
Escuela Técnica Superior de Ingeniería Informática
Universitat Politècnica de València

Currency trading platform

Final Degree Project

Ingeniería Informática

Author: Alberto del Barrio Albelda

Director: Moisés Pastor i Gadea

September 10, 2015

Dedicated to my girlfriend for the long nights of work,
and to my family for making this possible.

Abstract

This project aims to build a web platform for intra day currency investors.
Using the platform a trader is able to place orders, in real time, in the
btc-e.com exchange, view the state of his wallet, look over the past orders
and transactions, check the balance of his account, etc. The project fetches,
stores, analyzes and transforms the information provided by the API of the
exchange.
The platform enhances and adds functionality to basic operations provided by
the exchange. For example it allows a trader to create several kind of orders
which can expire after a defined date, be sliced between certain boundaries
and much more.
A user registered in the platform can analyze the result of his orders looking
at the high detailed reports automatically generated.

The design of the UI is clean and precise, with attention to the style,
trying to make it as much attractive as possible for the investors.

The project consists also in designing the architecture of a high scalable
web application. The system itself uses queues talking AMQP protocol for
the communication between the front end and the back end components; it
has long running processes, looking for changes in the market price of an
asset, as well as scheduled processes, gathering information every minute.
Having all the components running properly implies a lot of work in the server
side. This represents an important part of the project: decisions like which
web server choose or how to ensure that a process is running all the time
are widely discussed. Furthermore it explains how the application is running
inside the server, which users are needed, how the MySQL database is con-
figured, how RabbitMQ achieves persistence of the queues against crashes,
etc.

But most of all, the project is about learning the elegant and simple
Pythonic Way while developing a high scalable application and making my
firsts steps into an trading exchange.

Keywords: cryptocurrency, trading, Bitcoin, markets, exchange, Django, Python.

Contents

I Introduction 9

1 Overview 10

2 Cryptocurrencies 12
2.1 History . 12

2.1.1 Early Days . 12
2.1.2 Digital Cash . 12
2.1.3 Web Based Money . 13
2.1.4 The regulation period 14

2.2 Bitcoin . 15
2.2.1 Overview . 15
2.2.2 History . 16
2.2.3 Satoshi Nakamoto . 16
2.2.4 Transactions . 17
2.2.5 Security . 17
2.2.6 Block chain . 18
2.2.7 Wallet . 19
2.2.8 Mining . 19

2.3 Altcoins . 20
2.3.1 Namecoin . 21
2.3.2 Litecoin . 25
2.3.3 Dogecoin . 26
2.3.4 Other Altcoins . 28

3 Markets 29
3.1 btc-e.com . 29
3.2 BtcChina . 29
3.3 Bitstamp . 30

3.3.1 Service disruptions . 31
3.4 Coinbase . 32

3.4.1 History . 32

2

Contents Contents

3.4.2 Products . 33
3.5 Mt. Gox . 33

3.5.1 History . 33
3.5.2 Security breach . 34
3.5.3 Insolvency and shutdown 35

3.6 Cryptsy . 36
3.7 Markets comparison . 36

II Currency trading platform 39

4 Architecture overview 40
4.1 Introduction . 40
4.2 Web server and gateway interface 41
4.3 Front end . 42
4.4 Back end . 43
4.5 Database . 44

5 Project deployment 45
5.1 Server . 45

5.1.1 First server . 45
5.1.2 Current server . 45

5.2 Configuration management: Chef 46
5.3 Python virtual environment 49
5.4 Processes manager: Supervisor 50
5.5 Git . 50

6 Front end 52
6.1 Django overview . 52

6.1.1 Introduction . 52
6.1.2 Security . 53
6.1.3 Structure of a Django project 54

6.2 Implementation . 58
6.2.1 Base template . 58
6.2.2 CSS . 60
6.2.3 Charts . 62
6.2.4 Disclaimer . 63

7 Application insights 64
7.1 Introduction to the chapter 64
7.2 Users . 64

3

Contents Contents

7.2.1 Settings . 65
7.2.2 Log in . 68
7.2.3 Log out . 69

7.3 Wallet . 69
7.3.1 Summary . 70
7.3.2 Funds . 72
7.3.3 Fund . 75
7.3.4 Reports . 76
7.3.5 Trade history . 80
7.3.6 Transaction history . 82

7.4 Orders . 85
7.4.1 Active orders . 85
7.4.2 Base order . 88
7.4.3 Btce order . 91
7.4.4 Simple order . 92
7.4.5 Sliced order . 95
7.4.6 Time based order . 99
7.4.7 Paired order . 101
7.4.8 Stop loss order . 105

8 Back end 108
8.1 Introduction . 108
8.2 Long running processes . 108

8.2.1 Timer order manager 109
8.2.2 Fetch tickers . 109

8.3 Queues . 109
8.3.1 Tickers queue . 110
8.3.2 Timer order queue . 110

8.4 Scheduled processes . 110
8.4.1 User funds . 111
8.4.2 Feed executed orders 111
8.4.3 Store tickers . 112

8.5 Btc-e API . 113
8.5.1 Introduction . 113
8.5.2 Nonce generator . 114
8.5.3 Public methods . 115
8.5.4 Private methods . 116

4

Contents Contents

III Ending 122

9 Conclusion and future work 123
9.1 Conclusions . 123
9.2 Future of the platform . 124

10 Appendix 125
10.1 Configuration files . 125

10.1.1 NGINX . 125
10.1.2 uWSGI . 126
10.1.3 Django . 127
10.1.4 Chef . 129

10.2 Application code . 133
10.3 Base . 133

10.3.1 Main navigation menu 134
10.3.2 URLs . 136
10.3.3 Users . 136
10.3.4 Wallet . 146
10.3.5 Orders . 168

10.4 Back end . 203
10.4.1 Time order manager 203
10.4.2 Tickers fetcher . 205
10.4.3 Funds fetcher . 206
10.4.4 Feed executed orders 207
10.4.5 Store tickers . 209
10.4.6 btc-e API methods . 210

5

Listings

6.1 Base template. 58
7.1 Get funds in active orders. 73
7.2 Active orders view. 85
7.3 Pseudocode of slicing algorithm. 95
7.4 Contra order form. 104
10.1 Django settings. 125
10.2 Django settings. 126
10.3 Django settings. 127
10.4 Chef default recipe. 129
10.5 Chef server recipe. 131
10.6 Base template. 133
10.7 Navigation menu. 134
10.8 Base urls. 136
10.9 Users models. 136
10.10 Users view. 138
10.11 Wallet forms. 141
10.12 Users base template. 143
10.13 Users preferences template. 143
10.14 Change API keys template. 144
10.15 Change password template. 144
10.16 Login template. 145
10.17 Users urls. 146
10.18 Wallet models. 146
10.19 Wallet views. 148
10.20 Wallet forms. 155
10.21 Base template. 157
10.22 Wallet summary template. 158
10.23 Fund template. 160
10.24 Funds template. 161
10.25 Reports template. 162
10.26 Trade history template. 165

6

Listings Listings

10.27 Transaction history template. 166
10.28 Wallet URLs. 167
10.29 Order models. 168
10.30 Order views. 178
10.31 Order forms. 185
10.32 Base order template. 186
10.33 Active orders template. 188
10.34 Simple order template. 193
10.35 Sliced order template. 194
10.36 Time based order template. 196
10.37 Paired order template. 198
10.38 Stop loss order template. 200
10.39 Order URLs. 202
10.40 Time based order manager. 203
10.41 Fetch tickers process. 205
10.42 Fetch user funds. 206
10.43 Feed executed orders. 207
10.44 Fetch tickers. 209
10.45 btc-e API methods. 210

7

List of Figures

1.1 Btc-e screenshot. 11

3.1 Comparison of markets by volume. 37
3.2 Comparison of markets by currencies. 38

4.1 Architecture of the application. 41

5.1 RAID 1 . 46

6.1 Django model-view-controller 53

7.1 Info page. 67
7.2 Change password page. 67
7.3 Change API keys page. 67
7.4 Log in page. 69
7.5 Summary page. 72
7.6 Funds page. 75
7.7 Fund page. 76
7.8 Reports page 1. 79
7.9 Reports page 2. 80
7.10 Reports page 3. 80
7.11 Trade history page. 82
7.12 Transaction history page. 84
7.13 Active orders page 1. 88
7.14 Active orders page 2. 88
7.15 Simple order page. 95
7.16 Sliced order page. 99
7.17 Time based order page. 101
7.18 Paired order page. 105
7.19 Stop loss order page. 107

8

Part I

Introduction

9

Chapter 1

Overview

The idea of making this project came while trading in btc-e.com1.
This exchange market provides a web page where traders can change curren-
cies. The structure of the web page is composed by five sections located in
consecutive rows.
The first one, located at the top of the page, is a chart where are displayed,
in form of Japanese Candels2, the market values for an available pair of cur-
rencies. The chart covers only the lasts 24 hours of prices.
On the left side a chat is displayed, where registered users can speak.
The second section contains two boxes with two fields and two buttons each
one. Here a logged user can create order to buy or sell a quantity of the
selected pair of currencies.
In the third section, there are two boxes listing the nearest 40 buy and sell
orders executed by the exchange.
The fourth section shows a list with the ongoing active orders of the selected
pair for a logged user.
The last section, located at the bottom of the page, is one list with the lasts
orders executed, both sells and buys together for the authenticated user.
This is how the page looks like.

1https://btc-e.com
2http://stockcharts.com/school/doku.php?id=chart_school:chart_analysis:

introduction_to_candlesticks

10

https://btc-e.com
http://stockcharts.com/school/doku.php?id=chart_school:chart_analysis:introduction_to_candlesticks
http://stockcharts.com/school/doku.php?id=chart_school:chart_analysis:introduction_to_candlesticks

Chapter 1. Overview

Figure 1.1: Btc-e screenshot.

The interface is not giving enough information for a trader who wants to
expend big amounts of money trading in the platform.
However the web application provides a good API 8.5.1 for the interaction
with it. Thanks to this API, many web pages and services have been built
around this market.
A good example of one of this service is bitcoinwisdom3. This web page is
widely used by traders because it exposes high quality charts from many
cryptocurrency markets. In these charts, a user can change the visualization
period time, the kind of chart, use different indicators to try to predict the
future prices of the assets and even has the possibility to put sound alarms
alerting when the price reach a value.
After some months of trading with this platform I felt the necessity of other
tools which help me in making more intelligent decisions based on different
indicators.
After some months more, I have decided to build my own platform on top of
btc-e.

3https://bitcoinwisdom.com

11

https://bitcoinwisdom.com

Chapter 2

Cryptocurrencies

2.1 History

2.1.1 Early Days
The first known attempt at cryptocurrencies occurred in the Netherlands, in
the late 1980s, 20 years before BTC. In the middle of the night, the petrol
stations in the remoter areas were being raided for cash, and the operators
were unhappy putting guards at risk there. But the petrol stations had to
stay open overnight so that the trucks could refuel. Someone had the bright
idea of putting money onto the new-fangled smartcards that were then being
developed, and so electronic cash was born. Drivers of trucks were given
these cards instead of cash, and the stations were now safer from robbery.
At the same time the dominant retailer, Albert Heijn1, was pushing the
banks to invent some way to allow shoppers to pay directly from their bank
accounts, which became eventually to be known as POS or point-of-sale.

2.1.2 Digital Cash
Even before this, David Chaum2, an American cryptographer, had been in-
vestigating what it would take to create electronic cash. His views on money
and privacy led him to believe that in order to do safe commerce, we would
need a token money that would emulate physical coins and paper notes:
specifically, the privacy feature of being able to safely pay someone hand-to-
hand, and have that transaction complete safely and privately.

1https://en.wikipedia.org/wiki/Albert_Heijn
2https://en.wikipedia.org/wiki/David_Chaum

12

https://en.wikipedia.org/wiki/Albert_Heijn
https://en.wikipedia.org/wiki/David_Chaum

Chapter 2. Cryptocurrencies 2.1. History

As far back as 1983, David Chaum invented the blinding formula, which is
an extension of the RSA3 algorithm which enables a person to pass a number
across to another person, and that number to be modified by the receiver.
When the receiver deposits her coin, as Chaum called it, into the bank, it
bears the original signature of the mint, but it is not the same number as that
which the mint signed. Chaum’s invention allowed the coin to be modified
untraceable without breaking the signature of the mint, hence the mint or
bank was blind to the transaction.

All of this interest and also the Netherlands historically feverish attitude
to privacy probably had a lot to do with David Chaum’s decision to migrate
to the Netherlands. When working in the late 1980s at CWI, a hotbed of
cryptography and mathematics research in Amsterdam, he started DigiCash
and proceeded to build his Internet money invention, employing amongst
many others names that would later become famous: Stefan Brands, Niels
Ferguson, Gary Howland, Marcel “BigMac” van der Peijl, Nick Szabo, and
Bryce “Zooko” Wilcox-Ahearn.

The invention of blinded cash was extraordinary and it caused an un-
precedented wave of press attention. Unfortunately, David Chaum and his
company made some missteps, and fell foul of the central bank (De Neder-
landsche Bank or DNB). The private compromise that they agreed to was
that Digicash’s e-cash product would only be sold to banks. This accommo-
dation then led the company on a merry dance attempting to field a viable
digital cash through many banks, ending up eventually in bankruptcy in
1998. The amount of attention in the press brought very exciting deals to
the table, with Microsoft, Deutsche Bank and others, but David Chaum was
unable to use them to get to the next level. At one point Microsoft offered
Chaum $180 million to put DigiCash on every Windows PC. But Chaum
that it was not enough money, and the deal fell through, and Digicash ran
out of money.

2.1.3 Web Based Money
On the coattails of Digicash there were hundreds of startups per year working
on this space. In the mid 1990s, the attention switched from Europe to North
America for two factors: the Netscape IPO had released a huge amount of
interest, and also Europe had brought in the first regulatory clampdown on

3https://en.wikipedia.org/wiki/RSA_%28cryptosystem%29

13

https://en.wikipedia.org/wiki/RSA_%28cryptosystem%29

2.1. History Chapter 2. Cryptocurrencies

digital cash: the 1994 EU Report on Prepaid Cards, which morphed into a
reaction against DigiCash.

Yet, the first great wave of cryptocurrencies spluttered and died, and was
instead overtaken by a second wave of web-based monies. First Virtual was a
first brief spurt of excitement, to be almost immediately replaced by PayPal4
which did more or less the same thing. PayPal allowed the money to go from
person to person, whereas First Virtual had insisted that to accept money
you must “be a merchant,” which was a popular restriction from banks and
regulators, but people hated it. PayPal also leapt forward by proposing its
system as being a hand-to-hand cash, literally: the first versions were on the
Palm Pilot, which was extraordinarily popular with geeks. This geek-focus
was quickly abandoned as PayPal discovered that what people really wanted
was money on the web browser. Also, having found a willing user base in the
eBay community, its future was more or less guaranteed as long as it avoided
the bank minefield laid out for it.
So, in this moment the transfer of money was accepted as web protocol, so
Chaum’s ideas were more or less forgotten in the wider western marketplace,
although the tradition was alive in Russia with WebMoney, and there were
isolated pockets of interest in the crypto communities. In contrast, several
ventures started up chasing a variant of PayPal’s web-hybrid: gold on the
web. The company that succeeded initially was called e-gold5, an American-
based operation that had its corporation in Nevis in the Caribbean. e-gold
was a fairly simple idea: you send in your physical gold or silver, and they
would credit e-gold to your account. Or you could buy new e-gold, by sending
a wire to Florida, and they would buy and hold the physical gold. By tramp-
ing the streets and winning customers over, the founder managed to get the
company into the black and up and growing by around 1999. As e-gold the
currency issuer was offshore, it did not require US onshore approval, and this
enabled it for a time to target the huge American market of ‘goldbugs’ and
also a growing worldwide community of Internet traders who needed to do
cross-border payments. With its popularity on the increase, the independent
exchange market exploded into life in 2000, and its future seemed set.

2.1.4 The regulation period
e-gold however ran into trouble for its libertarian ideal of allowing anyone to
have an account. While in theory this is a fine concept, the steady stream of

4https://en.wikipedia.org/wiki/PayPal
5https://en.wikipedia.org/wiki/E-gold

14

https://en.wikipedia.org/wiki/PayPal
https://en.wikipedia.org/wiki/E-gold

Chapter 2. Cryptocurrencies 2.2. Bitcoin

ponzis, HYIPs, games and other scams attracted the attention of the Feds.
In 2005, e-gold’s Florida offices were raided and that was the end of the cur-
rency as an effective force. The Feds also proceeded to mop up any of the
competitors and exchange operations they could lay their hands on, ensuring
the end of the second great wave of new monies.

In retrospect, 9/11 marked a huge shift in focus. Beforehand, the USA
was fairly liberal about alternative monies, seeing them as potential busi-
ness, innovation for the future. After 9/11 the view switched dramatically,
although slowly; all cryptocurrencies were assumed to be hotbeds of terrorists
and drugs dealers, and therefore valid targets for total control. It is probably
fair to speculate that e-gold did not react so well to the shift. Meanwhile, over
in Europe, they were going the other way around. It had become abundantly
clear that the attempt to shut down cryptocurrencies was too successful, In-
ternet business preferred to base itself in the USA, and there had never been
any evidence of the bad things they were scared of. Successive generations of
the eMoney law were enacted to open up the field, and the slightly less-high
barriers remained deal killers. Which brings us forward to 2008, and the first
public posting of the Bitcoin paper by Satoshi Nakamoto 2.2.3.

Bitcoin is a result of history; when decisions were made, they rebounded
along time and into the design. Nakamoto may have been the mother of
Bitcoin, but it is a child of many fathers: David Chaum’s blinded coins
and the fateful compromise with DNB, e-gold’s anonymous accounts and the
post-9/11 realpolitik, the cypherpunks and their libertarian ideals, the banks
and their industrial control policies, these were the whole cloth out of which
Nakamoto cut the invention.

2.2 Bitcoin

2.2.1 Overview
Bitcoin6 is a digital currency also known as a cryptocurrency created by
Satoshi Nakamoto. Bitcoin is like other currencies as Euro or Dollar: it can
be used to purchase items locally and electronically. However, Bitcoin differs
from conventional money in that it is decentralized and fully independent.
No institution controls the Bitcoin Network and it is not tied to a country

6https://en.wikipedia.org/wiki/Bitcoin

15

https://en.wikipedia.org/wiki/Bitcoin

2.2. Bitcoin Chapter 2. Cryptocurrencies

like the US Dollar. The entire network is maintained by individuals and orga-
nizations referred to as Bitcoin Miners. Bitcoin miners process and verify its
transactions through a mathematical algorithm based on the cryptographic
hash algorithm SHA256.

2.2.2 History
The first version of the Bitcoin software, Version 0.17, was for Microsoft
Windows only and had no command-line interface and it was compiled using
Microsoft Visual Studio. The code was elegant in some ways and inelegant
in others. The code does not appear to have been written by either a total
amateur or a professional programmer; some people speculate based on this
that Satoshi was an academic with a lot of theoretical knowledge but not
much programming experience. Version 0.1 was remarkably complete.
Nakamoto was actively making modifications to the Bitcoin software and
posting technical information on the Bitcoin Forum until his contact with
other Bitcoin developers and the community gradually began to fade in mid-
2010. Until a few months before leaving the Bitcoin project, almost all
modifications to the source code were done by him accepting contributions
relatively rarely. Then, he set up Gavin Andresen8 as his successor by giving
him access to the Bitcoin SourceForge project and a copy of the alert key.

2.2.3 Satoshi Nakamoto
Identity. Satoshi Nakamoto is the pseudonymous of a person or a group of
people who designed and created the original Bitcoin software. There are no
records of Nakamoto’s identity or identities prior to the creation of Bitcoin.
On his P2P foundation profile, Nakamoto claimed to be an individual male
at the age of 37 and living in Japan, which was met with great skepticism
due to his use of English and his Bitcoin software not being documented in
Japanese.

Nationality The British spelling in his written work can imply that Nakamoto
is British. However, he also sometimes used American spelling, which may
indicate that he was intentionally trying to mask his writing style, or that
he is more than one person. Investigations into the real identity of Satoshi
Nakamoto have been attempted by important firms as The New Yorker, Fast
Company and Newsweek.

7https://github.com/bitcoin/bitcoin/releases/tag/v0.1.5
8https://en.wikipedia.org/wiki/Gavin_Andresen

16

https://github.com/bitcoin/bitcoin/releases/tag/v0.1.5
https://en.wikipedia.org/wiki/Gavin_Andresen

Chapter 2. Cryptocurrencies 2.2. Bitcoin

Motivation Nakamoto’s work appears to be politically motivated, as quoted:
"Yes, [we will not find a solution to political problems in cryptography,] but
we can win a major battle in the arms race and gain a new territory of
freedom for several years. Governments are good at cutting off the heads
of a centrally controlled networks like Napster, but pure P2P networks like
Gnutella and Tor seem to be holding their own." - Satoshi Nakamoto

2.2.4 Transactions
Each Bitcoin transaction is done between two pairs and the wallet address of
both members in the transaction, it is recorded into a public log called the
block chain 2.2.6. While Bitcoin can be anonymous, that doesn’t mean it is.
When purchasing Bitcoins on a Bitcoin trading platform or exchange, it has
the user information, the Bitcoins bought can be tied back to the user.
When a user sends Bitcoins to a Bitcoin address, he can not reverse the trans-
action. Unlike credit cards where transaction can be disputed or reversed,
Bitcoins are nonrefundable. Bitcoin can not be replaced either. If a user
wallet is stored on his hard drive, he could lose his Bitcoins in many ways:
being hacked, getting a virus, of loosing the computer. These lost Bitcoins
can never be retrieved. That is why it is so important to take regular backups
and implement measures for Bitcoin wallet security.
Furthermore, merchants cannot initiate charges on you as they can and do
with credit cards. Each transaction must be initiated by the wallet holder,
further underlining the advantages of the Bitcoin system.

2.2.5 Security
Proponents of Bitcoin proclaim its formidable security, and with good rea-
son. In theory, unless 51% of the system is controlled by one party, Bitcoin is
virtually unhackable. For instance, if someone wants to change a transaction
or double spend a Bitcoin, he would have to obtain majority control of the
system and modify every miner in this majority. When there is a disagree-
ment in the block chain, the system overrides the minority with the data
agreed upon by the majority.

51% attack

However, there are concerns that different mining companies and mining
pools could be able to reach 51% of the Bitcoin hashing power and perform
a so called 51% attack on the Bitcoin network9.

9https://en.bitcoin.it/wiki/Weaknesses

17

https://en.bitcoin.it/wiki/Weaknesses

2.2. Bitcoin Chapter 2. Cryptocurrencies

2.2.6 Block chain
The block chain is the main innovation of Bitcoin. A block chain10 is a
transaction database shared by all nodes participating in a system based on
the Bitcoin protocol11. A full copy of a currency’s block chain contains every
transaction ever executed. With this information, one can find out how much
value belonged to each address at any point of the history.
Every block contains a hash of the previous block. This has the effect of
creating a chain of blocks from the genesis block to the current block. Each
block is guaranteed to come after the previous block chronologically because
the previous block’s hash would otherwise not be known. Each block is also
computationally impractical to modify once it has been in the chain for a
while because every block after would also have to be regenerated. These
properties are what make double-spending of Bitcoins very difficult.
Honest generators only build onto a block (by referencing it in blocks they
create) if it is the latest block in the longest valid chain. "Length" is calcu-
lated as total combined difficulty of that chain, not number of blocks, though
this distinction is only important in the context of a few potential attacks.
A chain is valid if all of the blocks and transactions within it are valid, and
only if it starts with the genesis block.
For any block on the chain, there is only one path to the genesis block. Com-
ing from the genesis block, however, there can be forks. One-block forks are
created from time to time when two blocks are created just a few seconds
apart. When that happens, generating nodes build onto whichever one of
the blocks they received first. Whichever block ends up being included in
the next block becomes part of the main chain because that chain is longer.
More serious forks have occurred after fixing bugs that required backward-
incompatible changes.
Blocks in shorter chains (or invalid chains) are not used for anything. When
the Bitcoin client switches to another, longer chain, all valid transactions of
the blocks inside the shorter chain are re-added to the pool of queued trans-
actions and will be included in another block. The reward for the blocks on
the shorter chain will not be present in the longest chain, so they will be
practically lost, which is why a network-enforced 100-block maturation time
for generations exists.
These blocks on the shorter chains are often called "orphan" blocks. This is
because the generation transactions do not have a parent block in the longest
chain, so these generation transactions show up as orphan in the "listtrans-
actions" RPC call. Several pools have misinterpreted these messages and

10https://en.bitcoin.it/wiki/Block_chain
11https://en.bitcoin.it/wiki/Protocol_documentation

18

https://en.bitcoin.it/wiki/Block_chain
https://en.bitcoin.it/wiki/Protocol_documentation

Chapter 2. Cryptocurrencies 2.2. Bitcoin

started calling their blocks "orphans". In reality, these blocks have a parent
block, and might even have children. Because a block can only reference one
previous block, it is impossible for two forked chains to merge.

2.2.7 Wallet
Each wallet address is unique and can not be linked to anyone unless the
creator of that specific Bitcoin address reveals himself.
1Lst6Ro8r5C7QrxAuoZg1LJAuQtP3W9uV2 is an example of a unique user
Bitcoin address used for receiving and sending Bitcoins. To send, receive and
create Bitcoin addresses a user must have a Bitcoin wallet. A Bitcoin wallet
is a software that is essentially your bank account for Bitcoin. Your wallet
can hold as many Bitcoins and Bitcoin addresses you like, and you can own
as many wallets you want.

2.2.8 Mining
Definition

Mining is the process of adding transaction records to Bitcoin’s public ledger
of past transactions. This ledger of past transactions is called the block chain
as it is a chain of blocks. Bitcoin nodes use the block chain to distinguish
legitimate Bitcoin transactions from attempts to re-spend coins that have
already been spent elsewhere.

Mining difficulty

Mining is intentionally designed to be resource-intensive and difficult so that
the number of blocks found each day by miners remains steady. Individual
blocks must contain a proof of work to be considered valid. This proof of
work is verified by other Bitcoin nodes each time they receive a block. Bitcoin
uses the hashcash proof-of-work function.
The difficulty is the measure of how difficult it is to find a new block compared
to the easiest it can ever be. It is recalculated every 2016 blocks to a value
such that the previous 2016 blocks would have been generated in exactly
two weeks had everyone been mining at this difficulty. This will yield, on
average, one block every ten minutes. Mining a block is difficult because the
SHA-256 hash of a block’s header must be lower than or equal to the target
in order for the block to be accepted by the network. This problem can be
simplified for explanation purposes: The hash of a block must start with a
certain number of zeros. The probability of calculating a hash that starts

19

2.3. Altcoins Chapter 2. Cryptocurrencies

with many zeros is very low, therefore many attempts must be made. In
order to generate a new hash each round, a nonce is incremented.

Purpose

The primary purpose of mining is to allow Bitcoin nodes to reach a secure,
tamper-resistant consensus. Mining is also the mechanism used to introduce
Bitcoin into the system: the reward for the miners is obtained using the
transaction fees as well as a the subsidy of newly created coins. These serve
the purpose of disseminating new coins in a decentralized manner as well as
motivating people to provide security for the system.

Mining pools

As more and more miners competed for the limited supply of blocks, indi-
viduals found that they were working for months without finding a block
and receiving any reward for their mining efforts. This made mining some-
thing of a gamble. To address the variance in their income miners started
organizing themselves into pools so that they could share rewards more
evenly. More information about mining pools can be found here: https:
//en.bitcoin.it/wiki/Mining.

2.3 Altcoins
Altcoin12 is a term to define all cryptocurrencies except Bitcoin, the name
is an abbreviation of Bitcoin alternative. Altcoins are referred to as Bitcoin
alternatives because most altcoins hope to either replace or improve upon
at least one Bitcoin component. Almost all of them are forks of the Bitcoin
code.
There are hundreds of altcoins, and are appearing more each day. Most
altcoins are a little more than Bitcoin clones, changing only minor char-
acteristics such as the transactions speed, distribution method, or hashing
algorithm. Most of these coins do not survive for very long time. However,
some altcoins are experimenting with useful features that Bitcoin does not
offer. For example, Darkcoin hopes to provide a platform for completely
anonymous transactions, Namecoin aims to decentralize domain-name regis-
tration for making internet censorship much more difficult and Ripple serves
as a protocol that users can employ to make inter-currency payments easily.
Altcoins are very important for the development and enhancement of the

12https://www.cryptocoinsnews.com/altcoin/

20

https://en.bitcoin.it/wiki/Mining
https://en.bitcoin.it/wiki/Mining
https://www.cryptocoinsnews.com/altcoin/

Chapter 2. Cryptocurrencies 2.3. Altcoins

Bitcoin. Decentralization is one of Bitcoin’s most prominent goals, and alt-
coins further decentralize the cryptocurrency community. Moreover, altcoins
allow developers to experiment with unique features. While it is true that
Bitcoin can copy these features if the developers or community desire, fully-
functioning altcoins are much better "cryptocurrency laboratories" than Bit-
coin’s testnet. Finally, Altcoins give Bitcoin healthy competition. Altcoins
give cryptocurrency users alternative options and forces Bitcoin’s developers
to remain active and continue innovating.
The next sections are diving into the most important and innovative altcoins,
trying to explain the purpose of each one.

2.3.1 Namecoin
Origin

Created in April 2011, Namecoin was the first fork of Bitcoin so it is consid-
ered the first altcoin. Although it is a currency, Namecoin’s primary purpose
is to decentralize domain-name registration, which makes internet censorship
much more difficult protecting free-speech rights online. The main develop-
ers are proud saying "Namecoin is the counter-example to Zooko’s Triangle".
Namecoin has remained one of the most successful altcoins.

Namecoin and dot-bit domains

As explained in the introduction, Namecoin is a cryptocurrency which have
been created with the purpose of being used as an alternative to the do-
main name servers, DNS13. To achieve this, it proposes an approach based
on the block chain instead of the traditional one of having a list of domains
mapping to IPs in several servers. Like this the information of the names
mapping IPs resides in the Namecoin block chain being by default decentral-
ized. The block chain of Namecoin is special because it includes fields for
storing domain registrations, record additions, modifications, etc. Therefore,
the Namecoin block chain provides a transactional history for the Namecoin
namespace. It is possible to browse this block chain and list all the domains
using several websites, for example the Namecoin explorer14. At date of 23rd
of July 2015 there are 8975 names. The complete list can be found using
a web browser in the official page15/ or using namecoind software (having
the complete block chain downloaded) typing "namecoind name_scan" and

13https://en.wikipedia.org/wiki/Domain_Name_System
14https://explorer.namecoin.info/nbn=30/fromn=0
15http://namecoin.bitcoin-contact.org/domains.php

21

https://en.wikipedia.org/wiki/Zooko%27s_triangle
https://en.wikipedia.org/wiki/Domain_Name_System
https://explorer.namecoin.info/nbn=30/fromn=0
http://namecoin.bitcoin-contact.org/domains.php

2.3. Altcoins Chapter 2. Cryptocurrencies

filtering properly the information.
The ownership of a name is based on the ownership of a wallet, which is in
turn based on public key cryptography. The Namecoin network reaches con-
sensus every few minutes as to which names have been reserved or updated.
More information about specification of domain names can be found in the
dot-bit webpage16.

Advantages of dot-bit names compared with traditional TLD

There are many advantages of using this service of name mapping. In the
next lines some of them are described.

