	0
4	4,1	0	0	2,2
5	0	0	0	0
7	7,1	0,2	0,7	3,5
7.2	6,1	0,2	0,7	3,5
9	6,2	0,1	0	3,3
Tc,hv	1	Tf,Hv	0,9	
Phv	0,15	Phv	0,15	

G(pendiente) 0

Con todos estos cálculos base, se aplica la fórmula de capacidad potencial del HCM (Figura 1.16b)

 $c_{p,x} = v_{c,x} \cdot \left(\frac{e^{\frac{-v_{c,x} \cdot t_{c,x}}{3600}}}{\frac{-v_{c,x} \cdot t_{f,x}}{3600}}\right)$ (Figura 1.16b)

OESTE		
Movimiento	Ср	Cm
2		3.200
3		3.200
4	1286	1286
5		3.200
7	770	770
7.2	822	822
9	823	823

ESTE		
Movimiento	Ср	Cm
2		3.200
3		3.200
4	1332	1332
5		3200
7	784	784
7.2	642	642
9	837	837

(Tabla 21)

*Cp= capacidad potencial

Cm= capacidad movimiento

Con la capacidad disponible en cada caso, se calcula la demora para cada movimiento:

$$d = \frac{3600}{c_{m,x}} + 900T \left[\frac{v_x}{c_{m,x}} - 1 + \sqrt{\left(\frac{v_x}{c_{m,x}} - 1\right)^2 + \frac{\left(\frac{3600}{c_{m,x}}\right)\left(\frac{v_x}{c_{m,x}}\right)}{450T}} \right] + 5$$

(Figura 1.17)

Resultados fórmula demora (Figura 1.17)

OESTE		ESTE	
Demora	Segundos	Demora	Segundos
2	0	2	0
3	0	3	0
4	7,83	4	7,73
5	0	5	0
7	9,68	7	9,59
7.2	9,38	7.2	10,61
9	9,37	9	9,30

(Tabla 22)

Por último se considera la demora y capacidad del conjunto de movimientos pertenecientes a cada parte de la intersección obteniéndose la demora por pata.

$$d = \frac{d1 * c1 + d2 * c2 + d3 * c3}{d1 + d2 + d3}$$
(Figura 1.18)

Resultado estudio capacidad

DEMORA POR PATAS						
OESTE						
DEMORA=	SEGUNDOS					
SALIDA FIGUEROLES (2,3)	0					
ENTRADA FIGUEROLES (7,7.2,9)	9,47					
VARIANTE (4,5)	2,25					
ESTE						
DEMORA=	SEGUNDOS					
SALIDA FIGUEROLES (4,5)	2,27					
ENTRADA FIGUEROLES (7,7.2,9)	9,77					
VARIANTE (2,3)	0					

(Tabla 23)

Se estima que todo **tiempo de demora inferior a 10 segundos** equivale al **nivel de servicio más alto (A).**

Control Delay	LOS by Volume-to-Capacity Ratio			
(s/vehicle)	v/c≤ 1.0	v/c>1.0		
0-10	Α	F		
>10-15	В	F		
>15-25	С	F		
>25-35	D	F		
>35-50	E	F		
>50	F	F		

(Tabla 24)

En algunos casos se observa que cumple el requisito de máxima fluidez de circulación con poco margen y con un ligero incremento del tráfico se podría perder nivel de servicio.

1.2.3. Conclusión funcionalidad

En ambos casos la glorieta demuestra solventar el volumen de tráfico demandado con mayor facilidad, pues dispone de amplios márgenes antes de notarse empeoramiento en la fluidez del tráfico.

Por el contrario la intersección en "T", a nivel de funcionalidad cumpliría pero podría empezar a quedarse pequeña ante puntas de tráfico en momentos concretos.

Inherente a su naturaleza la instalación de la glorieta supone la pérdida de velocidad de forma más pronunciada en el caso de optar por circular por la Variante de la CV-190 no así con la intersección en T que permite una reducción menor. Este es otro factor a tener en cuenta en cuanto a la funcionalidad.

1.3. Elección multicriterio de la alternativa óptima

1.3.1. Parámetros a emplear

De cara a elegir la alternativa más apropiada en cada caso, se opta por un análisis multicriterio de las distintas opciones planteadas.

Para ello se establecen 4 parámetros y se establece su posterior valoración.

- -Coste económico, referido
- -Impacto ambiental
- -Seguridad vial
- -Funcionalidad del propio nudo

Para el coste económico se tendrán en cuenta los costes de construcción (movimiento de tierras, firme, expropiaciones) y gastos de conservación a medio plazo.

En el caso del Impacto Ambiental, se derivan las diferentes propuestas a los compañeros encargados en este campo de trabajo y se les pide una valoración en función del impacto total producido con la implantación del nudo, tanto a nivel de movimiento de tierras como de impacto paisajístico o terceros factores.

La Seguridad Vial al carecer de *Security performance functions* (SPF) a nivel nacional en esta tipología de construcción, será analizada considerando las distancias de visibilidad con anterioridad y ya dentro del nudo viario así como la adecuación del trazado con anterioridad a la intersección para facilitar la comprensión y circulación de los conductores. También tomará importancia el cumplimiento de la distancia de parada así como la adecuada colocación de señalización vertical.

En cuanto a la Funcionalidad, se analizarán los estudios previos de capacidad y niveles de servicio que se han realizado siguiendo la normativa francesa CETUR-86 en el caso de glorietas y el *High Capacity Manual* (HCM2010) para intersecciones.

Por último se desestimarán las alternativas que por su naturaleza presenten inconvenientes poco recomendables, siendo estos descartes debidamente justificados.

1.3.2. Estimación de pesos para la matriz multicriterio.

Tras establecer los parámetros de valoración de los diferentes inputs en la matriz de alternativas, es el momento de estimar los pesos asignados a cada uno de los factores.

Para ello se realiza una encuesta online mediante la plataforma surveymonkey.com.

Distribuyéndose a un total de 24 personas relacionadas con el mundo técnico o futuros ingenieros civiles. Si bien varios no contestaron la encuesta adecuadamente y se va a trabajar con una muestra final de 18. Al sesgar la muestra con esta tipología de gente, se asegura un resultado adecuado y cercano de los pesos a emplear.

El enlace a esta encuesta:

https://es.surveymonkey.com/s/62CNPNR

Además de las explicaciones pertinentes la pregunta formulada fue:

¿Qué importancia en base 100 le daría a cada uno de los siguientes factores a la hora de elegir el mejor nudo? (debe sumar 100)

Tabla resumen datos obtenidos:

	IMPORTANCIA							
	0	10	20	30	40	50	60	70
COSTE ECONÓMICO		2	8	4	2		2	
IMPACTO AMBIENTAL	2	10	3	3				
SEGURIDAD VIAL			7	5	4	1	1	
FUNCIONALIDAD		2	4	9	3			

(Tabla 25)

Nota: Nadie considera ningún factor superior al 60 en importancia.

Los resultados obtenidos empleando una media ponderada son los siguientes (Tabla 26):

(Tabla 26)

El factor más determinante será por tanto la seguridad vial, seguido por funcionalidad y coste económico ambos muy parejos. En última instancia el impacto ambiental.

1.3.3. Valoración diferentes alternativas.

Estas son las características básicas que presentan las diferentes opciones.

Ventajas de implantar una glorieta:

- Diseño que resuelve todos los movimientos posibles, incluidos los cambios de sentido y las rectificaciones de recorrido del conductor.
- Absorbe capacidad alta de tráfico sin regulación semafórica
- Reducen tiempos de espera fuera de hora punta
- Indicada especialmente con flujos de tráfico parecidos en cada ramal
- Resultan de gran eficacia para hacer la transición entre recorrido interurbano y urbano (puerta de entrada)
- Facilidad de comprensión por parte del conductor
- Reducción accidentes graves, por no ser habitual el choque frontal o frontolateral.

Ventajas de implantar una intersección en T:

- Permite un aumento de capacidad de tráfico sin regulación semafórica
- Reducen tiempos de espera fuera de hora punta
- Ventaja de seguridad al establecerse vía principal y vía secundaria con regulación de paso
- Tanto construcción como ocupación del suelo es menor
- Flexibilidad por el poco espacio ocupado (ampliación por fases de los niveles de canalización en función de la demanda)

Se valoran los parámetros presentados, Coste económico, Impacto ambiental, Seguridad Vial y Funcionalidad.

Se valorarán de 1 a 5, siendo 5 la máxima puntuación, de la forma más objetiva posible.

Teniendo en cuenta que 1 corresponde a una solución no deseable en términos absolutos.

Los valores 2,3 y 4 marcarán las ventajas comparativas entre la solución valorada y el resto de alternativas.

Mientras que el valor 5 corresponderá a una solución muy recomendable en contraposición al resto de las posibilidades.

(Tabla 27)

Tras el descarte de algunas soluciones constructivas (justificadas en el apartado 1.1 y 1.2), baremamos entre las siguientes.

Nudo Este

Glorieta, glorieta con giro directo, intersección en T

Nudo Oeste

Glorieta, intersección en T

1.3.3.1. Coste económico

Por sus características intrínsecas las glorietas suelen conllevar un mayor coste en términos globales.

Tanto a nivel de construcción, por realizarse un mayor movimiento de tierras y requerir de maquinaria más especializada como a nivel de mantenimiento pues en el mejor de los casos nos encontraremos con una glorieta vacía pero donde de forma habitual se planta vegetación o ciertos carteles en su interior.

En cuanto al coste de firme prácticamente no hay diferencias pues la superficie total asfaltada es muy parecida.

Nudo Este

Glorieta= 2

Glorieta con giro directo= 2

Intersección en T= 5

Nudo Oeste

En este caso la desviación del ramal que da acceso al pueblo iguala los presupuestos entre las dos opciones disponibles, ya que se incrementa el volumen de movimiento de tierras y con ello el coste.

Glorieta= 3

Intersección en T= 3

1.3.3.2. Impacto ambiental

Gracias al reporte de nuestros compañeros de impacto ambiental se sabe lo siguiente.

Nudo Este

Las tres opciones presentan características similares, la diferencia radica en el mayor terreno expropiado en el caso de la glorieta.

Volúmenes de desmonte y terraplén así como afección visual, son en todos los casos reducidos y aceptables. Aunque mínimo, el pequeño movimiento de tierras mayor para la glorieta con giro directo le hace perder algo de puntuación.

Glorieta = 3.5

Glorieta con giro directo= 3

Intersección en T= 4

Nudo Oeste

Si encontramos notables diferencias entre ambas opciones en este caso, pues la necesidad de desplazar la intersección en T hacia el norte, nos obliga a ocupar terreno añadido. Esto refleja un mayor impacto ambiental en el movimiento de tierras además de dejar un tramo de la carretera actual en desuso. Además todo ello crea una menor afección visual en el caso de la glorieta.

Es por tanto la glorieta más competitiva a este nivel.

Glorieta= 4

Intersección en T= 2

1.3.3.3. Seguridad Vial

Ya que es el parámetro de mayor valor según la encuesta de pesos, se elabora un pequeño análisis de valoración. Este tendrá en cuenta visibilidad sobretodo antes y adecuación del terreno.

Visibilidad

Aunque existen diversos conceptos para estimar una buena visibilidad de la intersección, se empleará la visibilidad de decisión que equivale a circular a velocidad de operación durante 10 segundos.

Se han estudiado las velocidades de llegada a la intersección con los siguientes resultados.

Nota: Estos resultados se han obtenido del perfil de velocidades del Anejo análisis del tráfico, empleando un vehículo flotante para obtener datos sobre terreno.

Tabla resumen velocidades obtenidas (Tabla 28):

Llegada desde la Variante:

Oeste 89km/h

Velocidad de entrada o salida al pueblo:

Oeste 81km/h

Este 82km/h

Este 82km/h

Si cumple con la visibilidad de decisión será calificado como Adecuado, sino cumple por una diferencia de 50 metros como Regular y fuera de ese límite como Inadecuado. (Tablas 29 y 30)

(0/ -10) Adecuado (verde)

(-10/ -50) Poco adecuado (amarillo)

(-50 en adelante) Inadecuado (rojo)

Visibilidad nudo OESTE

Ramales	Glorieta	Intersección en T
Variante	230	200
Entrada Figueroles	203	96
Salida Figueroles	144	171

(Tabla 29)

Visibilidad nudo ESTE

Ramales	Glorieta	Glorieta giro directo	Intersección en T
Variante	230	230	190
Entrada Figueroles	182	182	200
Salida Figueroles	160	160	110

(Tabla 30)

Adecuación del terreno

Se valorará en función de la similitud de las alineaciones y terreno que llegan a la glorieta respecto a sus iguales de la variante, para ello se superpondrán los alzados de las alineaciones implicadas.