Decentralization: censorship-Resistance. One of the best benefits of
using Namecoin for name mapping is the decentralization of the information.
DNS servers are controlled by governments and large corporations, and could
abuse of their power to censor, hijack, or spy on your Internet usage. This
happens on regular basis across the world, including in countries like China
and United States of America.
Dot-Bit-enabled websites are immune to these problems, because the infor-
mation needed for the host name resolution is stored on your own computer.
Bitcoin technology ensures that every user in the world has the same block
chain data on their computer, without anyone being able to illegitimately
change that data.

Transparency. All the names, including details as time to expire and his-
tory of the name are publicly available when downloading the block chain,
what make it open to everyone. It is easy to query them using the namecoind
software.

Security. With standard DNS, a third party can compromise a DNS server
and redirect the request of the users to fake websites. Dot-Bit prevents hi-
jacking for real. How can this work? Standard HTTPS allows CA’s, or
"certificate authorities" (run by governments or large corporations), to vouch
for the legitimacy of a website. If a single CA gets broken into by criminals,
makes a mistake, or is forced by a government, they can issue fraudulent
credentials that allow someone to impersonate any website. Dot-Bit’s de-
centralized digital records does the security job that a CA would normally
do, without relying on a CA; this means that no one can easily hijack Dot-

16http://dot-bit.org/Namespace:Domain_names_v2.0

22

http://dot-bit.org/Namespace:Domain_names_v2.0

Chapter 2. Cryptocurrencies 2.3. Altcoins

Bit-enabled websites for the same reason that no one can easily steal your
Bitcoins.

Privacy. With standard DNS, the owner of the DNS server and anyone
listening the user requests can deduce which websites is visiting. Instead,
using Dot-Bit’s digital phonebook does not generate any network traffic when
a user lookup a website address, because this resolution is done in the local
computer using the information stored in the block chain.

Velocity. With standard DNS, when a website switches configuration, a
long period is needed until the name information get propagated all long
the internet. This process can cause unnecessary downtime in many circum-
stances. Dot-Bit’s phonebook updates within 40 minutes on average with
default settings. Standard DNS servers also take time to look up a website’s
information, which can take long time depending on the user’s bandwidth
and location. Since Dot-Bit keeps the phonebook on your own computer,
looking up a website usually takes few milliseconds.

Disadvantages

The main disadvantage of using Dot-bit domains is the necessity of having
the entire block chain in each computer. Browsing a website using dot-bit
domains can be complicated for non advanced users. There are some DNS
servers which are ready to resolve bit domains, but using them all the ad-
vantages mentioned in the previous section are no longer achieved.
Another big disadvantage is the lack of documentation. It is very undocu-
mented and the few documentation is outdated or uncompleted. This makes
the process of using it very frustrating.

Registering a dot-bit domain

Registering a dot-bit domain is an easy and fast process: first a user has to
download and install the Namecoin software17, after has to create an account
just populating a configuration file. Once the account is set, a user has to
wait for download the entire block chain, which can take around 4 hours in
July 2015. Once the block chain is downloaded, the user can register its own
domain and associate it to an IP.
Namecoind is the tool for interact with the Namecoin domain system; the
next commands show an example of the commands issued to register a do-
main.

17https://github.com/vinced/namecoin

23

https://github.com/vinced/namecoin

2.3. Altcoins Chapter 2. Cryptocurrencies

• namecoind name_show d/<name> Will show the associated informa-
tion, if the name is registered.

• namecoind name_new d/<name> Will pre-register a name, until the
next 12 block will be issued.

• namecoind name_firstupdate d/<name> <rand> This command needs
the data returned by the previous commands for finishing the register-
ing process.

When all the process is done, the user can check the result running namecoind
name_show <yourname>. An example of this command including the result
is listed below.

1 [alberto@guacamole ~]\$ namecoind name_show d/cryptomoneymakers
2 {
3 "name" : "d/cryptomoneymakers",
4 "value" : "{"ip":"176.9.41.35"}",
5 "txid" :

"77a5ab1f4f562682ade64e21d36f36ce034702105644643a9ca1905d4b68ff80",
6 "address" : "NEm9jFwPwLJVi9E8eY7ubxGCj4mk5Yk3L9",
7 "expires_in" : 35850
8 }

Pricing

For registering a dot-bit domain a user have to pay a quantity of Name-
coins. This quantity is composed by two parts: the registration fee and the
transaction fee. The next table summarizes these costs.

Table 2.1: Cost of registering a dot-bit domain

Command Registration fee Transaction fee Summary
name_new 0.01 NMC 0.005 NMC Pre-order a domain
name_firstupdate 0.00 NMC 0.005 NMC The name becomes public for 36000 blocks
name_update 0.00 NMC 0.005 NMC Renew the domain for other 36000 blocks

Browsing dot-bit domains

Browsing a dot-bit domain requires some set up because it is not supported
at the moment (and probably it will not be in the future) by the main Name
servers.

24

Chapter 2. Cryptocurrencies 2.3. Altcoins

nm-control. nm-control is a software written in python which is still under
development but it can do some basic operations. The goal of this project
is to provide a tool to manage services based on namecoind like: DNS res-
olution, proxy, name domain and alias, servers, registration, renewal and
identity management. It can be configured to bind itself to the port 53 and
resolve the DNS queries made from your computer to bit domains. It requires
to have namecoind installed and synchronized with the block chain. More
information as well as the source code can be found in the Github page18.

freespechme. Using freespechme is the easiest way to browse dot-bit do-
mains. It is a plugin for Firefox licensed under GNU license which allow a
user to transparently browses sites using dot-bit domains. The final user just
have to install the plugin as the usual click and install way, and configure
few settings in it. To do the actual translation between names and IPs, the
plugin can use a file with the information, namecoind or an external proxy.
More information about the plugin can be found in the official page19

External proxy or DNS. The last option to browse dot-bit domains is to
use and external DNS service provided by a volunteer. Configuring a UNIX
system to use a third party DNS server is as easy as editing /etc/resolv.conf
file adding the IP of the server.
An updated list of public DNS servers for translating dot-bit domains can
be found here20.

Possibilities. In the future, new interesting features could be added like:
online identity using OpenID, file signatures, voting, web of trust, escrow
and notary services.

2.3.2 Litecoin
Origin

The Litecoin Project21 was conceived and created by Charles Lee with sup-
port of members of the Bitcoin community. It was pre-announced and was
launched on October 13th, 2011. Based on Bitcoin’s peer-to-peer protocol,
Litecoin brings a number of features viewed by its development team as im-
provements over Bitcoin’s implementation.

18https://github.com/namecoin/nmcontrol
19http://www.freespeechme.org/
20http://dot-bit.org/How_To_Browse_Bit_Domains
21https://litecoin.info/Litecoin

25

https://github.com/namecoin/nmcontrol
http://www.freespeechme.org/
http://dot-bit.org/How_To_Browse_Bit_Domains
https://litecoin.info/Litecoin

2.3. Altcoins Chapter 2. Cryptocurrencies

Features

Scrypt. The main feature of the Litecoin is the use of scrypt22 as its proof-
of-work algorithm. This kind of algorithms creates a computational challenge
to be solved by a network of computers in order to certify a block of trans-
actions.
Scrypt was developed in 2009 by Colin Percival. In contrast with Bitcoin’s
SHA-256 serves to inhibit hardware scalability by requiring a significant
amount of memory when performing its calculations. The use of scrypt
should delay this change, and preserve the decentralization in mining that
brings a decentralized currency so much of its value and resiliency.

Transaction confirmation time. The second important feature is a re-
duced transaction confirmation time targeted at 2.5 minutes on average. Bit-
coin confirms transactions every 10 minutes on average, and for reasonable
security measures is often recommended to wait one to two hours. Litecoin’s
faster confirmations provide end-users with faster access to their finances,
especially in time-sensitive situations.

Total amount of Litecoins. The Litecoin network will produce 84 mil-
lion Litecoins, or in other words, four times as many currency units as will
be issued by the Bitcoin network. For this reason, Litecoin has branded
itself as "silver to Bitcoin’s gold". More information regarding differences
between Bitcoin and Litecoin can be found here https://litecoin.info/
User:Iddo/Comparison_between_Litecoin_and_Bitcoin.

2.3.3 Dogecoin
History

Dogecoin23 was created by Billy Markus from Portland, Oregon, who hoped
to create a fun cryptocurrency that could reach a broader demographic than
Bitcoin. In addition, he wanted to distance it from the controversial history
behind Bitcoin. At the same time, Jackson Palmer, a member of Adobe Sys-
tems’ marketing department in Sydney, Australia, was encouraged in Twitter
to make the idea a reality.
After, Palmer purchased the domain dogecoin.com and added a splash screen,
which featured the coin’s logo and scattered Comic Sans text. Markus saw
the site linked in an IRC chat room, and started efforts to create the currency

22https://en.wikipedia.org/wiki/Scrypt
23https://en.wikipedia.org/wiki/Dogecoin

26

https://litecoin.info/User:Iddo/Comparison_between_Litecoin_and_Bitcoin
https://litecoin.info/User:Iddo/Comparison_between_Litecoin_and_Bitcoin
https://en.wikipedia.org/wiki/Scrypt
https://en.wikipedia.org/wiki/Dogecoin

Chapter 2. Cryptocurrencies 2.3. Altcoins

after reaching out to Palmer. Markus based Dogecoin on the existing cryp-
tocurrency, Luckycoin, which features a randomized reward that is received
for mining a block, although this behavior was later changed to a static block
reward in March 2014. In turn, Luckycoin is based on Litecoin, so uses scrypt
technology in its proof-of-work algorithm.

Production schedule

Compared with other cryptocurrencies, Dogecoin has a fast initial coin pro-
duction schedule: there will be approximately 100 billion coins in circulation
by mid 2015 with an additional 5.256 billion coins every year thereafter. As
of 10 February 2015, over 98 billion Dogecoins have been mined.

Price rising

On December 19, 2013, Dogecoin jumped nearly 300 percent in value in
72 hours, rising from US$0.00026 to $0.00095, with a volume of billions of
Dogecoins per day. Three days later, Dogecoin experienced its first major
crash by dropping by 80% due to large mining pools seizing opportunity in
exploiting the very little computing power required at the time to mine the
coin.

dogewallet compromised

On December 25, 2013, the first major theft attempt of Dogecoin occurred
when millions of coins were stolen during a hacking attempt on the online wal-
let platform Dogewallet. The hacker gained access to the platform’s filesys-
tem and modified its send/receive page to send any and all coins to a static
address. This incident spiked Tweets about Dogecoin making it the most
mentioned altcoin on Twitter. To help those who lost funds on Dogewallet
after its breach, the Dogecoin community started an initiative named "Save-
Dogemas" to help donate coins to those who lost them. Approximately one
month later, enough money was donated to cover all of the coins that were
lost.

Current state

By January 2014, the trading volume of Dogecoin briefly surpassed that of
Bitcoin and all other crypto-currencies combined. As of 25 January 2015,
Dogecoin has a market capitalization of USD 13.5 million.

27

2.3. Altcoins Chapter 2. Cryptocurrencies

Charity

The Dogecoin community and foundation have encouraged fund raising for
charities and other notable causes. Money has been recollected to allow the
Jamaica team24 to go to Winter Olympic games when they could not afford
the costs of the travel. Also for building a river in Kenya25.

2.3.4 Other Altcoins
There are a lot of Altcoin designed with different focus. An exhaustive list
of cryptocoins can be found at crptocoincharts26. On June 24th, 2015 the 20
most important coins according to that web page are reported here.

Table 2.2: List of main cryptocurrencies

Symbol Name Mined Coins Difficulty Price Volume Marketcap
BTC Bitcoin 14,330,550 49402000000 1.00 BTC 62,812.93 BTC 3,753,470,752.00 USD
STR Stellar 100,076,310,226 0 0.01 mBTC 168.30 BTC 340,755,300.80 USD
GLOBE Globe 1,000,000,000 0 0.66 mBTC 71.45 BTC 172,953,633.60 USD
LTC Litecoin 40,376,204 41692.2 0.02 BTC 27,762.89 BTC 160,967,126.72 USD
XUSD CoinoUSD 100,000,000 0 3.63 mBTC 0.33 BTC 95,111,009.60 USD
UNIT GalaxyUnit 100,000,000,000 0 1.28 uBTC 0.14 BTC 33,525,760.00 USD
DOGE DogeCoin 97,102,803,758 23847.7 0.75 uBTC 1,547.07 BTC 19,074,874.03 USD
VIRAL Viral 1,000,000,000 0 0.07 mBTC 3.03 BTC 17,988,665.60 USD
DRK Darkcoin 4,598,760 3172.05 0.01 BTC 74.83 BTC 13,431,467.14 USD
NXT Nxt 1,000,000,000 0 0.05 mBTC 247.48 BTC 13,001,708.80 USD
PPC Peercoin 21,421,191 13.053 2.20 mBTC 171.08 BTC 12,343,399.07 USD
MINT Mintcoin 18,789,135,808 0.027 0.37 uBTC 0.17 BTC 1,820,862.60 USD
XEM NEM 8,999,999,999 0 0.60 uBTC 17.95 BTC 1,414,368.00 USD
FTC Feathercoin 97,440,952 189.802 0.05 mBTC 2.22 BTC 1,276,087.34 USD
VTC VertCoin 10,413,700 283.47 0.44 mBTC 32.28 BTC 1,203,532.88 USD
CLAM CLAMS 624,000 0 0.01 BTC 61.46 BTC 1,176,754.18 USD
QRK Quarkcoin 248,250,110 677.182 0.02 mBTC 70.02 BTC 1,040,995.80 USD
MEC MegaCoin 18,353,750 10.557 0.18 mBTC 192.10 BTC 871,693.33 USD
WDC WorldCoin 53,342,916 11.3756 0.06 mBTC 89.90 BTC 809,118.03 USD
UNO Unobtanium 189,023 221606 0.01 BTC 1.39 BTC 531,598.07 USD

24http://www.theguardian.com/technology/2014/jan/20/
jamaican-bobsled-team-raises-dogecoin-winter-olympics

25http://www.coindesk.com/dogecoin-foundation-raise-50k-kenya-water-crisis/
26https://www.cryptocoincharts.info

28

http://www.theguardian.com/technology/2014/jan/20/jamaican-bobsled-team-raises-dogecoin-winter-olympics
http://www.theguardian.com/technology/2014/jan/20/jamaican-bobsled-team-raises-dogecoin-winter-olympics
http://www.coindesk.com/dogecoin-foundation-raise-50k-kenya-water-crisis/
https://www.cryptocoincharts.info

Chapter 3

Markets

3.1 btc-e.com
btc-e.com1 is a market for trading between Bitcoins and other currencies,
including the U.S. dollar, Russian ruble Litecoins, Namecoins, etc. The site
has Russian (mainly) and English user interface translations.
The site was first announced on July 17, 2011 with test mode trading. Live
trading began on August 7, 2011. On July 31, 2012 the service reported
a security incident in which halted trading and caused financial loss to the
exchange. The exchange says it covered losses from reserves and trading
resumed in a matter of hours. On August 2, 2012 the service added an API
for trading, but still lacks an API for Bitcoin withdrawals (something offered
by every major exchange). On August 20, 2012 the service added BTC/RUR
and USD/RUR trading markets.

3.2 BtcChina
BTC China2, based in Shanghai, China, is the world’s second largest Bitcoin
exchange by volume as of October 2014. Founded in June 2011, it was the
China’s first Bitcoin exchange, and most of its customers are thought to be
Chinese. In November 2013, the company had grown to 20 employees.
Company CEO Bobby Lee approached the two-person company in early 2013,
and after investing his own money and attracting investors, oversaw the com-
pany’s rapid expansion and marketshare growth by the end of the year. The
Stanford computer science graduate, whose brother founded the cryptocur-
rency Litecoin, previously worked for Yahoo! in the United States, and for

1https://btc-e.com
2https://www.btcchina.com/

29

https://btc-e.com
https://www.btcchina.com/

3.3. Bitstamp Chapter 3. Markets

Walmart China as Vice President of Technology.
In November 2013, BTC China raised $5 million in Series A funding from
investors Lightspeed China Partners and Lightspeed Venture Partners. On
18 December 2013, BTC China announced that it was temporarily suspend-
ing acceptance of Chinese yuan deposits, attributing the decision to govern-
ment regulations, following a 5 December statement from the People’s Bank
of China (PBOC). On 30 January 2014, the exchange resumed accepting
yuan deposits, after further studying the PBOC statement and other rules.
While the PBOC prohibited banks from trading in Bitcoin, BTC China ex-
plained that they were accepting yuan into their corporate bank account,
and transferring that money to their customer accounts, before it was traded
for Bitcoins.

3.3 Bitstamp

Bitstamp3 is a Bitcoin exchange based in the United Kingdom. It allows
trading between USD currency and Bitcoin cryptocurrency. The company is
headed by CEO Nejc Kodrič, a widely known member of the Bitcoin com-
munity, who co-founded the company in August 2011 with Damijan Merlak.
The company initially operated in Slovenia, but moved its registration to the
UK in April 2013.
The company was founded as a European-focused alternative to then-dominant
Bitcoin exchange Mt. Gox. While the company trades in US dollars, it allows
money to be deposited through the European Union’s Single Euro Payments
Area, allowing a relatively quick, low cost way of transferring money from
European bank accounts to purchase Bitcoins.
When incorporating in the United Kingdom, the company approached the
UK’s Financial Conduct Authority for guidance, but was told that Bitcoin
was not classed as a currency, so the exchange was not subject to regulation.
Bitstamp says that it instead regulates itself, following a set of best practices
to authenticate customers and deter money laundering. In September 2013,
the company began requiring account holders to verify their identity with
copies of their passports and official records of their home address.
Bitstamp offers an API to allow clients to use custom software to access and
control their accounts. It also acts as a gateway for the Ripple payment
protocol.

3https://www.bitstamp.net/

30

https://www.bitstamp.net/

Chapter 3. Markets 3.3. Bitstamp

3.3.1 Service disruptions

In February 2014, the company suspended withdrawals for several days in
the face of a distributed denial-of-service. Bitcoin Magazine reported that
people behind the attack sent a ransom demand of 75 Bitcoins to Kodrič,
who refused due to a company policy against negotiating with “terrorists”.
Days after restoring service, Bitstamp temporarily suspended withdrawals
for some users as a security precaution due to increased phishing attempts.
European Bitcoin exchange Bitstamp suspended trading Monday after one
of its active, operational Bitcoin storage wallets was "compromised" over the
weekend. In a statement on its site, Bitstamp warned users not to deposit
any Bitcoin to previously issued addresses.
The popular Bitcoin trading site, said to be the world’s third busiest Bit-
coin exchange amounting for 6 percent of all Bitcoin transactions, said that
a "small fraction" of customer Bitcoins are maintained in online systems,
adding that any compromised Bitcoins can be recovered from its "cold" off
line storage reserve. Co-founder and chief executive Nejc Kodric said in a
tweet that the bulk of Bitstamp’s Bitcoin reserves are in cold storage, and
are "completely safe". The site continued in its statement that it will "return
to service". Late on Monday, Bitstamp confirmed in an emailed statement
to ZDNet that "less than 19,000 Bitcoins" were stolen from the company’s
operational wallet. Kodric said the Bitcoins held with Bitstamp prior to the
temporary suspension of the company’s service are "completely safe and will
be honored in full".
The market value of 19,000 Bitcoins represents roughly $5 million. There
has been no other comment as of yet from Bitstamp or Kodric.
Many took to news-sharing and social media sites to express concern about
the handling of the situation, a little over a year after the largest Bitcoin ex-
change Mt. Gox folded, following its claims that hackers had stolen millions
of dollars worth of Bitcoins.
What happened to Bitstamp remains a mystery. No hacker group is known
to have claimed responsibility for compromising the exchange’s servers. Jack-
son Palmer, an Adobe engineer who in his spare time created offshoot virtual
currency Dogecoin, said in an email that only fraction of Bitstamp’s funds
are likely to have been stolen, but that could still be a significant amount. "If
someone hacks a server that’s got a hot wallet running on it, they can easily
transfer out whatever balance of Bitcoin is being stored there, instantly,"
Palmer explained. "Most Bitcoin companies aim to store as large a percent-
age as possible of their Bitcoin in cold storage so that it can’t be stolen if
someone malicious gains access to their server."
Bitstamp’s most recent proof-of-reserve in May showed it held 183,497 Bit-

31

3.4. Coinbase Chapter 3. Markets

coins in its cold wallet reserve or about $96.9 million at the time. While this
figure is likely to have changed, it shows roughly the value of currency held
at the exchange. Bitstamp’s suspension of trading4 has negatively affected
Bitcoin’s price. As of Monday afternoon in New York, the price of Bitcoin
on Bitstamp was down 15 percent to $267 (at the time of publication).

3.4 Coinbase
Coinbase5 is a Bitcoin wallet and exchange service headquartered in San
Francisco California, founded by Brian Armstrong and Fred Ehrsam.
Coinbase facilitates exchange between Bitcoin and fiat currencies in twenty-
six countries, and Bitcoin transactions and storage in 190 countries world-
wide. Coinbase has raised a total of $106,000,000 in venture capital funding
and supports 2.5 million users, 40,000 merchants, and 7,000 developer appli-
cations.

3.4.1 History
Coinbase was founded in June 2012 and enrolled in the summer 2012 Y Com-
binator6 program. In October 2012 Coinbase launched the ability to buy and
sell Bitcoin through bank transfers. In May 2013, Coinbase received a US$5
million Series A investment led by Fred Wilson from the venture capital firm
Union Square Ventures. In December 2013, Coinbase received a US$25 mil-
lion investment, from the venture capital firms Andreessen Horowitz, Union
Square Ventures and Ribbit Capital.
In 2014 Coinbase grew to one million users, acquired the blockchain explorer
service Blockr and the web bookmarking company Kippt, secured insurance
covering the value of Bitcoin stored on their servers, and launched the vault
system for secure Bitcoin storage. Throughout 2014 Coinbase also formed
partnerships with Overstock, Dell, Expedia, Dish Network, Time Inc., and
Wikipedia to power accepting Bitcoin payments. Coinbase also added Bit-
coin payment processing capabilities to the traditional payment companies
Stripe, Braintree, and Paypal.
In January 2015, Coinbase received a US$75 million investment, led by
Draper Fisher Jurvetson, the New York Stock Exchange, USAA, and sev-
eral banks, "apparently the first time any traditional financial institutions

4http://zd.net/1JWILY9
5https://en.wikipedia.org/wiki/Coinbase
6https://en.wikipedia.org/wiki/%28company%29

32

http://zd.net/1JWILY9
https://en.wikipedia.org/wiki/Coinbase
https://en.wikipedia.org/wiki/%28company%29

Chapter 3. Markets 3.5. Mt. Gox

have taken direct stakes in a Bitcoin enterprise". Later in January Coinbase
launched a U.S.-based Bitcoin exchange.

3.4.2 Products
Coinbase has three core products: an exchange for trading Bitcoin and fiat
currency, a wallet for Bitcoin storage and transactions, and an API for de-
velopers and merchants to build applications and accept Bitcoin payments.
Coinbase offers buy/sell trading functionality in 25 countries, while the wal-
let is available in 190 countries worldwide.
The Coinbase Exchange can be funded through a bank transfer or wire, and
trades on the exchange have a maker/taker price model in which traders pay
either a 0.25% fee (taker) or nothing (maker) to execute trades.

3.5 Mt. Gox
Mt. Gox was a Bitcoin exchange based in Tokyo, Japan7. It was launched
in July 2010, and by 2013 was handling 70% of all Bitcoin transactions. In
February 2014, the Mt. Gox company suspended trading, closed its web-
site and exchange service, and filed for a form of bankruptcy protection
from creditors called minji saisei, or civil rehabilitation, to allow courts to
seek a buyer. In April 2014, the company began liquidation proceedings.
It announced that around 850,000 Bitcoins belonging to customers and the
company were missing and likely stolen, an amount valued at more than $450
million at the time. Although 200,000 Bitcoins have since been "found", the
reasons for the disappearance—theft, fraud, mismanagement, or a combina-
tion of these—are unclear as of March 2014.

3.5.1 History
In late 2006, programmer Jed McCaleb thought of building a website for
users of the Magic: The Gathering Online service to let them trade cards
like stocks. In January 2007, he purchased the domain name mtgox.com,
short for "Magic: The Gathering Online eXchange". Initially in beta release,
sometime around late 2007, the service went live for around 3 months before
McCaleb moved on to other projects, having decided it was not worth his
time. He reused the domain name in 2009 to advertise his card game The
Far Wilds.
In July 2010, McCaleb read about Bitcoin on Slashdot, and decided that

7https://en.wikipedia.org/wiki/Mt._Gox

33

https://en.wikipedia.org/wiki/Mt._Gox

3.5. Mt. Gox Chapter 3. Markets

the Bitcoin community needed an exchange for trading Bitcoin and regular
currencies; a week later on 18 July, after writing an exchange website, he
launched it while reusing the spare mtgox.com domain name.
As it began to take off in 2011, McCaleb announced on 6 March 2011 that he
had sold MtGox to Mark Karpelès, citing the increasing demands of running
an exchange. McCaleb said: "I created MtGox on a lark after reading about
Bitcoins last summer. It has been interesting and fun to do. I am still very
confident that Bitcoins have a bright future. But to really make MtGox what
it has the potential to be would require more time than I have right now. So
I have decided to pass the torch to someone better able to take the site to
the next level".
By April 2013 the site had grown to handle 70% of the world’s Bitcoin trades.
With prices increasing rapidly, Mt. Gox suspended trading from 11–12 April
for a "market cooldown". The value of a single Bitcoin fell to a low of $55.59
after the resumption of trading before stabilizing above $100. Around mid
May 2013, Mt. Gox traded 150,000 Bitcoins per day, per Bitcoin Charts.

3.5.2 Security breach

On 19 June 2011, a security breach of the Mt. Gox Bitcoin exchange caused
the nominal price of a Bitcoin to fraudulently drop to one cent on the Mt.
Gox exchange, after a hacker allegedly used credentials from a Mt. Gox au-
ditor’s compromised computer illegally to transfer a large number of Bitcoins
to himself. He used the exchange’s software to sell them all nominally, cre-
ating a massive "ask" order at any price. Within minutes the price corrected
to its correct user-traded value. Accounts with the equivalent of more than
$8,750,000 were affected. In order to prove that Mt.Gox still had control
of the coins, the move of 424,242 Bitcoins from "cold storage" to a Mt.Gox
address was announced beforehand and executed in Block 132749.
In October 2011, about two dozen transactions appeared in the block chain
(Block 150951) that sent a total of 2,609 BTC to invalid addresses. As no
private key could ever be assigned to them, these Bitcoins were effectively
lost. While the standard client would check for such an error and reject the
transactions, nodes on the network would not, exposing a weakness in the
protocol.

34

Chapter 3. Markets 3.5. Mt. Gox

3.5.3 Insolvency and shutdown

Mt. Gox suspended withdrawals in US dollars on June 20, 2013. The Mizuho
Bank branch in Tokyo that handled Mt. Gox transactions pressured Mt. Gox
from then on to close its account. On July 4, 2013, Mt. Gox announced that
it had "fully resumed" withdrawals, but as of September 5, 2013, few US
dollar withdrawals had been successfully completed.
On 7 February 2014, all Bitcoin withdrawals were halted by Mt. Gox. The
company said it was pausing withdrawal requests “to obtain a clear techni-
cal view of the currency processes”. The company issued a press release on
February 10, 2014 stating that the issue was due to transaction malleability:
“A bug in the Bitcoin software makes it possible for someone to use the Bit-
coin network to alter transaction details to make it seem like a sending of
Bitcoins to a Bitcoin wallet did not occur when in fact it did occur. Since
the transaction appears as if it has not proceeded correctly, the Bitcoins may
be resent. MtGox is working with the Bitcoin core development team and
others to mitigate this issue”.
On 17 February 2014, with all Mt. Gox withdrawals still halted and compet-
ing exchanges back in full operation, the company published another press
release indicating the steps they claim they are taking to address security is-
sues. In an email interview with the Wall Street Journal, CEOMark Karpelès
refused to comment on increasing concerns among customers about the finan-
cial status of the exchange, did not give a definite date on which withdrawals
would be resumed, and wrote that the exchange would impose "new daily
and monthly limits" on withdrawals if and when they were resumed. A poll
of 3000 Mt. Gox customers by CoinDesk indicated that 68% of customers
were still awaiting funds from Mt. Gox. The median waiting time was be-
tween one to three months. 21% of poll respondents had been waiting for
three months or more.
On 20 February 2014, with all withdrawals still halted, Mt. Gox issued yet
another statement, giving no date for the resumption of withdrawals. A
protest by two Bitcoin enthusiasts outside the building that houses the Mt.
Gox headquarters in Tokyo continued. Citing "security concerns", Mt. Gox
announced they had moved their offices to a different location in Shibuya.
Bitcoin prices quoted by Mt. Gox dropped below 20% of the prices on other
exchanges, reflecting the market’s estimate of the unlikelihood of Mt. Gox
paying their customers.
On 24 February 2014, Mt. Gox suspended all trading, and hours later its
website went offline, returning a blank page. An alleged leaked internal crisis
management document claimed that the company was insolvent, after losing
744,408 Bitcoins in a theft which went undetected for years. Six other major

35

3.6. Cryptsy Chapter 3. Markets

Bitcoin exchanges released a joint statement distancing themselves from Mt.
Gox, shortly before Mt. Gox’s website went offline.

3.6 Cryptsy
Cryptsy International8 is an Internet startup managed by Project Investors,
Inc. focusing on the exchange of cryptocurrencies, mainly altcoins. It cur-
rently services more than 200 different types of cryptocurrency.
The Cryptsy.com exchange opened on May 20th, 2013 and since then has
seen rapid growth in both customer base and trade volume. It currently has
over 270,000 registered users from all over the world with a volume of over
300k trades per day.
Cryptsy aims to provide a safe, simple, and efficient environment for users
to trade cryptocurrencies with each other. Cryptsy will expand its service
offerings for merchants who want to easily accept Bitcoin and other cryp-
tocurrency payments as an alternative payment method for their e-commerce
sales.

3.7 Markets comparison
As indexed before, there are many available exchange markets working with
cryptocurrencies and every one of them has different strengths and weakness,
making them more suitable for distinct kind of traders. The main points
which characterizes them are:

• Available coins to trade with.

• Volume of the market.

• API provided.

• Capacity to ingress and withdraw coins.

• Trading fee.
These items change also in the market during the time, for example on

year ago (07/2014) the exchange market btc-e.com was supporting 2 more
formal currencies: GBP, CHN and 3 more cryptocurrencies: TRC, FTC,
XPM. These 5 more currencies have been closed due to low volume exchange
rates910. Also the fee for the transaction can change. For example btc-e.com

8https://www.cryptsy.com/
9https://btc-e.com/news/207

10https://btc-e.com/news/219

36

https://www.cryptsy.com/
https://btc-e.com/news/207
https://btc-e.com/news/219

Chapter 3. Markets 3.7. Markets comparison

was offering discounts when trading large amounts of BTCs due to a new
years campaign11.
The table below summarizes the main points for the principal markets. The
information have been taken from bitcoincharts.com12 and coinmarkets13 in
July 2015.

Table 3.1: Market comparison.

Market 30 days volume (BTC) 30 days volume (USD) Fee (%) Trading pairs
BitFinex 887.512 242.145.735 0.2 6
OKCoin 8.097 - 0 4
BtcChina 656.042 176.136.570 0 3
Bitstamp 372.161 101.075.088 0.25 1
Btc-e 193.427 51.785.848 0.2 16
CoinBase - 28.751.520 0.25 3
Cryptsy - 169260 0.25 505

Note: The fees appearing are not exact, because are different depending
on the user, volume traded and pair.
The next two pie charts give also a good overview of the markets14.

Figure 3.1: Comparison of markets by volume.
11https://btc-e.com/news/216
12http://Bitcoincharts.com/markets/
13http://coinmarketcap.com/currencies/Bitcoin/#markets
14http://Bitcoincharts.com/charts/volumepie/

37

https://btc-e.com/news/216
http://Bitcoincharts.com/markets/
http://coinmarketcap.com/currencies/Bitcoin/#markets
http://Bitcoincharts.com/charts/volumepie/

3.7. Markets comparison Chapter 3. Markets

Figure 3.2: Comparison of markets by currencies.

38

Part II

Currency trading platform

39

Chapter 4

Architecture overview

4.1 Introduction
This section discuss the architecture of the project in terms of different com-
ponents and the interaction between them. It also will try to explain the
details behind the decision of choosing different components.
One of the key concepts that I wanted to achieve is the high scalability of
the system. As this is a big project which is making high use of the resources
like CPU and disk space, each decision in the design has been done thinking:
what will happen if the traffic increase in 300%?
The other key concept is simplicity: I want that people contribute to the
project in the future, for this I always try to write simple, clear and docu-
mented code to be able to get the attraction of possible developers.
To achieve the scalability and the simplicity I divided each single component
of the project in its own block, finally obtaining: the web server, the web
server gateway interface (uWSGI), the web front end, the database and the
backend system. The interaction between front end and backend is done
using queues, so when a user triggers a certain action in the web interface,
a message is created and placed in a queue where will be picked up by some
component of the backend. Doing this the system is already achieving a scal-
able architecture, because if the work load increases, I can add more servers
consuming from a queue to assume the heavy work, and will not be a bot-
tleneck for other parts of the system.
Other action taken to make the system scalable is the use of a management
configuration tool: Chef1. Using Chef I have created recipes to deploy all
the components of the application in a server. To illustrate how the use of
Chef increase the scalability I will put an example: the servers of the project

1https://www.chef.io/chef/

40

https://www.chef.io/chef/

Chapter 4. Architecture overview 4.2. Web server and gateway interface

are in the cloud, and we are waiting an increase of the traffic coming as a
response to a marketing campaign. While looking at the graphs showing the
performance of one backend component, we can see that is hitting the CPU
usage limits. We will spawn a new machine, and chef it to get the packages
installation, users creation, files permissions and software configuration for
this machine to become part of the backend and start consuming data from
the queue in minutes, just running one single command.
The next figure resumes the different components listed above.

Figure 4.1: Architecture of the application.

The next sections are giving just an overview of each component, they
will be highly explained in the next chapters.

4.2 Web server and gateway interface
The project uses NGINX2 as a web server, which is nowadays widely used
and is replacing Apache as a default choice. It is an open source project
which also have a commercial version under subscription.
The advantages of NGINX against other traditional web servers are the focus

2https://www.nginx.com/

41

https://www.nginx.com/

4.3. Front end Chapter 4. Architecture overview

on concurrency, the very low use of memory and the simplicity of configura-
tion. Thanks to its plugin architecture it can be extended and being used as
a reverse proxy and load balancer.
However NGINX can not talk directly to Python applications, for this it
needs a web server interface component which allows the interaction with
Python as defined in the PEP 3333. Python web application frameworks
have been a problem for new Python users because the choice of web frame-
work would limit the choice of usable web servers, and vice versa. Python
applications were often designed for only one of CGI, FastCGI, mod_python
or some other custom API of a specific web server. The idea behind the
WSGI development was to provide a low-level interface between web servers
and web applications or frameworks to promote common ground for portable
web application development3. This page explains very well why is a WSGI
needed4.
There are many WSGI servers available in the market, the most famous are:
Green Unicorn5, uWSGI6, mod_wsgi7 and Cherry PI8.
In the project I choose uWSGI because it normally gives better performance
than others9, it is fully documented and easy to configure.

4.3 Front end
At the beginning of the project, I did not think in making a front end. My
idea was just to do a set of scripts which were able to trade automatically in
the btc-e exchange market. But step by step I had notice the lack of a place
where see in a comfortable way the results of my orders and the settings of
them. I also thought that if I wanted to share the project between profes-
sional traders, a graphic interface was necessary.
Considering this, I thought about develop a web using PHP and some frame-
work to make this job easy, so I have tried Code Igniter10 for around a week.
My experience with it was not bad, but I realize that I did not like PHP as
a language and I needed to invest a lot of time. For these reasons I discard
this choice.

3https://en.wikipedia.org/wiki/Web_Server_Gateway_Interface
4http://www.fullstackpython.com/wsgi-servers.html
5http://gunicorn.org/
6https://uwsgi-docs.readthedocs.org/en/latest/
7https://github.com/GrahamDumpleton/mod_wsgi
8https://github.com/cherrypy/cherrypy
9http://cramer.io/2013/06/27/serving-python-web-applications/

10http://www.codeigniter.com/

42

https://en.wikipedia.org/wiki/Web_Server_Gateway_Interface
http://www.fullstackpython.com/wsgi-servers.html
http://gunicorn.org/
https://uwsgi-docs.readthedocs.org/en/latest/
https://github.com/GrahamDumpleton/mod_wsgi
https://github.com/cherrypy/cherrypy
http://cramer.io/2013/06/27/serving-python-web-applications/
http://www.codeigniter.com/

Chapter 4. Architecture overview 4.4. Back end

Then, I was looking into other web frameworks like Ruby on Rails11 but in
that period I did not know ruby, so the effort that I would have to invest in
learning it was too much.
Finally I decided to use a Python framework. Doing a fast research the can-
didates could be Flask12 and Django13. Obviously I choose the simplest one:
Flask. It is a very lightweight and easy to use web framework and I really
would recommend it for a simple web interfaces, but it was not suiting my
needs because of the lack of features and community. So, at the end of the
journey I choose Django, a very powerful framework with a big community
around it. I am still happy with my decision, and learning how to use was
real fun.
The structure of the front end and all the Django components are in-depth
explained in section 6.2.

4.4 Back end

The back end is the part of the project which executes the tasks under the
hood. It has two main components: programs acting as standalone processes
and scheduled processes (cronjobs).
To be able to separate logically this processes from the front end, I have
set up a system of queues which allows the communication between the two
parts.
There are many different messages platforms like ActiveMQ, ZeroMQ, Kafka,
etc. As I was a beginner in the world of message passing I opted for the
most simple option RabbitMQ14. It was suiting my purposes because it has
bindings for Python alongside great beginners tutorials, it can be configured
for having data persistence and allows the definition of different kinds of
queues.
For the scheduled tasks I used cronjobs, because it is a rock solid daemon
simple to configure.
Each one of the components are explained with precision in 8.1.

11http://rubyonrails.org/
12http://flask.pocoo.org/
13https://www.djangoproject.com/
14https://www.rabbitmq.com/

43

http://rubyonrails.org/
http://flask.pocoo.org/
https://www.djangoproject.com/
https://www.rabbitmq.com/

4.5. Database Chapter 4. Architecture overview

4.5 Database
The relational data base was the most simple choice. The available choices
for a free data base manager are mainly two: MySQL15 or PostgreSQL16.
The decision was taken in favor of MySQL because I had work with this
data base before. This is one of the parts which I would like to change in
the future for other kind of data base which can scale better, probably in
the direction of NOSQL data bases like MongoDB17 or key-value pairs like
Redis18.
Actually I am not using MySQL but MariaDB19, which is a fork of MySQL
developed by the community which remains with GNU license. I did not
choose it, but it is the default data base server in CentOS 7, and for a
basic usage it is completely equal to MySQL, so I got it as was fulfilling my
purposes.

15https://www.mysql.com/
16http://www.postgresql.org/
17https://www.mongodb.org/
18http://redis.io/
19https://en.wikipedia.org/wiki/MariaDB

44

https://www.mysql.com/
http://www.postgresql.org/
https://www.mongodb.org/
http://redis.io/
https://en.wikipedia.org/wiki/MariaDB

Chapter 5

Project deployment

5.1 Server

5.1.1 First server
When the project was started, the idea was to develop a backend system,
without graphic interface. Looking at the hosting providers I chose 1and11

due to his low fares. The server was a VPS2 equipped with 2 virtual Cores,
2 GB of guaranteed RAM being able to use 4 GB of RAM in some moments
and 150 GB of space. This machine was reasonable at the beginning, running
smoothly Django, scheduled processes and a git server.
But in the moment that RabbitMQ was installed, it was starting to have
problems allocating memory, complaining that it could not fork anymore.
Looking at the memory used everything seemed to be fine, but diving inside
the problem I realized that I was limited in the number of total threads that
I could actually run at the same time, the limit was only 128. After some
discussions with customer support I decided to move to a dedicated server.

5.1.2 Current server
The server that nowadays is serving the project was rented in a Christmas
offer at low price: 30 eur/month. I chose this server because of the good
experience working with the provider: Hetzner3. This German company can
provide low prices buying used servers and memory.
The machine is located in Nuremberg (Germany) and it is suited with a Intel
Core i7-2600 with 16 GB of RAM memory divided in 4 blocks of 4096 MB

1https://www.1and1.com/
2https://en.wikipedia.org/wiki/Virtual_private_server
3https://www.hetzner.de/

45

https://www.1and1.com/
https://en.wikipedia.org/wiki/Virtual_private_server
https://www.hetzner.de/

5.2. Configuration management: Chef Chapter 5. Project deployment

each one and using 2 HDD with a capacity of 3 TB each one.
Because of the focus on the data reliability, the hard drives are set up using
RAID 14. A RAID 1 set up consists in an exact copy (or mirror) of one
disk into the other one. This layout is useful when read performance or
reliability is more important than the resulting data storage capacity. This
set up ensures the data persistence. If one of the two HDDs breaks suddenly,
it can be changed allowing the system to continue running using the healthy
disk.

Figure 5.1: RAID 1

The system is running the last version of the Community Enterprise OS:
CentOS 7, which is based on Red Hat 7. This operating system was chosen
because its use is very common in the server’s landscape, it has 10 years of
official support and is the one which I am working everyday.

5.2 Configuration management: Chef
Configuring the server is one of the key points for a successful project. The
desire of every developer is to have a server secure, reliable with good per-
formance. Achieving this is not a trivial task due to the many different
components which have to be properly configured.
Traditionally the servers were configured manually, setting up all the ser-
vices, and luckily using pre-configured files for them like: sshd configuration,
web server configuration, etc. Nowadays this task can be done using config-
uration management tools. A configuration management tool is a software
that makes easier the task of configuring a server. There are many different
out there: Puppet, Chef, Ansible, Salt, etc. The choose of the tool finish

4https://en.wikipedia.org/wiki/Standard_RAID_levels#RAID_1

46

https://en.wikipedia.org/wiki/Standard_RAID_levels#RAID_1

Chapter 5. Project deployment 5.2. Configuration management: Chef

in favor of Chef because I have already know it and I have created many
cookbooks for my own purposes and for the community.
Chef5 is a configuration management tool licensed under Apache License. It
can be used for small environments (as can be the case of a personal laptop)
or for large and complicate environments with hundreds of servers. It is writ-
ten in Ruby and Erlang and use a pure Ruby DSL for achieve the desired
state of a machine.
Chef uses cookbooks, roles and nodes as main key concepts. So, inside the
cookbooks there are recipes, attributes and templates: a recipe contains a
set of rules to achieve some specific configuration in a machine, and the tem-
plates are files which can receive parameters changing its content. They are
normally used for rolling out configurations of services.
The recipes used in the server are:

• Installing and configuring NGINX and RabbitMQ.

• Creating the user who serves the code.

• Creating a Python virtual environment.

• Installing the cronjobs for the scheduled tasks.

The analysis of the Chef code is probably outside of the scope of the
project, for this I decided to show only few snippets of the code which do
precise tasks. The whole set of recipes can be found in the appendix 10.1.4.
This snippet shows how the main packages are installed.

1 %w(
2 python-virtualenv git python-pip gcc mariadb-devel enca librabbitmq
3 rabbitmq-server
4).each do |p|
5 package p do
6 action :install
7 end
8 end

The next one creates a Python virtual environment where the code is
living.

1 python_virtualenv node[’crytomoneymakers’][’venv_path’] do
2 interpreter ’python2.7’
3 owner ’cryptomoneymaker’
4 group ’cryptomoneymaker’
5 options ’--system-site-packages’

5https://www.chef.io/

47

https://www.chef.io/

5.2. Configuration management: Chef Chapter 5. Project deployment

6 action :create
7 end
8

9 python_pip ’django’ do
10 version ’1.6’
11 virtualenv node[’crytomoneymakers’][’venv_path’]
12 action :install
13 end
14

15 %w(uwsgi mysql-python pycrypto Pillow iconv django-datetime-widget
pika).each do |p|

16 python_pip p do
17 virtualenv node[’crytomoneymakers’][’venv_path’]
18 user ’cryptomoneymaker’
19 group ’cryptomoneymaker’
20 action :install
21 end
22 end

And here is how the cronjobs are created.

1 cron ’funds_fetcher’ do
2 minute ’0’
3 hour ’*/6’
4 user ’cryptomoneymaker’
5 command ’cd /var/cryptomoneymakers/venv/ &&

/var/cryptomoneymakers/venv/bin/python
/var/cryptomoneymakers/venv/MillonesApp/manage.py
fetch_user_funds BotMaster’

6 end
7

8 cron ’tickers_fetcher’ do
9 minute ’*/4’

10 user ’cryptomoneymaker’
11 command ’cd /var/cryptomoneymakers/venv/ &&

/var/cryptomoneymakers/venv/bin/python
/var/cryptomoneymakers/venv/MillonesApp/manage.py
fetch_ticker_value’

12 end
13

14 cron ’feed_executed_oders’ do
15 minute ’*’
16 user ’cryptomoneymaker’
17 command ’cd /var/cryptomoneymakers/venv/ && source bin/activate &&

/var/cryptomoneymakers
/venv/MillonesApp/backend/cronjobs/feed_executed_orders.py’

18 end

48

Chapter 5. Project deployment 5.3. Python virtual environment

5.3 Python virtual environment
Virtual environments are elements for create isolation. There are tools for
isolate the CPU and memory as cgroups, tools for isolating the filesystem
like chroot and there are other tools for creating virtual environments for
the applications. Python virtual environment is one of the last, it provides
isolated environments in terms of installed libraries. Inside a Python virtual
environment one can install and run Django 1.6, and in other environment
Django 1.7, each one with their respective versions of compatible libraries
running. A virtual environment can be used for example for having differ-
ent environments like: development, QA, staging and production, all in the
same machine without worry about broken dependencies. More information
about the Python virtual environments ca be found in the official page in
readthedocs6.
To ensure a consistent environment in the project development, all the pack-
ages and libraries are installed inside a virtual environment. An important
tool inside the virtual environment is pip7, the Python’s package manager.
With pip a user can freeze versions of libraries, install news, list the packages
installed and much more. Thanks to this, the dependencies of a project are
easily seen, for example this project is dependent of the next libraries and
versions:

1 (venv)-bash-4.2$ pip list
2 backports.ssl-match-hostname (3.4.0.2)
3 bottle (0.12.8)
4 configobj (4.7.2)
5 decorator (3.4.0)
6 Django (1.6)
7 django-datetime-widget (0.9.3)
8 iconv (1.0)
9 iniparse (0.4)

10 ipython (3.1.0)
11 meld3 (0.6.10)
12 MySQL-python (1.2.5)
13 nose (1.3.0)
14 numpy (1.7.1)
15 pika (0.9.14)
16 Pillow (2.7.0)
17 pip (6.1.1)
18 pycrypto (2.6.1)
19 pycurl (7.19.0)
20 pygobject (3.8.2)

6http://docs.python-guide.org/en/latest/dev/virtualenvs/
7https://en.wikipedia.org/wiki/Pip_%28package_manager%29

49

http://docs.python-guide.org/en/latest/dev/virtualenvs/
https://en.wikipedia.org/wiki/Pip_%28package_manager%29

5.4. Processes manager: Supervisor Chapter 5. Project deployment

21 pygpgme (0.3)
22 pyliblzma (0.5.3)
23 pytz (2015.4)
24 pyudev (0.15)
25 pyxattr (0.5.1)
26 setuptools (12.0.5)
27 slip (0.4.0)
28 slip.dbus (0.4.0)
29 South (1.0.2)
30 supervisor (3.0)
31 urlgrabber (3.10)
32 uWSGI (2.0.9)
33 virtualenv (13.1.2)
34 yum-metadata-parser (1.1.4)

5.4 Processes manager: Supervisor
Supervisor is a tool for controlling the life cycle of other processes, developed
in Python. It acts as a process manager, independently from the operating
system process manager like init or systemd, but it is a normal process and
its PID is not 1. The normal use case for Supervisor is to start programs and
auto restart them if they die. It generates logs from its managed processes
capturing their STDOUT and STDERR descriptors. In general it is a very
powerful tool which works great in my opinion. More information about
supervisor can be found in the official page8.
The project is using supervisor to be able to restart the process which could
crash. It is necessary for the backend processes because they have bugs due
the the lack of debugging, and they found sometimes exceptions. Because
of the reliability of the project, the backend processes must be all the time
running, so Supervisor makes the task of controlling them.
In futures releases of the project, the simple goals that now are achieved via
Supervisor will be achieved by systemd. The application is running under
CentOS 7, and make sense to use all its tools, mostly the powerful systemd.
The appendix shows the configuration files used in the project. ??

5.5 Git
At the beginning of the project the source code was inside the server and
both production and development were using the same versions of it. While

8http://supervisord.org/

50

http://supervisord.org/

Chapter 5. Project deployment 5.5. Git

working in the code, was necessary the use of a revision control tool. For
this purpose, Git was chose because it is the most adapted system.
There are many services in internet which offer free accounts to host code,
the main one is Github. This service is great but the free version has a lim-
itation: there are no private repositories. This project has been developed
thinking in be open source, but I did not want to expose it to everyone until
the first release appears.
For this I decided to use my own git server, having different branches: de-
velopment and production. Like this all the modifications of the code are
done in the development branch, and once the code is tested and working,
it is merged into production branch. Once in production, a simple "git pull"
and restart of the web server will be enough to have the latest version of the
code running and accessible by the users.
At the end of the project a total of 155 commits were done.

1 (venv)-bash-4.2\$ git rev-list HEAD --count
2 155

51

Chapter 6

Front end

6.1 Django overview

6.1.1 Introduction
Django1 is a free and open source Python Web framework maintained by
the Django Software Foundation which follows the model-view-controller
(MVC)2 architectural pattern. Django is designed to offer to the developer
rapid development, clean and pragmatic design. It takes care of much of the
hassle of Web development, leaving the developer to focus on writing the
application without needing to reinvent the wheel.
Is important to understand what means model-view-controller for under-
standing how a Django application is designed. In the Django interpretation
of MVC, the “view” describes the data that gets presented to the user, not
how a user see it. So, a view is the Python callback function for a particular
URL because describes which data is presented.
Furthermore, it is sensible to separate content from presentation, which is
where templates come in. In Django, a view describes which data is pre-
sented, but a view normally delegates to a template, which describes how
the data is presented. The templates are written using especial language
which mixes HTML with simple statements as: if/else conditions, (simple)
for loops and variable instantiation.
The controller is the framework itself: the machinery that sends a request to
the appropriate view, according to the Django URL configuration. Someone
who wants to use a more precise terminology will call Django a MTV frame-
work: model-template-view.

1https://www.djangoproject.com/
2https://en.wikipedia.org/wiki/Model/%E2%80%93view%E2%80%93controller

52

https://www.djangoproject.com/
https://en.wikipedia.org/wiki/Model/%E2%80%93view%E2%80%93controller

Chapter 6. Front end 6.1. Django overview

This explanation is simplified in this diagram created by the US National
Library of Medicine.

Figure 6.1: Django model-view-controller

6.1.2 Security
Django, as a good framework, is designed to avoid the most common web
security issues. By default it tries to protect your site against:

• Cross site scripting (XSS)3: the templates are escaping most of the
dangerous HTML characters.

• Cross site request forgery (CSRF)4: Django checks for a nonce in each
POST request of a user, making impossible the replying of a package.
But if the attacker intercepts the user cookie and the secret key, he
could be able to modify and reply a package.

• SQL injection protection5: by default the queries to obtain objects
stored in the database are not written by the user using SQL, but as
simple objects and filters notation. This ensures that a novice developer
will not introduce weak SQL queries.

3https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
4https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
5https://www.owasp.org/index.php/SQL_Injection

53

https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/SQL_Injection

6.1. Django overview Chapter 6. Front end

• Host header validation6: Django validates the HTML host headers and
ensures to match a list of enabled host names defined in the settings.

• SSL/TLS7: it allows to easily use secure socket layer encryption.

6.1.3 Structure of a Django project
Django does not have a special folder structure for organizing the projects,
but most of the community projects follow the next folder structure.

• Project name

– App name
∗ models.py
∗ urls.py
∗ views.py
∗ forms.py
∗ templates

– static
– settings.py

All the project is contained inside one folder named as the project; inside
it, there is one folder per each application contained in the project. Each
file inside an application accomplish a specific and well known function. The
next sections are giving a brief overview of each file and function.

Models

The file models.py contains the definition of the objects of the application,
which will be stored into the data base. Each object is composed of at-
tributes and methods for describing its behavior. The attributes of each
class are strongly typed, and properties as length of default value can be
specified. More information about the models can be founds in the official
documentation8.
To illustrate the concept of a model, an example of one part of the sliced
order object is reported.

6https://www.owasp.org/index.php/HTTP_Request_Smuggling
7https://en.wikipedia.org/wiki/Transport_Layer_Security
8https://docs.djangoproject.com/en/1.8/topics/db/models/

54

https://www.owasp.org/index.php/HTTP_Request_Smuggling
https://en.wikipedia.org/wiki/Transport_Layer_Security
https://docs.djangoproject.com/en/1.8/topics/db/models/

Chapter 6. Front end 6.1. Django overview

1 class BtceOrder(BaseOrder):
2 ’’’
3 Class containing attributes and methods to represent a valid

btc-e order
4

5 Attributes:
6 buysell: String with possible values ’buy’ || ’sell’
7 pair: Valid btc-e pair
8 amount: Quantity of coins to exchange
9 status: Can be ’created’ || ’started’ || ’canceled’ || ’executed’

10 btceid: Id returned by btce.
11 ’’’
12 pair = models.ForeignKey(Change)
13 amount = models.FloatField()
14 price = models.FloatField()
15 buysell = models.CharField(max_length = 4) # allowed values:

’buy’ or ’sell’
16 btceid = models.IntegerField(null = True)
17

18 @classmethod
19 def create(cls, pair, user, buysell, amount, price):
20 order = cls(pair=pair, amount=amount, price=price,

buysell=buysell,
21 user=user, status=’created’)
22 order.save()
23 return order

This model represents a btce order. It inherit from base order, which
is the template used by the rest of the orders. The firsts lines are used to
document the object, using the PEP 0257 docstring conventions9. After, 5
attributes are defined: 2 floats for storing amount and price of an order, 2
strings for containing the identifier returned by btc-e.com when creating the
order and type of the order. The fifth attribute is a foreign key to a Change
object, which is the identifier of the pair to trade with.
The create method is used as constructor method. So, it receives all the at-
tributes needed to create the object, initialize it, and save it into the database.

URLs

Django proposes to use a clean schema for the URIs and really encourages
users to do that10 even if does not put any restriction. The file urls.py is where
the mapping between the URL requested by a user and the code executed

9https://www.python.org/dev/peps/pep-0257/
10https://docs.djangoproject.com/en/1.8/topics/http/urls/

55

https://www.python.org/dev/peps/pep-0257/
https://docs.djangoproject.com/en/1.8/topics/http/urls/

6.1. Django overview Chapter 6. Front end

by the application is done. Basically it analyzes the URL requested by the
user, using regular expressions and executes a view function for each match,
if the URL does not match any rules, the web server will return an HTTP
500 error.
A reduced example of a urls.py file is shown below, where the URL will try
to match the patterns for a sliced order or paired order.

1 urlpatterns = patterns(’’,
2 url(r’^slicedorder/$’, views.slicedOrder, name=’slicedOrder’),
3 url(r’^pairedorder/$’, views.pairedOrder, name=’pairedOrder’),
4

5)

These lines are mapping an URL containing slicedorder/ or pairedorder/ to
the correspondent function for processing the request. The third parameter,
’name’, is used for an abstraction inside the Django code. The URL matching
settings is nested, so each application might have a urls.py file. This structure
is not mandatory and the nesting levels can be as deeper as the developer
wants.

Views

One view is a function that takes web requests and returns web responses.
A response can be a rendering of a template, a redirection, an HTML error,
etc. In most cases a view takes the request from a user, handles it, creates
dynamic content and renders it through a template. More information about
Django views can be found in the official documentation11.
To illustrate the concept of a view, the next example shows a very short one.

1 @login_required
2 def index(request):
3 ’’’This view represents the main wallet view’’’
4 sk = str(request.user.userprofile.btce_secret_key)
5 ak = str(request.user.userprofile.btce_key)
6 info=get_info(sk, ak)
7 return render(request,’wallet/main.html’,{’info’:info[’return’],})

The first line of the code above contains an ’@’, it represents the use of a
Python decorator12. A Python decorator is a function which returns true or
false values, and the execution of the next sniped of code is conditioned to
the result of the evaluation. So, in this case, using this decorator is ensured
that the function is executed only if the request comes from a logged user.

11https://docs.djangoproject.com/en/1.8/topics/http/views/
12http://thecodeship.com/patterns/guide-to-python-function-decorators/

56

https://docs.djangoproject.com/en/1.8/topics/http/views/
http://thecodeship.com/patterns/guide-to-python-function-decorators/

Chapter 6. Front end 6.1. Django overview

The function gets 2 attributes from the user profile: API key and secret
key. Then, it gets information about the current status of his funds, using a
method to query btc-e.com, and returns an HTTP page through rendering
the template.

Forms

All the forms that an application has are defined in forms.py. Forms in
Django are very powerful and customizable, they can be defined field by field
or inherited from a model. When inheriting from a model, a form will have
one field per attribute of the class, making super fast the form definition.
This project is using many forms and experimenting with them, overriding its
internal methods and integrating external widgets. A more detailed explana-
tion about each form used by the project can be found in the correspondent
section.

Templates

The folder templates contains all the templates used by the the application.
A template is a file which contains HTML and a special template language13

which is processed by the Django engine and rendered as HTML page to the
final user. So, each HTML file represents a page that a user might see.
The Django template language is a mini-language which has only few ba-
sic functions, it can do simple loops and comparisons over data as well as
including files and inherit from other templates.

Settings

A Django settings file contains all the configuration of Django. It can be
extended by the developer to incorporating new values. Here everything
related with Django is configured, the main settings are listed and explained
below.

• Base directory: route to the directory.

• Secret key: password used to provide cryptographic signing, it should
be unique and unpredictable.

• Debug: boolean to set the debug mode of the application at on or off.

• Allowed hosts: list of the valid addresses or names of the project.
13https://docs.djangoproject.com/en/1.6/topics/templates/

57

https://docs.djangoproject.com/en/1.6/topics/templates/

6.2. Implementation Chapter 6. Front end

• Installed apps: list containing the names of the applications used in
the project.

• Databases: setting used to connect to the database, including host,
user, password and engine.

• Location: setting where is defined the language, time zone, etc.

• Static: contains the path to the folders with static files.

• Logging: defines the different logging handlers used in the application14.

Static

The static folder is where an application stores its static contents like images,
Javascript, CSS, etc. Using of a static folder in each application rather than
one globally, ensures the correct isolation of an application and helps to reuse
the application in other projects.

6.2 Implementation

6.2.1 Base template
The base HTML template defines the main structure of the web application,
all the other templates included in the project are inheriting from this one.
The whole code of the template is reported here.

Listing 6.1: Base template.
1 <!DOCTYPE html>
2 <html class="no-js" xmlns="http://www.w3.org/1999/html">

<!--<![endif]-->
3 <html lang="en">
4 <head>
5 <meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
6 <meta charset="UTF-8">
7 <!--<meta name="Cryptomoneymakers" content="Trading platform

built on top of btc-e">
8 <meta name="keywords" content="bitcoin trade btc-e">-->
9

10 <title>{% block title %}{% endblock %}</title>
11 {% load staticfiles %}
12 <link href="{% static ’css/simple.css’ %}" rel=’stylesheet’

type=’text/css’>

14https://docs.djangoproject.com/en/1.8/topics/logging/

58

https://docs.djangoproject.com/en/1.8/topics/logging/

Chapter 6. Front end 6.2. Implementation

13 <link rel="stylesheet" href=
"https://maxcdn.bootstrapcdn.com/
bootstrap/3.3.5/css/bootstrap.min.css">

14 <link rel="stylesheet" href=
"https://maxcdn.bootstrapcdn.com/
bootstrap/3.3.5/css/bootstrap-theme.min.css">

15 <link rel="stylesheet" href= "//netdna.bootstrapcdn.com/
font-awesome/4.2.0/css/font-awesome.min.css">

16 <script src="https://ajax.googleapis.com/ajax/
libs/jquery/1.11.3/jquery.min.js"> </script>

17 <script src="https://maxcdn.bootstrapcdn.com/
bootstrap/3.3.5/js/bootstrap.min.js"> </script>

18 {% block header %}{% endblock %}
19 </head>
20 <body>
21 <div class="row">
22 <div class="grid_12">
23 {% include ’main_nav.html’ %}
24 </div>
25 </div><!-- end row-->
26

27 <!-- main content area -->
28 <div id="main" class="wrapper">
29 {% block body_main %}{% endblock %}
30

31 </div><!-- #end div #main .wrapper -->
32

33 <nav class="navbar navbar-default navbar-bottom" role="navigation">
34 <div class="container" style="text-align:center">
35 <h5> Copyright 2014-2015 alberto.delbarrio.albelda@gmail.com

</h5>
36 </div>
37 </nav>
38 </body>
39 </html>

The template starts defining the kind of document (HTML), the language
used by the page (English), a header section, a body section and close the
HTML tag to mark the end of the document.
The header section defines meta information describing the encoding set used,
the name of the page and keywords used by the browsers and search engines
to render and index properly the page. The page name appears enclosed
by the two statements % block title %% endblock %, this is not HTML but
Django template language markup. These statements define a block without
content inside, which is used by te other pages to set the title of the page
that are rendering, just using the same syntax and setting the title.
After appears the statement % load staticfiles %, which is used to tell to the

59

6.2. Implementation Chapter 6. Front end

Django rendering engine that this page will use static elements. The next
6 lines are inclusions of the bootstrap CSS theme and Javascript functions,
also the simple.css file which was the style used at the very beginning of the
application’s development and is currently deprecated.
After the header, comes the last section: body. This HTML section is where
is located all the content visible by the end user. It defines 3 subsections.
The first one is a row of width 12 (this means that will occupy all the possible
width of the page) and includes the file main_nav.html which is described
in more detail in the next sub section.
The second element is a row with other block called body_main having a
inclusion Django tag inside. Here is where all the applications will put their
content.
The third element in the base template is the footer, where information about
the author is displayed. The footer could be extended adding links to the
documentation, contact API, etc.