Se clasificará como alta, media o baja adecuación.

Nudo Este

Glorieta y glorieta con giro directo (baja adecuación)

Intersección en T (alta adecuación)

Nudo Oeste

Glorieta (media adecuación)

Intersección en T (media adecuación)

ALTERNATIVA NORTE. DISEÑO DE LOS NUDOS

Teniendo en cuenta la tabla de visibilidades y la adecuación previa al nudo, los valores dados al apartado de seguridad vial son los siguientes:

Nudo Este

Glorieta= 3

Glorieta con giro directo= 1

*Nota: la bajada de puntuación se explica por la inconsistencia creada por el giro directo pues la no disminución de velocidad para atravesar la rotonda como pasa en la glorieta tipo puede crear situaciones de peligro, al llegar el conductor a una curva cerrada a velocidad demasiado alta.

Además genera una inconsistencia en el conjunto del trazado pues no se observan nudos con tipología similar en las inmediaciones.

Intersección en T= 4

Nudo Oeste

Glorieta= 4

Intersección en T= 2

1.3.3.4. Funcionalidad

Con los resultados obtenidos en el apartado 1.2 Análisis de funcionalidad analizamos la funcionalidad en los siguientes casos.

Normalmente la glorieta dará unos resultados mejores pues es capaz de absorber volúmenes mayores con el hándicap de reducir en mayor medida la velocidad de circulación. Es por ello que las diferencias entre unas opciones y otras no serán muy significativas.

Como en todos los casos las glorietas dan solución de capacidad con unos márgenes amplísimos la valoración de todas ellas, será de 5.

Por el contrario la intersección en T puede ver mermado su nivel de servicio ante puntas de tráfico.

Nudo Este

Glorieta= 5

Glorieta con giro directo= 5

Intersección en T= 3

Nudo Oeste

Glorieta= 5

Intersección en T= 3

1.3.4. Conclusión elección final

Matriz multicriterio Elección nudo ESTE								
Parámetros de Evaluación Glorieta Glorieta giro directo Intersección en T								
Coste económico	2	2	5					
Impacto ambiental	3,5	3	4					
Seguridad Vial	3	1	4					
Funcionalidad 5 5 3								
Total	13,5	11	16					

Matriz multicriterio Elección nudo OESTE								
Parámetros de Evaluación Glorieta Intersección en T								
Coste económico	3	3						
Impacto ambiental	4	2						
Seguridad Vial	4	2						
Funcionalidad	5	4						
Total	16	11						

Tablas resumen valoración en bruto. (Tabla 31) y (Tabla 32)

La matriz de resultados no basta para obtener algo claro y objetivo por lo que hay que ponderar estos datos con los pesos matriciales obtenidos en la encuesta.

COSTE ECONÖMICO	26,7
IMPACTO AMBIENTAL	13,9
SEGURIDAD VIAL	30,6
FUNCIONALIDAD	27,2

(Tabla 26)

Resultados análisis multicriterio							
Este Oeste							
Glorieta	330	Glorieta	394				
Glorieta giro directo	262	Intersección en T	278				
Intersección en T	393						

(Tabla 33)

Para el nudo este con una diferencia de (+33) en valoración, queda en primer lugar la Intersección en T.

La diferencia fundamental que la hace ganar es su coste económico reducido, pero también ayuda a este resultado una mejor nota de impacto ambiental y de seguridad vial.

En cuanto al nudo oeste, con una diferencia más abultada de (+116) gana la glorieta.

Basando su victoria en un menor impacto ambiental, además de mejor seguridad vial y funcionalidad.

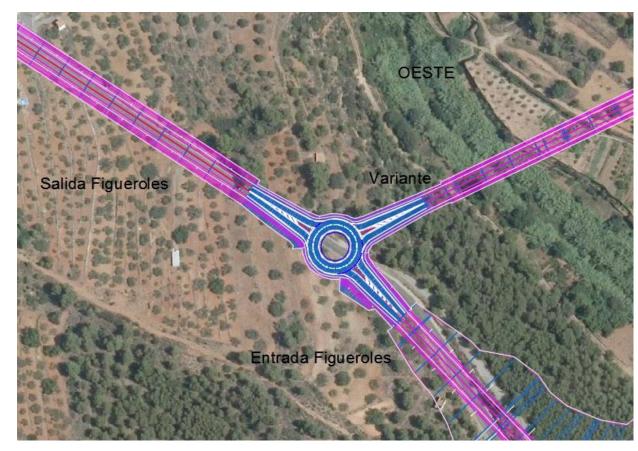
1.3.5. Solución final adoptada

¿Por qué en un caso gana la glorieta y en otro no?

En el caso Oeste la orografía donde se implanta el nudo es mucho más complicada, la glorieta consigue solventar de mejor forma la seguridad vial.

Los factores económico y de impacto ambiental que habitualmente mejoran los resultados de la intersección en T, debido a la necesidad de desplazar el nudo más al norte equipara estas diferencias.

Se construye por tanto la intersección en "T" para el nudo Este y la glorieta en el nudo Oeste.


2. DISEÑO DE LA SOLUCIÓN

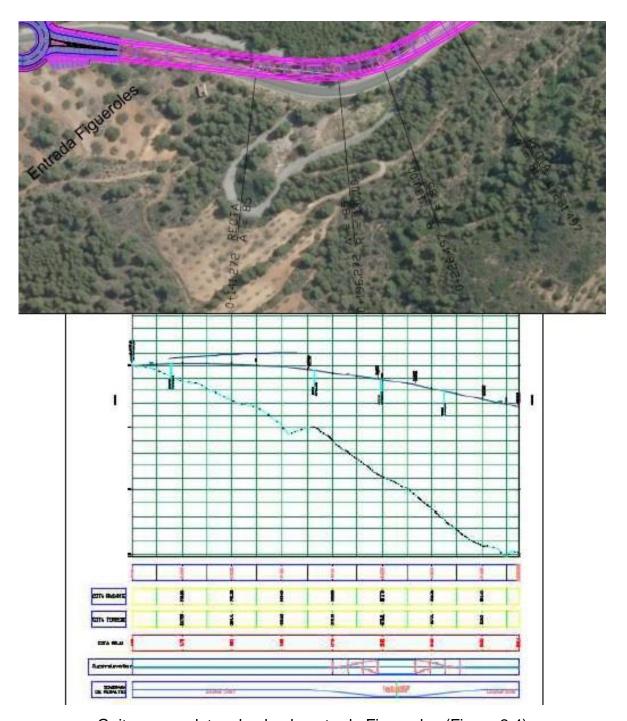
2.1. DISEÑO GEOMÉTRICO DE LA SOLUCIÓN

La resolución del diseño geométrico se va a resolver en paralelo de la siguiente forma.

- Planos a diferente nivel de detalle donde se desglosen los trazados en planta junto a un gráfico que represente las diferentes características en alzado (mediante el uso de guitarras que recojan los datos de interés)
- Tablas con todos los datos pertinentes de los diferentes elementos participantes en la solución adoptada.

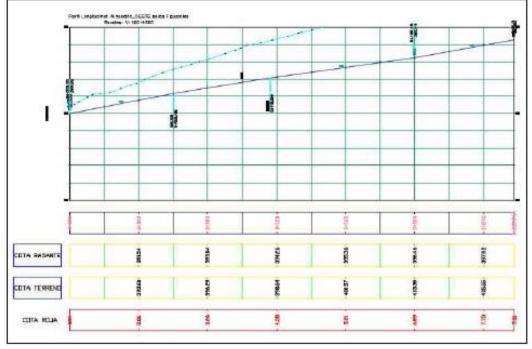
2.1.1. Nudo Oeste

(Figura 2.1)



Emplazamiento Nudo Oeste (Figura 2.2)

Detalle Nudo Oeste (Figura 2.3)

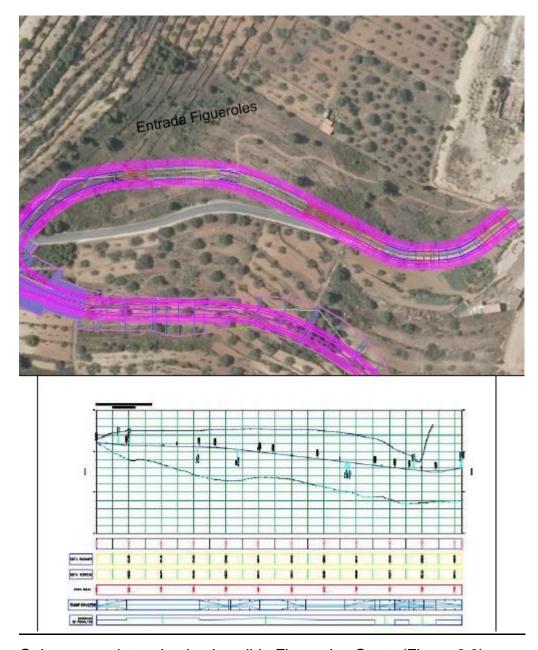


Guitarra con datos de alzado entrada Figueroles (Figura 2.4)



Guitarra con datos de alzado salida Figueroles Oeste (Figura 2.5)

2.1.2. Nudo Este



(Figura 2.6)

Emplazamiento Nudo Este (Figura 2.7)

Guitarra con datos de alzado salida Figueroles Oeste (Figura 2.8)

ALTERNATIVA NORTE. DISEÑO DE LOS NUDOS

Estado de alineaciones. Oeste entrada Figueroles											
Nº	Α	Р	K	Número	Tipo	Restricción de tangencia	Restricción paramétrica	Longitud	Orientación	P.K. inicial	P.K. final
1				1	Línea	No restringido (fijo)	Dos puntos	141.272m	S43.579657E (g)	0+000.00m	0+141.27m
2.1	84.558m	0.968m	27.459m	2	Espiral-Curva-Espiral	Restringido por ambos lados (libre)	Espiral de entrada-radio-espiral de salida	55.000m		0+141.27m	0+196.27m
2.2				2	Espiral-Curva-Espiral	Restringido por ambos lados (libre)	Espiral de entrada-radio-espiral de salida	30.225m		0+196.27m	0+226.50m
2.3	84.558m	0.968m	27.459m	2	Espiral-Curva-Espiral	Restringido por ambos lados (libre)	Espiral de entrada-radio-espiral de salida	55.000m		0+226.50m	0+281.50m
3				3	Línea	No restringido (fijo)	Dos puntos	27.819m	S81.141349E (g)	0+281.50m	0+309.32m

1/3

				Ángulo de	Orientación	
Punto inicial	Punto final	Punto de paso1	Punto de paso2	incremento	inicial	Orientación final
(734139.9290m,4445069.6023m,0.0000m)	(734237.3167m,4444967.2624m,0.0000m)	(734139.9290m,4445069.6023m,0.0000m)	(734286.9476m,4444915.1078m,0.0000m)			
(734237.3167m,4444967.2624m,0.0000m)	(734277.8628m,4444930.2623m,0.0000m)			12.1203 (g)	S43.579657E (g)	S55.699918E (g)
(734277.8628m,4444930.2623m,0.0000m)	(734304.5782m,4444916.2724m,0.0000m)			13.3212 (g)	S55.699918E (g)	S69.021088E (g)
(734304.5782m,4444916.2724m,0.0000m)	(734358.0841m,4444904.0207m,0.0000m)			12.1203 (g)	S69.021088E (g)	S81.141349E (g)
(734358.0841m,4444904.0207m,0.0000m)	(734385.5710m,4444899.7367m,0.0000m)	(734286.9476m,4444915.1078m,0.0000m)	(734385.5710m,4444899.7367m,0.0000m)			

2/3

curvaEntrada		Radio de salida			P.K. de Pl_espiral		Abscisa de	Ángulo incluido de Pl_espiral	Ordenada de centro arco	Abscisa de centro arco		Grado de curvatura por arco	_
								167.8797					
curvaEntrada	Infinitom	130.000m	54.754m	3.866m	0+178.03m	4444940.6379m	734262.6528m	(g)	4445037.6550m	734351.1213m			
												13.2221	
											130.000m	(g)	(734351.1213m,4445037.6550m,0.0000m)
								167.8797					
curvaSalida	130.000m	Infinitom	54.754m	3.866m	0+244.91m	4444909.6805m	734321.7695m	(g)	4445037.6550m	734351.1213m			

3/3

Estado de Rasantes Oeste, entrada Figueroles

Nº	P.K. de VAV	Elevación de VAV	Inclinación de rasante T.E.	Inclinación de rasante T.S.	Tipo de curva de perfil	Valor de K	Longitud de curva de perfil	Radio de curva
1	0+000.00m	390.000m		0.86%				
2	0+088.50m	390.761m	0.86%	-2.72%	Convexo	31.953	114.462m	3195.300m
3	0+224.19m	387.068m	-2.72%	-4.38%	Convexo	30.560	50.556m	3056.000m
4	0+340.00m	382.000m	-4.38%					

ALTERNATIVA NORTE. DISEÑO DE LOS NUDOS

	2. Estado de alineaciones. Oeste salida Figueroles												
No	Tipo	Restricción paramétrica	Longitud	Orientación	P.K. inicial	P.K. final	Punto inicial	Punto final	Punto de paso1	Punto de paso2			
1	Línea	Dos puntos	257.734m	N57.032557W (g)	0+000.00m	0+257.73m	(734111.6117m, 4445093.2803m,0.0m)	(733895.3778m, 4445233.5296m,0.0m)	(734111.6117m, 4445093.2803m,0.0000m)	(733895.3778m,4445233.5296m,0.0000m)			

Estado de Rasantes Oeste, salida Figueroles

N ^o	P.K. de VAV	Elevación de VAV	Inclinación de rasante T.E.	Inclinación de rasante T.S.	Tipo de curva de perfil	Valor de K	Longitud de curva de perfil	Radio de curva
1	0+000.00m	390.000m		3.84%				
2	0+088.29m	393.394m	3.84%	2.74%	Convexo	50.360	55.604m	5036.000m
3	0+199.45m	396.439m	2.74%	3.65%				
4	0+267.53m	398.924m	3.65%					

Los estados de alineaciones y rasantes del ramal "Variante" tanto del nudo este como oeste, se encuentras en su correspondiente anejo.