Navigation menu

The main navigation part is the menu that appears at the top of the web
application. This menu serves for navigating through the different applica-
tions of the project. The design has a gradient color from white until gray
that gives a sensation of cleanliness and space. In the left side of the menu is
situated the logo, which is a dollar bill for representing the American spirit
of getting rich starting from one dollar.
A no logged user ca not see anything else because the navigation between
the sections is only displayed for a logged user. However, a logged user will
see three drop down menus located at the left of the bar: Wallet, Orders and
User name. The first one shows, after the user click, all the sections of the
wallet application, the same behavior occurs in Orders. The last one shows
the user name and when clicking, a drop down menu gives the possibility of
navigate through his settings and to log out.
The file containing the actual code is listed in the appendix 10.3.1.

6.2.2 CSS
Bootstrap 3

Bootstrap is a free and open-source framework for creating websites and
web applications15. It contains HTML- and CSS-based design templates for

15URLhttp://getbootstrap.com/

60

Chapter 6. Front end 6.2. Implementation

typography, forms, buttons, navigation and other interface components, as
well as optional JavaScript extensions. It aims to ease the development of
dynamic websites and web applications.
It was originally named Twitter Blueprint, and developed by Mark Otto and
Jacob Thornton at Twitter as a framework to encourage consistency across
internal tools. It was renamed from Twitter Blueprint to Bootstrap, and
released as an open source project on August 19, 2011. It has continued to
be maintained by Mark Otto, Jacob Thornton, and a small group of core
developers, as well as a large community of contributors16.

Reasons for using it. Bootstrap has been chosen because it simplifies a
lot the task of the web development in terms of page structure, disposition
of the elements and mostly in terms of compatibility between the different
kind of devices.
The version used in the web application is 3.0, which adopts a mobile first
design philosophy, emphasizing responsive design by default. This make it
perfectly suitable for building a new web application for a non web developers.
Other benefit is that is widely used across internet and has a large community
with tons of questions answered of how achieving the objectives. At this point
of the project development, the decision of using Twitter Bootstrap seems to
be the correct one.

Icons

The web application uses icons to represent the currencies and to make more
pretty the navigation menu of each sub application. Nowadays is a com-
mon pattern between the web developers to use icons as a mechanism of
universal communication and as creation of visual interest. Due to these two
reasons, the application uses icons: trying to capt all the interest of a user.
Furthermore, the use of icons does not influence the time of loading a page.

Coins. The table displaying the funds, for example inside the simple order
section, includes a different icon to represent each of the currencies. Their
style is not completely homogeneous because it is difficult to find a set of this
kind of icons in internet for all the available currencies. Some currencies like
the NovaCoin does not have an official icon yet. However the result looks
very nice achieving certain degree of uniformity regarding shape and size.

16URLhttps://en.wikipedia.org/wiki/Bootstrap_%28front-end_framework%29

61

6.2. Implementation Chapter 6. Front end

Navigation menus. The icons used for the navigation menu are homoge-
neous in terms of style. All of them are part of the Font Awesome project17.
This projects is an open source set of clear fonts and icons very popular be-
tween web developers and designers. At the moment of writing this text it
had 35.622 starts and was forked 5.822 times in Github.
Each section inside the applications is mapped into an icon, most of the times
the icon describes truly the function of the section, but in a few exceptions,
was not possible to find an icon in the Awesome icons set which was de-
scribing the behavior. The use of the icons makes the menus look very nice
without adding a difference in the time used to render the page.

6.2.3 Charts

The project is displaying some graphs and charts with information regarding
the number of orders done by a user or the total amount of money that a
user has. There are many frameworks in internet offering the possibility of
rendering graphs, open source and with proprietary licenses.
Some examples are the D3js graphs18 which is a collection of very power-
ful and awesome graphs. Other possible choice widely used is SigmaJs19.
Another one is to render the graphics in the backend using some tool like
GNUPlot20 and displays the result as an image.
In favor of all the options, Google chart was chosen21. This chose was done
because this library is very simple to use, completely open source and the
documentation is very good, including examples of each kind of chart and
description of each possible attribute. The Google charts have the disadvan-
tage of being not as powerful as other libraries, but enough for the purpose
of this project.
The way that the project is using them, is embedding the Javascript code
in each page that displays a chart. This approach is not bad but could be
better using third party projects which integrates the charts with Django ap-
plications in a more elegant and flexible way, for example: Django-charts22.

17https://github.com/FortAwesome/Font-Awesome
18http://d3js.org/
19http://sigmajs.org/
20http://www.gnuplot.info/
21https://developers.google.com/chart/
22https://github.com/rhblind/django-gcharts

62

https://github.com/FortAwesome/Font-Awesome
http://d3js.org/
http://sigmajs.org/
http://www.gnuplot.info/
https://developers.google.com/chart/
https://github.com/rhblind/django-gcharts

Chapter 6. Front end 6.2. Implementation

6.2.4 Disclaimer
The HTML, CSS and Javascript used in the project probably do not have the
best structure and are not following the bests practices in web development.
However this project is not about web development, the fact of having web
languages is a necessity rather than a feature. Nowadays the development of
a desktop application oriented to normal public does not have sense, because
everything is based on the web and is designed to be usable in desktop
computers, laptops, tablets, phones, etc. Anyway the development of this
part of the code is trying to be simple and effective to be able to extend it
easily without starting from scratch.

63

Chapter 7

Application insights

7.1 Introduction to the chapter
This chapter contains the enumeration and description of the Django applica-
tion and its components. It is the most important chapter for understanding
the whole project, because the applications explained here have the structure
used by the final user to interact with the system.
The chapter is organized using one section per application. Each applica-
tion is subdivided in logical parts, which normally represents a different web
page. There are some exceptions to this, like the logical parts explaining
components which do not have visual representation.
The user will be guided through the different parts of the logical units: mod-
els, views, forms and templates.

7.2 Users
The users application is the one which manage the creation, deletion, and
customization of the preferences of the users. For the creation of a new user,
there is a registration section which is disabled until the application will be in
production. It is disabled for protecting the system against malicious users
or people who just want to look around.
The process of login into the web application is done via the login section
where a registered user, using his user name and password, will be able to
start using the application. After finishing to trade, he will log out via the
log out section.
The user can change his password or his btc-e API keys via the setting
section.
The mapping between the URL requested by the user and the function called

64

Chapter 7. Application insights 7.2. Users

is done by the urls.py file. The content of this file can be found in the
appendix 10.3.3.
The next subsections explain with high level of detail the components of the
users application.

7.2.1 Settings
The user’s settings section is the part of the application where a user can see
and modify his preferences. Currently it is possible to operate with the user
password and the user btc-e API keys. These are two very basic, but needed,
settings. In future releases of the application this section will be extended to
manage the user email address, the currencies that he want to see and trade
with, a maximum limit of money traded per day, etc.
The details regarding the implementation of each available option is explained
below, first for the view function and after for the template.

Views

Info. In the info section a user will see his main information: (public) API
key, the date of registration and last login. This section is indeed to give an
overview of the user settings.
The view function is the shortest one of all the application, it does incredibly
nothing but renders the template, without passing any arguments to it. This
is because in Django the user object is always passed to a template, and the
fields that are displayed here are actually part of the user model. The code
reference can be found here 10.3.3.

Change password. Change password view is where a user can change his
password for login into the application. As in most of the web applications,
a user must introduce his current password and two times the new password
to be able to change it.
Asking the user ot introduce his current password ensures that he is who is
using the application, and asking him to repeat two times the new password
makes sure that the user does not make a typographic error. After this in-
formation is sent, it is validated to ensure that the constraints of introducing
the correct current password and the equality of the two fields for the new
password are fulfilled.

Change API keys. The change API keys view is where a user can modify
his btc-e.com API keys. This section is very important because from time to
time btc-e.com revokes all the keys forcing the user to change them.

65

7.2. Users Chapter 7. Application insights

The view displays two fields for introducing the public and the secret key.
At the moment, this information is not validated against the btc-e API to
test if the keys are valid.

Templates

Info. The info template shows a customized welcome message for the user.
After, the information mentioned above is displayed clearly inside a table
without borders, and overriding the padding between the cells to get a nice
visual aspect. The title of each item uses bold letters. The code for this
template can be found here .

Change password. The template in charge of rendering the page for
changing the password is pretty straightforward: it checks if a success or
error message, containing result of a previous operation, was passed as an
argument, displaying it with green or red colors. Finally, it renders a form
with the three fields for changing the password.

Change API keys. The code for the change API keys templates is pretty
similar to the one explained above with the only difference in the names and
quantity of fields.

Forms

The users application defines two forms: change password and change API
keys.
The change password form is special because it contains a method for vali-
dating the password field: clean_newpass2. It checks if the two introduced
passwords are the same using the Django internal mechanism for validating
fields1.
Change API keys is a simple form with two fields for setting both the public
and private API keys of the user.

1https://stackoverflow.com/questions/7948750/custom-form-validation

66

https://stackoverflow.com/questions/7948750/custom-form-validation

Chapter 7. Application insights 7.2. Users

Screenshots

Figure 7.1: Info page.

Figure 7.2: Change password page.

Figure 7.3: Change API keys page.

67

7.2. Users Chapter 7. Application insights

7.2.2 Log in

The log in section is the first page that a user sees when entering in the
application. It handles the process of authenticating a user against the ap-
plication. To be authenticated the user must provide a registered user name
with the corresponded password. If the user provide valid details, it will be
able to use the application until the logout. If the log in details provided by
the user are not correct, he will be able to try again as many times as he
wants. This behavior has to be changed when the application will go into
production to avoid possible attempts to obtain the password of a user. This
probably is easy to do using a third party application like django-axes2.

View

The user log in view handles the part of the user authentication against the
Django application. For authenticating it uses the authenticate method pro-
vided by the Django.auth module, which returns true if the details provided
are correct and false if not. After, the code checks if the user account is
available. For the moment all the accounts are available, but this could be
used in the future to ban users who do not respect the rules. If the attempt
to log is not successful, the user is redirected to a page showing an error and
the attempt is logged.

Template

The login template for rendering the page creates a form with two fields:
one for the user name and other one for the password. This is not the same
structure than in other parts of the application where the form is previously
created in the forms.py file and just rendered in the template. This template
still creates a form manually because this was one of the first parts developed
in the application, and how to work with forms was not so clear yet. This will
be changed in favor of a form in forms.py in futures releases of the program.

2https://github.com/django-pci/django-axes

68

https://github.com/django-pci/django-axes

Chapter 7. Application insights 7.3. Wallet

Screenshot

Figure 7.4: Log in page.

7.2.3 Log out
The log out section is very little, only composed by a view function. When a
user requests this function via the log out button located at the top navigation
bar, a call is done to the logout method. The Django.auth module revokes
the temporary data created to mark the user as logged.

7.3 Wallet
Wallet application is the electronic wallet of a user: it shows the balance of
the user account, list high detailed reports of the orders finished and allows
the user to get the orders history as well as being able to filter these results
in the last transactions.
When a user first log in into the system, he will navigate to the main view
of Wallet where he will see an area chart with historical data displaying the
total amount of his wallet expressed in USD. When scrolling down he will
see a bar graph showing the number of orders done for each type. Thanks to
this graph a trader can easily understand how is the status of his account.
Then, he can navigate to the report section to see which orders are completed
and the results of the operations. In this view the user will see five tables,
one for each kind of order, each one showing the reports for the last five
orders. Here the user will explore each order to see how it finished.
Before start trading he might like to see the amount of each currency that
he owns to prepare the strategy of the day; the application shows this infor-
mation in the Funds section.

69

7.3. Wallet Chapter 7. Application insights

The application also allows a user to query the orders or transactions realized
in the past. So the user can navigate to the correspondent view and make
a query filtering the available data, being able to select between a range of
dates, the amount of results or the trading pairs.
These five features are logically separated in six different components of the
application. The next sessions describe in high detail the implementation of
each one of them.

7.3.1 Summary
Summary is the first view which appears in the wallet menu and is designed
to give a fast overview on the status of the wallet of an user. The main
content is displaying three different elements.
The first element is a table which contains the useful information returned by
the API method get_info. The data displayed in the table are: the number
of active orders in btc-e, the number of opened transactions active at the
moment in btc-e and the rights that have the API key used by the user.
The second element is an area chart showing the total amount of money
owned by the user during a period of time of two months.
The third and last element contains a bar chart showing the total number of
orders of each possible type realized by a user.

View

The summary view has the code to generate the 3 different elements. The
code is divided in three blocks, each one of them fetches the information for
an element and adds the results to the context dictionary.
For getting the information about the API key rights, transactions and orders
opened, only two lines are needed: one for querying the btc-e API and other
to store the result.
The code for displaying the graph of the total amount of money owned by
a user, is composed by just three lines: the first one queries the database
to get the lasts 200 orders, the second one formats the data to make it
understandable by the google chart javascript function and the third one
stores the results into the context dictionary.
The last section will display a bar graphic representing the amount of orders
of each kind created by a user. To get this information from the database,
one query per kind of order is necessary, which returns all the orders for each
kind. However only the size of the set is needed. This part of the code is
not so good because to get all the orders is an expensive operation in terms
of memory, and it is used only to calculate the length of the vector. In the

70

Chapter 7. Application insights 7.3. Wallet

future has to be improved.
The code itself can be found in the appendix 10.3.4.

Template

The code of the template used to render the summary is simple and clear: it
displays three different components. There are three "if" conditions, checking
for the existence of each component, the first one renders the table resume,
the second one contains a Javascript function for rendering the graph of the
total amount of money, the third one contains a similar script which will
render the graphs showing the number of orders. Inside the first script there
is "for" loop printing the data collected in the view and an API call to the
Google API for rendering the graph. This two scripts set the style variables
to get different results regarding the kind of graphic, the color of the bars,
the border of the background, etc.

71

7.3. Wallet Chapter 7. Application insights

Screenshot

Figure 7.5: Summary page.

7.3.2 Funds
Funds is central place where a user can see in real time the content of his
wallet. In only one table a lot of useful computed information are displayed.
It contains one row for each coin, currently seven (PPC, USD, LTC, NVC,
NMC, BTC, EUR) and three columns: Available, In orders and Total. Each
column is subdivided in two columns: - and USD. The most important feature

72

Chapter 7. Application insights 7.3. Wallet

of this table is the fact that shows the amount of each coin in USD, and this
is super useful to get a fast overview of the volume that each coin represents.
To obtain the amount each coin is translated into USD, the last traded value
in btc-e is used. So it is in real time. Nowadays the translation of the value
into USD is very easy to do, because all the currencies supported by btc-e can
be changed directly into USD. In the first stages of the development was not
like this, and currencies like XPM could only be converted to BTC. Those
days the translation of the values was a challenge to face.
The result is a nice and compact table that shows very useful information in
a simple way.

View

The view function contains the code for fetching and converting to USD the
funds of a user.
First the function gets the active funds of the user in real time querying
the btc-e API. Second it converts the funds to USD using an auxiliary func-
tion: convert_funds_to_usd(funds) which receives a dictionary with curren-
cies and translates this amount to USD getting the current price of each
ticker. This function just loops over the dictionary of the funds, and calls
convert_to_usd(coin, amount, tickers=None) which does the real calculus.
The last function receives optionally a tickers dictionary, and if it does not
receive it, queries btc-e to get it. The implementation is getting only one
time the tickets and reuses it to convert all the coins to USD reducing like
this the total amount of queries to btc-e API and like this reducing the total
time needed for render the page.
The function continues getting the funds in real time used by the active or-
ders of the user. Doing this process is not trivial, because once having the
list of the active orders, the amount of each coin has to be extracted from the
name of the pair, so can be of two currencies. For example for an order of
buying 2 BTC at 200 USD the information available is the name of the pair:
btc_usd. Studying the structure of the available pairs in btc-e I have figured
out that if the order is a sell order, the money invested will correspond to
the first coin appearing in the pair, and if the order is type buy, the amount
invested will correspond to the second coin in the pair. The example reported
is for a buy order, so the total currency invested of that order is 200 for the
second coin, that is 200 USD. The code that implement this algorithm is
wrapped into get_funds_in_active_orders() function listed below.

Listing 7.1: Get funds in active orders.
1 def get_funds_in_active_orders(sk, ak):

73

7.3. Wallet Chapter 7. Application insights

2 ’’’
3 This function gets the amount of currency present in orders

active.
4 It returns a dict containing the values for each currency.
5 ’’’
6 #Add the funds in active orders:
7 ao = get_active_orders(sk, ak)
8 funds = {}
9 if ao and ao[’success’] == 1 and len(ao) > 0:

10 for k, v in ao[’return’].iteritems():
11 if v[’type’] == ’sell’: #if sell, the currency owned is

the first in the pair
12 funds[v[’pair’][0:3]] = v[’amount’]
13 else:
14 funds[v[’pair’][4:7]] = v[’amount’]
15 return funds

Once the amounts are calculated and stored into a dictionary, this dictio-
nary gets enlarged adding all the possible coins which where not presented in
available orders, with an amount of 0. This is done to make easy the building
of the table when rendering the template.
Then, the data of this dictionary is converted to USD.
The last step consist in summing the two dictionaries to obtain the total
amount of each currency, and how much does it represent in USD.
The function is awesome but it has also disadvantages: it is slow because
performs several queries to the btc-e API. It has been already be tunned to
reduce the number of queries, but the main bottleneck resides in the method
of get_ticker() that query the btc-e API.

Template

The template that generates the HTML page is straightforward to under-
stand: it just loops each one of the three dictionaries for adding the infor-
mation contained into the table. A careful reader looking into the code will
notice that actually it is not one table but three, one per each dictionary.
This implementation has been chosen in favor of the use of only one table,
because using the Django template language it is very difficult to iterate over
the keys of 3 dictionaries at the same time. This solution is elegant because
keeps the code simple.

74

Chapter 7. Application insights 7.3. Wallet

Screenshot

Figure 7.6: Funds page.

7.3.3 Fund
The fund section was created to give to the user details about how much of
one coin owns. Using this information a user can see easily the history of a
particular coin.
To achieve this goal, the main view shows an area graph containing the
amount owned of a currency during the period of the last two months. This
is not real time data, it comes directly from the database.
This data his collected by the part of the backend used the get the user funds
8.4.1.

Model

Funds is the model for storing the amount of a coin owned by a user in a
certain time. It is named in plural because is part of a legacy code, in some
moment, it has to be renamed to Fund to follow the conventions.
The fields of this model are self explanatory: currency is the name of a coin,
amount is the amount owned by a user, datetime is the date and time when
the data was taken and user is a foreign key to the Users model.
There are two exceptions in the currency name: a part of the name of each
currency, it can take the value of tav to store the amount of each fund re-
turned by the btc-e API and ttl to store the total amount of a currency
counting also the amount in active orders. These names are not self explana-
tory because they use only three letters to describe its content. These names
have been chosen to continue being coherent with the symbols of each coin.

75

7.3. Wallet Chapter 7. Application insights

View

The fund view gets the data of the fund and renders the page to the users.
The code queries the database to get the historical data of a certain fund
(received as a parameter of the function), builds a dictionary with the data
and returns calling the render function.

Template

The code of the template is similar to the section that renders a graph in the
summary page: it adds the Javascript function to call the Google API and
loops over the generated dictionary to display a tuple like (time, amount).

Screenshot

Figure 7.7: Fund page.

7.3.4 Reports
Reports is one of the most important section of the whole project, it shows
a lot of information about the orders executed. A trader needs to review
constantly the orders executed to understand how they finished, and try to
analyze how could have had more benefit. Btc-e only shows to the user, if
an order was completed, the same information that he introduced to create
the order. This is not enough for someone that wants to win money trading
with currencies. The reports section has been developed to provide a user

76

Chapter 7. Application insights 7.3. Wallet

the information that he need, without having to realize manual calculus.
The project allows to create different kinds of orders, and each one needs
different data to be filled and can be finishes in different ways. Due to the
diversity of orders was not possible to design just a single format for showing
results, so the final view for reports is divided in five sections, one for each
kind of order.
The first section displays the results of the lasts five simple orders executed.
These results are simple showing if an order was completed or canceled.
The next report shows information for sliced orders. This kind of order is way
more complicated than the previous one, and this can be observed looking at
the size of the reports. For each of the lasts five sliced orders executed there
are two tables: the first one shows the values that the user had introduced
to create the sliced order as well as the final status: executed or canceled.
This table will remember to the user about the order with a fast overview
of how much was traded and between which boundaries. The second table
details each and every of the sub orders created by the sliced order, giving
information about the amount that was traded with, the price and the final
status.
For example, a user had created a sliced order of buying 3 BTC between
100 and 300 USD, slicing the order in three sub orders. The main table will
show this information and the second table will contain three rows (one per
order) displaying 1 BTC 100 USD, 1 BTC 200 USD and 1 BTC 300 USD
respectively. After looking at this information one user can evaluate if the
order was sliced properly or if it could be adjusted with other boundaries to
get more benefit.
Scrolling down in the page a user can observe the reports for the time based
orders. This kind of orders are very similar to the simple orders, just with one
difference: they will expire in a certain time if the order was not executed.
The report shows the final status of the last five time based orders (canceled,
executed or expired) and the expiration date and time. For example a user
that left a time base order before go to sleep, can see the next day if the
order was finally executed, of if it was expired.
The next report shows the paired order, this is the most fancy report. The
paired orders were created to enable a user to open and close a position for a
certain trade and let him know automatically how much benefit he obtained.
This is one of the most commons operations that a trader realizes in one
normal day. Without this calculus, a user which has been playing in the
btc-e exchange for a while will not know which orders were profitable and
which ones were not. The report for the paired order shows the lasts five
paired order executed and calculates the benefit obtained when opening and
closing the position, including also the fees of the transactions payed to the

77

7.3. Wallet Chapter 7. Application insights

exchange market. This reports are a nice feature that most of the traders
want to have in their trading management system.
The last report shows the final status for a stop loss order. This report is
needed for the trader to understand if the order was traded with the price that
he would like, or as the opposite, the order was traded using a unfavorable
value, that is limiting his loss.
The next sub sections are discussing how all of these reports are implemented.

View

The view of the Reports section is in charge of gathering the information rel-
evant for each kind of order and of transforming this information. The code
is longer than in other views, more than 80 lines, but it is easy to understand
reading the section above.
For a simple, time base and stop loss orders, it extracts the information from
the database without doing any formating or calculus. From this informa-
tion, it takes only the lasts five results or, if less than five orders has been
realized, it will take all the finished orders.
The sliced orders are different, because for displaying the report, not only
the last five sliced orders are needed, but also all the suborders that com-
pose each one of those. A part of getting the suborders, the information has
to be prepared before be rendered by the template. To achieve this, after
having the lasts five sliced orders (or less), there are two nested loops which
are filling the dictionary "sliced" adding the information for the global sliced
order and part of the information of each one of the suborders. The result
is a Python dictionary with all the data structured for being rendered using
two loops by the template.
The report for the paired order also transforms the information extracted
from the data base. Actually it calculates the benefit obtained with a paired
order. A developer who cares about having an optimal code in terms of
memory and CPU consumption will see this part as a waste of CPU, because
these calculus are done each time that a user see his reports. Seems to have
sense to add a field into the paired model named "benefit" and fill it in the
moment of marking the order as executed. This is true, but the reason why
this code remains in to the view is to give more time to debug the algorithm
and evaluate if the results given by the program are correct. If a non correct
result is observed, the developer can just change the code in the view and
will see the value updated. In some time this code will be incorporated in
one method of the paired order class.
Continuing with the possible improvements, has to be notice that the ap-
proach of extracting all the orders realized by a user to after get only the

78

Chapter 7. Application insights 7.3. Wallet

lasts five, is not good: it wastes memory and bandwidth while communicat-
ing with the database. However I could not find a better approach using the
functions that Django provides.

Template

The template renders the reports page. This code is, as the other templates,
quite simple. It checks if there is information for the orders. If there is
no information for some kind of orders, a sentence will be displayed in the
position where the reports for that order should go adverting the user that
there is not data for this order. If there is information, in the dictionary, it
will loop over it displaying in tables the contents of each dictionary.

Screenshot

Figure 7.8: Reports page 1.

79

7.3. Wallet Chapter 7. Application insights

Figure 7.9: Reports page 2.

Figure 7.10: Reports page 3.

7.3.5 Trade history
The trade history section shows historical data provided by btc-e regarding
the orders of a user, just mapping the data returned by the trade_history()
API method. So, all the data displayed here is obtained in real time via
btc-e, and it is not stored inside the database of the application. The view
gives to the user the capacity of make queries to the API filtering and select-
ing the amount of received information via a form in the page. This data is

80

Chapter 7. Application insights 7.3. Wallet

displayed inside a table.
As other parts of the btc-e API this is not documented at all, is difficult to
understand the significance of the data provided and seems to be more like
information of how btc-e works internally. A very good study of the infor-
mation given by the trade history method and by the transaction history
method has been realized by someone in internet who tried to explain the
significance using two examples of operation done and data collected3. The
summary of the research is that trade history records the amount and rate
of the order while transaction history records the sub orders in which one
order if filled.
The next section explains how a user can make a query with different pa-
rameters, how this query is executed and how the results are displayed to
the user.

Form

The form is used by a user for select parameters when querying to get his
history of trades. There are eight different parameters, and one field in the
form for each one. In the lines below are described all the fields.

• pair: Represents a valid btc-e pair.

• nfrom: Get the recent orders since this order id.

• count: Maximum number of trades to get.

• from_id: Id of order to start the query.

• end_id: Id of order to finish the query.

• sort: For sorting by alphabet the result of the query.

• since: Date and time to start the query from.

• end: Date and time to end the query from.

View

The trade history view is very simple. When the method requested by the
user is an HTTP GET, the function renders the form. However if the request
method is an HTTP POST, it checks if the data introduced in the form is
clean, if it is, it queries the btc-e API with using the trade_history() method.
The result of the query is stored in a dictionary and sent to the template for
displaying it.

3https://bitcointalk.org/index.php?topic=361052.0

81

https://bitcointalk.org/index.php?topic=361052.0

7.3. Wallet Chapter 7. Application insights

Template

The template shows the form and the results of the query if available. The in-
formation displayed by the table with the results includes: id, pair, amount,
rate, type, pair and is_your_order. Like with other parts of the API, the
last field is not documented and there are only people guessing about its
meaning. The supposition with more sense says that the field has a value of
false when their system does not fill the orders right away and their system
generates new orders for smaller amounts to split up the original order into
multiple new orders. This smaller orders are marked as is_your_order = 0.

Screenshot

Figure 7.11: Trade history page.

7.3.6 Transaction history
Transaction history is where a user can query the btc-e API to get a list of the
lasts transactions. Looking into the information provided by the query a user
can see how much money is paying in concept of transaction fee, how much
money was hold by btc-e as a credit to ensure the correct payment of their fee,

82

Chapter 7. Application insights 7.3. Wallet

the result of an order including the time when it was filled or canceled and
information regarding withdrawals of money to external accounts or ingress
of money to the platform.
The section in developed similarly to the trade history: there is a form where
a user can refine its search to get the results he is looking for, and the results
of the query are displayed in a table just under the form.
This information is taken in real time from the btc-e API.

Form

The form has seven fields to filter the received information:

• nfrom: Get the recent orders since this order id.

• count: Maximum number of trades to get.

• from_id: Id of order to start the query.

• end_id: Id of order to finish the query.

• sort: For sorting by alphabet the result of the query.

• since: Date and time to start the query from.

• end: Date and time to end the query from.

View

The view of transactions history is in charge of validate the information
introduced by the user using the form, make the query to the btc-e API,
transform the response and pass to the template to be rendered.
The transformation of the response given by the API is simply a translation
of the status code field. Instead of showing to the final user an integer, which
will not make sense for him, this code is changed for the description. There
are a total of eight status codes, someone putting attention in the code below
will notice that are not sorted in the if/else block, this is because the most
common status code is the number five, for this reason its occupying the first
statement, trying to make the code as optimal as possible.
This translation has been improved once btc-e put the explanation of each
status code in the API "documentation", at the beginning the translation of
the status codes was done guessing about the meaning of each one.

83

7.3. Wallet Chapter 7. Application insights

Template

The template in charge of rendering the form and the result of the query is
straightforward. It displays the form inside a table without borders to get all
the elements aligned and overriding some CSS styles for getting the desired
visual result.
After, it checks if has a dictionary with the results of a query. If yes, it
creates a table and a header row, and loops over the data creating one row
per each transaction.

Screenshot

Figure 7.12: Transaction history page.

84

Chapter 7. Application insights 7.4. Orders

7.4 Orders
The orders application is where a user of the platform can create orders
against the btc-e exchange market. In has several kind of orders for make
easy the work or a trader. For example using the orders application a user
can create an order which will expire at certain time, or can create several
orders between a defined boundaries.

7.4.1 Active orders
Active orders is the place where a user can see all the current open orders.
The idea behind this section is to provide a centralized place where is easy
and fast to have an overview of the different open orders of a user.
Taking advantage of the display of these orders, this is also the place where
a order can be canceled. This goal is achieved using the maximum simplicity
and cleanliness possible regarding the way in which is displayed and the code
which allows this functionality.
For this reason not all the information that could be fetched and processed
from each kind of order is displayed here, leaving this task to the reports
section 7.3.4, where all the information is gathered, processed and displayed
to the user once the order is finished.

View

The active orders view allows a user to see and cancel active orders. These
two functionalities are separated in different functions in the views file.
The activeOrders function fetches the information needed for displaying the
orders to the user. For each type of order it queries the database to obtain
a list with the orders which belong to the current user and have as status
"started". After it adds all the fields which are important for displaying into
the template to a context dictionary, finally returning the rendered HTML.
This function is beautiful to see because is using the same length for the
dictionary variables making it easy to read.

Listing 7.2: Active orders view.
1 @login_required
2 def activeOrders(request):
3 ’’’
4 Render a page with a user’s active orders.
5

6 Each order can be canceled from this page.
7 Each order shows its different attributes agrupted by column.

85

7.4. Orders Chapter 7. Application insights

8 ’’’
9 simple =

SimpleOrder.objects.filter(user=request.user).filter(status =
10 ’started’)
11 sliced = SlicedOrder.objects.filter(user =

request.user).filter(status =
12 ’started’)
13 timed = TimeBasedOrder.objects.filter(user =

request.user).filter(status =
14 ’started’)
15 paired = PairedOrder.objects.filter(user =

request.user).filter(~Q(status =
16 ’canceled’) & ~Q(status = ’cont_executed’))
17 stoploss = StopLossOrder.objects.filter(user =

request.user).filter(status =
18 ’started’)
19

20 simp = {}
21 slic = {}
22 pair = {}
23 time = {}
24 stop = []
25 for o in simple:
26 id = str(o.btceid)
27 simp[id] = {}
28 simp[id][’pair’] = o.pair.label
29 simp[id][’amount’] = o.amount
30 simp[id][’type’] = o.buysell
31 simp[id][’price’] = o.price
32 simp[id][’total’] = o.amount * o.price
33 for o in sliced:
34 id = str(o.id)
35 slic[id] = {}
36 slic[id][’pair’] = o.pair.label
37 slic[id][’amount’] = o.amount
38 slic[id][’type’] = o.buysell
39 slic[id][’number’] = o.numberOfOrders
40 slic[id][’upper’] = o.upperBound
41 slic[id][’lower’] = o.lowerBound
42 slic[id][’total’] = o.totalAmount()
43 slic[id][’active’] = o.numActive()
44 slic[id][’executed’] = o.numExecuted()
45 for o in paired:
46 id = str(o.id)
47 pair[id] = {}
48 pair[id][’pair’] = o.pair.label
49 pair[id][’amount’] = o.amount
50 pair[id][’type’] = o.buysell
51 pair[id][’price’] = o.price

86

Chapter 7. Application insights 7.4. Orders

52 pair[id][’total’] = o.amount * o.price
53 pair[id][’cprice’] = o.contraprice
54 for o in timed:
55 id = str(o.id)
56 time[id] = {}
57 time[id][’pair’] = o.pair.label
58 time[id][’amount’] = o.amount
59 time[id][’type’] = o.buysell
60 time[id][’price’] = o.price
61 time[id][’total’] = o.amount * o.price
62 time[id][’exp’] = o.expiration_time
63 for o in stoploss:
64 id = str(o.btceid)
65 stop[id] = {}
66 stop[id][’pair’] = o.pair.label
67 stop[id][’amount’] = o.amount
68 stop[id][’type’] = o.buysell
69 stop[id][’price’] = o.price
70 stop[id][’total’] = o.amount * o.price
71

72 context={’simple’: simp, ’sliced’ : slic , ’paired’: pair,
’time’: time}

73 return render(request,’orders/activeorders.html’,context)

As was mentioned before, each order shown here must be cancelable just
doing one click. To achieve this goal, one view has to be created to cancel
each type of order, because the code in charge of due the actual cancellation
depends on the kind of order, even if they look pretty similar.