ALTERNATIVA NORTE. DISEÑO DE LOS NUDOS

Nudo Este

				1. Estado d	e alineaciones. Este entrada Fi	gueroles					
							Longitu		P.K.		
Nº	Α	Р	K	Tipo	Restricción de tangencia	Restricción paramétrica	d	Orientación	inicial	P.K. final	Punto inicial
									0+000.00	0+037.27	(736679.4321m,4444356.1826m,0.0000
1				Línea	No restringido (fijo)	Dos puntos	37.266m	S47.146245W (g)	m	m	m)
					Restringido por ambos lados				0+037.27	0+126.75	(736652.1124m,4444330.8366m,0.0000
2				Curva	(libre)	Radio	89.484m		m	m	m)
									0+126.75	0+146.54	(736569.7172m,4444303.6684m,0.0000
3				Línea	No restringido (fijo)	Dos puntos	19.786m	N83.644155W (g)	m	m	m)
				Espiral-							
4.	84.558	0.968	27.459	Curva-	Restringido por ambos lados	Espiral de entrada-radio-			0+146.54	0+201.54	(736550.0525m,4444305.8588m,0.0000
1	m	m	m	Espiral	(libre)	espiral de salida	55.000m		m	m	m)
				Espiral-							
4.				Curva-	Restringido por ambos lados	Espiral de entrada-radio-			0+201.54	0+217.01	(736496.0627m,4444315.7623m,0.0000
2				Espiral	(libre)	espiral de salida	15.469m		m	m	m)
				Espiral-							
4.		0.968	27.459	Curva-	Restringido por ambos lados	Espiral de entrada-radio-			0+217.01	0+272.01	(736481.7169m,4444321.5249m,0.0000
3	m	m	m	Espiral	(libre)	espiral de salida	55.000m		m	m	m)
									0+272.01	0+341.65	(736435.8787m,4444351.7216m,0.0000
5				Línea	No restringido (fijo)	Dos puntos	69.640m	N52.585890W (g)	m	m	m)
					Restringido por ambos lados				0+341.65	0+366.18	(736380.5659m,4444394.0330m,0.0000
6				Curva	(libre)	Radio	24.539m		m	m	m)
									0+366.18	0+384.10	(736358.2627m,4444403.6633m,0.0000
7				Línea	No restringido (fijo)	Dos puntos	17.913m	N80.705560W (g)	m	m	m)
					Restringido por ambos lados				0+384.10	0+416.91	(736340.5847m,4444406.5565m,0.0000
8				Curva	(libre)	Radio	32.809m		m	m	m)
									0+416.91	0+449.26	(736308.8034m,4444401.2359m,0.0000
9				Línea	No restringido (fijo)	Dos puntos	32.352m	S61.698017W (g)	m	m	m)

1/3

ALTERNATIVA NORTE. DISEÑO DE LOS NUDOS

Punto final	Punto de paso1	Punto de paso2	Radio	Grado de curvatu ra por arco	Ángulo de increme nto	Orientació n inicial	Orientació n final	Centro	Longit ud de cuerda	Orientació n de cuerda
(736652.1124m,4444330.8366m,0 .0000m)	(736679.4321m,4444356.1826m,0 .0000m)	(736617.1355m,4444298.3866m,0 .0000m)								
(736569.7172m,4444303.6684m,0 .0000m)	(736613.8772m,4444308.2681m,0 .0000m)		104.188 m	16.4978 (g)	49.2096 (g)	S47.14624 5W (g)	N83.64415 5W (g)	(736581.2511m,4444407.2160m,0 .0000m)	86.759 m	S71.75104 5W (g)
(736550.0525m,4444305.8588m,0 .0000m)	(736617.1355m,4444298.3866m,0 .0000m)	(736486.5936m,4444312.9273m,0 .0000m)								
(736496.0627m,4444315.7623m,0 .0000m)					12.1203 (g)	N83.64415 5W (g)	N71.52389 4W (g)			
(736481.7169m,4444321.5249m,0 .0000m)			130.000 m	13.2221 (g)	6.8177 (g)	N71.52389 4W (g)	N64.70615 1W (g)	(736537.2608m,4444439.0616m,0 .0000m)	15.460 m	N68.11502 2W (g)
(736435.8787m,4444351.7216m,0 .0000m)					12.1203 (g)	N64.70615 1W (g)	N52.58589 0W (g)			
(736380.5659m,4444394.0330m,0 .0000m)	(736486.5936m,4444312.9273m,0 .0000m)	(736370.6202m,4444401.6410m,0 .0000m)								
(736358.2627m,4444403.6633m,0 .0000m)	(736370.0081m,4444400.2233m,0 .0000m)		50.000m	34.3775 (g)	28.1197 (g)	N52.58589 0W (g)	N80.70556 0W (g)	(736350.1873m,4444354.3198m,0 .0000m)	24.294 m	N66.64572 5W (g)
(736340.5847m,4444406.5565m,0 .0000m)	(736370.6202m,4444401.6410m,0 .0000m)	(736323.7885m,4444409.3053m,0 .0000m)								
(736308.8034m,4444401.2359m,0 .0000m)	(736324.2537m,4444406.5266m,0 .0000m)		50.000m	34.3775 (g)	37.5964 (g)	N80.70556 0W (g)	S61.69801 7W (g)	(736332.5093m,4444357.2129m,0 .0000m)	32.224 m	S80.49622 9W (g)
(736280.3186m,4444385.8972m,0 .0000m)	(736323.7885m,4444409.3053m,0 .0000m)	(736280.3186m,4444385.8972m,0 .0000m)								

2/3

ALTERNATIVA NORTE. DISEÑO DE LOS NUDOS

Flech a del arco	Tangent e externa		Ángulo incluid o de Pl		Punto Pl	Radio de entrada	Radio de salida	X total	Y total	Tangent e corta		P.K. de PI_espira I	Ordenada de Pl_espiral	Abscisa de Pl_espiral	Ángulo incluido de PI_espir al	Ordenada de centro arco	Abscisa de centro arco
9.460	47.712m	10.405 m	130.790 4 (g)	0+084.98 m	(736617.1355m,4444298.386 6m)												
							130.000	54.754	3.866			0+183.29	4444309.9274	736513.5255	167.8797	4444439.0616	736537.2609
						Infinito	m	m	m	18.412m	36.753m	m	m	m	(g)	m	m
0.230	7.744m	0.230m		0+209.28 m	(736488.7182m,4444318.216 3m)												
						130.000 m	Infinito	54.754 m	3.866 m	18.412m	36.753m	0+235.42 m	4444329.3915 m	736465.0703 m	167.8797 (g)	4444439.0616 m	736537.2608 m
1.498	12.522m	1.544m		0+354.17 m	(736370.6202m,4444401.641 0m)												
2.667	17.020m	2.817m		0+401.12 m	(736323.7885m,4444409.305 3m)												

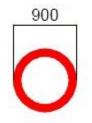
3/3

Estado de Rasantes Este, entrada Figueroles

Nº	P.K. de VAV	Elevación de VAV	Inclinación de rasante T.E.	Inclinación de rasante T.S.	Tipo de curva de perfil	Valor de K	Longitud de curva de perfil	Radio de curva
1	0+002.88m	372.206m		-3.08%				
2	0+034.86m	371.043m	-3.08%	0.06%	Cóncavo	11.685	36.703m	1168.454m
3	0+149.32m	371.112m	0.06%	-2.30%	Convexo	26.360	62.301m	2636.000m
4	0+309.18m	367.429m	-2.30%	-2.42%	Convexo	30.500	3.687m	3050.000m
5	0+418.59m	364.777m	-2.42%	4.07%	Cóncavo	8.940	58.093m	893.956m
6	0+449 17m	366 023m	4 07%					

2.2. Señalización

La justificación de todo tipo de señalización así como de los elementos necesarios de balizamiento se hará en función de las normativas españoles vigentes.


2.2.1. Señalización vertical

Norma 8.1-I.C. "Señalización Vertical"

Se sigue las especificaciones de colocación de las señales que marca la norma, tanto distancias a la intersección como orientación respecto a la vía a señalizar (Ver planos)

Debido a las características de la actuación, calzada de doble sentido con arcén las medidas de señales a emplear son (Figura 2.8):

Carretera convencional con arcén

(Figura 2.8)

Inventario señales empleadas

Peligro

P-1p P-4 P13-a P13-b

Reglamentación

R-1 R-2 R-101 R-301 R-401 a R-402

Indicación

Cartelería

2.2.2. Señalización horizontal:

Norma 8.2-I.C. "Señalización Horizontal"

La pintura empleada para estas marcas longitudinales y cebreados será del tipo termoplástica con esferas (pues facilita su aplicación y reflecta una parte de la luz recibida)

Por las características intrínsecas de la construcción las marcas a emplear son en cada caso:

Marca	Uso		
M-1.2	Discontinua de separación de carriles		
M-2.2	Continua de separación de carriles		
M-2.6	Continua de borde de calzada		
M-4.1	Transversal continua		
M-6.4	Señal horizontal de Stop		
M-6.5	Señal horizontal de Ceda el paso		

La información gráfica relativa a lo descrito en este apartado puede consultarse en:

Planos

Señalización vertical

Plano 4.4.2 GLORIETA OESTE SEÑALIZACIÓN VERTICAL 1

Plano 4.4.3 GLORIETA OESTE SEÑALIZACIÓN VERTICAL 2

Plano 4.4.5 INTERSECCIÓN ESTE SEÑALIZACIÓN VERTICAL 1

Plano 4.4.6 INTERSECCIÓN ESTE SEÑALIZACIÓN VERTICAL 2

Señalización horizontal:

Plano 4.4.1 GLORIETA OESTE SEÑALIZACIÓN HORIZONTAL

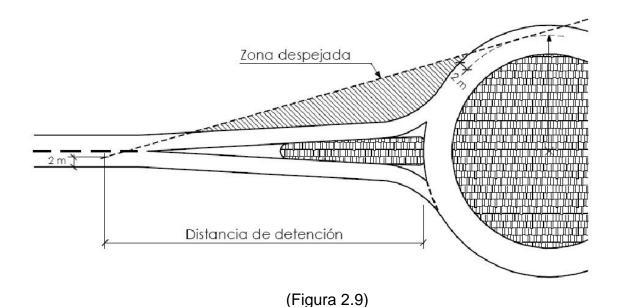
Plano 4.4.4 INTERSECCIÓN ESTE SEÑALIZACIÓN HORIZONTAL

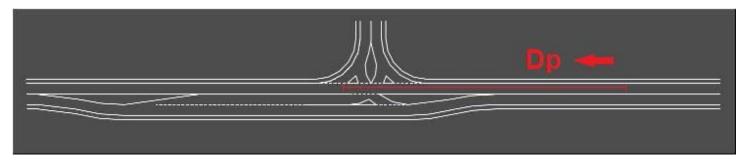
2.3. <u>Cumplimiento criterios Seguridad Vial</u>

Los criterios de Seguridad Vial a comprobar son los establecidos en la Instrucción de carreteras 3.1-I.C. junto a la normativa complementaria de nudos viarios.

- Visibilidades
- Ángulos entrada a glorietas e intersecciones

2.3.1. Visibilidades


Inicialmente se ha trabajado con la visibilidad de decisión para ver rápidamente que ramales parecían disponer de una adecuada visibilidad.


Ahora se comprueba toda visibilidad requerida en normativa y recomendación de nudos.

2.3.1.1 Distancia de parada

En el caso de las glorietas el parámetro a analizar es la **distancia de parada (Dp)** que se define como la longitud recorrida por un vehículo obligado a detenerse tan rápidamente como pueda ante un imprevisto. (Figura 2.9)

Este criterio también es aplicable a las visibilidades mínimas requeridas en la carretera principal de la intersección en "T" respecto a la vía secundaria (Figura 2.10)

(Figura 2.10)

La fórmula aplicada de la Dp (Imagen xx)

$$D_{p} = \frac{V \cdot t_{p}}{3.6} + \frac{V^{2}}{254 \cdot (f_{1} + i)}$$

Siendo: D_D = distancia de parada (m).

V = velocidad (km/h).

f₁ = coeficiente de rozamiento longitudinal rueda-pavimento.

= inclinación de la rasante (en tanto por uno).

t_p = tiempo de percepción y reacción (s).

(Figura 2.11)

* La distancia de parada es por tanto aplicable a los ramales principales que tienen prioridad en el movimiento.

Resultados aplicación fórmula (Figura 2.11):

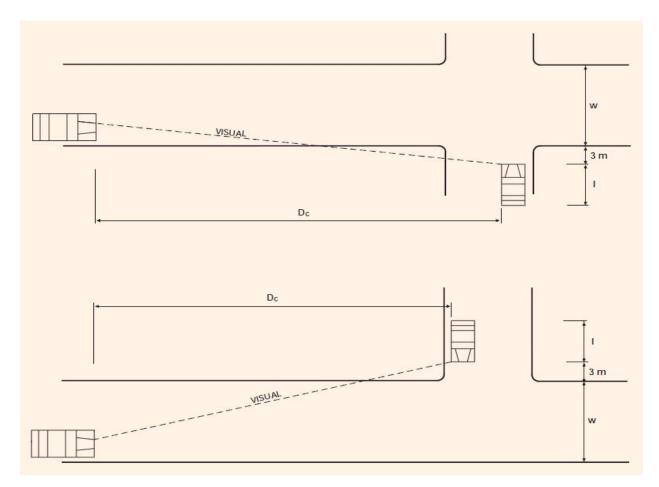
	Velocidad inicial (km/ h)	ft	Distancia de Parada (m)
Glorieta Oeste			
Ramal Salida Figueroles	71	0,369	93,2
Ramal Entrada Figueroles	71	0,369	93,2
Ramal Variante	89	0,3354	142,4
Intersección en "T" Este			
Ramal Salida Figueroles	80	0,348	116,8
Ramal Variante	82	0,345	122,3

(Tabla 2.1)

	Distancia de Parada requerida(m)	Distancia de Parada existente(m)	¿Cumple?
Glorieta Oeste			
Ramal Salida			
Figueroles	93,2	140,3	47,1
Ramal Entrada			
Figueroles	93,2	128,0	34,8
Ramal Variante	142,4	240,7	98,3
Intersección en "T" Este			
Ramal Salida			
Figueroles	116,8	164,0	47,2
Ramal Variante	122,3	144,0	21,7

Comprobación distancia de parada (Tabla 2.2)

El color verde demuestra que se cumple la distancia de parada en todo movimiento que lo requiere. (Ver Figura 2.16)


2.3.1.2 Distancia de cruce

Para las incorporaciones a vías con diferente prioridad de paso se emplea la **distancia de cruce (Dc)**, entendida como la longitud recorrida por un vehículo sobre una vía preferente, durante el tiempo que otro emplea en atravesar dicha vía.

Aparecen tres casos donde emplear este concepto.

Ambos movimientos desde el ramal de entrada secundario al incorporarse a la vía principal. (Figura 2.12)

• Giro a la izquierda desde la calzada principal a la secundaria.

(Figura 2.12)

David Gamarra Sahuquillo Anejo: Diseño de los Nudos A3.6 39

La fórmula de la Distancia de cruce:

$$D_c = \frac{V \cdot t_c}{3.6}$$

Siendo: D_c = distancia de cruce (m).

V = velocidad (km/h) de la vía preferente.

 $t_{\rm c}~$ = tiempo en segundos que se tarda en realizar la maniobra completa de cru-

ce.

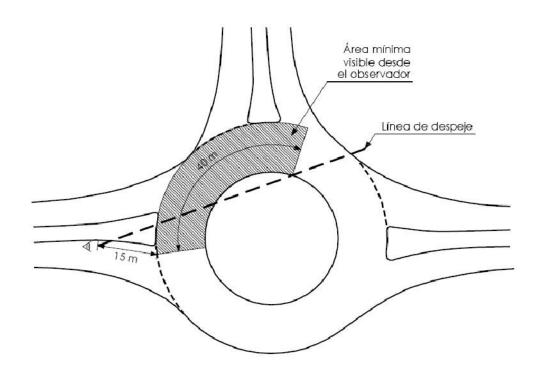
(Figura 2.13)

Resultados aplicación fórmula anterior (Figura 2.13)

	V de llegada		tc		Dc	
	Izquierda	Derecha	Izquierda	Derecha	Izquierda	Derecha
Ramal entrada Figueroles (secundaria)	82	80	10,49169	9,91107	238,9774	220,246
Giro desde carril principal a izquierda	82		9,91107		225,7522	

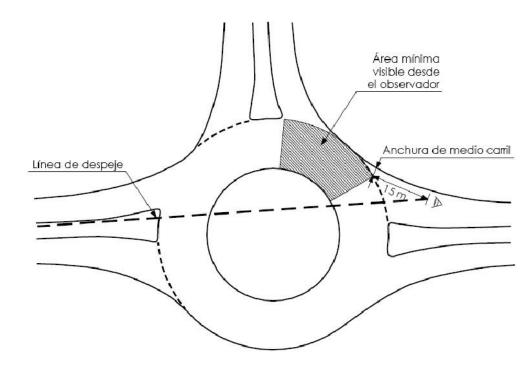
	Dc requerida		Dc existente	¿Cumple?
	Izquierda	Derecha		
Ramal entrada Figueroles (secundaria)	239		168	-71
Giro desde carril principal a izquierda	225		160	-65

Comprobación distancia de cruce (Tabla 2.3)


Hay cierto problema a la hora de cumplir las distancias de cruce (Figura 2.17) y (Tabla 2.13). Esto ocurre debido a la curva cercana que merma la visibilidad.

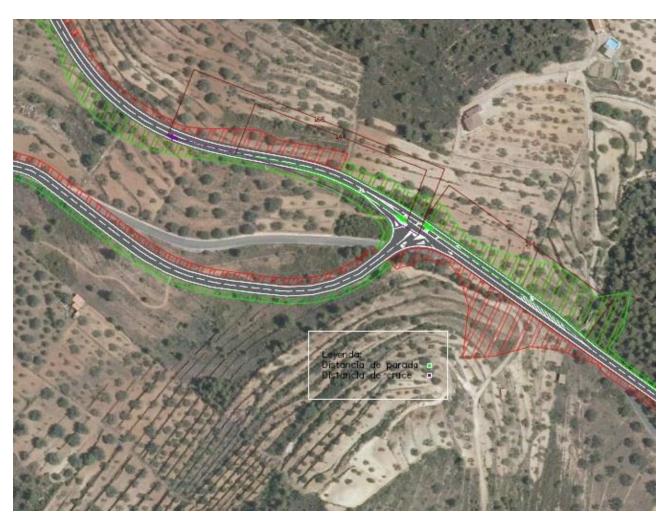
Se aplican medidas preventivas de señalización y balizamiento para favorecer el cumplimiento de las distancias mínimas.

2.3.1.3 Visibilidades dentro del nudo


Se constata que al menos se cumplen las siguientes longitudes dentro del nudo Oeste (Figura 2.14) y (Figura 2.15)

La intersección en "T" no tiene visibilidades "internas" a cumplir.

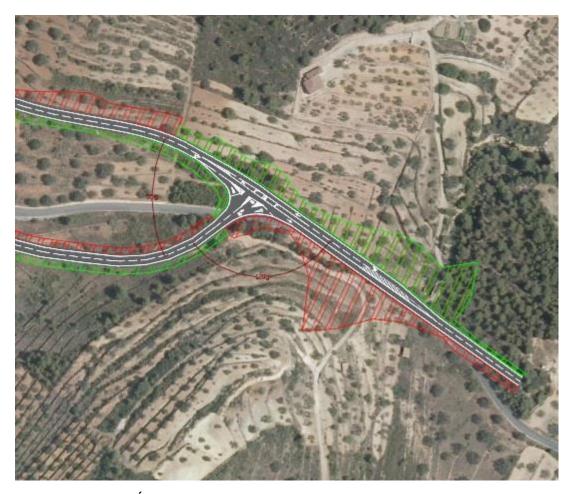
(Figura 2.14)



(Figura 2.15)

Distancias de parada en nudo Oeste (Figura 2.16)

Distancias de parada y distancia de cruce en nudo Este (Figura 2.17)


2.3.2. Ángulos entrada a glorietas e intersecciones

La normativa marca un intervalo de entre 20g y 60g (+70°) entre cada ramal participante en la intersección.

Aspecto que se cumple en ambos nudos (Figura 2.18 y 2.19)

Ángulo de entrada Nudo Oeste (Figura 2.18)

Ángulo de entrada Nudo Este (Figura 2.19)

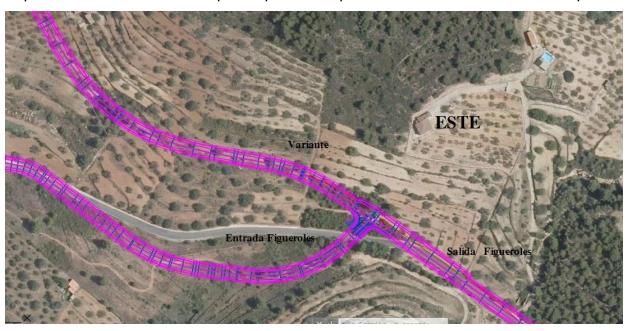
2.4. Análisis trayectorias

El diseño final viene condicionado por el análisis de trayectorias del vehículo pesado tipo.

Para llevar a cabo el análisis se opta por la herramienta Vehicle Tracker.

Se ha estimado un vehículo pesado articulado de una longitud máxima de 16,5m por 2,5 m de ancho. (Sattezug alemán)

Si la trayectoria del vehículo sobrepasa los límites de la intersección (Figura 2.20 y Figura 2.21) estos deben ser modificados para permitir la circulación de forma adecuada y segura.


Análisis de trayectoria Nudo Oeste (Figura 2.20)

Debido al análisis de trayectoria se aumenta en el nudo Oeste el radio (Figura 2.22 letras en rojo) de salida desde el ramal "Entrada Figueroles" hacia la Variante.

También se modifican las isletas (ver punteados en rojo en Figura 2.22) suavizando sus radios de salida y aumentando sus desfases desde el borde exterior, en todas las salidas de la glorieta.

En este caso el nudo Este se remodela en gran medida desde la Figura 2.21 a la Figura 2.22 sobre todo en lo que se refiere a los radios de la carretera que da acceso al municipio.

El primer análisis demuestra que no permite el paso de vehículos del tamaño requerido.

Nudo este que no cumple el análisis de trayectoria (Figura 2.21)

Comprobación análisis de trayectoria Nudo Este (Figura 2.22)

David Gamarra Sahuquillo Anejo: Diseño de los Nudos A3.6 43

3. CAMINOS Y SERVICIOS AFECTADOS

3.1. IDENTIFICACIÓN CAMINOS AFECTADOS Y PROPUESTAS DE SOLUCIÓN

Se mantendrá la política de realizar el menor número de intersecciones en nuestra variante a pesar de que en muchas ocasiones no habrá elección.

Esta filosofía viene motivada por la necesidad de garantizar unos niveles mínimos de seguridad vial que se vería mermada en caso de añadir muchos cruces a nivel.

La información gráfica relativa a lo descrito en este apartado puede consultarse en:

Planos

Planta general

Plano 4.1.8 Camino 1 y 2

Plano 4.1.9 Camino 3 y 4

Plano 4.1.10 Camino 5,6 y 7

Plano 4.1.11 Camino 8

En la siguiente imagen 3.1 se aprecia la existencia de hasta 8 caminos que intersectan con la variante planteada, representados por una línea roja. Están numerados de izquierda a derecha.