Template

This template will create as much tables as types of active orders a user has.
If the user does not have active order of one kind, it will show a message
saying it.

87

7.4. Orders Chapter 7. Application insights

Screenshot

Figure 7.13: Active orders page 1.

Figure 7.14: Active orders page 2.

7.4.2 Base order
Model

The base order represents the simplest kind of order in the application. All
other kinds of others inherit from base order.
The first approach for building the base order model definition was to use

88

Chapter 7. Application insights 7.4. Orders

a Python abstract base class4. Abstract base classes are a special form of
interface which check its sub classes ensuring that they implement particular
methods. By defining an abstract base class, someone can define a common
API for a set of subclasses. This capability enforce subclasses to implement
the base methods, if this methods are not implemented, an error will be raised
when defining the class. A similar behavior can be achieve using functions as
hasattr(), but the error if not implemented will raise when using the method
in stead of when defining the class, leading to a later detection of the bug.
Many Python core modules are using ABCs like the collections module.
However the use of abstract base classes was not recommended in early ver-
sions of Django, even if can be achieved using the attribute "abstract = True"
in the meta data definition inside the class. For simplicity, in stead of this
approach a more traditional way of achieve the same functionality has been
used, raising an error when a subclass of base order want to use a method
not implemented.
The four methods which a subclass must implement are: create, execute,
cancel and __str__.

• create: This method is the actual constructor of the class. The first
idea was to override the __init__() method, but this is not a good
idea in because Django expects the signature of a model’s constructor
to be in the form of (self, *args, **kwargs), and from the official doc-
umentation encourage to not do it5. For this method to be able to act
as a constructor it has the decorator @classmethod, receiving a class
as first argument6.

• execute: It is used to put an order into the market, using different kind
of technique depending on the order. This method uses the decorator
@property to achieve a similar role than the traditional getters and
setters7.

• cancel: This method will remove a order from the market and change
its status to ’canceled’. It also uses the @property decorator.

• __str__: This method overrides the representation of the class as a
string to make it more readable when debugging.

4https://docs.python.org/2/library/abc.html
5https://docs.djangoproject.com/en/1.7/ref/models/instances/

#creating-objects
6https://docs.python.org/2/library/functions.html#classmethod
7https://tinyurl.com/poxzt2f

89

https://docs.python.org/2/library/abc.html
https://docs.djangoproject.com/en/1.7/ref/models/instances/#creating-objects
https://docs.djangoproject.com/en/1.7/ref/models/instances/#creating-objects
https://docs.python.org/2/library/functions.html#classmethod
https://tinyurl.com/poxzt2f

7.4. Orders Chapter 7. Application insights

The attributes defined by base class are the minimum common between
the different classes: timestamp, user and status.

• timestamp: autogenerated UNIX timestamp. It will get filled in the
moment of saving the order into the database.

• user: field containing a foreign key to the user 7.2 owner of the order.

• status: string with a valid status for an order. This status will depend
of the kind of order.

Template

The order base template defines a structure for controlling how all the orders
are represented in an HTML document, extending the base template ??.
This decided structure uses the main grid twelve, defining in only one row
four sections of same size.
The first section is reserved for displaying the secondary navigation menu,
the second one is designed to contain a table with the current funds of a user,
the third section is where the form of each order is presented and the fourth
section can include help instructions to explain how the order works.
The secondary navigation menu contains the same items than the order’s
drop down menu, but makes easier and faster for a user to move around the
order application. The items which appear are: active orders, simple order,
sliced order, paired order, time based order and stop loss order.
The menu is wrapped inside the correspondent grid_3 class, and inside it
has two more sections wrapped into divs. The first one is "mini-submenu"
class, which only has "span" sections containing nothing but the definition.
The purpose of these lines is not so easy to find, because it is not well
documented in the Bootstrap documentation but there is a StackOverflow
question8 which explains it: they are use for rendering a nice menu when
the screen is small, making the HTML responsible. The next div is a "list-
group" class which contain a list of items, one per sub order section. Each
of the sub elements are "list-group-item" class and can be of other special
class: "active". As can be observed in the code below, there is an if condition
inside every item, which will add the class "active" only if the browsed URL
contains the link to which is pointing the item. If an item is of "active" class
its background color will change, making easy to distinguish the current
section. This goal is a common component that many websites developed
using variety of framework are looking for. Normally this is achieved using

8https://tinyurl.com/pkswn7a

90

https://tinyurl.com/pkswn7a

Chapter 7. Application insights 7.4. Orders

Javascript for changing the class, for that the user has to execute a little piece
of code in the browser. However the approach followed in this document has
been to use Django to add the class in order to use as less Javascript as
possible.
The funds block displays the current funds of a user. In the beginning of
the development, this space was defined but the HTML that generate the
table with the funds was placed in every order. In the second iteration of
the web UI development that was changed, and the funds are displayed now
in the base template. This decision has been taken to make the web UI
easier to maintain following the DRY9 principle. The table is displayed using
three classes from Bootstrap: table (main class to render a table), table-hover
(adding the hover effect on every row) and table-bordered (surround the table
with borders). The table is composed by the header and the body. The
header contains the title of two of the three column: currency and amount.
The first column will display the icon of each currency, and the other two rows
the name and the amount of the currency that a user has currently available.
In the case that the user has no available funds, a message indicating that
there are not available funds will be displayed in stead of the table.
Then, appears the order block which is empty, because the actual form to
render depends of the kind of order.
The last block is the help block, empty as well for the same reason. This
block will contain a little help message or instructions to make easier to
understand how to set the order.

7.4.3 Btce order
Btce orders are the minimum valid orders to interact with btc-e.com. It
matches the attributes that a trader will set if using directly the exchange
market to place an order.

Models

The btce order model is inheriting from the base order model and overriding
all its methods. Here there is an explanation of each one.

• create: Initialize a Btce order for a user.

• execute: Calls the create_order method ?? of the btc-e.com API to add
an order into the market. It will return error in case that the result
of the execution was not positive. The error message is the same that

9https://en.wikipedia.org/wiki/Don%27t_repeat_yourself

91

https://en.wikipedia.org/wiki/Don%27t_repeat_yourself

7.4. Orders Chapter 7. Application insights

returns the API. If there is no error, the status attribute will change
to "started" saving the returned order id into the database.

• cancel: Calls the cancel_order method 8.5.4 method of the btc-e.com
API to cancel an order. It will be successful if the id of the order exists
for a certain user, changing the status in the database to "canceled". It
will return error in other case.

It also adds 5 attributes to the parent class:

• buysell: String which says if an order is for selling or for buying.

• pair : Foreign key to a valid btc-e pair.

• amount: Quantity of coins to exchange.

• status: String representing all the possible states where a Btce Order
can be. These are: created, started, canceled and executed.

• btceid: Id returned by btc-e.com in a valid order creation. This identi-
fier is used internally by the exchange market.

7.4.4 Simple order
A simple order represents a transaction in btc-e.com, in terms of database
model it looks like its parent class: Btce order. The meaning of having a
simple order is to be able to distinguish between an order placed by a user
using the correspondent view in the web application, and an order which is
part of a more complex order, like a suborder in a sliced order.
At the beginning of the development, this class was not existing leading to
problems in the code in situations like: when a user creates a Simple order via
the web interface, a instance of this model is stored in the database. When
a user creates a sliced order, many simple orders will be created and added
it to the database. In this situation there is no way to distinguish between
the Simple orders created by the user using the correspondent view and the
one created by the application for the sliced order. So the generation of the
reports was difficult and there was no possibility of list all the active simple
orders for a user.

Model

As explained before, the Simple order model is exactly the same as the Btce
order model.

92

Chapter 7. Application insights 7.4. Orders

Form

The simple order form is the most basic form. It contains 4 attributes: pair,
amount, price and buysell. All of these attributes are mandatory, and the
user will receive an error message if he does not fill them or if inserts non
allowed values.
Pair is a ModelChoiceField class which will be rendered using a Select wid-
get. To get the list of the available options it queries the database to get all
the available pairs. Can be notice that it includes a dictionary of attributes,
that will be added to the HTML when the widget will be rendered. The style
attribute is used to set the dimension and the class attribute is used to get
a nice select element from the bootstrap.
Amount and price are FloatFields. As in the before parameter, it also speci-
fies the size and the class of the element for HTML.
Buysell is a ChoiceField which will be rendered in HTML using a radio select
widget with two options: buy and sell.

View

The simple order view function is the code responsible for collecting and
processing the dynamic part of the simple order page.
First it gathers the available funds for a user, discarding the ones equal to
zero and rounding the others to 4 decimal digits, then it gets an instance of a
simpleOrderForm and if the HTTP method was POST, it will get the result
of the simple order creation from the btc-e API.
In this moment the code looks simple, just 21 lines (without comments)
but was not always like this. This function had many iterations, in the
beginning the code was trying to achieve the maximum performance, what
was increasing the logic and making it less readable.
For example when a user creates an order, the program queries the btc-e API
for adding that order into the market, the returned JSON response includes
a field with the available funds of the user after making the transaction. In
the firsts versions the funds returned where used, making not necessary to
query again the API to get the funds. With this approach the code had a
bunch of lines more, making it more complex for reading and understanding.
However now the funds returned are discarded and an explicit call to the
API for having the funds is done. Is easy to understand that this approach
is less efficient and, in some cases, more time consuming due to the increase
number of calls to an external API. Consequently the less optimal code was
elected trying to benefit readability in favor of optimality. The use of the
returned funds is just an example, as it can see in the history of the code

93

7.4. Orders Chapter 7. Application insights

via the git repository, this function had had 32 lines, making it optimal but
ugly. This approach is followed by the next views: elegance.
After the function header appears the definition of the context dictionary.
This dictionary will contain all the data that will be passed to the template,
also known as the dynamic data.
Later there is a condition distinguishing a POST call with a filled form and
a GET call without information. In case of POST, it will make sure that
all the fields are valid, adding an error to the dictionary in case some of the
fields were not valid, via the built-in Django form.errors attribute. In case of
valid fields, it will create a simpleOrder object with the correspondent data,
and call its execute method. The response of the exchange will contain an
error or a success message which will be added to the context dictionary.
Before returning, it will gather the user available funds and a instance of
the simpleOrder form adding them to the context. To finish it renders the
correspondent HTML template passing the context filled in the lines before.

Template

The template to render the simple order page, like all the other order tem-
plates, extends from the order base.
The first lines of code are responsible to render a possible return code of an
order creation using the font color green to display a success message or red
font color to display an error like "Not enough funds to make the transac-
tion".
Continuing through the code, appears the order block, where the form to
create a new simple order is rendered. Each element of the form is wrapped
inside <p> and <div> elements for having a clear separation between them.
The first element in the form is a list which shows all the possible pairs to
trade with, after appear two radio button for decide if buy or sell, displayed
with font colors green and red respectively. After there are two fields, one
for the amount and another for the price of the asset. The last element in
the form is a button which will send the introduced data to the system.
The last block in the code is the help block, where a little explanation about
how to create a simple order is displayed.
The code described above can be found in the appendix 10.3.5.

94

Chapter 7. Application insights 7.4. Orders

Screenshot

Figure 7.15: Simple order page.

7.4.5 Sliced order
A (Volume) sliced order is a complex type of order which slices a simple order
into smaller orders based on the trading volume.
For create one, a user will set the boundaries of the price, the amount of
orders that wants to create, pair, the quantity to trade and type of order.
The application will create as many orders as specified by the user, with the
price spread it between the two boundaries.
The sliced order strategy could be very complex depending of the criteria
regarding the subdivision of the orders but in this implementation only one
strategy to slice is available: equality. So the price of each order increases
using a fixed amount. The next pseudo code will explain the procedure.

Listing 7.3: Pseudocode of slicing algorithm.
1 upperBound=199
2 lowerBound=195
3 numberOfOrders=20
4 amountToBuy=2
5 orderAmount= amountToBuy / 20
6 step = (upperBound - lowerBound) / numberOfOrders
7 for price=loweBoud; price <=uperBound; price=price+step

95

7.4. Orders Chapter 7. Application insights

8 createOrder(orderAmount, price, btc/usd)

The use of this kind of orders is very common, mainly in two situations.
When a trader wants to make a large order hided in smaller ones wishing
that others market players will not see a big order. This means in technical
terms to have less impact in the market.
In the other hand, it can be used when a trader wants to buy some stock
without paying a maximum price. For example: supposing that the price
of btc/usd is going down and currently 200. An experienced trader wants
to buy 2 BTC, but is not sure if the price will continue decreasing. So he
will create a sliced order with upper bound to 199, lower bound to 195 and
number of orders 20. Doing this the program will generate 20 orders, with
buy price starting at 195 and increasing in steps of 0.2 until 199. Note that
doing this, is not guaranteed that all the orders will be executed, and could
be that only some of theses orders will be executed if the price does not
achieve the lowest value.

Model

The Sliced order model inherits from Base order, adding 3 more method and
7 attributes.
The attributes are:

• simpleOrder : foreign keys to simple orders. It will contain as many
foreign keys as number of orders.

• upperBound: float containing the maximum price of an order.

• lowerBound: float containing the minimum price of an order.

• numberOfOrders: integer containing the number of total orders in an
sliced order.

• status: string with the state of the order. It can be: created, started,
canceled, executed.

The methods contained in the class are:

• create(...): initializes the variables and saves the object into the database.

• execute(self): follows the pseudo code explained before, creating orders
based on a fixed step pre calculated. It saves each simple order and the
sliced oder to add the new items to the database.

96

Chapter 7. Application insights 7.4. Orders

• cancel(self): iterates over all the simple orders, if the status is "started"
cancels it.

• numActive(self): this helper method returns the amount of active or-
ders inside the sliced order.

• numExecuted(self): returns the number of simple orders executed.

• totalAmount(self): returns the total amount of currency in an order.

Form

The sliced order form contains six attributes: pair, amount, numberOfOrders,
lowerBound, upperBound and buysell. All of these attributes are mandatory,
and the user will receive an error message if he does not fill them or if inserts
non allowed values.
Pair is a ModelChoiceField class which will be rendered using a Select wid-
get. To get the list of the available options it queries the database to get all
the pairs. Can be notice that it includes a dictionary of attributes, this at-
tributes will be added to the HTML when the widget will be rendered, style
is used to set the dimension and class is used to get a nice select element
from the bootstrap.
Amount is a FloatField. As pair did, it also specify the size and class of the
element for HTML.
numberOfOrders is a IntegerField, it also add the settings that will be needed
when render the HTML to get the expected design of the widget.
lowerBound is a FloatField where the user will set the price of the lowest
order.
upperBound is a FloatField where the user will set the price of the more
expensive order.
Buysell is a ChoiceField which will be rendered in HTML using a radio select
widget which two options: buy and sell.

View

The sliced order view is the code responsible for collecting and processing
the dynamic part of the slicedOrder page. It gathers the available funds of a
user, discarding the ones equal to zero and rounding the others to 4 decimal
digits, gets an instance of a simpleOrderForm and if the HTTP method was
POST, it will get the result of the sliced order creation from the btc-e API.
The code looks pretty similar to the simple order view, actually it does the

97

7.4. Orders Chapter 7. Application insights

same but instancing a sliced order form instead of a simple form and a sliced
order class instead of a simple.
This function has changed a lot since the first implementation, when the
actual calculations to get the market price for each order were did in this
view. However as the code was being refactored, this calculations were moved
to the execute method of the model, simplifying a lot this function.
As mentioned above the explanation of the code structure is familiar for a
reader who put attention in the simple view order, the use of the context
dictionary is the same and also the validation of the form and the results
obtained from the exchange API.

Template

The template which renders a sliced order web page extends the order base
template adding content to the message, order and help blocks. The message
has the same content as the one explained in simple order but the form is
slightly different: it adds fields to specify the total amount of orders, the
lower and upper bounds to set the price and it removes the price field.
The help block contains easy instructions for a user who wants to create a
sliced order.

98

Chapter 7. Application insights 7.4. Orders

Screenshot

Figure 7.16: Sliced order page.

7.4.6 Time based order

A time based order is a kind of limit order that allows a user to set up
an expiration time for an order. This means that if before the expiration
moment the order has not been executed, it will be canceled automatically.
The use of time based orders becomes important in situations where the price
of the market for one asset is changing fast and a user wants to create a order
for the next hours, but does not want to leave it forever because is suspecting
that the price will change.
This kind of orders are extensively used while trading, often the expiration
time is set to the end of the day, creating like this an well known kind of order
named day order10. However the application allows a user to set a custom
expiration time increasing the flexibility of this kind of orders.

10http://www.investopedia.com/terms/d/dayorder.asp?version=v1

99

http://www.investopedia.com/terms/d/dayorder.asp?version=v1

7.4. Orders Chapter 7. Application insights

Model

The time based order is a subclass of BtceOrder which adds only one more
attribute, expiration_time. It can be in a different status than its parent
class: ’expired’.
It has the same three methods than the parent class, the purpose of them is
the same but they behave different as the implementation of these orders is
different.
The execute method creates the order in btc-e.com via the btceapi. module
as the parent order does, if the order creation in btc-e has been successful,
it serializes the TimeOrder object and sends it to the timer_order queue,
where it will be picked up by the timer order manager 8.2.1.
The code looks pretty simple, the actual lines to send the object to the queue
has been wrapped inside a function to increase the readability.

Form

The time based order form is inheriting from the parent class simpleOrder-
Form only adding one more attribute: expiration time.
Expiration time is special because for be rendered in the HTML uses a widget
not included inside the Django core. If this widget was not used, the only
possibility of picking a date an time from the user was to create 5 integers
fields: year, month, day, hour and minutes. This approach is not so nice and
increases the complexity in the logic of validating the date.
DateTimeWidget was chosen for render the element. DateTimeWidget is the
only widget open source available to accomplish this kind of task (notice that
there are many other widgets to pick dates but normally are only Javascript,
so the developer has to deal with the logic of getting the data into Django). It
is based on bootstrap, so was perfect because this library is already included
in the most of the HTML pages which compose the application. The widget
is highly customizable, more information about it and the source code can
be found in the author’s page11.

View

The timeBasedOrder function is the piece of code responsible for collecting
and processing the dynamic part of the timeBasedOrder page. It gathers the
available funds for a user, discarding the ones equal to zero and rounding
the others to four decimal digits, gets an instance of a timeBasedOrderForm
and if the HTTP method was POST, it will get the result of the time based

11https://github.com/asaglimbeni/django-datetime-widget

100

https://github.com/asaglimbeni/django-datetime-widget

Chapter 7. Application insights 7.4. Orders

order creation from the btc-e API.
This code is also similar to the two previous views because of the coding
style: hide the actual logic of the different orders behind the methods in the
models. The first version of this view was ugly and messy mainly due to the
uncertain idea of how to create an order which could be canceled in a certain
time.
Following the style explained before, the mechanism for the cancellation is
set into the backend.

Template

The time based order template renders the web page where a user can create
a new order of this kind. It looks pretty similar to the other order templates,
adding a widget for choosing the date and time of expiration and changing
the help displayed to the user explaining how to create a new order.

Screenshot

Figure 7.17: Time based order page.

7.4.7 Paired order
A paired order is a composition of two simple orders trading with the same
pair and same amount but going in the opposite direction one to the other.

101

7.4. Orders Chapter 7. Application insights

This means that when the first (or master) order is a buying order, the second
order (or slave) must be a selling order and vice versa.
A user is only allowed to create a slave order once the master order has been
executed. This kind of orders are very useful when a user wants to know the
exact profit obtained doing two movements.
To clarify this idea, here appears an example of a paired order.

• A user creates a master order of buying 1 BTC at 250 USD.

• Once the order is executed the user is able to create a slave order.

• The user creates a slave order of selling 1 BTC at 275 USD.

• Once the salve order ir executed, the user have won 25 USD (fees not
included).

What happens when a user cancels an order? The program follows a
simple policy: when a user cancels a paired order, does not matter the current
phase of the order, it will be canceled and marked globally and locally as
canceled. So, if the first order has not been executed, the simple order as
well as the paired order will be marked as canceled; the same applies for the
case when the slave order is canceled.
The logic inside the application makes sure that the four policies for a paired
order are applied.

• The slave order must be trading the same pair as the master order.

• The slave order must trade the same amount as the master order.

• The slave order can be created only if the master has been executed.

• Canceling a order will mark the simple order currently active and the
paired order as canceled.

The next sections explains how these constrains are achieved.

Model

The paired order model is a subclass of btce order. It adds three fields to
control the slave order.

• contraprice: it will be null when the order is created and it will contain
th price for trading with the slave order.

• contrabuysell: field containing the opposite action than the master or-
der.

102

Chapter 7. Application insights 7.4. Orders

• contrabtceid: null when the paired order is created, it will have the
btceid for the slave order.

The status field (inherited from btce order model) adds some more possi-
ble values to match the phases of a paired order: cont_started when the slave
order is created, con_canceled if the slave order is canceled and con_executed
when the slave order is executed.
The constructor is pretty straightforward: the first line is calculating the
contrabuysell value using an elegant short-form from the "if" statement, also
called ternary operator12. The next lines are initializing all the mandatory
attribute of the class, saving the new object into the database and returning
it.
The create_contraorder method creates and executes a simple order storing
the returned id by the API of btce in its correspondent field. It has pretty
the same code than simple order’s create_order and execute_order methods
put it together, but adding different messages for logging purposes.
The cancel method will make sure that the policy explained above regarding
canceling orders is followed, logging with precision the error code. The mas-
ter order uses the create and execute methods from the parent class.
As can be observed the first two policies described in the previous section
(slave order have the same pair and same amount) are achieved just not cre-
ating the fields in the model for these values and taking the values from the
master order, not giving possibility of error.

Form

Differently from all the other orders, the paired order is not using one but
two forms for its creation: the first one allows the possibility of creating a
master order, and the second one allows the possibility of creating the slave
order. However this fact is transparent to the user.
The decision of split the form in two has been taken to re-use code and have
simple forms.
The second form is called contra order form and it is inheriting from the
base Django form. It has something special not used in any other form: a
constructor. The code itself looks very simple but the implementation took
some hours because the documentation regarding this scope is not very clear.
The use of the construction is needed to ensure the third policy of a paired
order: a slave order can be created only if the master has been executed. To
ensure it, the form is making a query to the database asking for all the paired

12https://docs.python.org/2/reference/expressions.html#
conditional-expressions

103

https://docs.python.org/2/reference/expressions.html#conditional-expressions
https://docs.python.org/2/reference/expressions.html#conditional-expressions

7.4. Orders Chapter 7. Application insights

orders from the current user with status ’executed’, and creating a list with
the results.
Ensuring the policy could be achieved using multiple approaches but I have
consider this the most elegant, other possibilities are adding this logic in the
view in several ways, but this increments the complexity of the view and
make it less maintainable. The code explained can be seen here:

Listing 7.4: Contra order form.
1 class contraOrderForm(forms.Form):
2 ’’’
3 This form allows a user to create the contra order of a paired

order. Note
4 that the first order have to be already executed
5 ’’’
6 def __init__(self,*args,**kwargs):
7 user = kwargs.pop(’user’)
8 super(contraOrderForm,self).__init__(*args,**kwargs)
9 self.fields[’opened’] = forms.ModelChoiceField(queryset =

PairedOrder.objects.filter(user =
10 user).filter(status = ’executed’), empty_label="Parent

order", widget=forms.Select(attrs={’class’:
’form-control’, ’style’:’width:130px;’}),required=True)

11 self.fields[’contraprice’] = \
12 forms.FloatField(widget=forms.TextInput(attrs =

{’style’:’width:130px;’,
’class’:’form-control’}),required=True)

13

14 opened = forms.MultipleChoiceField()
15 contraprice = forms.FloatField()

View

The code that compose the paired order view, even if a bit long, is really
simple. Actually the Django best practice encourages the developer to sepa-
rate any kind of logic from the view. The view gets the two forms and sends
them to the template when the HTTP request is a GET. When the HTTP
request is a POST, it just validates the forms adding the possible errors or
success to the dictionary that will be displayed to the user. It also logs the
activity using the Django logging module.

Template

The template for the paired order inherits from the orders base template.
The code is easy to understand if the explanation of the previous templates

104

Chapter 7. Application insights 7.4. Orders

has been read. It renders the two forms used by the paired order and adds
some lines to help the user in the process of setting a paired order.

Screenshot

Figure 7.18: Paired order page.

7.4.8 Stop loss order
A stop loss order is an order that which be canceled if the price of the market
cross a defined threshold.
For example, a user creates a stop loss order for selling 10 BTC at 275 USD
with a threshold of 265 USD. The current price of the pair in the market is
273 USD/BTC. If the value of the market drops to an amount minor than
265 USD/BTC, the original order will be canceled and a order to sell 10 BTC
at 265 USD/BTC will be created.
With a fast reading, this kind of orders can be confused with simple orders,
but they have a big difference: until the price crosses the threshold the order
is not putted in place. Like this a user can have this funds available in its
account.
A stop-loss order is designed to limit an investor’s loss. A stop-loss order
takes the emotion out of trading decisions and can be especially handy when
one is on vacation or cannot watch his position. However, execution is not
guaranteed in situations of a big and fast drop, but this can be achieved

105

7.4. Orders Chapter 7. Application insights

enhancing the code to reflect this kind of situations. It can be known also
as stop-market order13. This video from Investopedia provides a one minute
good explanation of what is a stop order 14.

Model

The stop loss order model is a subclass of the btce order which overrides the
cancel and execute method and adds two more auxiliary methods:
_send_to_queue() and _cancel_from_queue().
Its class method "execute" calls the _send_to_queue() method to send itself
to the stop loss queue where it will be picked up and managed from the stop
loss backend component.
It will return success if the message was correctly introduced or error in the
opposite case. Both results success and error will be logged.
Its class method "cancel" calls the _cancel_from_queue() method which will
send a message to the queue for cancel itself.

Form

The form used to fill the information from the user to create a stop loss
order is inheriting from the simple order form, not overriding any attribute
or method. This because it just needs the same form fields, only changing
the displaying names, where instead of "price" the user will see "Threshold"
in the web page.

View

The Stop loss order view is the example of a clean and simple view. It has
the minimum code to accept HTTP POST requests with the needed data
from a user, creating and executing a stop loss order if the data pass the
validation checks; in case data was invalid or some problem occurs during
the set of the order in the market via the btc-e API, it throws an error.
It also accepts HTTP GET request for rendering the form.

Template

As can be deducted, the code composing the stop loss template looks the
same than the code for the simple order form, except a different label on the
price field: in the stop loss form this field is name "Threshold".

13http://www.investopedia.com/terms/s/stop-lossorder.asp
14http://www.investopedia.com/terms/s/stop-lossorder.asp

106

http://www.investopedia.com/terms/s/stop-lossorder.asp
http://www.investopedia.com/terms/s/stop-lossorder.asp

Chapter 7. Application insights 7.4. Orders

Screenshot

Figure 7.19: Stop loss order page.

107

Chapter 8

Back end

8.1 Introduction

The back end is the part of the project which interacts with the btc-e API
providing the tools for handling complex orders, getting data, storing it into
the database and gathering information of the market as well as of the user.
It is not a standalone program but a collection of pieces designed to accom-
plish the task. These processes are divided in two categories: long running
and scheduled processes.
The long running processes are tasks which once started will run in an infinite
loop; the scheduled processes are tasks which are configured to run periodi-
cally. The long running processes are communicating with the front end and
with other backend processes via queues, while the scheduled processes are
writing the results of their execution to the database.

8.2 Long running processes

The long running processes are started once, entering in an infinite loop.
These processes have a main problem: if the process crashes the application
will not longer be able to continue its normal behavior. The processes de-
scribed below are not 100% reliables, and they may crash from time to time.
This problem is solved using supervisor: a process manager that handle pos-
sible crashes and many more situations. Supervisor is highly described in
section 5.4.

108

Chapter 8. Back end 8.3. Queues

8.2.1 Timer order manager

The timer order manager is the process responsible to pick up and process
the TimerOrder objects from the timer_order_queue.
When it is started, it waits for objects to appear into the queue. Once an
object arrives, a callback is produced starting the next process: the expiration
time of the order is compared with the current time. If it is minor or equal,
the order is canceled via a call to its cancel_order method and the status
of the order changes to "expired" before being saved into the database. If
the expiration time did not arrived, the order is queued again waiting for its
expiration time. The code explained can be found in the appendix 10.4.1.

8.2.2 Fetch tickers

The fetch tickers long runner process is in charge of getting the most recent
tickers from the btc-e API and sends them to the fanout tickers queue. Many
parts of the whole project will query this queue to get the value of the lasts
tickers.
The approach of using a single process for getting the tickers and write them
in a queue is excellent, because it reduces drastically the total amount of
queries which are done against the btc-e API, reducing a lot the response
time of the application. As a result, this is the only process fetching this
information.
However this nice solution is in place, the project is not consistent in the use
of this queue and some places are querying directly the API instead of using
this queue.
The code that implement this process can be found in the correspondent
section of the appendix.

8.3 Queues
Queues are an important part of the project, they perform the communication
between front end and back end. The approach of using queues for communi-
cation between processes has been chosen because makes the project highly
scalable. As was explained in the overview, this project uses RabbitMQ as
queue framework.
The next subsections explain the tickers queue and the time order queue.
These two queues are configured in a different way and they achieve different
goals.

109

8.4. Scheduled processes Chapter 8. Back end

8.3.1 Tickers queue
The tickers queue is implementing the well known pattern "publisher/sub-
scriber", where one process is writing into a queue and many publishers can
subscribe dynamically to receive these messages. The queue, once initialized,
has always length 1 ensuring that only the last ticker is inside it.
To create this kind of queue using RabbitMQ, an exchange with type "fanout"1

should be created. Then, a program have to send data to the exchange, in
this case tickers fetcher. From now on, the only thing remaining is to create a
subscriber for this queue. Because many processes have to know the current
prices of the currencies, many processes will subscribe to this queue. These
processes will create a RabbitMQ queue and bind it to the exchange with the
parameter "exclusive = True". This parameter ensures that when the process
exits, this queue is destroyed and it frees its memory. From that moment the
process will receive the data of the lasts tickets.

8.3.2 Timer order queue
The timer order queue is a worker queue which may contain time based order
objects.
When a user fills the time based order form in the web interface, the infor-
mation is converted into an object, serialized and written into the queue,
where it will be waiting to be attended by the process manager. As opposite
to the queue explained before, this queue can pile as many objects as it can
store in memory. It is configured to be persistent against restarts of the main
process. So, if the server which is hosting the process reboots, or the main
program crashes, the information in the queue will be restore thanks to the
data that RabbitMQ is writing into the disk.