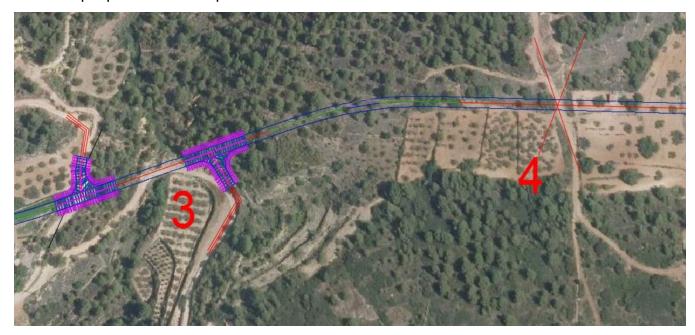
Se resolverá cada caso por separado.

(Figura 3.1)

3.1.1 Cruce 1

El cruce número 1 no requiere de ninguna intervención pues el puente proyectado en ese emplazamiento supera ampliamente por arriba la cota del camino. (Figura 3.2)

(Figura 3.2)


3.1.2 Cruce 2 y 3

El cruce 2 se elimina (Figura 3.3) y se hace circular todo el posible tráfico por el punto 3, que tendrá que adecuar además el carril parcialmente secante a la variante desarrollada.

(Figura 3.3)

A la altura del punto 3, se ejecuta una pequeña intersección en T (Figura 3.4) a nivel de la variante que permita la incorporación a la vía.

(Figura 3.4)

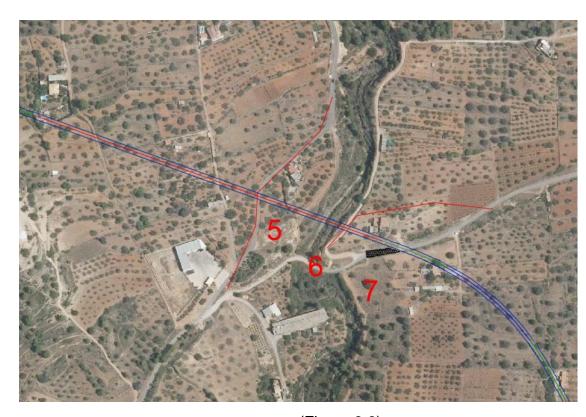
3.1.3 Cruce 4

Lo mismo ocurre con el cruce 4 (Figura 3.5), se desvía todo hacia la zona de las intersecciones 5, 6 y 7.

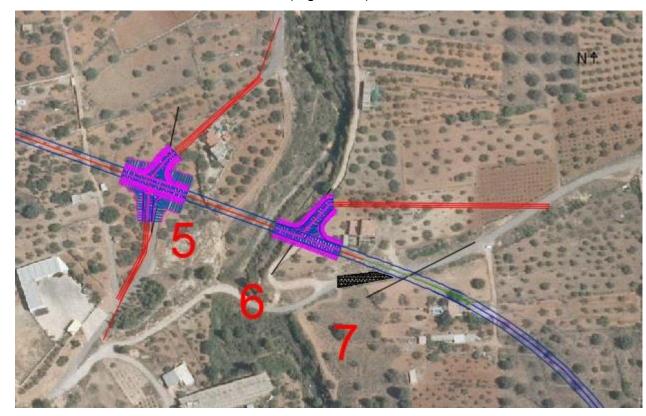
(Figura 3.5)

3.1.4 Cruce 5, 6 y 7

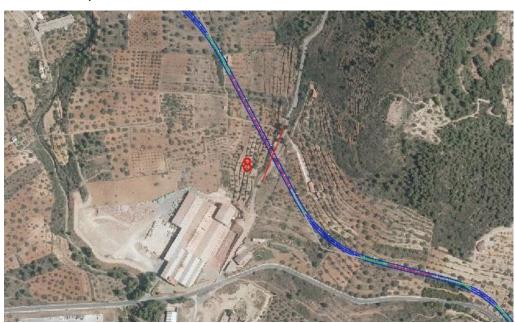
Para dar solución a este triple cruce, se recurre a dos alineaciones que conecten los caminos a ambos lados de la variante.


La primera de ellas atraviesa la variante a la altura del punto 5 (Figura 3.6) e (Figura 3.7) y continúa por el camino existente.

La segunda alineación conecta el camino del cruce 7 con el camino 6, de forma que con solo un cruce solventamos ambos (Figura 3.6) e (Figura 3.7).


Está sombreada en negro la parte del camino que queda sin servicio por ser innecesario tras la construcción de ambos cruces.

(Figura 3.6)



Reposición caminos 5,6 y 7 (Figura 3.7)

3.1.5 Cruce 8

El nudo 8, requiere de una doble intersección en "T" (Figura 3.9) que permita el cruce de la carretera proyectada.

Esta carretera tiene doble valor (Figura 3.8), por una parte transcurren los camiones a un depósito de materiales situado al norte y por otra parte es una vía pecuaria que tenemos que mantener en servicio. Se resuelve con unas condiciones finales de uso más favorables que el resto de cruces.

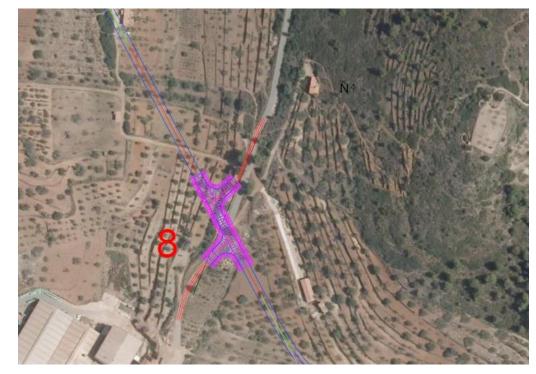
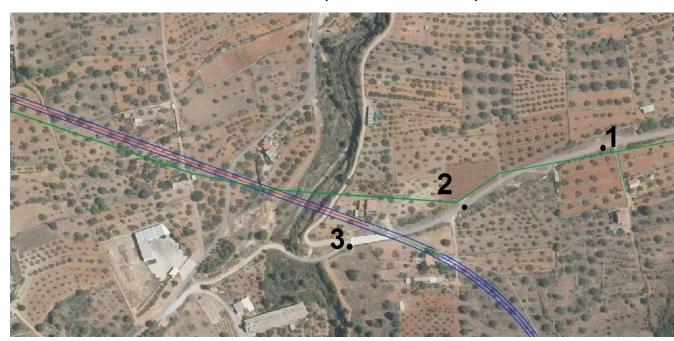


Figura 3.8 y Figura 3.9

3.2 IDENTIFICACIÓN Y SOLUCIÓN SERVICIOS AFECTADOS

Ya que la variante norte es la más alejada del pueblo, tan solo se interfiere en una línea eléctricas de media tensión al paso de nuestra variante.

El depósito de agua de que dispone el pueblo se sitúa 150 metros al sur, en el punto más cercano. La línea telefónica no abandona el pueblo atravesando la variante.


Gracias al programa **OruxMaps**, incluyo fotos georeferenciadas para ver con precisión la posición de los servicios afectados. Estas fotos se realizaron en la visita a Figueroles.

3.2.1 Líneas eléctricas

En todos los casos se planteará una solución que consista en la reposición de los postes eléctricos afectados de forma que garanticen gálibos mínimos.

En este caso, la línea de postes de la línea eléctrica de media tensión cae justamente sobre la variante.

Línea eléctrica 1 (P.K 1+569 "Variante")

Emplazamiento inicial línea eléctrica (Figura 3.10)

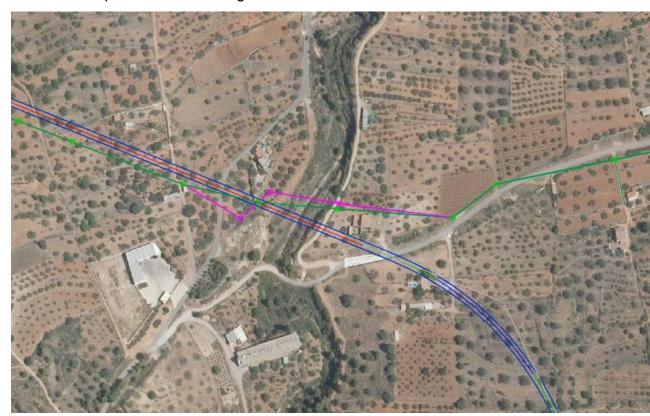
Nota: En verde línea eléctrica actual.

(Posición 1)

(Posición 2)

David Gamarra Sahuquillo Anejo: Diseño de los Nudos A3.6 47

Las siguientes imágenes corresponden a la zona más conflictiva de la actuación (Posición 3)



La solución planteada pasa por desplazar dos postes existentes e instalar uno nuevo conforme se representa en la imagen.

Resolución línea eléctrica (Figura 3.11)

<u>Leyenda</u>

Color verde: línea eléctrica actual Color rosa: solución propuesta Cuadrados: postes eléctricos

3.2.2 Desvío del tráfico

La construcción de los nudos implica el cese de circulación temporal por la carretera existente.

Por ello se tienen en cuenta la construcción de desvíos de tráfico (Figura 3.12 y Figura 3.13) para no interrumpir el flujo de vehículos en ningún momento.

Fases desvío

Primero se construye la variante en su totalidad a falta de los nudos.

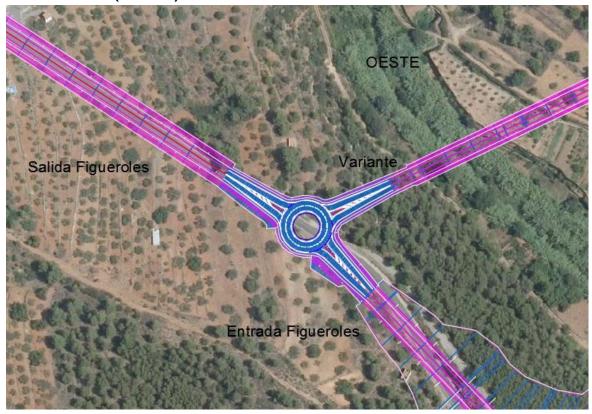
Se habilita previamente a la construcción del nudo, el camino temporal pertinente.

Finalización del nudo.

Puesta en servicio.

Desvío tráfico en la construcción del nudo Este Figura 3.12

Desvío tráfico en la construcción del nudo Oeste Figura 3.13



Apéndice 1: Informe incremental de P.K

El apéndice desarrolla los puntos concretos existentes cada 20 metros, por eje, en los dos nudos principales

Nudo Oeste (Glorieta)

Nudo Este Intersección en "T"

ALTERNATIVA NORTE. DISEÑO DE LOS NUDOS

Informe de P.K. incremental de alineaciones OESTE

Cliente: Proyecto TFG Figueroles

Autor:

David Gamarra

Dirección: Escuela Técnica Superior de Ingeniería de

caminos canales y puertos.

Fecha: 07/06/2015 17:51:51

Nombre de alineación: Alineación_OESTE entrada Figueroles

Descripción:

Intervalo de P.K.: inicio: 0+000.00, fin: 30+932.00

Incremento de P.K.: 20.00

P.K.	Ordenada	Abscisa	Orientación de tangente
0+000.00	4,445,069.6023m	734,139.9290m	S43.579657E (d)
0+020.00	4,445,055.1140m	734,153.7162m	S43.579657E (d)
0+040.00	4,445,040.6256m	734,167.5035m	S43.579657E (d)
0+060.00	4,445,026.1373m	734,181.2907m	S43.579657E (d)
0+080.00	4,445,011.6490m	734,195.0780m	S43.579657E (d)
0+100.00	4,444,997.1606m	734,208.8652m	S43.579657E (d)
0+120.00	4,444,982.6723m	734,222.6525m	S43.579657E (d)
0+140.00	4,444,968.1840m	734,236.4397m	S43.579657E (d)
0+160.00	4,444,953.8020m	734,250.3371m	S44.984934E (d)
0+180.00	4,444,940.1708m	734,264.9649m	S49.589084E (d)
0+200.00	4,444,928.2060m	734,280.9720m	S57.342912E (d)
0+220.00	4,444,918.7491m	734,298.5725m	S66.157648E (d)
0+240.00	4,444,912.0459m	734,317.3978m	S74.241831E (d)

0+260.00	4,444,907.5596m	734,336.8814m	S79.289780E (d)
0+280.00	4,444,904.2513m	734,356.6050m	S81.132371E (d)
0+300.00	4,444,901.1713m	734,376.3664m	S81.141349E (d)

Nombre de alineación: Alineación_OESTE salida Figueroles

Descripción:

Intervalo de P.K.: inicio: 0+000.00, fin: 25+773.00

Incremento de P.K.: 20.00

P.K.	Ordenada	Abscisa	Orientación de tangente
0+000.00	4,445,093.2803m	734,111.6117m	N57.032557O (d)
0+020.00	4,445,104.1635m	734,094.8321m	N57.032557O (d)
0+040.00	4,445,115.0468m	734,078.0525m	N57.032557O (d)
0+060.00	4,445,125.9300m	734,061.2729m	N57.032557O (d)
0+080.00	4,445,136.8133m	734,044.4933m	N57.032557O (d)
0+100.00	4,445,147.6965m	734,027.7137m	N57.032557O (d)
0+120.00	4,445,158.5798m	734,010.9341m	N57.032557O (d)
0+140.00	4,445,169.4630m	733,994.1545m	N57.032557O (d)
0+160.00	4,445,180.3463m	733,977.3749m	N57.032557O (d)
0+180.00	4,445,191.2295m	733,960.5953m	N57.032557O (d)
0+200.00	4,445,202.1128m	733,943.8157m	N57.032557O (d)
0+220.00	4,445,212.9960m	733,927.0361m	N57.032557O (d)
0+240.00	4,445,223.8793m	733,910.2565m	N57.032557O (d)

David Gamarra Sahuquillo Anejo: Diseño de los Nudos 52

ALTERNATIVA NORTE. DISEÑO DE LOS NUDOS

Nombre de alineación: Alineación VARIANTE

Descripción:

Intervalo de P.K.: inicio: 0+000.00, fin: 289+275.00

Incremento de P.K.: 20.00

P.K.	Ordenada	Abscisa	Orientación de tangente
0+000.00	4,444,384.2474m	736,642.4944m	N51.846106O (d)
0+020.00	4,444,396.6029m	736,626.7673m	N51.846106O (d)
0+040.00	4,444,408.8353m	736,610.9450m	N53.267022O (d)
0+060.00	4,444,420.2148m	736,594.5045m	N57.887827O (d)
0+080.00	4,444,429.7414m	736,576.9368m	N65.655163O (d)
0+100.00	4,444,436.6369m	736,558.1801m	N73.510313O (d)
0+120.00	4,444,441.4254m	736,538.7677m	N78.242122O (d)
0+140.00	4,444,445.1481m	736,519.1178m	N79.769479O (d)
0+160.00	4,444,448.7501m	736,499.4449m	N79.202440O (d)
0+180.00	4,444,452.8593m	736,479.8732m	N76.761607O (d)
0+200.00	4,444,458.1224m	736,460.5832m	N72.394865O (d)
0+220.00	4,444,465.1508m	736,441.8694m	N66.171051O (d)
0+240.00	4,444,474.2873m	736,424.0912m	N59.430371O (d)
0+260.00	4,444,485.4473m	736,407.5084m	N52.689691O (d)
0+280.00	4,444,498.4766m	736,392.3500m	N45.949011O (d)
0+300.00	4,444,513.1947m	736,378.8253m	N39.239654O (d)
0+320.00	4,444,529.2940m	736,366.9715m	N33.809275O (d)
0+340.00	4,444,546.2714m	736,356.4054m	N30.304804O (d)
0+360.00	4,444,563.7028m	736,346.6013m	N28.726241O (d)

0+380.00	4,444,581.2561m	736,337.0157m	N28.627853O (d)
0+400.00	4,444,598.8111m	736,327.4333m	N28.627853O (d)
0+420.00	4,444,616.3661m	736,317.8510m	N28.627853O (d)
0+440.00	4,444,633.9211m	736,308.2686m	N28.627853O (d)
0+460.00	4,444,651.4761m	736,298.6862m	N28.627853O (d)
0+480.00	4,444,669.0311m	736,289.1039m	N28.627853O (d)
0+500.00	4,444,686.5861m	736,279.5215m	N28.627853O (d)
0+520.00	4,444,704.1411m	736,269.9391m	N28.627853O (d)
0+540.00	4,444,721.6961m	736,260.3567m	N28.627853O (d)
0+560.00	4,444,739.2511m	736,250.7744m	N28.627853O (d)
0+580.00	4,444,756.8061m	736,241.1920m	N28.627853O (d)
0+600.00	4,444,774.3611m	736,231.6096m	N28.627853O (d)
0+620.00	4,444,791.9161m	736,222.0273m	N28.627853O (d)
0+640.00	4,444,809.4711m	736,212.4449m	N28.627853O (d)
0+660.00	4,444,827.0261m	736,202.8625m	N28.627853O (d)
0+680.00	4,444,844.5586m	736,193.2390m	N29.122412O (d)
0+700.00	4,444,861.8822m	736,183.2464m	N31.079777O (d)
0+720.00	4,444,878.7139m	736,172.4496m	N34.525343O (d)
0+740.00	4,444,894.7110m	736,160.4559m	N39.385159O (d)
0+760.00	4,444,909.5713m	736,147.0806m	N44.593866O (d)
0+780.00	4,444,923.1559m	736,132.4115m	N49.802573O (d)
0+800.00	4,444,935.3527m	736,116.5696m	N55.011281O (d)

0+820.00	4,444,946.0609m	736,099.6860m	N60.219988O (d)
0+840.00	4,444,955.2373m	736,081.9217m	N64.911879O (d)
0+860.00	4,444,963.1638m	736,063.5624m	N68.136222O (d)
0+880.00	4,444,970.2890m	736,044.8755m	N69.872364O (d)
0+900.00	4,444,977.0869m	736,026.0663m	N70.203012O (d)
0+920.00	4,444,983.8607m	736,007.2483m	N70.203012O (d)
0+940.00	4,444,990.6344m	735,988.4303m	N70.203012O (d)
0+960.00	4,444,997.4082m	735,969.6123m	N70.203012O (d)
0+980.00	4,445,004.1820m	735,950.7944m	N70.203012O (d)
1+000.00	4,445,010.9558m	735,931.9764m	N70.203012O (d)
1+020.00	4,445,017.7295m	735,913.1584m	N70.203012O (d)
1+040.00	4,445,024.5033m	735,894.3405m	N70.203012O (d)
1+060.00	4,445,031.2771m	735,875.5225m	N70.203012O (d)
1+080.00	4,445,038.0508m	735,856.7045m	N70.203012O (d)
1+100.00	4,445,044.8246m	735,837.8865m	N70.203012O (d)
1+120.00	4,445,051.5984m	735,819.0686m	N70.203012O (d)
1+140.00	4,445,058.3721m	735,800.2506m	N70.203012O (d)
1+160.00	4,445,065.1459m	735,781.4326m	N70.203012O (d)
1+180.00	4,445,071.9197m	735,762.6147m	N70.203012O (d)
1+200.00	4,445,078.6934m	735,743.7967m	N70.203012O (d)
1+220.00	4,445,085.4672m	735,724.9787m	N70.203012O (d)
1+240.00	4,445,092.2410m	735,706.1607m	N70.203012O (d)

1+260.00	4,445,099.0148m	735,687.3428m	N70.203012O (d)
1+280.00	4,445,105.7885m	735,668.5248m	N70.203012O (d)
1+300.00	4,445,112.5623m	735,649.7068m	N70.203012O (d)
1+320.00	4,445,119.3361m	735,630.8889m	N70.203012O (d)
1+340.00	4,445,126.1098m	735,612.0709m	N70.203012O (d)
1+360.00	4,445,132.8836m	735,593.2529m	N70.203012O (d)
1+380.00	4,445,139.6574m	735,574.4349m	N70.203012O (d)
1+400.00	4,445,146.4311m	735,555.6170m	N70.203012O (d)
1+420.00	4,445,153.1617m	735,536.7836m	N70.690633O (d)
1+440.00	4,445,159.4936m	735,517.8134m	N72.641558O (d)
1+460.00	4,445,164.9256m	735,498.5683m	N76.083008O (d)
1+480.00	4,445,168.9420m	735,478.9819m	N80.882230O (d)
1+500.00	4,445,171.3691m	735,459.1339m	N84.925883O (d)
1+520.00	4,445,172.6504m	735,439.1767m	N87.479012O (d)
1+540.00	4,445,173.3014m	735,419.1875m	N88.541615O (d)
1+560.00	4,445,173.7995m	735,399.1937m	N88.575397O (d)
1+580.00	4,445,174.2967m	735,379.1999m	N88.575397O (d)
1+600.00	4,445,174.7939m	735,359.2061m	N88.575397O (d)
1+620.00	4,445,175.2912m	735,339.2123m	N88.575397O (d)
1+640.00	4,445,175.7884m	735,319.2185m	N88.575397O (d)
1+660.00	4,445,176.2856m	735,299.2247m	N88.575397O (d)
1+680.00	4,445,176.7828m	735,279.2308m	N88.575397O (d)

1+700.00	4,445,177.2801m	735,259.2370m	N88.575397O (d)
1+720.00	4,445,177.7773m	735,239.2432m	N88.575397O (d)
1+740.00	4,445,178.2745m	735,219.2494m	N88.575397O (d)
1+760.00	4,445,178.7718m	735,199.2556m	N88.575397O (d)
1+780.00	4,445,179.2690m	735,179.2617m	N88.575397O (d)
1+800.00	4,445,179.7662m	735,159.2679m	N88.575397O (d)
1+820.00	4,445,180.2634m	735,139.2741m	N88.575397O (d)
1+840.00	4,445,180.7601m	735,119.2803m	N88.601244O (d)
1+860.00	4,445,181.1134m	735,099.2837m	N89.622713O (d)
1+880.00	4,445,180.8504m	735,079.2870m	S87.867617O (d)
1+900.00	4,445,179.4530m	735,059.3400m	S83.869745O (d)
1+920.00	4,445,176.4427m	735,039.5745m	S78.818174O (d)
1+940.00	4,445,171.8466m	735,020.1139m	S74.853426O (d)
1+960.00	4,445,166.1638m	735,000.9399m	S72.376880O (d)
1+980.00	4,445,159.9035m	734,981.9452m	S71.388537O (d)
2+000.00	4,445,153.5142m	734,962.9932m	S71.368494O (d)
2+020.00	4,445,147.1246m	734,944.0414m	S71.368494O (d)
2+040.00	4,445,140.7350m	734,925.0895m	S71.368494O (d)
2+060.00	4,445,134.3454m	734,906.1377m	S71.368494O (d)
2+080.00	4,445,127.9558m	734,887.1858m	S71.368494O (d)
2+100.00	4,445,121.5662m	734,868.2340m	S71.368494O (d)
2+120.00	4,445,115.1766m	734,849.2821m	S71.368494O (d)

2+140.00	4,445,108.7870m	734,830.3302m	S71.368494O (d)
2+160.00	4,445,102.4754m	734,811.3524m	S72.185623O (d)
2+180.00	4,445,096.7937m	734,792.1788m	S75.165645O (d)
2+200.00	4,445,092.4885m	734,772.6546m	S80.328363O (d)
2+220.00	4,445,090.3305m	734,752.7849m	S87.528148O (d)
2+240.00	4,445,090.8006m	734,732.8052m	N84.832414O (d)
2+260.00	4,445,093.9226m	734,713.0654m	N77.192977O (d)
2+280.00	4,445,099.6409m	734,693.9158m	N69.563092O (d)
2+300.00	4,445,107.7048m	734,675.6246m	N63.219210O (d)
2+320.00	4,445,117.4120m	734,658.1434m	N59.058024O (d)
2+340.00	4,445,128.0433m	734,641.2043m	N57.079535O (d)
2+360.00	4,445,138.9585m	734,624.4454m	N56.899249O (d)
2+380.00	4,445,149.8807m	734,607.6912m	N56.899249O (d)
2+400.00	4,445,160.8030m	734,590.9369m	N56.899249O (d)
2+420.00	4,445,171.7252m	734,574.1827m	N56.899249O (d)
2+440.00	4,445,182.6475m	734,557.4285m	N56.899249O (d)
2+460.00	4,445,193.5608m	734,540.6684m	N57.137444O (d)
2+480.00	4,445,204.0722m	734,523.6559m	N59.975841O (d)
2+500.00	4,445,213.2315m	734,505.8869m	N66.019598O (d)
2+520.00	4,445,219.9867m	734,487.0826m	N74.621420O (d)
2+540.00	4,445,223.7892m	734,467.4675m	N83.436155O (d)
2+560.00	4,445,224.5411m	734,447.5014m	S87.749109O (d)