8.4 Scheduled processes
All the scheduled processes are configured to run via the GNU cron daemon
where each process represents a cronjob.
Cron is a time-based job scheduler in Unix-like computer operating systems.
It typically automates system maintenance or administration2 tasks. To be
sure of which cronjobs are running in which interval an administrator logged
in the server as the main user can run the command "crontab -l". To make

1urlhttps://www.rabbitmq.com/tutorials/tutorial-three-python.html
2https://en.wikipedia.org/wiki/Cron

110

https://en.wikipedia.org/wiki/Cron

Chapter 8. Back end 8.4. Scheduled processes

the configuration of the cronjobs repeatable and ordered they are configured
via Chef 5.2.

8.4.1 User funds
This task is in charge of getting the funds that a user has in a certain moment
and writing them into the database.
It is scheduled to run 4 times at day, this granularity seems perfect for the
purpose of the job: store the data in the database for future analysis. Any-
way it can be configured to run with a different schedule based on the user
preferences.
This job is not a standalone script but a Django management command.
A Django management command is a extension of the possible actions per-
formed by the manage.py file. The official Django documentation describes
these kinds of commands as: "Custom management commands are especially
useful for running standalone scripts or for scripts that are periodically ex-
ecuted from the UNIX crontab or from Windows scheduled tasks control
panel"3.
They have a special syntax and structure. In this case, the task is regis-
tered in the system as fetch_user_funds which is the name of the file where
the code is located. It receives as a parameter, from the command line, the
name of the users from which fetches the funds. The process first queries
the database to get the user object extracting the btc-e API keys. After, it
makes the query to btc-e to get the funds and saves the result into a dictio-
nary. It also converts this result to a USD, saving these two dictionaries into
the database. Finally it exists.

8.4.2 Feed executed orders
The feed executed orders process has been designed to mark the orders, which
appears in the database with status "created", to "executed" if they have been
executed by btc-e.
To accomplish this task, the process is following a simple approach: it queries
the system database to obtain all the orders marked as active from every user
in the system. After, it calls the API of btc-e to get the active orders for
every user with active orders in the database. Then it compares the btc-e
order ID parameter between the two lists, extracting the ones which are ap-
pearing in the database and not in the response from btc-e.
These orders have been executed, so the process will change their state to

3https://docs.djangoproject.com/en/1.6/howto/custom-management-commands/

111

https://docs.djangoproject.com/en/1.6/howto/custom-management-commands/

8.4. Scheduled processes Chapter 8. Back end

"executed" and save them into the database. The job is running each minute,
this granularity can be not enough for impatient traders but it can not run
more frequently due to the Cron limitation of running with 1 minute granu-
larity4. Probably this process will be redesigned in the future to be able to
run more frequently.
In the moment of designing this job many alternatives were under discus-
sion. The current one was chosen because of simplicity. If the btc-e API was
better designed, was going to be easier to achieve this jobs just querying the
database for the last executed orders and compare the id, instead of doing
the opposite approach: query the API to get the active orders.
Until now only the simple/btc-e orders have been considered, but the other
kind of orders also need to be marked as executed. Due to the nature of a
virtual order, the same approach can not be taken because btc-e does not
know nothing about the orders implemented in this project, so the ids can
not be compared. To be able to mark these orders, each kind of virtual order
has a foreign key to a btc-e order. Thanks to this approach, the process of
marking the virtual orders as executed becomes simple: the program will
loop over all the active orders and will check the status of the simple orders.
If it can find an order for which all the child orders have been executed or
canceled, it will mark this order as executed.
The implementation of the code can be found here 10.4.4.

8.4.3 Store tickers

This is the process responsible to fetch the tickers for each available pair of
btc-e, to convert them to a valid object and to store it into the database.
This information is very important to be able to make artificial intelligence
algorithms which will take decisions based in the historical price of an asset.
This scheduled job runs each 4 minutes. This granularity seems enough for
the moment but could be changed in the future to run more frequently. It is
implemented as a Django custom command, the same than the feed executed
orders job.
The code is very simple: it queries the btc-e API to get the lasts ticker, after
it creates a Fund object filling all the possible attributes, which are exactly
the same than the btc-e API returns. Finally it writes each object into the
database.

4https://tinyurl.com/p7rdphv

112

https://tinyurl.com/p7rdphv

Chapter 8. Back end 8.5. Btc-e API

8.5 Btc-e API

8.5.1 Introduction
The API provided by btc-e.com5 is not documented at all. It only provides
the names of the methods that a user can use giving few response examples
without any explanation of the fields. However it provides the information
for building a rich platform on top of it.
The API is implementing REST services6, which means that receives queries
via HTTP POST and GET methods and answers to the request with JSON7

objects.
It is divided in two parts: public and private API. The public API (version
2) could be accessed by everyone and provides methods to consult the cur-
rent prices of the different currencies, the fees applied to the transactions,
the lasts orders performed and the list of new orders waiting to be executed.
While the private API only can be accessed by registered users. To be able
to talk to the API, a registered user has to use a combination of two keys:
the public and the private key. The use of the two keys is very common
nowadays for implementing authentication using public key cryptography8.
These keys can be generated using the web interface under User settings. A
user can generate multiple keys and give different rights to the key. Thus
a key can have no privileges (usefulness key), info privileges (someone using
this key will be able to read the user data), or full privileges for being able
to create and cancel orders as well as to get the data information. However
withdraw money is not allowed (currently) using the API, only via web in-
terface.
At the beginning of the project the available API was the version 2, but on
January of 2015 btc-e released the new version 3, which was enhancing its
public methods.
The main change between the versions is the possibility to get all the tickers
in one single GET request. In version 2, only one ticker could be fetched in
one HTTP GET request. This was increasing the time needed to feed all the
available tickers. The new version implements a new method more: ticker’s
info. This method retrieves information about a ticker, such as the numbers
of decimal digits allowed for a transaction and the maximum and minimum
prices that can be set for a market operation.
In the next two sections, the methods supported by the btc-e API are ex-

5https://btc-e.com/api/documentation
6http://en.wikipedia.org/wiki/Representational_state_transfer
7urlhttp://en.wikipedia.org/wiki/JSON
8https://en.wikipedia.org/wiki/Public-key_cryptography

113

https://btc-e.com/api/documentation
http://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/Public-key_cryptography

8.5. Btc-e API Chapter 8. Back end

plained as well as an example of a response for each method. Noteworthy
that if some of this methods fail, the answer is going to be almost the same,
only changing the error message. Here is an example of a wrong request.

{"success":0,"error":"<error text>"}

8.5.2 Nonce generator
For authentication purposes and as a security measure the API of btc-e needs
a cryptographic nonce9 in each POST request sent by a user. Using a nonce,
it ensures that no reply attacks can be done with an intercepted package.
The mechanism is simple: when a user creates a new pair of API keys, a
nonce with value equal to zero is assigned to these keys. Each request done
with these keys has to have a bigger value in the nonce parameter. Like this if
an attacker intercepts a user’s package and try to replies it, the API of btc-e
will return a message saying: "Error: Invalid nonce value". The maximum
nonce value accepted by API is 4294967294.
Due to this feature, the application needs a method for generating a bigger
number for each request done. As a first and simple approach, the current
timestamp of UNIX time was used. This has a big limitation: only one
request can be done per second.
The second approach used for this generation was to store in the database
the value of the last nonce used. It also has a big limitation: each request of
a user will hit the database, and this can create performance problems if the
system has several users trading fast.
Currently a more sophisticate method, but still simple, is used. The code for
generating the nonce is reported below.

1 def get_nonce():
2 t=time()
3 t=t-1400000000
4 t=round(t,2)
5 t=int(t*100)
6 return t

The function starts taking the current timestamp in a UNIX epoch format
and it subtracts 1400000000 to the timestamp for making the number smaller.
After it rounds the number to leave it with just two decimal numbers. This
number is multiplied per 100. Using this approach the system is able to
generate in one second 100 possible nonce values, which seems more than

9http://en.wikipedia.org/wiki/Cryptographic_nonce

114

http://en.wikipedia.org/wiki/Cryptographic_nonce

Chapter 8. Back end 8.5. Btc-e API

enough even for the fastest trader.

8.5.3 Public methods
Get tickers

With this method a user can fetch the current price of a pair. To obtain it,
he has to specify the pair in the GET request. This is an example of a query:
"https://btc-e.com/api/2/btc_usd/ticker" And this is the answer.

1 {
2 "ticker":{
3 "high":219,
4 "low":214.39,
5 "avg":216.695,
6 "vol":1276886.1837,
7 "vol_cur":5894.91613,
8 "last":218.093,
9 "buy":218.748,

10 "sell":218.093,
11 "updated":1423779727,
12 "server_time":1423779727
13 }
14 }

Get fee

With this method, the fee applied to a transaction can be obtained. A user
has to specify the pair to obtain the corresponding fee. In this example the
query is for the btc_usd: "https://btc-e.com/api/2/btc_usd/fee". This is
the response:

{"trade":0.2}

Get trades

Calling this method, a user can obtain the list of the lasts executed orders
for a specific pair. This is an example of a query:
"https://btc-e.com/api/2/btc_usd/trades" and the response (reduced):

1 [
2 {
3 "date":1423779937,"price":218.048,
4 "amount":0.0779,"tid":51850452,
5 "price_currency":"USD","item":"BTC","trade_type":"bid"

115

8.5. Btc-e API Chapter 8. Back end

6 },
7 {
8 "date":1423779887,"price":218.048,
9 "amount":0.153432,"tid":51850449,

10 "price_currency":"USD","item":"BTC","trade_type":"bid"
11 },
12 {
13 "date":1423779887,"price":218.048,
14 "amount":0.121068,"tid":51850448,
15 "price_currency":"USD","item":"BTC","trade_type":"bid"
16 },
17 ...
18]

Get depth

The last method provided by the public btc-e API allows a user to know the
nearest trades to the current price for a valid pair. The response is a JSON
object containing asks and bids. An example of a query is: "https://btc-
e.com/api/2/btc_usd/depth/" and this returns (reduced):

1 {
2 "asks":[
3 [218.746,0.101],[218.75,0.29027698],[218.751,0.49818532],
4 [218.9,0.01],[218.903,0.013],[218.939,6.685],[218.942,1.8782],
5 [218.947,0.013],[218.949,0.02],[218.95,41.23056738],
6 [218.997,0.01896715],[218.998,0.021],[218.999,15.22902953],
7 [219.003,0.5575556],[219.008,0.0202],[219.01,1.00474558],
8 ...
9],

10 "bids":[
11 [218.001,0.041],[218,84.03212548],[217.98,2.767],
12 [217.363,0.01010096],[217.362,0.04],[217.301,0.202],
13 [217.168,0.01109059],[217.156,0.001],[217.112,4.3592225],
14 [217.083,0.01109059],[217.072,0.013],[217.071,0.011],
15 [217,9.2281494],[216.986,0.026],[216.985,0.0101],
16 ...
17]
18 }

8.5.4 Private methods

The next methods are only available for a registered user.

116

Chapter 8. Back end 8.5. Btc-e API

Get information

This method is called without any parameter. The answer shows the current
funds of the user, the rights of the used key, the number of transactions
active, the quantity of active orders and the server time. Example of an
answer:

1 {
2 "success":1,
3 "return":{
4 "funds":{
5 "usd":325,
6 "btc":23.998,
7 "ltc":0,
8 "ruc":0,
9 "nmc":0

10 },
11 "rights":{
12 "info":1,
13 "trade":1
14 },
15 "transaction_count":80,
16 "open_orders":1,
17 "server_time":1342123547
18 }
19 }

117

8.5. Btc-e API Chapter 8. Back end

Transaction history

This method returns the history of the transactions done by one user. This
kind of movements can be done with both cryptocurrencies and standard
currencies. It has seven optional parameters:

Parameter Description Values Default
from The ID of the transaction to start displaying with integer 0
count The number of transactions for displaying integer 1,000
from_id No The ID of the transaction to start displaying with integer 0
end_id The ID of the transaction to finish displaying with integer current
order sorting ’ASC’ or ’DESC’ DESC
since When to start displaying timestamp 0
end When to finish displaying timestamp current

Table 8.1: Possible values for query the transaction history

The return JSON object looks like this:

1 {
2 "success":1,
3 "return":{
4 "1081672":{
5 "type":1,
6 "amount":1.00000000,
7 "currency":"BTC",
8 "desc":"BTC Payment",
9 "status":2,

10 "timestamp":1342448420
11 }
12 }
13 }

Trade history

With this method a user can query the API to obtain a list of trades done.
A trade represents whatever movement: buy or sell certain currency. This
list could become really big in some months of trading with the system. The
next parameters can limit the quantity of results obtained:

118

Chapter 8. Back end 8.5. Btc-e API

Parameter Description Values Default
pair the pair to show the transactions valid pair all pairs
from The ID of the transaction to start displaying with integer 0
count The number of transactions for displaying integer 1,000
from_id No The ID of the transaction to start displaying with integer 0
end_id The ID of the transaction to finish displaying with integer current
order sorting ’ASC’ or ’DESC’ DESC
since When to start displaying timestamp 0
end When to finish displaying timestamp current

Table 8.2: Possible values for query the trade history

This is a reduced result showing only one trade:

1 {
2 "success":1,
3 "return":{
4 "166830":{
5 "pair":"btc_usd",
6 "type":"sell",
7 "amount":1,
8 "rate":1,
9 "order_id":343148,

10 "is_your_order":1,
11 "timestamp":1342445793
12 }
13 }
14 }

Active orders

This method returns a JSON object containing all the current open orders
of a user. This method does not accept parameters.

1 {
2 "success":1,
3 "return":{
4 "343152":{
5 "pair":"btc_usd",
6 "type":"sell",
7 "amount":1.00000000,
8 "rate":3.00000000,
9 "timestamp_created":1342448420,

10 "status":0
11 }
12 }
13 }

119

8.5. Btc-e API Chapter 8. Back end

Trade

Using this method a user can make a movement in the exchange market,
selling or buying a certain quantity of an asset. The user must have this
quantity available in his wallet. The next parameters are mandatory:

Parameter Description Values
pair the pair to trade with valid pair
type buy or sell ’buy’ or ’sell
rate rate to buy or sell float
amount the amount to buy or sell float

Table 8.3: Mandatory parameters to open an order

Here is reported a successful result.

1 {
2 "success":1,
3 "return":{
4 "received":0.1,
5 "remains":0,
6 "order_id":0,
7 "funds":{
8 "usd":325,
9 "btc":2.498,

10 "ltc":0,
11 "ruc":0,
12 "nmc":0
13 }
14 }
15 }

Cancel order

Using this method a user can cancel a currently open order, specifying as a
mandatory parameter the order id.

Parameter Description Values
orderid id of the order to cancel valid active order id

Table 8.4: Parameters for cancel an order

The result, if successful, looks like this:

120

Chapter 8. Back end 8.5. Btc-e API

1 {
2 "success":1,
3 "return":{
4 "order_id":343154,
5 "funds":{
6 "usd":325,
7 "btc":24.998,
8 "ltc":0,
9 "ruc":0,

10 "nmc":0
11 }
12 }
13 }

121

Part III

Ending

122

Chapter 9

Conclusion and future work

9.1 Conclusions

Developing the platform has been a long journey, starting in June 2014 and
finishing in September 2015.
During this time, I have learned a lot about Python, Django and exchange
markets. I can clearly see the evolution comparing the first ugly code I was
writing at the beginning with the last elegant and minimalistic code which I
am writing now. This improvement can be appreciated comparing the imple-
mentation of the btc-e API module, which has remain more or less untouched
since the firsts month of the development, with the code found in the orders
section which is the last part I wrote.
Now I am also able to spend an entire night trading in btc-e and do not loose
money, understanding which orders are well done and which ones could be
improved, as well as to basically analyze the movements of other traders.
I am always trying to apply the knowledge I am acquiring working as a sys-
tem administrator into the project. This knowledge can be notice in the use
of a configuration management tool like Chef, or of a process manager like
supervisor. I believe that combining different disciplines is the key to obtain
the best results. For this reason I put my efforts into the creation of a solid
system in terms of serving the application and in the proper use of the tools
provided by the OS.

By the way I learned how amazing is LATEX compared with a traditional
text editor and how difficult is to write an academic paper. These are two of
the things I have most enjoyed learning because in other occasion, probably
I was never going to try them.

123

9.2. Future of the platform Chapter 9. Conclusion and future work

9.2 Future of the platform
My future plans for the project is to launch it into the market and maybe to
win money with it.
However the project is in the very firsts steps of its development: it has to
be enhanced and extended to support much more features. The most impor-
tant missing components are algorithms to do auto trading, converting the
current platform into a trading bot.
Also it needs to be more corporative, which means that needs a logo, a good
name, a domain name and some marketing.

Before being alive, some adjusts have to be done, for example upgrading
Django. Currently the project is using the version 1.6 of the framework,
which was the most recent version of the software when I started, but nowa-
days is not longer maintained and it is deprecated in favor of the 1.8 version.
The code is going to be available soon in Github, trying to catch the attention
of other developers.

124

Chapter 10

Appendix

10.1 Configuration files

10.1.1 NGINX

Listing 10.1: Django settings.
1 error_log /var/log/nginx/cryptomoneymakers.log;
2

3 upstream django{
4 server unix:/var/cryptomoneymakers/nginx.sock;
5 }
6 server {
7 listen 176.9.41.35:443 ssl;
8 keepalive_timeout 70;
9 ssl on;

10 ssl_certificate /etc/nginx/ssl/cert.pem;
11 ssl_certificate_key /etc/nginx/ssl/cert.key;
12 #To by-pass static files
13 location /static {
14 autoindex on;
15 alias /var/cryptomoneymakers/venv/MillonesApp/static;
16 #alias /static;
17 }
18

19 #Proying connections to application servers
20 location / {
21 include /etc/nginx/uwsgi_params;
22 uwsgi_pass django;
23 access_log /var/log/nginx/accesslog.log;
24 proxy_redirect off;
25 proxy_set_header Host $host;
26 proxy_set_header X-Real-IP $remote_addr;

125

10.1. Configuration files Chapter 10. Appendix

27 proxy_set_header X-Forwarded-For
$proxy_add_x_forwarded_for;

28 proxy_set_header X-Forwarded-Host $server_name;
29 }
30

31 }
32 server {
33 listen 176.9.41.35:8080;
34 location / {
35 rewrite ^ https://176.9.41.35 permanent;
36 #server_name cryptomoneymakers.com;
37 }
38 }

10.1.2 uWSGI
configuration file:

Listing 10.2: Django settings.
1 [uwsgi]
2 # Django-related settings
3 # the base directory (full path)
4 chdir = /var/cryptomoneymakers/venv/MillonesApp/
5 # Django’s wsgi file
6 module = MillonesApp.wsgi
7 # the virtualenv (full path)
8 home = /var/cryptomoneymakers/venv/
9 harakiri = 60

10 # process-related settings
11 # master
12 master = true
13 # maximum number of worker processes
14 processes = 2
15 # the socket (use the full path to be safe
16 socket = /var/cryptomoneymakers/nginx.sock
17 # ... with appropriate permissions - may be needed
18 chmod-socket = 660
19 # clear environment on exit
20 vacuum = true
21 uid = cryptomoneymaker
22 gid = nginx
23 max-request = 200

126

Chapter 10. Appendix 10.1. Configuration files

10.1.3 Django

Listing 10.3: Django settings.
1 """
2 Django settings for MillonesApp project.
3 """
4

5 # Build paths inside the project like this: os.path.join(BASE_DIR,
...)

6 import os
7 BASE_DIR = os.path.dirname(os.path.dirname(__file__))
8

9

10 SECRET_KEY = ’XXXXXXXXXXXXXXXXXXXXXXXXXX’
11

12 # SECURITY WARNING: don’t run with debug turned on in production!
13 DEBUG = False
14 TEMPLATE_DEBUG = False
15

16 ALLOWED_HOSTS = [
17 ’176.9.41.35’,
18]
19

20 # Application definition
21 INSTALLED_APPS = (
22 ’django.contrib.auth’,
23 ’django.contrib.contenttypes’,
24 ’django.contrib.sessions’,
25 ’django.contrib.messages’,
26 ’django.contrib.staticfiles’,
27 ’users’,
28 ’wallet’,
29 ’orders’,
30 ’south’,
31)
32

33 MIDDLEWARE_CLASSES = (
34 ’django.contrib.sessions.middleware.SessionMiddleware’,
35 ’django.middleware.common.CommonMiddleware’,
36 ’django.middleware.csrf.CsrfViewMiddleware’,
37 ’django.contrib.auth.middleware.AuthenticationMiddleware’,
38 ’django.contrib.messages.middleware.MessageMiddleware’,
39 ’django.middleware.clickjacking.XFrameOptionsMiddleware’,
40)
41

42 ROOT_URLCONF = ’MillonesApp.urls’
43

44 WSGI_APPLICATION = ’MillonesApp.wsgi.application’

127

10.1. Configuration files Chapter 10. Appendix

45

46 CSRF_COOKIE_SECURE = True
47

48 # Database
49 DATABASES = {
50 ’default’: {
51 ’ENGINE’: ’django.db.backends.mysql’,
52 ’HOST’: ’xxxxxxxxxx’,
53 ’NAME’: ’millonesApp’,
54 ’USER’: ’millonesApp’,
55 ’PASSWORD’ : ’xxxxxxxx’,
56 ’STORAGE_ENGINE’: ’MyISAM’,
57 }
58 }
59

60 # Internationalization
61 LANGUAGE_CODE = ’en-us’
62 TIME_ZONE = ’Europe/Berlin’
63 USE_I18N = True
64 USE_L10N = True
65 USE_TZ = True
66

67

68 # Static files (CSS, JavaScript, Images)
69 STATIC_URL = ’/static/’
70 STATICFILES_DIR = (
71 os.path.join(BASE_DIR,’static’),
72 ’/var/cryptomoneymakers/venv/MillonesApp/static’,
73 ’/var/cryptomoneymakers/venv/MillonesApp/wallet/static’,
74)
75 STATICFILES_FINDERS = (
76 ’django.contrib.staticfiles.finders.FileSystemFinder’,
77 ’django.contrib.staticfiles.finders.AppDirectoriesFinder’,
78)
79

80 TEMPLATE_DIRS = (
81 os.path.join(BASE_DIR,’templates’),
82)
83 TEMPLATE_CONTEXT_PROCESSORS = (
84 ’django.core.context_processors.request’,
85 ’django.contrib.auth.context_processors.auth’,
86)
87 LOGGING = {
88 ’version’: 1,
89 ’disable_existing_loggers’: False,
90 ’formatters’: {
91 ’verbose’: {
92 ’format’ : "[%(asctime)s] %(levelname)s

[%(name)s:%(lineno)s] %(message)s",

128

Chapter 10. Appendix 10.1. Configuration files

93 ’datefmt’ : "%d/%b/%Y %H:%M:%S"
94 },
95 ’simple’: {
96 ’format’: ’%(levelname)s %(message)s’
97 },
98 },
99 ’handlers’: {

100 ’file’: {
101 ’level’: ’DEBUG’,
102 ’class’: ’logging.FileHandler’,
103 ’filename’:

’/var/cryptomoneymakers/venv/MillonesApp/cryptomoneymakers.log’,
104 ’formatter’: ’verbose’
105 },
106 },
107 ’loggers’: {
108 ’django’: {
109 ’handlers’:[’file’],
110 ’propagate’: True,
111 ’level’:’INFO’,
112 },
113 ’wallet’: {
114 ’handlers’: [’file’],
115 ’level’: ’DEBUG’,
116 },
117 ’orders’: {
118 ’handlers’: [’file’],
119 ’level’: ’DEBUG’,
120 },
121 }
122 }

10.1.4 Chef
Default recipe

Listing 10.4: Chef default recipe.
1 #
2 # Cookbook Name:: cryptomoneymakers
3 # Recipe:: default
4 #
5 # Copyright 2015, Alberto del Barrio
6 #
7 # All rights reserved - Do Not Redistribute
8 #
9

129

10.1. Configuration files Chapter 10. Appendix

10 # Install the needed packages:
11 %w(
12 python-virtualenv git python-pip gcc mariadb-devel enca librabbitmq
13 rabbitmq-server
14).each do |p|
15 package p do
16 action :install
17 end
18 end
19

20 # Create group and user
21 group ’cryptomoneymakers’ do
22 action :create
23 end
24

25 group ’cryptomoneymaker’ do
26 action :create
27 end
28

29 user ’cryptomoneymaker’ do
30 home ’/var/cryptomoneymakers/’
31 group ’cryptomoneymaker’
32 end
33

34 include_recipe ’python::default’
35

36 python_virtualenv node[’crytomoneymakers’][’venv_path’] do
37 interpreter ’python2.7’
38 owner ’cryptomoneymaker’
39 group ’cryptomoneymaker’
40 options ’--system-site-packages’
41 action :create
42 end
43

44 python_pip ’django’ do
45 version ’1.6’
46 virtualenv node[’crytomoneymakers’][’venv_path’]
47 action :install
48 end
49

50 %w(uwsgi mysql-python pycrypto Pillow iconv django-datetime-widget
51 pika
52).each do |p|
53 python_pip p do
54 virtualenv node[’crytomoneymakers’][’venv_path’]
55 user ’cryptomoneymaker’
56 group ’cryptomoneymaker’
57 action :install
58 end

130

Chapter 10. Appendix 10.1. Configuration files

59 end
60

61 include_recipe ’cryptomoneymakers::server’
62

63 include_recipe ’nginx::default’

Server recipe

Listing 10.5: Chef server recipe.
1 #
2 # Cookbook Name:: cryptomoneymakers
3 # Recipe:: server
4 #
5 # This recipe configures the server to:
6 # - serve django project with nginx
7 # - roll out uwsgi config file
8 # - manage the necessary cronjobs
9 #

10 # Copyright 2015, Alberto del Barrio
11 #
12 # All rights reserved - Do Not Redistribute
13 #
14

15 template ’/etc/nginx/sites-enabled/cryptomoneymakers.conf’ do
16 source ’cryptomoneymakers.conf.erb’
17 owner ’root’
18 group ’nginx’
19 mode ’0440’
20 action :create
21 end
22

23 directory ’/etc/uwsgi/’ do
24 owner ’root’
25 group ’uwsgi’
26 mode ’0770’
27 action :create
28 end
29

30 cookbook_file ’/etc/uwsgi/millones.ini’ do
31 source ’millones.ini’
32 owner ’root’
33 group ’nginx’
34 mode ’0440’
35 action :create
36 end
37

131

10.1. Configuration files Chapter 10. Appendix

38 cron ’funds_fetcher’ do
39 minute ’0’
40 hour ’*/6’
41 user ’cryptomoneymaker’
42 command ’cd /var/cryptomoneymakers/venv/ &&

/var/cryptomoneymakers/venv/bin/python
/var/cryptomoneymakers/venv/MillonesApp/manage.py
fetch_user_funds BotMaster’

43 end
44

45 cron ’tickers_fetcher’ do
46 minute ’*/4’
47 user ’cryptomoneymaker’
48 command ’cd /var/cryptomoneymakers/venv/ &&

/var/cryptomoneymakers/venv/bin/python
/var/cryptomoneymakers/venv/MillonesApp/manage.py
fetch_ticker_value btc_usd btc_eur ltc_btc ltc_usd ltc_eur
nmc_btc nmc_usd nvb_btc nvc_usd eur_usd ppc_btc ppc_usd ’

49 end
50

51 cron ’feed_executed_oders’ do
52 minute ’*’
53 user ’cryptomoneymaker’
54 command ’cd /var/cryptomoneymakers/venv/ && source bin/activate &&

/var/cryptomoneymakers/venv/MillonesApp/backend/cronjobs/feed_executed_orders.py’
55 end
56

57

58 directory ’/etc/nginx/ssl’ do
59 owner ’nginx’
60 group ’nginx’
61 mode 0755
62 end
63

64 cookbook_file ’/etc/nginx/ssl/cert.pem’ do
65 source ’cert.pem’
66 mode ’0444’
67 owner ’root’
68 group ’root’
69 end
70

71 cookbook_file ’/etc/nginx/ssl/cert.key’ do
72 source ’cert.key’
73 mode ’0400’
74 owner ’root’
75 group ’root’
76 end
77

78 # Roll out systemd unit file for uwsgi

132

Chapter 10. Appendix 10.2. Application code

79 cookbook_file ’/usr/lib/systemd/system/uwsgi.service’ do
80 source ’uwsgi.service’
81 mode ’0644’
82 owner ’root’
83 group ’root’
84 end

10.2 Application code

10.3 Base
Base template

Listing 10.6: Base template.
1 <!DOCTYPE html>
2 <html class="no-js" xmlns="http://www.w3.org/1999/html">

<!--<![endif]-->
3 <html lang="en">
4 <head>
5 <meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
6 <meta charset="UTF-8">
7 <!--<meta name="Cryptomoneymakers" content="Trading platform

built on top of btc-e">
8 <meta name="keywords" content="bitcoin trade btc-e">-->
9

10 <title>{% block title %}{% endblock %}</title>
11 {% load staticfiles %}
12 <link href="{% static ’css/simple.css’ %}" rel=’stylesheet’

type=’text/css’>
13 <link rel="stylesheet" href=

"https://maxcdn.bootstrapcdn.com/
bootstrap/3.3.5/css/bootstrap.min.css">

14 <link rel="stylesheet" href=
"https://maxcdn.bootstrapcdn.com/
bootstrap/3.3.5/css/bootstrap-theme.min.css">

15 <link rel="stylesheet" href= "//netdna.bootstrapcdn.com/
font-awesome/4.2.0/css/font-awesome.min.css">

16 <script src="https://ajax.googleapis.com/ajax/
libs/jquery/1.11.3/jquery.min.js"> </script>

17 <script src="https://maxcdn.bootstrapcdn.com/
bootstrap/3.3.5/js/bootstrap.min.js"> </script>

18 {% block header %}{% endblock %}
19 </head>
20 <body>

133

10.3. Base Chapter 10. Appendix

21 <div class="row">
22 <div class="grid_12">
23 {% include ’main_nav.html’ %}
24 </div>
25 </div><!-- end row-->
26

27 <!-- main content area -->
28 <div id="main" class="wrapper">
29 {% block body_main %}{% endblock %}
30

31 </div><!-- #end div #main .wrapper -->
32

33 <nav class="navbar navbar-default navbar-bottom" role="navigation">
34 <div class="container" style="text-align:center">
35 <h5> Copyright 2014-2015 alberto.delbarrio.albelda@gmail.com

</h5>
36 </div>
37 </nav>
38 </body>
39 </html>

10.3.1 Main navigation menu

Listing 10.7: Navigation menu.
1 <!-- main navigation -->
2 <nav id="topnav" class="navbar navbar-default" role="navigation">
3 <!-- Brand and toggle get grouped for better mobile display -->
4 <div class="container-fluid" style="width: 998px;">
5 <div class="navbar-header">
6 <button type="button" class="navbar-toggle"

data-toggle="collapse"
data-target="#bs-example-navbar-collapse-1">

7 Toggle navigation
8
9

10
11 </button>
12 {% load staticfiles %}
13 <img src="{% static ’images/logo.jpg’

%}"text=logo">
14 </div>
15 <div class="collapse navbar-collapse" id="navbar-collapse">
16 <ul class="nav navbar-nav">
17 <ul class="nav navbar-nav navbar-right">
18 {% if user.is_authenticated %}
19 <li class="dropdown">

134

Chapter 10. Appendix 10.3. Base

20 <a href="/wallet/" data-toggle="dropdown"
class="dropdown-toggle">Wallet<b
class="caret">