ALTERNATIVA NORTE. DISEÑO DE LOS NUDOS

2+580.00	4,445,222.2244m	734,427.6559m	S78.934374O (d)
2+600.00	4,445,216.9595m	734,408.3784m	S70.945191O (d)
2+620.00	4,445,209.5417m	734,389.8115m	S66.033653O (d)
2+640.00	4,445,201.0623m	734,371.6989m	S64.327473O (d)
2+660.00	4,445,192.3972m	734,353.6734m	S64.325802O (d)
2+680.00	4,445,183.7321m	734,335.6480m	S64.325802O (d)
2+700.00	4,445,175.0671m	734,317.6225m	S64.325802O (d)
2+720.00	4,445,166.4020m	734,299.5971m	S64.325802O (d)
2+740.00	4,445,157.7369m	734,281.5716m	S64.325802O (d)
2+760.00	4,445,149.0719m	734,263.5462m	S64.325802O (d)
2+780.00	4,445,140.4068m	734,245.5208m	S64.325802O (d)
2+800.00	4,445,131.7417m	734,227.4953m	S64.325802O (d)
2+820.00	4,445,123.0767m	734,209.4699m	S64.325802O (d)
2+840.00	4,445,114.4116m	734,191.4444m	S64.325802O (d)
2+860.00	4,445,105.7465m	734,173.4190m	S64.325802O (d)
2+880.00	4,445,097.0815m	734,155.3935m	S64.325802O (d)

Nombre de alineación: Glorieta Oeste Ramal Entrada Figueroles Acceso BORDE_DERECHO

Descripción:

Intervalo de P.K.: inicio: 0+000.00, fin: 5+225.00

Incremento de P.K.: 20.00

P.K.	Ordenada	Abscisa	Orientación de tangente
0+000.00	4,445,037.9124m	734,174.9169m	N39.207134O (d)
0+020.00	4,445,053.3766m	734,162.2338m	N39.507096O (d)
0+040.00	4,445,068.7741m	734,149.4700m	N39.807057O (d)

Nombre de alineación: Glorieta Oeste Ramal Entrada Figueroles Acceso BORDE_IZQUIERDO

Descripción:

Intervalo de P.K.: inicio: 0+000.00, fin: 5+548.00

Incremento de P.K.: 20.00

P.K.	Ordenada	Abscisa	Orientación de tangente
0+000.00	4,445,031.2358m	734,171.6074m	N47.837000O (d)
0+020.00	4,445,044.7662m	734,156.8792m	N47.017466O (d)
0+040.00	4,445,058.5059m	734,142.3460m	N46.197932O (d)

Nombre de alineación: Glorieta Oeste Ramal Salida Figueroles Acceso BORDE_DERECHO

Descripción:

Intervalo de P.K.: inicio: 0+000.00, fin: 5+472.00

Incremento de P.K.: 20.00

P.K.	Ordenada	Abscisa	Orientación de tangente
0+000.00	4,445,117.1743m	734,068.3405m	S54.673128E (d)
0+020.00	4,445,105.4690m	734,084.5571m	S53.682700E (d)
0+040.00	4,445,093.4852m	734,100.5689m	S52.692272E (d)

ALTERNATIVA NORTE. DISEÑO DE LOS NUDOS

Nombre de alineación: Glorieta Oeste Ramal Salida Figueroles Acceso_BORDE_IZQUIERDO

Descripción:

Intervalo de P.K.: inicio: 0+000.00, fin: 5+524.00

Incremento de P.K.: 20.00

P.K.	Ordenada	Abscisa	Orientación de tangente
0+000.00	4,445,123.0130m	734,072.2597m	S59.592463E (d)
0+020.00	4,445,113.0495m	734,089.6009m	S60.647659E (d)
0+040.00	4,445,103.4070m	734,107.1226m	S61.702855E (d)

Nombre de alineación: Glorieta Oeste Ramal Variante Acceso BORDE_DERECHO

Descripción:

Intervalo de P.K.: inicio: 0+000.00, fin: 5+463.00

Incremento de P.K.: 20.00

P.K.	Ordenada	Abscisa	Orientación de tangente
0+000.00	4,445,116.1652m	734,186.9035m	S66.314794O (d)
0+020.00	4,445,108.3063m	734,168.5127m	S67.408317O (d)
0+040.00	4,445,100.7997m	734,149.9751m	S68.501841O (d)

Nombre de alineación: Glorieta Oeste Ramal Variante Acceso BORDE_IZQUIERDO

Descripción:

Intervalo de P.K.: inicio: 0+000.00, fin: 5+574.00

Incremento de P.K.: 20.00

P.K.	Ordenada	Abscisa	Orientación de tangente
0+000.00	4,445,110.0574m	734,190.3965m	S61.440566O (d)
0+020.00	4,445,100.3485m	734,172.9115m	S60.475518O (d)
0+040.00	4,445,090.3465m	734,155.5924m	S59.510471O (d)

Nombre de alineación: Glorieta Oeste_BORDE_EXTERIOR

Descripción:

Intervalo de P.K.: inicio: 0+000.00, fin: 11+624.00

P.K.	Ordenada	Abscisa	Orientación de tangente
0+000.00	4,445,083.2052m	734,145.8906m	S0.000000E (d)
0+020.00	4,445,066.8796m	734,136.0925m	S61.941383O (d)
0+040.00	4,445,067.8469m	734,117.0769m	N56.117233O (d)
0+060.00	4,445,085.0825m	734,108.9861m	N5.824150E (d)
0+080.00	4,445,100.3296m	734,120.3902m	N67.765533E (d)
0+100.00	4,445,097.4377m	734,139.2095m	S50.293084E (d)

Nombre de alineación: Glorieta Oeste_BORDE_INTERIOR

Descripción:

Intervalo de P.K.: inicio: 0+000.00, fin: 6+954.00

P.K.	Ordenada	Abscisa	Orientación de tangente
0+000.00	4,445,083.2052m	734,138.4586m	S0.000000E (d)
0+020.00	4,445,072.4446m	734,124.8004m	N76.465885O (d)
0+040.00	4,445,088.2417m	734,117.5349m	N27.068231E (d)
0+060.00	4,445,091.6085m	734,134.5937m	S49.397654E (d)

ALTERNATIVA NORTE. DISEÑO DE LOS NUDOS

Nombre de alineación: Glorieta_ISLETA Interior

Descripción:

Intervalo de P.K.: inicio: 0+000.00, fin: 5+939.00

Incremento de P.K.: 20.00

P.K.	Ordenada	Abscisa	Orientación de tangente
0+000.00	4,445,083.2052m	734,136.8436m	S0.000000E (d)
0+020.00	4,445,075.1214m	734,122.4905m	N58.777574O (d)
0+040.00	4,445,091.5859m	734,123.0176m	N62.444851E (d)

Informe de P.K. incremental de alineaciones ESTE

Cliente: Proyecto TFG Figueroles

David Gamarra

Fecha: 07/06/2015 19:57:22

Nombre de alineación: Alineación_ESTE entrada Figueroles

Descripción:

Intervalo de P.K.: inicio: 0+000.00, fin: 44+926.00

Incremento de P.K.: 20.00

P.K.	Ordenada	Abscisa	Orientación de tangente
0+000.00	4,444,356.1826m	736,679.4321m	S47.146245O (d)
0+020.00	4,444,342.5800m	736,664.7703m	S47.146245O (d)
0+040.00	4,444,329.0039m	736,650.0843m	S48.649523O (d)
0+060.00	4,444,317.3082m	736,633.8983m	S59.648060O (d)

0+080.00	4,444,308.9154m	736,615.7784m	S70.646597O (d)
0+100.00	4,444,304.1337m	736,596.3900m	S81.645134O (d)
0+120.00	4,444,303.1389m	736,576.4455m	N87.356329O (d)
0+140.00	4,444,305.1352m	736,556.5489m	N83.644155O (d)
0+160.00	4,444,307.4057m	736,536.6783m	N82.917882O (d)
0+180.00	4,444,310.4287m	736,516.9118m	N79.157442O (d)
0+200.00	4,444,315.2839m	736,497.5228m	N72.191644O (d)
0+220.00	4,444,322.8348m	736,479.0242m	N63.422296O (d)
0+240.00	4,444,332.8927m	736,461.7506m	N56.690161O (d)
0+260.00	4,444,344.4595m	736,445.4386m	N53.163384O (d)
0+280.00	4,444,356.5788m	736,429.5289m	N52.585890O (d)
0+300.00	4,444,368.7303m	736,413.6436m	N52.585890O (d)
0+320.00	4,444,380.8817m	736,397.7583m	N52.585890O (d)
0+340.00	4,444,393.0331m	736,381.8730m	N52.585890O (d)
0+360.00	4,444,402.2900m	736,364.2890m	N73.618304O (d)
0+380.00	4,444,405.8946m	736,344.6289m	N80.705560O (d)
0+400.00	4,444,406.6071m	736,324.7497m	S81.072003O (d)
0+420.00	4,444,399.7695m	736,306.0801m	S61.698017O (d)
0+440.00	4,444,390.2871m	736,288.4709m	S61.698017O (d)

David Gamarra Sahuquillo Anejo: Diseño de los Nudos A3.6 58

ALTERNATIVA NORTE. DISEÑO DE LOS NUDOS

Nombre de alineación: Intersección este. Borde derecho carril secundario

Descripción:

Intervalo de P.K.: inicio: 0+000.00, fin: 3+362.00

Incremento de P.K.: 20.00

P.K.	Ordenada	Abscisa	Orientación de tangente
0+000.00	4,444,339.3768m	736,666.4637m	N47.146245E (d)
0+020.00	4,444,348.5312m	736,683.0900m	S75.557976E (d)

Nombre de alineación: Intersección este. Borde izquierdo carril secundario

Descripción:

Intervalo de P.K.: inicio: 0+000.00, fin: 2+550.00

Incremento de P.K.: 20.00

P.K.	Ordenada	Abscisa	Orientación de tangente
0+000.00	4,444,365.1389m	736,660.6461m	S54.841949E (d)
0+020.00	4,444,348.6316m	736,665.9474m	S37.693987O (d)

Nombre de alineación: Variante

Descripción:

Intervalo de P.K.: inicio: 0+000.00, fin: 326+800.00

Incremento de P.K.: 20.00

P.K.	Ordenada	Abscisa	Orientación de tangente
0+000.00	4,444,250.3036m	736,829.6810m	N54.828030O (d)
0+020.00	4,444,261.8243m	736,813.3325m	N54.828030O (d)
0+040.00	4,444,273.3449m	736,796.9840m	N54.828030O (d)
0+060.00	4,444,284.8656m	736,780.6354m	N54.828030O (d)
0+080.00	4,444,296.3862m	736,764.2869m	N54.828030O (d)
0+100.00	4,444,307.9069m	736,747.9384m	N54.828030O (d)

0+120.00	4,444,319.4275m	736,731.5898m	N54.828030O (d)
0+140.00	4,444,330.9482m	736,715.2413m	N54.828030O (d)
0+160.00	4,444,342.4688m	736,698.8928m	N54.828030O (d)
0+180.00	4,444,353.9895m	736,682.5442m	N54.828030O (d)
0+200.00	4,444,365.5101m	736,666.1957m	N54.828030O (d)
0+220.00	4,444,376.9275m	736,649.7754m	N56.060767O (d)
0+240.00	4,444,387.5231m	736,632.8185m	N60.474626O (d)
0+260.00	4,444,396.2791m	736,614.8535m	N68.064366O (d)
0+280.00	4,444,402.5014m	736,595.8594m	N75.124144O (d)
0+300.00	4,444,406.8912m	736,576.3510m	N78.978563O (d)
0+320.00	4,444,410.5070m	736,556.6807m	N79.769479O (d)
0+340.00	4,444,414.1295m	736,537.0117m	N79.055157O (d)
0+360.00	4,444,418.3199m	736,517.4574m	N76.433458O (d)
0+380.00	4,444,423.7237m	736,498.2067m	N71.885850O (d)
0+400.00	4,444,430.9444m	736,479.5668m	N65.538020O (d)
0+420.00	4,444,440.2767m	736,461.8907m	N58.797340O (d)
0+440.00	4,444,451.6193m	736,445.4321m	N52.056660O (d)
0+460.00	4,444,464.8153m	736,430.4186m	N45.315980O (d)
0+480.00	4,444,479.6809m	736,417.0560m	N38.647736O (d)
0+500.00	4,444,495.8837m	736,405.3433m	N33.398222O (d)
0+520.00	4,444,512.9202m	736,394.8722m	N30.074617O (d)
0+540.00	4,444,530.3756m	736,385.1106m	N28.676921O (d)
0+520.00 0+540.00			