21 <ul class="dropdown-menu">
22 Summary
23 <li role="separator" class="divider">
24 Funds
25 <li role="separator" class="divider">
26 Reports
27 <li role="separator" class="divider">
28 Trade’s

history
29 <li role="separator" class="divider">
30 Transaction’s
history

31
32
33 <li class="dropdown">
34 <a href="/orders/" data-toggle="dropdown"

class="dropdown-toggle">Orders<b
class="caret">

35 <ul class="dropdown-menu">
36 Active

orders
37 <li role="separator" class="divider">
38 Simple

order
39 <li role="separator" class="divider">
40 Sliced

order
41 <li role="separator" class="divider">
42 Paired

order
43 <li role="separator" class="divider">
44 Time based

order
45 <li role="separator" class="divider">
46 Stop loss

order
47
48
49 <li class="dropdown">
50 <a href="/wallet/" data-toggle="dropdown"

class="dropdown-toggle"> {{ user.username }}<b
class="caret">

51 <ul class="dropdown-menu">
52 Settings
53 <li role="separator" class="divider">

135

10.3. Base Chapter 10. Appendix

54 Log out
55
56
57 {% endif %}
58
59
60 </div><!-- /.navbar-collapse -->
61 </div>
62 </nav>

10.3.2 URLs

Listing 10.8: Base urls.
1 from django.conf.urls import patterns, include, url
2

3 from django.contrib import admin
4 admin.autodiscover()
5

6 urlpatterns = patterns(’’,
7 # Examples:
8 # url(r’^$’, ’MillonesApp.views.home’, name=’home’),
9 # url(r’^blog/’, include(’blog.urls’)),

10

11 url(r’^admin/’, include(admin.site.urls)),
12 url(r’^wallet/’, include(’wallet.urls’)),
13 url(r’^users/’, include(’users.urls’)),
14 url(r’^orders/’, include(’orders.urls’)),
15)

10.3.3 Users
Models

Listing 10.9: Users models.
1 from django.db import models
2 from users.models import UserProfile
3 from django.contrib.auth.models import User
4 import pickle
5 import pika
6 import logging
7

8 log = logging.getLogger(__name__)
9

136

Chapter 10. Appendix 10.3. Base

10 class Currency(models.Model):
11 ’’’
12 Represents a a currency.
13 ’’’
14 label = models.CharField(max_length=3)
15 name = models.CharField(max_length=20, blank = True)
16

17 def __unicode__(self):
18 return unicode(self.label)
19

20

21 class Change(models.Model):
22 ’’’
23 Contains the name a valid btce pair which is composed by two

currencies.
24 ’’’
25 label = models.CharField(max_length=7)
26

27 def __unicode__(self):
28 return unicode(self.label)
29

30

31 class Funds(models.Model):
32 ’’’
33 This class stores the total amount of coins owned by a user in a

time.
34 currency = tav -> total available.
35 currency = ttl -> total (sum available and in orders).
36 ’’’
37 currency = models.CharField(max_length=3)
38 amount = models.FloatField(default=0)
39 datetime = models.DateTimeField(auto_now=True,blank=True)
40 user = models.ForeignKey(User)
41

42 def __unicode__(self):
43 return u’%s %s %s’ % (self.currency, self.amount,

self.datetime)
44

45 class Ticker(models.Model):
46 label = models.CharField(max_length=7)
47 high = models.FloatField()
48 low = models.FloatField()
49 avg = models.FloatField()
50 vol = models.FloatField()
51 vol_cur = models.FloatField()
52 last = models.FloatField()
53 buy = models.FloatField()
54 sell = models.FloatField()
55 updated = models.IntegerField()

137

10.3. Base Chapter 10. Appendix

56 server_time = models.IntegerField()
57

58 def __unicode__(self):
59 return u’%s %f’ % (self.label, self.average)

Views

Listing 10.10: Users view.
1 from django.shortcuts import render
2 from django.template import RequestContext
3 from django.contrib.auth import authenticate, login, logout
4 from django.contrib.auth.decorators import login_required
5 from django.http import HttpResponse, HttpResponseRedirect
6 from users.forms import *
7 from users.models import UserProfile
8 from wallet.btceapi import get_info
9

10 def user_login(request):
11 ’’’
12 This view renders the form to make possible the login of a user
13 ’’’
14 context = RequestContext(request)
15 if request.method == ’POST’:
16 username = request.POST[’username’]
17 password = request.POST[’password’]
18 user = authenticate(username=username, password=password)
19 if user:
20 # Is the account active? It could have been disabled.
21 if user.is_active:
22 # If the account is valid and active, we can log the

user in.
23 # We’ll send the user back to the homepage.
24 login(request, user)
25 return HttpResponseRedirect(’/wallet/summary/’)
26 else:
27 # An inactive account was used - no logging in!
28 return HttpResponse("Your account is disabled.")
29 else:
30 # Bad login details were provided. So we can’t log the

user in.
31 print("Invalid login details: {0}, {1}".format(username,

password))
32 return HttpResponse("Invalid login details supplied.")
33

34 else:
35 return render(request,’users/login.html’, {},)

138

Chapter 10. Appendix 10.3. Base

36

37

38 @login_required
39 def user_logout(request):
40 ’’’
41 Log out a user when requests this view.
42 ’’’
43 logout(request)
44 return render(request,’users/login.html’,{})
45

46

47 @login_required
48 def preferences(request):
49 ’’’
50 This view shows the preferences for a user.
51 ’’’
52 return render(request,’users/preferences.html’)
53

54

55 @login_required
56 def change_password(request):
57 ’’’
58 This view allows a user to change his password.
59 ’’’
60 context = {}
61 if request.method == "POST":
62 form = ChangePasswordForm(request.POST)
63 context[’cpf’]=form
64 if form.is_valid():
65 user = authenticate(username=request.user.username,

password=(form.cleaned_data[’oldpass’]))
66 if user:
67 user.set_password(form.cleaned_data[’newpass1’])
68 context[’success’] = ’Password changed successfully’
69 else:
70 context[’error’] = ’Invalid old password supplied’
71 else:
72 context[’error’] = ’Invalid form data’
73 else:
74 form = ChangePasswordForm()
75 context={’cpf’:form}
76 return render(request,’users/change_password.html’, context)
77

78

79 @login_required
80 def change_api_keys(request):
81 ’’’
82 This view allows a user to change his API keys.
83 ’’’

139

10.3. Base Chapter 10. Appendix

84 context = {}
85 if request.method == "POST":
86 form = ChangeApiKeysForm(request.POST)
87 context[’akf’]=form
88 if form.is_valid():
89 user.userprofile.btce_key = form.cleaned_data[’apikey’]
90 user.userprofile.btce_secret_key =

form.cleaned_data[’secretkey’]
91 user=authenticate(username = request.user.username,

password=(form.cleaned_data[’oldpass’]))
92 context[’success’] = ’API keys changed successfully’
93 else:
94 context[’error’] = ’Invalid keys’
95 else:
96 form = ChangeApiKeysForm()
97 context={’ckf’:form}
98 return render(request,’users/change_api_keys.html’, context)
99

100

101 def register(request):
102 ’’’
103 A user can register using this view.
104 ’’’
105 context = RequestContext(request)
106 # A boolean value for telling the template whether the

registration was successful.
107 # Set to False initially. Code changes value to True when

registration succeeds.
108 registered = False
109

110 if request.method == ’POST’:
111 # Attempt to grab information from the raw form information.
112 # Note that we make use of both UserForm and UserProfileForm.
113 user_form = UserForm(data=request.POST)
114 profile_form = UserProfileForm(data=request.POST)
115 # If the two forms are valid...
116 if user_form.is_valid() and profile_form.is_valid():
117 user = user_form.save()
118 # Now we hash the password with the set_password method.
119 # Once hashed, we can update the user object.
120 user.set_password(user.password)
121 user.save()
122

123 # Now sort out the UserProfile instance.
124 # Since we need to set the user attribute ourselves, we

set commit=False.
125 # This delays saving the model until we’re ready to avoid

integrity problems.
126 profile = profile_form.save(commit=False)

140

Chapter 10. Appendix 10.3. Base

127 profile.user = user
128 if ’picture’ in request.FILES:
129 profile.picture = request.FILES[’picture’]
130 # Now we save the UserProfile model instance.
131 profile.save()
132 # Update our variable to tell the template registration

was successful.
133 registered = True
134 else:
135 print(user_form.errors, profile_form.errors)
136

137 else:
138 user_form = UserForm()
139 profile_form = UserProfileForm()
140

141 return render(request, ’users/register.html’,{’user_form’:
user_form, ’profile_form’: profile_form, ’registered’:
registered})

Forms

Listing 10.11: Wallet forms.
1 from django import forms
2 from wallet.models import Change
3 from datetimewidget.widgets import DateTimeWidget
4

5

6 class tradeHistoryForm(forms.Form):
7 cl=[]
8 changes = Change.objects.all()
9 [cl.append((c.label,c.label)) for c in changes]

10 pair = forms.ChoiceField(required=False,
widget=forms.Select(attrs =

11 {’class’: ’form-control’, ’style’:’width:130px;’}),
choices=cl)

12 nfrom = forms.IntegerField(widget=forms.TextInput(attrs =
{’style’:’width:130px;’,

13 ’class’: ’form-control’,
’style’:’width:130px;’}),required=False)

14 count = forms.IntegerField(widget=forms.TextInput(attrs =
{’style’:’width:130px;’,

15 ’class’: ’form-control’, ’style’:’width:130px;’}),
required=False)

16 from_id = forms.IntegerField(widget=forms.TextInput(attrs =
{’style’:’width:130px;’,

141

10.3. Base Chapter 10. Appendix

17 ’class’: ’form-control’,
’style’:’width:130px;’}),required=False)

18 end_id = forms.IntegerField(widget=forms.TextInput(attrs =
{’style’:’width:130px;’,

19 ’class’: ’form-control’,
’style’:’width:130px;’}),required=False)

20 sort = forms.ChoiceField(required=False, widget=forms.RadioSelect,
21 choices=((’ASC’,’newest first’),(’DESC’,’oldest first’)))
22 since = forms.DateTimeField(required=False,

widget=DateTimeWidget(usel10n=True,
23 bootstrap_version=3, attrs={’class’:’form-control’,
24 ’style’:’width:240px;’}))
25 end = forms.DateTimeField(required=False,

widget=DateTimeWidget(usel10n=True,
26 options={’weekStart’:1,’todayBtn’:’true’},bootstrap_version=3,

attrs={’class’:’form-control’}))
27

28

29 class transactionHistoryForm(forms.Form):
30 nfrom = forms.IntegerField(widget=forms.TextInput(attrs =

{’style’:’width:130px;’,
31 ’class’: ’form-control’,

’style’:’width:130px;’}),required=False)
32 count = forms.IntegerField(widget=forms.TextInput(attrs =

{’style’:’width:130px;’,
33 ’class’: ’form-control’, ’style’:’width:130px;’}),

required=False)
34 from_id = forms.IntegerField(widget=forms.TextInput(attrs =

{’style’:’width:130px;’,
35 ’class’: ’form-control’,

’style’:’width:130px;’}),required=False)
36 end_id = forms.IntegerField(widget=forms.TextInput(attrs =

{’style’:’width:130px;’,
37 ’class’: ’form-control’,

’style’:’width:130px;’}),required=False)
38 sort = forms.ChoiceField(required=False, widget=forms.RadioSelect,
39 choices=((’ASC’,’newest first’),(’DESC’,’oldest first’)))
40 since = forms.DateTimeField(required=False,

widget=DateTimeWidget(usel10n=True,
41 options={’weekStart’:1,’todayBtn’:’true’},bootstrap_version=3))
42 end = forms.DateTimeField(required=False,

widget=DateTimeWidget(usel10n=True,
43 options={’weekStart’:1,’todayBtn’:’true’},bootstrap_version=3))

142

Chapter 10. Appendix 10.3. Base

Base template

Listing 10.12: Users base template.
1 {% extends ’base.html’ %}
2

3 {% block body_main %}
4 <section id="content" style="margin-bottom:60px; width:100%"

class="wide-content">
5 <div class="row">
6 <div class="grid_3">
7 <div class="mini-submenu">
8
9

10
11 </div>
12 <div class="list-group" style="max-width:86%">
13 <a href="/users/preferences/" class="list-group-item {% if

’users/preferences/’ in request.path%} active {% endif%}"
><i class="fa fa-info-circle"></i> Info

14 <a href="/users/changepassword/" class="list-group-item {% if
’users/changepassword/’ in request.path%} active {%
endif%}" ><i class="fa fa-truck"></i> Change password

15 <a href="/users/changeapikeys/" class="list-group-item {% if
’users/changeapikeys/’ in request.path%} active {% endif%}"
><i class="fa fa-key"></i> Change API keys

16 </div>
17 </div>
18 <div class="grid_9">
19 {% block main_content %}{% endblock %}
20 </div>
21 </div><!-- end row-->
22

23 {% endblock %}

Settings template

Listing 10.13: Users preferences template.
1 {% extends ’users/users_base.html’ %}
2 {% block title %}User preferences{% endblock %}
3

4 {% block main_content %}
5 <h3>Welcome {{ user.username }} </h3>

6 <table>
7 <tr><td style="padding: 10px;"><p>Email:</td><td>{{

user.email }}</p></td></tr>

143

10.3. Base Chapter 10. Appendix

8 <tr><td style="padding: 10px;"><p>API key:</td><td>{{
user.userprofile.btce_key }}</p></td></tr>

9 <tr><td style="padding: 10px;"><p>Date joined:</td><td>{{
user.date_joined }}</p></td></tr>

10 <tr><td style="padding: 10px;"><p>Last login:</td><td>{{
user.last_login }}</p></td></tr>

11 </table>
12 {% endblock %}

Change API key template

Listing 10.14: Change API keys template.
1 {% extends ’users/users_base.html’ %}
2 {% block title %}Change your API keys.{% endblock %}
3

4 {% block main_content %}
5 {% if error %}
6 <h4>{{ error }}</h4>
7 {% elif success %}
8 <h4>{{ success }}</h4>
9 {% endif %}

10 <h3>Change your API keys:</h3>

11 <table>
12 <form action="" method="post" >
13 {% csrf_token %}
14 <tr><td style="padding:10px;">API key:</td><td>{{

ckf.apikey }}</td><tr>
15 <tr><td style="padding:10px;">Secret key:</td><td>{{

ckf.secretkey }}</td><tr>
16 <tr><td style="padding:10px;"><input type="submit"

name="_changepass" value="Change" class="btn
btn-default"/></td></tr>

17 </form>
18 </table>
19 {% endblock %}

Change password template

Listing 10.15: Change password template.
1 {% extends ’users/users_base.html’ %}
2 {% block title %}Change your password.{% endblock %}
3

4 {% block main_content %}
5 {% if error %}

144

Chapter 10. Appendix 10.3. Base

6 <h4>{{ error }}</h4>
7 {% elif success %}
8 <h4>{{ success }}</h4>
9 {% endif %}

10 <h3>Change your password:</h3>

11 <table>
12 <form action="" method="post" >
13 {% csrf_token %}
14 <tr><td style="padding:10px;">Current

password:</td><td>{{ cpf.oldpass }}</td><tr>
15 <tr><td style="padding:10px;">New password:</td><td>{{

cpf.newpass1 }}</td><tr>
16 <tr><td style="padding:10px;">Repeat

password:</td><td>{{ cpf.newpass2 }}</td><tr>
17 <tr><td style="padding:10px;"><input type="submit"

name="_changepass" value="Change" class="btn
btn-default"/></td></tr>

18 </form>
19 </table>
20 {% endblock %}

Login template

Listing 10.16: Login template.
1 {% extends ’base.html’ %}
2 {% block body_main %}
3 <section id="content" style="margin-bottom:60px; width:100%"

class="wide-content">
4 <div class="row">
5 <div class="grid_3"></div>
6 <div class="grid_8">
7 <table>
8 <tr><td style="padding:

13px;"><h1>Login</h1></td></tr>
9 <form id="login_form" method="post"

action="/users/login/">
10 {% csrf_token %}
11 <tr><td style="padding: 13px;">Username:</td><td><input

type="text" name="username" value="" size="30"
style="width:200px;" class="form-control"/></td></tr>

12 <tr><td style="padding:
13px;">Password:</td><td><input
type="password" name="password" value=""
size="30" style="width:200px;"
class="form-control"/></td></tr>

13

145

10.3. Base Chapter 10. Appendix

14 <tr><td style="padding: 13px;"><input
type="submit" value="Log in" class="btn
btn-default"/></td></tr>

15 </table>
16 </form>
17

18 </div><!--end grid 8-->
19 </div>
20 </div>
21 </section>
22 {% endblock %}

URLs

Listing 10.17: Users urls.
1 from django.conf.urls import patterns, url
2

3 import views
4

5 urlpatterns = patterns(’’,url(r’^register/$’,views.register, name
=’register’),

6 url(r’^login/$’,views.user_login, name
=’user_login’),

7 url(r’^logout/$’,views.user_logout, name
=’user_logout’),

8 url(r’^preferences/$’, views.preferences,
name=’user_preferences’),

9 url(r’^changepassword/$’, views.change_password,
10 name=’change_password’),
11 url(r’^changeapikeys/$’, views.change_api_keys,
12 name=’change_api_keys’),
13)

10.3.4 Wallet
Models

Listing 10.18: Wallet models.
1 from django.db import models
2 from users.models import UserProfile
3 from django.contrib.auth.models import User
4 import pickle
5 import pika

146

Chapter 10. Appendix 10.3. Base

6 import logging
7

8 log = logging.getLogger(__name__)
9

10 class Currency(models.Model):
11 ’’’
12 Represents a a currency.
13 ’’’
14 label = models.CharField(max_length=3)
15 name = models.CharField(max_length=20, blank = True)
16

17 def __unicode__(self):
18 return unicode(self.label)
19

20

21 class Change(models.Model):
22 ’’’
23 Contains the name a valid btce pair which is composed by two

currencies.
24 ’’’
25 label = models.CharField(max_length=7)
26

27 def __unicode__(self):
28 return unicode(self.label)
29

30

31 class Funds(models.Model):
32 ’’’
33 This class stores the total amount of coins owned by a user in a

time.
34 currency = tav -> total available.
35 currency = ttl -> total (sum available and in orders).
36 ’’’
37 currency = models.CharField(max_length=3)
38 amount = models.FloatField(default=0)
39 datetime = models.DateTimeField(auto_now=True,blank=True)
40 user = models.ForeignKey(User)
41

42 def __unicode__(self):
43 return u’%s %s %s’ % (self.currency, self.amount,

self.datetime)
44

45 class Ticker(models.Model):
46 label = models.CharField(max_length=7)
47 high = models.FloatField()
48 low = models.FloatField()
49 avg = models.FloatField()
50 vol = models.FloatField()
51 vol_cur = models.FloatField()

147

10.3. Base Chapter 10. Appendix

52 last = models.FloatField()
53 buy = models.FloatField()
54 sell = models.FloatField()
55 updated = models.IntegerField()
56 server_time = models.IntegerField()
57

58 def __unicode__(self):
59 return u’%s %f’ % (self.label, self.average)

Views

Listing 10.19: Wallet views.
1 from __future__ import division
2 from collections import Counter
3 from django.shortcuts import render
4 from django.contrib.auth.decorators import login_required
5 from wallet.models import *
6 from django.db.models import Q
7 from forms import *
8 from btceapi import *
9 from orders import models as omodels

10 import logging
11 logger = logging.getLogger(__name__)
12

13

14 @login_required
15 def summary(request):
16 ’’’
17 This view is a summary of the user’s info.
18 Also called after the users login.
19 ’’’
20 context = {}
21 sk = str(request.user.userprofile.btce_secret_key)
22 ak = str(request.user.userprofile.btce_key)
23 # Table with info
24 info=get_info(sk, ak)
25 context[’info’] = info[’return’]
26

27 # Grafic with funds:
28 f_hist = Funds.objects.filter(user = request.user, currency =
29 ’ttl’).order_by(’-id’)[:200][::-1]
30 f_hist = [[(f.datetime.year, f.datetime.month, f.datetime.day,
31 f.datetime.hour, f.datetime.minute, f.datetime.second, 0),

f.amount] for f in f_hist]
32 context[’f_hist’] = f_hist
33

148

Chapter 10. Appendix 10.3. Base

34 # Grafic with number of orders
35 num_orders = {}
36 num_orders[’Simple’] =

len(omodels.SimpleOrder.objects.filter(user = request.user))
37 num_orders[’Sliced’] =

len(omodels.SlicedOrder.objects.filter(user = request.user))
38 num_orders[’Paired’] =

len(omodels.PairedOrder.objects.filter(user = request.user))
39 num_orders[’TimeBased’] =

len(omodels.TimeBasedOrder.objects.filter(user =
request.user))

40 num_orders[’StopLoss’] =
len(omodels.StopLossOrder.objects.filter(user = request.user))

41 context[’num_orders’] = num_orders
42

43 return render(request,’wallet/main.html’, context)
44

45

46 @login_required
47 def tradeHistory(request):
48 ’’’
49 This view allows a user to search in the trade history for his

account.
50 A form is presented to filter the results. The filters are

matching all the
51 options that the btc-e API enables.
52 With the information introduced by the user, the view queries the

API
53 ’’’
54 context = {}
55 context[’form’] = tradeHistoryForm()
56 if request.method == ’POST’:
57 form = tradeHistoryForm(request.POST)
58 if form.is_valid():
59 parameters={}
60 if form.cleaned_data[’nfrom’]:
61 parameters[’from’]=form.cleaned_data[’nfrom’]
62 if form.cleaned_data[’count’]:
63 parameters[’count’]=form.cleaned_data[’count’]
64 if form.cleaned_data[’from_id’]:
65 parameters[’from_id’]=form.cleaned_data[’from_id’]
66 if form.cleaned_data[’end_id’]:
67 parameters[’end_id’]=form.cleaned_data[’end_id’]
68 if form.cleaned_data[’since’]:
69 timestamp=int(time.mktime(form.cleaned_data[’since’].timetuple()))
70 parameters[’since’]=timestamp
71 if form.cleaned_data[’end’]:
72 timestamp=int(time.mktime(form.cleaned_data[’end’].timetuple()))
73 parameters[’end’]=timestamp

149

10.3. Base Chapter 10. Appendix

74 if form.cleaned_data[’pair’]:
75 parameters[’pair’]=form.cleaned_data[’pair’]
76

77 resp =
trade_history(request.user.userprofile.btce_secret_key,

78 request.user.userprofile.btce_key, parameters)
79 context[’resp’] = resp
80 return render(request,’wallet/tradehistory.html’, context)
81

82

83 @login_required
84 def transactionHistory(request):
85 ’’’
86 This view allows a user to search in his history of transaction

in and out
87 of btc-e.
88 A form is presented to filter the results. The filters are

matching all the
89 options that the btc-e API enables.
90 ’’’
91 context = {}
92 context[’form’] = tradeHistoryForm()
93 if request.method == ’POST’:
94 form = transactionHistoryForm(request.POST)
95 if form.is_valid():
96 parameters={}
97 if form.cleaned_data[’nfrom’]:
98 parameters[’from’]=form.cleaned_data[’nfrom’]
99 if form.cleaned_data[’count’]:

100 parameters[’count’]=form.cleaned_data[’count’]
101 if form.cleaned_data[’from_id’]:
102 parameters[’from_id’]=form.cleaned_data[’from_id’]
103 if form.cleaned_data[’end_id’]:
104 parameters[’end_id’]=form.cleaned_data[’end_id’]
105 if form.cleaned_data[’since’]:
106 timestamp =

int(time.mktime(form.cleaned_data[’since’].timetuple()))
107 parameters[’since’]=timestamp
108 if form.cleaned_data[’end’]:
109 timestamp =

int(time.mktime(form.cleaned_data[’end’].timetuple()))
110 parameters[’end’]=timestamp
111

112 resp =
transaction_history(request.user.userprofile.btce_secret_key,

113 request.user.userprofile.btce_key, parameters)
114 resp = translate_transaction_status_codes(resp)
115 context[’resp’] = resp
116 return render(request,’wallet/transhistory.html’, context)

150

Chapter 10. Appendix 10.3. Base

117

118

119 def translate_transaction_status_codes(d):
120 ’’’
121 This function maps the status codes from "type" and "status"
122 returned from the btc-e API to a human readable words.
123 ’’’
124 for k,v in d.iteritems():
125 if v[’type’] == 5:
126 d[k][’type’] = ’Debit’
127 elif v[’type’] == 4:
128 d[k][’type’] = ’Credit’
129 elif v[’type’] == 2:
130 d[k][’type’] = ’Withdrawal’
131 elif v[’type’] == 1:
132 d[k][’type’] = ’Deposit’
133 if v[’status’] == 2:
134 d[k][’status’] = ’Successful’
135 elif v[’status’] == 0:
136 d[k][’status’] = ’Canceled/Failed’
137 elif v[’status’] == 1:
138 d[k][’status’] = ’Waiting for aceptance’
139 elif v[’status’] == 0:
140 d[k][’status’] = ’Not confirmed’
141 return d
142

143

144 @login_required
145 def funds(request):
146 ’’’
147 Return the current user funds:
148 Availables, in orders, the price in usd per currency, the amount

in usd that represents the currency
149 and the total in usd
150 :param request:
151 :return: dictionary with the data described above
152 ’’’
153 context = {}
154 sk = request.user.userprofile.btce_secret_key
155 ak = request.user.userprofile.btce_key
156

157 funds = get_funds(sk, ak)
158 funds_usd = convert_funds_to_usd(funds)
159 funds_total = funds_usd.copy()
160 funds_not_av = get_funds_in_active_orders(sk, ak)
161 # Add missing currencies with value null to funds from active

orders
162 f_null = funds.fromkeys(funds.keys(), 0)

151

10.3. Base Chapter 10. Appendix

163 funds_not_av = {x: funds_not_av.get(x, 0) + f_null.get(x, 0) for
x in

164 set(funds_not_av).union(f_null)}
165 funds_not_av_usd = convert_funds_to_usd(funds_not_av)
166

167 funds_total = dict(Counter(funds) + Counter(funds_not_av))
168 funds_total_usd = convert_funds_to_usd(funds_total)
169

170 context ={}
171 context[’f’] = funds_usd
172 context[’f_nav’] = funds_not_av_usd
173 context[’f_total’] = funds_total_usd
174 return render(request, ’wallet/funds.html’, context)
175

176

177 def convert_funds_to_usd(funds):
178 ’’’
179 Take a dict returned by btceapi.getfunds() function, convert the

value of
180 all the different coins into dollars and return a dict with te

form:
181 d[coin][’amount’] = amount
182 d[coin][’usd’] = amount_in_usd
183 ’’’
184 tickers = get_tickers()
185 f = {}
186 for k, v in funds.iteritems():
187 f[k] = {}
188 f[k][’amount’] = v
189 f[k][’usd’] = convert_to_usd(k, v, tickers)
190 return f
191

192

193 def convert_to_usd(coin, amount, tickers=None):
194 ’’’
195 Convert an amount of coin to USD using the value from the last

trade done.
196 It can receive the tickers values to calculate the prices from.
197 If not tickets are given, is will fetch the lasts tickers
198 ’’’
199 if coin == ’usd’:
200 return round(amount, 4)
201 else:
202 if tickers == None:
203 tickers = get_tickers()
204 for k,v in tickers.iteritems():
205 if coin in k:
206 # if usd appears as a second member of xxx_xxx:

Multiply

152

Chapter 10. Appendix 10.3. Base

207 if ’usd’ in k[4:7]:
208 r = amount * v[’last’]
209 return round(r, 4)
210 elif ’usd’ in k[0:3]: # if not, divide
211 r = amount / v[’last’]
212 return round(r, 4)
213

214

215 def get_funds_in_active_orders(sk, ak):
216 ’’’
217 This function gets the amount of currency present in orders

active.
218 It returns a dict containing the values for each currency.
219 ’’’
220 #Add the funds in active orders:
221 ao = get_active_orders(sk, ak)
222 funds = {}
223 if ao and ao[’success’] == 1 and len(ao) > 0:
224 for k, v in ao[’return’].iteritems():
225 if v[’type’] == ’sell’: #if sell, the currency owned is

the first in the pair
226 funds[v[’pair’][0:3]] = v[’amount’]
227 else:
228 funds[v[’pair’][4:7]] = v[’amount’]
229 return funds
230

231

232 @login_required
233 def fund(request, fund):
234 ’’’
235 This view shows a graph with the historic data of a coin.
236 ’’’
237 context = {}
238 f_hist = Funds.objects.filter(currency =

fund).order_by(’-id’)[:200][::-1]
239 f_hist = [[(f.datetime.year, f.datetime.month, f.datetime.day,
240 f.datetime.hour, f.datetime.minute, f.datetime.second, 0),

f.amount] for
241 f in f_hist]
242 context[’fund’] = f_hist
243 context[’f’] = fund.upper()
244 return render(request, ’wallet/fund.html’, context)
245

246

247 @login_required
248 def reports(request):
249 ’’’
250 This view shows reports for the las 5 orders finished or every

kind.