0+560.00	4,444,547.9300m	736,375.5271m	N28.627853O (d)
0+580.00	4,444,565.4850m	736,365.9447m	N28.627853O (d)
0+600.00	4,444,583.0400m	736,356.3624m	N28.627853O (d)
0+620.00	4,444,600.5950m	736,346.7800m	N28.627853O (d)
0+640.00	4,444,618.1500m	736,337.1976m	N28.627853O (d)
0+660.00	4,444,635.7050m	736,327.6153m	N28.627853O (d)
0+680.00	4,444,653.2600m	736,318.0329m	N28.627853O (d)
0+700.00	4,444,670.8150m	736,308.4505m	N28.627853O (d)
0+720.00	4,444,688.3700m	736,298.8681m	N28.627853O (d)
0+740.00	4,444,705.9250m	736,289.2858m	N28.627853O (d)
0+760.00	4,444,723.4800m	736,279.7034m	N28.627853O (d)
0+780.00	4,444,741.0350m	736,270.1210m	N28.627853O (d)
0+800.00	4,444,758.5900m	736,260.5387m	N28.627853O (d)
0+820.00	4,444,776.1450m	736,250.9563m	N28.627853O (d)
0+840.00	4,444,793.7001m	736,241.3739m	N28.627853O (d)
0+860.00	4,444,811.2237m	736,231.7345m	N29.242915O (d)
0+880.00	4,444,828.5139m	736,221.6845m	N31.340039O (d)
0+900.00	4,444,845.2829m	736,210.7910m	N34.925366O (d)
0+920.00	4,444,861.1829m	736,198.6692m	N39.874319O (d)
0+940.00	4,444,875.9284m	736,185.1675m	N45.083026O (d)
0+960.00	4,444,889.3873m	736,170.3830m	N50.291734O (d)
0+980.00	4,444,901.4484m	736,154.4376m	N55.500441O (d)

1+000.00	4,444,912.0121m	736,137.4631m	N60.709148O (d)
1+020.00	4,444,921.0535m	736,119.6294m	N65.278001O (d)
1+040.00	4,444,928.8850m	736,101.2292m	N68.362584O (d)
1+060.00	4,444,935.9593m	736,082.5228m	N69.958965O (d)
1+080.00	4,444,942.7483m	736,063.7103m	N70.203012O (d)
1+100.00	4,444,949.5221m	736,044.8924m	N70.203012O (d)
1+120.00	4,444,956.2959m	736,026.0744m	N70.203012O (d)
1+140.00	4,444,963.0696m	736,007.2564m	N70.203012O (d)
1+160.00	4,444,969.8434m	735,988.4384m	N70.203012O (d)
1+180.00	4,444,976.6172m	735,969.6205m	N70.203012O (d)
1+200.00	4,444,983.3910m	735,950.8025m	N70.203012O (d)
1+220.00	4,444,990.1647m	735,931.9845m	N70.203012O (d)
1+240.00	4,444,996.9385m	735,913.1666m	N70.203012O (d)
1+260.00	4,445,003.7123m	735,894.3486m	N70.203012O (d)
1+280.00	4,445,010.4860m	735,875.5306m	N70.203012O (d)
1+300.00	4,445,017.2598m	735,856.7126m	N70.203012O (d)
1+320.00	4,445,024.0336m	735,837.8947m	N70.203012O (d)
1+340.00	4,445,030.8073m	735,819.0767m	N70.203012O (d)
1+360.00	4,445,037.5811m	735,800.2587m	N70.203012O (d)
1+380.00	4,445,044.3549m	735,781.4408m	N70.203012O (d)
1+400.00	4,445,051.1286m	735,762.6228m	N70.203012O (d)
1+420.00	4,445,057.9024m	735,743.8048m	N70.203012O (d)

1+440.00	4,445,064.6762m	735,724.9868m	N70.203012O (d)
1+460.00	4,445,071.4499m	735,706.1689m	N70.203012O (d)
1+480.00	4,445,078.2237m	735,687.3509m	N70.203012O (d)
1+500.00	4,445,084.9975m	735,668.5329m	N70.203012O (d)
1+520.00	4,445,091.7713m	735,649.7150m	N70.203012O (d)
1+540.00	4,445,098.5450m	735,630.8970m	N70.203012O (d)
1+560.00	4,445,105.3188m	735,612.0790m	N70.203012O (d)
1+580.00	4,445,112.0926m	735,593.2610m	N70.203012O (d)
1+600.00	4,445,118.8062m	735,574.4217m	N70.810432O (d)
1+620.00	4,445,125.0752m	735,555.4307m	N72.901335O (d)
1+640.00	4,445,130.3963m	735,536.1550m	N76.482764O (d)
1+660.00	4,445,134.2577m	735,516.5375m	N81.325394O (d)
1+680.00	4,445,136.5555m	735,496.6739m	N85.229069O (d)
1+700.00	4,445,137.7556m	735,476.7114m	N87.642219O (d)
1+720.00	4,445,138.3741m	735,456.7212m	N88.564845O (d)
1+740.00	4,445,138.8715m	735,436.7274m	N88.575397O (d)
1+760.00	4,445,139.3687m	735,416.7336m	N88.575397O (d)
1+780.00	4,445,139.8659m	735,396.7398m	N88.575397O (d)
1+800.00	4,445,140.3631m	735,376.7459m	N88.575397O (d)
1+820.00	4,445,140.8604m	735,356.7521m	N88.575397O (d)
1+840.00	4,445,141.3576m	735,336.7583m	N88.575397O (d)
1+860.00	4,445,141.8548m	735,316.7645m	N88.575397O (d)

1+880.00	4,445,142.3521m	735,296.7707m	N88.575397O (d)
1+900.00	4,445,142.8493m	735,276.7768m	N88.575397O (d)
1+920.00	4,445,143.3465m	735,256.7830m	N88.575397O (d)
1+940.00	4,445,143.8437m	735,236.7892m	N88.575397O (d)
1+960.00	4,445,144.3410m	735,216.7954m	N88.575397O (d)
1+980.00	4,445,144.8382m	735,196.8016m	N88.575397O (d)
2+000.00	4,445,145.3354m	735,176.8078m	N88.575397O (d)
2+020.00	4,445,145.8308m	735,156.8139m	N88.633855O (d)
2+040.00	4,445,146.1482m	735,136.8168m	N89.795083O (d)
2+060.00	4,445,145.8007m	735,116.8216m	S87.555487O (d)
2+080.00	4,445,144.2704m	735,096.8846m	S83.417854O (d)
2+100.00	4,445,141.0967m	735,077.1447m	S78.382519O (d)
2+120.00	4,445,136.3764m	735,057.7135m	S74.557531O (d)
2+140.00	4,445,130.6179m	735,038.5619m	S72.220746O (d)
2+160.00	4,445,124.3290m	735,019.5766m	S71.372162O (d)
2+180.00	4,445,117.9394m	735,000.6247m	S71.368494O (d)
2+200.00	4,445,111.5498m	734,981.6729m	S71.368494O (d)
2+220.00	4,445,105.1602m	734,962.7210m	S71.368494O (d)
2+240.00	4,445,098.7706m	734,943.7692m	S71.368494O (d)
2+260.00	4,445,092.3810m	734,924.8173m	S71.368494O (d)
2+280.00	4,445,085.9914m	734,905.8654m	S71.368494O (d)
2+300.00	4,445,079.6018m	734,886.9136m	S71.368494O (d)

2+320.00	4,445,073.2122m	734,867.9617m	S71.368494O (d)
2+340.00	4,445,066.9290m	734,848.9746m	S72.372617O (d)
2+360.00	4,445,061.3442m	734,829.7729m	S75.557620O (d)
2+380.00	4,445,057.2079m	734,810.2128m	S80.925320O (d)
2+400.00	4,445,055.2865m	734,790.3192m	S88.245583O (d)
2+420.00	4,445,056.0067m	734,770.3470m	N84.114979O (d)
2+440.00	4,445,059.3756m	734,750.6478m	N76.475542O (d)
2+460.00	4,445,065.3327m	734,731.5710m	N68.874460O (d)
2+480.00	4,445,073.5835m	734,713.3628m	N62.735559O (d)
2+500.00	4,445,083.4070m	734,695.9462m	N58.779355O (d)
2+520.00	4,445,094.0905m	734,679.0396m	N57.005847O (d)
2+540.00	4,445,105.0095m	734,662.2833m	N56.899249O (d)
2+560.00	4,445,115.9317m	734,645.5290m	N56.899249O (d)
2+580.00	4,445,126.8540m	734,628.7748m	N56.899249O (d)
2+600.00	4,445,137.7762m	734,612.0206m	N56.899249O (d)
2+620.00	4,445,148.6985m	734,595.2663m	N56.899249O (d)
2+640.00	4,445,159.6203m	734,578.5118m	N56.930247O (d)
2+660.00	4,445,170.3105m	734,561.6099m	N58.978711O (d)
2+680.00	4,445,179.8998m	734,544.0667m	N64.232533O (d)
2+700.00	4,445,187.3325m	734,525.5180m	N72.449102O (d)
2+720.00	4,445,191.8758m	734,506.0611m	N81.263837O (d)
2+740.00	4,445,193.3840m	734,486.1379m	S89.921428O (d)

2+760.00	4,445,191.8212m	734,466.2188m	S81.106692O (d)
2+780.00	4,445,187.4022m	734,446.7267m	S73.880616O (d)
2+800.00	4,445,181.0916m	734,427.7528m	S69.859867O (d)
2+820.00	4,445,173.9820m	734,409.0593m	S68.947790O (d)
2+840.00	4,445,166.7977m	734,390.3943m	S68.947790O (d)
2+860.00	4,445,159.6133m	734,371.7292m	S68.947790O (d)
2+880.00	4,445,152.4289m	734,353.0641m	S68.947790O (d)
2+900.00	4,445,145.2446m	734,334.3990m	S68.947790O (d)
2+920.00	4,445,138.0602m	734,315.7340m	S68.947790O (d)
2+940.00	4,445,130.8758m	734,297.0689m	S68.947790O (d)
2+960.00	4,445,123.6914m	734,278.4038m	S68.947790O (d)
2+980.00	4,445,116.5071m	734,259.7388m	S68.947790O (d)
3+000.00	4,445,109.3227m	734,241.0737m	S68.947790O (d)
3+020.00	4,445,102.1383m	734,222.4086m	S68.947790O (d)
3+040.00	4,445,094.9664m	734,203.7389m	S69.761004O (d)
3+060.00	4,445,089.4969m	734,184.5212m	S78.465857O (d)
3+080.00	4,445,086.9990m	734,164.6972m	S87.170710O (d)
3+100.00	4,445,087.5301m	734,144.7235m	N84.124436O (d)
3+120.00	4,445,091.0780m	734,125.0603m	N75.419583O (d)
3+140.00	4,445,097.5610m	734,106.1605m	N66.714730O (d)
3+160.00	4,445,106.7803m	734,088.4300m	N59.702946O (d)
3+180.00	4,445,116.8700m	734,071.1616m	N59.702946O (d)

3+200.00	4,445,127.2551m	734,054.0812m	N55.361686O (d)
3+220.00	4,445,138.6230m	734,037.6260m	N55.361686O (d)
3+240.00	4,445,149.9908m	734,021.1709m	N55.361686O (d)
3+260.00	4,445,161.3587m	734,004.7158m	N55.361686O (d)

4.BIBLIOGRAFIA

Norma 3.1-I.C."Trazado"

Norma 8.1-I.C. "Señalización Vertical"

Norma 8.2-I.C. "Señalización Horizontal"

Normativa complementaria de Nudos

Normativa trazado Glorietas

Carreteros.org

Wikivia.org

HCM 2010

Cetur-86

http://www.fomento.gob.es

5. AGRADECIMIENTOS

Con este trabajo final de carrera se cierra para muchos una parte de su vida y se abre otra.

Quisiera reflexionar por qué estoy aquí ahora...

El gusanillo por los ladrillos nace con mi abuelo Ignacio, haciendo cemento para tapar hormigueros, sin duda eso fue determinante.

Seguramente la mayor parte de culpa sea de mis padres, ellos siempre han confiado en mí y me han apoyado en todo momento, gracias papás, os quiero.

Mi pequeña hermanita es una pieza clave por mucho que peleemos y estoy seguro que peleando como sabe en el tatami conseguirá sus metas como consigo yo esta, gracias.

Otra persona especial es Teresa, quién me sorprende con sus ocurrencias a diario y me hace disfrutar de las pequeñas cosas.

Por último mis amigos, vitales para desconectar de vez en cuando y filosofear a veces en exceso.

También quiero agradecer a mis tutores Ana y Javier su ayuda vital para la redacción de este TFG. Sois unos maquinas los dos, ojalá hubiera más profesores así.

No quiero finalizar sin dar las gracias a toda esa gente que desinteresadamente te da ánimo de corazón para lograr tus metas, te alegra el día con su permanente sonrisa o emplean el sentido común en sus acciones por encima de reglas o leyes.

"La ciencia puede divertirnos y fascinarnos, pero es la ingeniería la que cambia el mundo" Isaac Asimov

DAVID