153

10.3. Base Chapter 10. Appendix

251 The finished orders are the one with status ’executed’ or
’canceled’

252 ’’’
253 context = {}
254 simple = omodels.SimpleOrder.objects.filter(user =
255 request.user).filter(Q(status = ’executed’) | Q(status =
256 ’canceled’)).order_by(’-id’)
257 if len(simple) < 6:
258 simple = simple[0:len(simple)]
259 else:
260 simple = simple[0:5]
261 sliced = omodels.SlicedOrder.objects.filter(user =
262 request.user).filter(Q(status = ’executed’) | Q(status =
263 ’canceled’)).order_by(’-id’)
264 if len(sliced) < 6:
265 slc_exec = sliced[0:len(sliced)]
266 else:
267 slc_exec = sliced[0:5]
268 sliced = {}
269 for o in slc_exec:
270 sliced[o.id] = {}
271 sliced[o.id][’pair’] = o.pair
272 sliced[o.id][’buysell’] = o.buysell
273 sliced[o.id][’status’] = o.status
274 sliced[o.id][’amount’] = o.amount
275 sliced[o.id][’num’] = o.numberOfOrders
276 sliced[o.id][’lb’] = o.lowerBound
277 sliced[o.id][’ub’] = o.upperBound
278 sliced[o.id][’total’] = 0
279 sliced[o.id][’sp’] = {}
280 for s in o.btceOrders.all():
281 sliced[o.id][’sp’][s.id] = {}
282 sliced[o.id][’sp’][s.id][’amount’] = s.amount
283 sliced[o.id][’sp’][s.id][’price’] = s.price
284 sliced[o.id][’sp’][s.id][’status’] = s.status
285 sliced[o.id][’sp’][s.id][’btceid’] = s.btceid
286 sliced[o.id][’total’] += s.price * s.amount
287

288 # Using .values() for get paired orders as a dictionary
289 paired = omodels.PairedOrder.objects.filter(user =
290 request.user).filter(Q(status = ’executed’) | Q(status =
291 ’canceled’) | Q(status =

’cont_executed’)).order_by(’-id’).values()
292 if len(paired) < 6:
293 paired = paired[0:len(paired)]
294 else:
295 paired = paired[0:5]
296 # Calcule the benefit obtained with the paired order
297 for p in paired:

154

Chapter 10. Appendix 10.3. Base

298 if p[’status’] == ’cont_executed’:
299 # TODO get dynamicaly the fee
300 total1 = p[’price’] * p[’amount’]
301 total2 = p[’contraprice’]* p[’amount’]
302 comission = total1 * 0.002 + total2 * 0.002
303 benefit = total2 - total1 - comission
304 p[’benefit’] = benefit
305

306 time = omodels.TimeBasedOrder.objects.filter(user =
307 request.user).filter(Q(status = ’executed’) | Q(status =
308 ’canceled’) | Q(status = ’expired’)).order_by(’-id’)
309 if len(time) < 6:
310 time = time[0:len(time)]
311 else:
312 time = time[0:5]
313

314 stop = omodels.StopLossOrder.objects.filter(user =
315 request.user).filter(Q(status = ’executed’) | Q(status =
316 ’canceled’)).order_by(’-id’)
317

318 context[’simple’] = simple
319 context[’sliced’] = sliced
320 context[’time’] = time
321 context[’paired’] = paired
322 return render(request,’wallet/reports.html’,context)

Forms

Listing 10.20: Wallet forms.
1 from django import forms
2 from wallet.models import Change
3 from datetimewidget.widgets import DateTimeWidget
4

5

6 class tradeHistoryForm(forms.Form):
7 cl=[]
8 changes = Change.objects.all()
9 [cl.append((c.label,c.label)) for c in changes]

10 pair = forms.ChoiceField(required=False,
widget=forms.Select(attrs =

11 {’class’: ’form-control’, ’style’:’width:130px;’}),
choices=cl)

12 nfrom = forms.IntegerField(widget=forms.TextInput(attrs =
{’style’:’width:130px;’,

13 ’class’: ’form-control’,
’style’:’width:130px;’}),required=False)

155

10.3. Base Chapter 10. Appendix

14 count = forms.IntegerField(widget=forms.TextInput(attrs =
{’style’:’width:130px;’,

15 ’class’: ’form-control’, ’style’:’width:130px;’}),
required=False)

16 from_id = forms.IntegerField(widget=forms.TextInput(attrs =
{’style’:’width:130px;’,

17 ’class’: ’form-control’,
’style’:’width:130px;’}),required=False)

18 end_id = forms.IntegerField(widget=forms.TextInput(attrs =
{’style’:’width:130px;’,

19 ’class’: ’form-control’,
’style’:’width:130px;’}),required=False)

20 sort = forms.ChoiceField(required=False, widget=forms.RadioSelect,
21 choices=((’ASC’,’newest first’),(’DESC’,’oldest first’)))
22 since = forms.DateTimeField(required=False,

widget=DateTimeWidget(usel10n=True,
23 bootstrap_version=3, attrs={’class’:’form-control’,
24 ’style’:’width:240px;’}))
25 end = forms.DateTimeField(required=False,

widget=DateTimeWidget(usel10n=True,
26 options={’weekStart’:1,’todayBtn’:’true’},bootstrap_version=3,

attrs={’class’:’form-control’}))
27

28

29 class transactionHistoryForm(forms.Form):
30 nfrom = forms.IntegerField(widget=forms.TextInput(attrs =

{’style’:’width:130px;’,
31 ’class’: ’form-control’,

’style’:’width:130px;’}),required=False)
32 count = forms.IntegerField(widget=forms.TextInput(attrs =

{’style’:’width:130px;’,
33 ’class’: ’form-control’, ’style’:’width:130px;’}),

required=False)
34 from_id = forms.IntegerField(widget=forms.TextInput(attrs =

{’style’:’width:130px;’,
35 ’class’: ’form-control’,

’style’:’width:130px;’}),required=False)
36 end_id = forms.IntegerField(widget=forms.TextInput(attrs =

{’style’:’width:130px;’,
37 ’class’: ’form-control’,

’style’:’width:130px;’}),required=False)
38 sort = forms.ChoiceField(required=False, widget=forms.RadioSelect,
39 choices=((’ASC’,’newest first’),(’DESC’,’oldest first’)))
40 since = forms.DateTimeField(required=False,

widget=DateTimeWidget(usel10n=True,
41 options={’weekStart’:1,’todayBtn’:’true’},bootstrap_version=3))
42 end = forms.DateTimeField(required=False,

widget=DateTimeWidget(usel10n=True,
43 options={’weekStart’:1,’todayBtn’:’true’},bootstrap_version=3))

156

Chapter 10. Appendix 10.3. Base

Base template

Listing 10.21: Base template.
1 {% extends ’base.html’ %}
2 {% block body_main %}
3 <section id="content" style="margin-bottom:60px; width:100%"

class="wide-content">
4 <div class="row">
5 <div class="grid_3">
6 <div class="mini-submenu">
7
8
9

10
11 </div>
12 <div class="list-group" style="max-width:86%">
13 <a href="/wallet/summary/" class="list-group-item {% if

’wallet/summary/’ in request.path%} active {% endif%}" ><i
class="fa fa-th-large"></i> Summary

14 <a href="/wallet/funds/" class="list-group-item {% if
’wallet/funds/’ in request.path%} active {% endif%}" ><i
class="fa fa-money"></i> Funds

15 <a href="/wallet/reports/" class="list-group-item {% if
’wallet/reports/’ in request.path%} active {% endif%}" ><i
class="fa fa-line-chart"></i> Reports

16 <a href="/wallet/tradehistory/" class="list-group-item {% if
’wallet/tradehistory/’ in request.path%} active {% endif%}"
><i class="fa fa-book"></i> Trade’s history

17 <a href="/wallet/transactionhistory/" class="list-group-item {%
if ’wallet/transactionhistory/’ in request.path%} active {%
endif%}" ><i class="fa fa-list "></i> Transaction’s
history

18 </div>
19 </div>
20 <div class="grid_9">
21 {% block main_content %}{% endblock %}
22 </div>
23 </div><!-- end row-->
24 <div class="row">
25 <div class="grid_3"> </div>
26 <div class="grid_9">{% block table %}{% endblock %}</div>
27 <div class="grid_9">{% block chart %}{% endblock %}</div>
28 </div>
29 </section>
30 {% endblock %}

157

10.3. Base Chapter 10. Appendix

Summary template

Listing 10.22: Wallet summary template.
1 {% extends ’wallet/wallet_base.html’ %}
2

3 {% block main_content %}
4 {% if info %}
5 <h4>Summary of your account provided by btc-e.</h4>
6 <table class="table table-hover table-bordered" style="width:40%"

summary="User summary">
7 <tr><th>Other info</th><th>Value</th></tr>
8 <tr><td>Active orders</td><td>{{ info.open_orders }}</td></tr>
9 <tr><td>Transaction count</td><td>{{ info.transaction_count

}}</td></tr>
10 <tr><td>API rights info</td><td>{{ info.rights.info

}}</td></tr>
11 <tr><td>API rights trade</td><td>{{ info.rights.trade

}}</td></tr>
12 </table>
13 {% endif %}
14 {% if f_hist %}
15 <script type="text/javascript"

src="https://www.google.com/jsapi?autoload=
{’modules’:[{’name’: ’visualization’, ’version’:’1’,
’packages’: [’corechart’]}]}"></script>

16 <script type=" text/javascript">
17 google.load(’visualization’, ’1’, {packages: [’corechart’]});
18 google.setOnLoadCallback(drawChart);
19 function drawChart() {
20 var data = new google.visualization.DataTable();
21 data.addColumn(’datetime’, ’X’);
22 data.addColumn(’number’, ’Total amount of USD (including

active orders)’);
23 data.addRows([
24 {% for f in f_hist %}
25 [new Date{{ f.0 }}, {{ f.1 }}],
26 {% endfor %}
27]);
28 var options = {
29 width: 600,
30 height: 450,
31 hAxis: { title: ’Time’, format: ’dd/MM’, gridlines: {count:

’20’}, slantedText: ’true’, slantedTextAngle: ’60’},
32 axisTitlesPosition: ’in’,
33 vAxis: { title: ’USD’, maxValue: ’220’ },
34 backgroundColor: {
35 stroke: "#E6E6E6",
36 strokeWidth: "3"

158

Chapter 10. Appendix 10.3. Base

37 },
38 chartArea:{left:’10%’,top:’10%’,width:’80%’,height:’60%’},
39 crosshair: { trigger: ’focus’, color: ’red’ },
40 series: {
41 1: {curveType: ’function’}
42 },
43 legend: {position: ’bottom’}
44

45 };
46 var chart = new google.visualization.AreaChart(

document.getElementById(’funds_chart’));
47 chart.draw(data, options);
48 }
49 </script>
50

51 <h4>Total funds for the lasts 2 months.</h4>
52 <div id="funds_chart"></div>
53

54 {% endif %}
55 {% if num_orders %}
56 <script type="text/javascript"

src="https://www.google.com/jsapi?autoload={
’modules’:[{’name’: ’visualization’, ’version’:’1’,
’packages’:[’corechart’]}]}"></script>

57 <script type=" text/javascript">
58 google.load("visualization", "1", {packages:["corechart"]});
59 google.setOnLoadCallback(drawChart);
60 function drawChart() {
61

62 var data = google.visualization.arrayToDataTable([
63 ["Type of order", "Amount", { role: "style" }],
64 ["Simple orders", {{ num_orders.Simple }} , "#4D944D"],
65 ["Sliced orders", {{ num_orders.Sliced }} , "#FFEB99"],
66 ["Paired orders", {{num_orders.Paired }} , "#FF4D4D"],
67 ["Time based orders", {{ num_orders.TimeBased }} ,

"#66A3FF"],
68 ["Stop loss orders", {{ num_orders.StopLoss }} , "#66C266"]
69]);
70

71 var view = new google.visualization.DataView(data);
72 view.setColumns([0, 1,
73 { calc: "stringify",
74 sourceColumn: 1,
75 type: "string",
76 role: "annotation" },
77 2]);
78

79 var options = {
80 width: 600,

159

10.3. Base Chapter 10. Appendix

81 height: 450,
82 bar: {groupWidth: "50%"},
83 legend: { position: "none" },
84 backgroundColor: {
85 stroke: "#E6E6E6",
86 strokeWidth: "3"
87 },
88 };
89 var chart = new google.visualization.ColumnChart(

document.getElementById(’orders_chart’));
90 chart.draw(data, options);
91 }
92 </script>
93

94 <h4>Total orders created.</h4>
95 <div id="orders_chart"></div>
96 {% endif %}
97 {% endblock %}

Fund template

Listing 10.23: Fund template.
1 {% extends ’wallet/wallet_base.html’ %}
2

3 {% block main_content %}
4 {% if fund %}
5 <script type="text/javascript"

src="https://www.google.com/jsapi?autoload=
{’modules’:[{’name’: ’visualization’, ’version’:’1’,
’packages’:[’corechart’]}]}"></script>

6 <script type=" text/javascript">
7 google.load(’visualization’, ’1’, {packages: [’corechart’]});
8 google.setOnLoadCallback(drawChart);
9 function drawChart() {

10 var data = new google.visualization.DataTable();
11 data.addColumn(’datetime’, ’X’);
12 data.addColumn(’number’, ’Total amount of {{ f }} (including

active orders)’);
13 data.addRows([
14 {% for f in fund %}
15 [new Date{{ f.0 }}, {{ f.1 }}],
16 {% endfor %}
17]);
18 var options = {
19 width: 600,
20 height: 450,

160

Chapter 10. Appendix 10.3. Base

21 hAxis: { title: ’Time’, format: ’dd/MM’, gridlines: {count:
’20’}, slantedText: ’true’, slantedTextAngle: ’60’},

22 axisTitlesPosition: ’in’,
23 vAxis: { title: ’{{ f }}’ },
24 backgroundColor: {
25 stroke: "#E6E6E6",
26 strokeWidth: "3"
27 },
28 chartArea:{left:’10%’,top:’10%’,width:’80%’,height:’60%’},
29 crosshair: { trigger: ’focus’, color: ’red’ },
30 series: {
31 1: {curveType: ’function’}
32 },
33 legend: {position: ’bottom’}
34

35 };
36 var chart = new google.visualization.AreaChart(

document.getElementById(’fund_chart’));
37 chart.draw(data, options);
38 }
39 </script>
40

41 <h4>Total amount of {{ f }} for the lasts 2 months:</h4>

42 <div id="fund_chart"></div>
43 {% endif %}
44 {% endblock %}

Funds template

Listing 10.24: Funds template.
1 {% extends ’wallet/wallet_base.html’ %}
2

3 {% load staticfiles %}
4 {% load static %}
5 {% static "" as baseUrl %}
6 {% block title %}Current funds in your wallet{% endblock %}
7

8 {% block main_content %}
9 <table><tr><td>

10 <table class="table table-bordered" data-height="400" style="width:
auto;" summary="Funds in your wallet">

11 <tr><th></th><th colspan="3">Available</th></tr>
12 <tr></td><td><td>Currency</td><td> - </td><td>In USD</td></tr>
13 {% for k,v in f.items %}
14 <td><img src="{% get_static_prefix %}/images/{{ k}}_40x40.png"

style="width:25px; height:25px;"></td><td><a

161

10.3. Base Chapter 10. Appendix

href="/wallet/funds/{{ k }}/">{{ k }}</td><td>{{
v.amount }}</td> <td>{{ v.usd }}</td>

15 </tr>
16 {% endfor %}
17 </table>
18 </td><td>
19 <table class="table table-bordered" data-height="400" style="width:

auto;" summary="Funds in your wallet">
20 <tr><th colspan="2">In orders</th></tr>
21 <tr><td> - </td><td>In USD</td></tr>
22 {% for k,v in f_nav.items %}
23 <td style="height:42px;">{{ v.amount }}</td> <td>{{ v.usd

}}</td>
24 </tr>
25 {% endfor %}
26 </table>
27 </td><td>
28 <table class="table table-bordered" data-height="400" style="width:

auto;" summary="Funds in your wallet">
29 <tr><th colspan="2">Total</th></tr>
30 <tr><td> - </td><td>In USD</td></tr>
31 {% for k,v in f_total.items %}
32 <td style="height:42px;">{{ v.amount }}</td> <td>{{ v.usd

}}</td>
33 </tr>
34 {% endfor %}
35 </table>
36 </td></tr></table>
37

38 {% endblock %}

Reports template

Listing 10.25: Reports template.
1 {% extends ’wallet/wallet_base.html’ %}
2

3

4 {% block main_content %}
5 {% if simple %}
6 <h4>Showing the last 5 simple orders</h4>
7 <table class="table table-bordered table-striped"

data-height="400" style="width: auto;" summary="Reports for
simple orders">

8 <thead>
9 <tr><th class="col-md-1">Id</th><th class="col-md-2">Pair</th><th

class="col-md-1">Type</th><th class="col-md-2">Amount</th><th

162

Chapter 10. Appendix 10.3. Base

class="col-md-2">Price</th><th class="col-md-2">Status</th></tr>
10 </thead>
11 <tbody>
12 {% for o in simple %}
13 <tr><td>{{ o.btceid }}</td><td>{{ o.pair }}</td><td>{{

o.buysell }}</td><td>{{ o.amount }}</td><td>{{
o.price }}</td><td>{{ o.status }}</td></tr>

14 {% endfor %}
15 </tbody>
16 </table>
17 {% else %}
18 <p><h4>You do not have simple orders completed.</h4></p>
19 {% endif %}
20

21 {% if sliced %}
22 <h4>Showing the last 5 sliced orders</h4>
23 {% for k,v in sliced.items %}
24 <h5>Virtual order:</h5>
25 <table class="table table-bordered table-striped"

data-height="400" style="width: auto;" summary="Reports for
virtual order">

26 <thead>
27 <tr><th class="col-md-1">Id</th><th

class="col-md-1">Pair</th><th
class="col-md-1">Type</th><th
class="col-md-1">Amount</th><th class="col-md-1">#
orders</th><th class="col-md-1">Lower bound</th><th
class="col-md-1">Upper bound</th><th
class="col-md-1">Total</th><th
class="col-md-2">Status</th></tr>

28 </thead>
29 <tbody>
30 <tr><td>{{ k }}</td><td>{{ v.pair }}</td><td>{{ v.buysell

}}</td><td>{{ v.amount }}</td><td>{{ v.num }}</td><td>{{
v.lb }}</td><td>{{ v.ub }}</td><td>{{ v.total }}</td><td>{{
v.status }}</td></tr>

31 </tbody>
32 </table>
33 <table class="table table-bordered table-striped"

data-height="400" style="width: auto;" summary="Reports for
real orders">

34 <tr><th>Id</th><th>Amount</th><th>Price</th><th>Status</th></tr>
35 <h5>Real orders:</h5>
36 {% for k,o in v.sp.items %}
37 <tr><td>{{ o.btceid }}</td><td>{{ o.amount }}</td><td>{{

o.price }}</td><td>{{ o.status }}</td></tr>
38 {% endfor %}
39 </tbody>
40 </table>

163

10.3. Base Chapter 10. Appendix

41 {% endfor %}
42 {% else %}
43 <p><h4>You do not have sliced orders completed.</h4></p>
44 {% endif %}
45

46

47

48 {% if time %}
49 <h4>Showing the last 5 time based orders</h4>
50 <table class="table table-bordered table-striped"

data-height="400" style="width: auto;" summary="Reports for
time based orders">

51 <thead>
52 <tr><th class="col-md-1">Id</th><th

class="col-md-1">Pair</th><th
class="col-md-1">Type</th><th
class="col-md-1">Amount</th><th
class="col-md-1">Price</th><th class="col-md-3">Expiration
time</th><th class="col-md-1">Status</th></tr>

53 </thead>
54 <tbody>
55 {% for o in time %}
56 <tr><td>{{ o.btceid }}</td><td>{{ o.pair }}</td><td>{{

o.buysell }}</td><td>{{ o.amount }}</td><td>{{ o.price
}}</td><td>{{ o.expiration_time }}</td><td>{{ o.status
}}</td></tr>

57 {% endfor %}
58 </tbody>
59 </table>
60 {% else %}
61 <p><h4>You do not have time based orders completed.</h4></p>
62 {% endif %}
63

64

65 {% if paired %}
66 <h4>Showing the last 5 paired orders</h4>
67 <table class="table table-bordered table-striped"

data-height="400" style="width: auto;" summary="Reports for
paired orders">

68 <thead>
69 <tr><th class="col-md-1">Id</th><th

class="col-md-1">Pair</th><th
class="col-md-1">Type</th><th
class="col-md-1">Amount</th><th
class="col-md-1">Price</th><th class="col-md-2">Contra
price</th><th class="col-md-1">Benefit</th><th
class="col-md-1">Status</th></tr>

70 </thead>
71 <tbody>

164

Chapter 10. Appendix 10.3. Base

72 {% for o in paired %}
73 <tr><td>{{ o.id }}</td><td>{{ o.pair }}</td><td>{{ o.buysell

}}</td><td>{{ o.amount }}</td><td>{{ o.price }}</td><td>{{
o.contraprice }}</td><td>{{ o.benefit }}</td><td>{{
o.status }}</td></tr>

74 {% endfor %}
75 </tbody>
76 </table>
77 {% else %}
78 <p><h4>You do not have paired orders completed.</h4></p>
79 {% endif %}
80

81

82

83 {% if stoploss %}
84 {% else %}
85 <p><h4>You do not have stop loss orders completed.</h4></p>
86 {% endif %}
87
<h5>Note: A value of 0 in btc order id means that the order was

completely filled when it was created.</h5>
88 {% endblock %}

Trade history template

Listing 10.26: Trade history template.
1 {% extends ’wallet/wallet_base.html’ %}
2

3 {% block header %}
4 {% if form %}{{ form.media }}{% endif %}
5 {% endblock %}
6

7 {% load timetags %}
8

9 {% block main_content %}
10 {% if form %}
11 <form action="" method="post">
12 {% csrf_token %}
13 <table>
14 <tr><td style="padding:5px 17px;"><p>Select the

pair:</p><p> {{ form.pair }}</p></td><td><p># trades
to display:</p><p> {{ form.count }}</p></td></tr>

15 <tr><td style="padding:0px 17px;"><p>Since id:</p><p>
{{ form.from_id }}</p></td>

16 <td><p>Until id: </p><p> {{ form.end_id }}</p></td></tr>
17 </table>
18 <table>

165

10.3. Base Chapter 10. Appendix

19 <tr><td style="padding:0px 17px;"><p>Since day:</p><p>
{{ form.since }}</p></td><td><p>Until day:</p><p> {{
form.end }}</p></td></tr>

20 <tr><td style="padding:10px 17px;"><p><input type="submit"
value="Get history" name="_gethistory" class="btn
btn-default"/></p></td></tr>

21 </table>
22 </form>
23 {% endif %}
24 {% endblock %}
25

26 {% block table %}
27 {% if resp %}
28 <table class="table table-hover table-bordered" style="width:

auto;" summary="Trade history">
29 <tr><th>Id</th><th>Pair</th><th>Amount</th>

<th>Type</th><th>Rate</th><th>Your
order</th><th>Time</th></tr>

30 {% for k,t in resp.items %}
31 {% ifequal t.type ’buy’ %}<tr style="background-color: rgba(0,

255, 0, 0.22);">{% endifequal %}
32 {% ifequal t.type ’sell’ %}<tr style="background-color:

rgba(255, 0, 0, 0.22);">{% endifequal %}
33

34 <td>{{ t.order_id }}</td><td>{{ t.pair }}</td><td>{{
t.amount }}</td><td>{{ t.type }}</td><td>{{ t.rate
}}</td><td>{{ t.is_your_order }}</td><td>{{
t.timestamp|datefromstamp|date:’d/m/y h:m’ }}</td></tr>

35 {% endfor %}
36 </table>
37 {% endif %}
38 {% endblock %}

Transaction history template

Listing 10.27: Transaction history template.
1 {% extends ’wallet/wallet_base.html’ %}
2

3 {% block header %}
4 {% if form %}{{ form.media }}{% endif %}
5 {% endblock %}
6 {% load timetags %}
7

8 {% block main_content %}
9 {% if form %}

10 <form action="" method="post">

166

Chapter 10. Appendix 10.3. Base

11 {% csrf_token %}
12 <table>
13 <tr><td style="padding:5px 17px;"><p># trades to

display:<p><p> {{ form.count }}</p></td></tr>
14 <tr><td style="padding:0px 17px;"><p>Since id:<p><p> {{

form.from_id }}</p></td>
15 <td><p>Until id:<p><p> {{ form.end_id }} </p></td></tr>
16 </table>
17 <table>
18 <tr><td style="padding:0px 17px;"><p>Since day:<p><p>

{{ form.since }}</p></td><td><p>Until day:<p><p> {{
form.end }}</p></td></tr>

19 <tr><td style="padding:10px 17px;"><p><input type="submit"
value="Get history" name="_gethistory" class="btn
btn-default"/></p></td></tr>

20 </table>
21 </form>
22 {% endif %}
23 {% endblock %}
24

25 {% block table %}
26 {% if resp %}
27 <table class="table table-hover table-bordered" style="width:

auto;" summary="Transaction history">
28 <tr><th>Type</th><th>Amount</th>

<th>Currency</th><th>Desc</th><th>Status</th><th>Time</th></tr>
29 {% for k,t in resp.items %}
30 <tr><td>{{ t.type }}</td><td>{{ t.amount }}</td><td>{{

t.currency }}</td><td>{{ t.desc }}</td><td>{{ t.status
}}</td><td>{{ t.timestamp|datefromstamp|date:’d/m/y h:m’
}}</td></tr>

31 {% endfor %}
32 </table>
33 {% endif %}
34 {% endblock %}

URLs

Listing 10.28: Wallet URLs.
1 from django.conf.urls import patterns, url, include
2

3 import views
4

5 urlpatterns = patterns(’’,
6 url(r’^summary/$’, views.summary,

name=’summary’),

167

10.3. Base Chapter 10. Appendix

7 url(r’^funds/$’, views.funds, name=’funds’),
8 url(r’^funds/(?P<fund>[a-z]{3})/$’,

views.fund,name=’fund’),
9 url(r’^tradehistory/$’, views.tradeHistory,

name=’tradeHistory’),
10 url(r’^transactionhistory/$’,

views.transactionHistory,
name=’transactionHistory’),

11 url(r’^reports/$’, views.reports,
name=’reports’),

12 url(r’^users/$’, include(’users.urls’)),
13)

10.3.5 Orders
Models

Listing 10.29: Order models.
1 from __future__ import division
2 from django.db import models
3 from django.contrib.auth.models import User
4 from users.models import UserProfile
5 from wallet.models import Change
6 import pickle
7 import pika
8 import logging
9

10 log = logging.getLogger(’orders’)
11

12 class BaseOrder(models.Model):
13 ’’’
14 BaseOrder is the base class for all the other order classes.
15

16 Attributes:
17 timestamp: UNIX timestamp generated in the moment of saving

it into the
18 db.
19 user: foreign key to the User model.
20 status: string representing the position of the order.
21 ’’’
22 timestamp = models.DateTimeField(auto_now=True,blank=True)
23 user = models.ForeignKey(User)
24 status = models.CharField(max_length = 20)
25

26 @classmethod
27 def create(cls, user, status):

168

Chapter 10. Appendix 10.3. Base

28 ’’’ Creates an order object saving it into the db’’’
29 order = cls(user=user, status=status)
30 return order
31

32 @property
33 def execute(self):
34 ’’’ Executes an order’’’
35 raise NotImplementedError("Subclasses should implement this!")
36

37 @property
38 def cancel(self):
39 ’’’ Cancels an order ’’’
40 raise NotImplementedError("Subclasses should implement this!")
41

42 @property
43 def __str__():
44 ’’’ Reader friendly representation ’’’
45 raise NotImplementedError("Subclasses should implement this!")
46

47

48 class BtceOrder(BaseOrder):
49 ’’’
50 Class containing attributes and methods to represent a valid

btc-e order
51

52 Attributes:
53 buysell: String with possible values ’buy’ || ’sell’
54 pair: Valid btc-e pair
55 amount: Quantity of coins to exchange
56 status: Can be ’created’ || ’started’ || ’canceled’ ||

’executed’
57 btceid: Id returned by btce.
58 ’’’
59 pair = models.ForeignKey(Change)
60 amount = models.FloatField()
61 price = models.FloatField()
62 buysell = models.CharField(max_length = 4) # allowed values:

’buy’ or ’sell’
63 btceid = models.IntegerField(null = True)
64

65 @classmethod
66 def create(cls, pair, user, buysell, amount, price):
67 order = cls(pair=pair, amount=amount, price=price,

buysell=buysell,
68 user=user, status=’created’)
69 order.save()
70 return order
71

72 def execute(self):

169

10.3. Base Chapter 10. Appendix

73 from wallet.btceapi import create_order
74 log.debug(’Execute: %s %s %s

%s’,self.buysell,self.amount,self.pair,self.price)
75 r = create_order(self.user.userprofile.btce_secret_key,
76 self.user.userprofile.btce_key, self.pair.label,

self.buysell, self.price,self.amount)
77 if ’error’ in r:
78 log.error(’The order could not be created. Message:

%s’,r[’error’])
79 return r, -1
80 else:
81 self.btceid = r[’return’][’order_id’]
82 # If btceid is 0 means that the order was filled
83 if self.btceid == 0:
84 self.status = ’executed’
85 self.save()
86 log.info(’Created and executed Simple order’)
87 return r, 0
88 self.status = ’started’
89 self.save()
90 log.info(’Created order %s’, self.btceid)
91 return r, 0
92

93 def cancel(self):
94 from wallet.btceapi import cancel_order
95 log.info(’Canceling an simple order’)
96 r = cancel_order(self.user.userprofile.btce_secret_key,

self.user.userprofile.btce_key,
97 self.btceid)
98 if ’error’ in r:
99 log.error(’The order %s could not be canceled’,self.btceid)

100 return r, -1
101 else:
102 self.status = ’canceled’
103 self.save()
104 log.info(’The order %s has been canceled’,self.btceid)
105 return r, 0
106

107 def __str__(self):
108 return unicode(’%s %s %s %s’ % (self.buysell, self.pair.label,
109 self.amount, self.price))
110

111

112 class SimpleOrder(BtceOrder):
113 ’’’
114 This class is exactly the same as BtceOrder.
115

116 The purpose of this class is to separate in the database level,
BtceOrder classes used by many

170

Chapter 10. Appendix 10.3. Base

117 other classes to SimpleOrder classes created from the frontend.
118 ’’’
119 pass
120

121

122 class SlicedOrder(BaseOrder):
123 ’’’
124 Class containing attributes and methods to store a sliced order

in the
125 db.
126 A sliced order canceled will have all the suborders canceled or

executed.
127 If the creation of the class fails, it will be canceled.
128

129 Attributes:
130 simpleOrder: Foreigng key to a simple order. It will contain

as many
131 foreign keys as number of orders.
132 upperBound: Maximum amount of money to pay in a order.
133 lowerBound: Minimum amount of money to pay in a cancelOrder.
134 numberOfOrders: Number of total orders contained in an sliced

order.
135 status: Can be ’created’ || ’started’ || ’canceled’ ||

’executed’
136 ’’’
137 pair = models.ForeignKey(Change)
138 amount = models.FloatField()
139 buysell = models.CharField(max_length = 4) # allowed values:

’buy’ or ’sell’
140 numberOfOrders = models.IntegerField()
141 upperBound = models.FloatField()
142 lowerBound = models.FloatField()
143 btceOrders = models.ManyToManyField(’BtceOrder’,

related_name=’sliced_into_order’,null=True,blank=True)
144

145 @classmethod
146 def create(cls, user, no, ub, lb, pair, amount, bs):
147 if lb >= ub:
148 log.error(’The upper bound must be grater than the lower

bound’)
149 return -1
150 sliced = cls(status=’created’, user=user, numberOfOrders=no,

upperBound=ub,
151 lowerBound=lb, pair=pair, amount=amount, buysell=bs)
152 sliced.save()
153 return sliced
154

155 def execute(self):

171

10.3. Base Chapter 10. Appendix

156 ’’’ Creates and executed a several simple orders to compose a
SlicedOrder’’’

157 log.info(’Executing sliced order’)
158 step = (self.upperBound - self.lowerBound) /

self.numberOfOrders
159 amountPerOrder = self.amount / self.numberOfOrders
160 import numpy as np
161 for price in

(np.arange(self.lowerBound,self.upperBound,step)):
162 # TODO for truncate take the maximum number of digits

allowed for each pair
163 price = round(price,3)
164 sp=BtceOrder.create(self.pair, self.user, self.buysell,
165 amountPerOrder, price)
166 r, rc = sp.execute()
167 if rc == -1:
168 log.error(’A problem occurred while starting a sliced

order, all\
169 the suborders have been canceled: %s’, r)
170 self.cancel()
171 return r, rc
172 sp.save()
173 self.btceOrders.add(sp)
174 self.status = ’started’
175 self.save()
176 return r, 0
177

178 def cancel(self):
179 ’’’ Cancels all the btceOrders and set its status to canceled

’’’
180 for order in self.btceOrders.all():
181 if order.status == ’started’:
182 r,s = order.cancel()
183 if s == -1:
184 log.warning(’Problem while canceling btce order

%s’,order.btceid)
185 self.status = ’canceled’
186 self.save()
187

188 def numActive(self):
189 ’’’
190 Returns the number of suborder actives
191 ’’’
192 num = 0
193 for order in self.btceOrders.all():
194 if order.status == ’started’:
195 num += 1
196 return num
197

172

Chapter 10. Appendix 10.3. Base

198 def numExecuted(self):
199 ’’’
200 Returns the number of suborder executed
201 ’’’
202 num = 0
203 for order in self.btceOrders.all():
204 if order.status == ’executed’:
205 num += 1
206 return num
207

208 def totalAmount(self):
209 ’’’
210 Returns the total amount of currency trade
211 ’’’
212 return self.upperBound * self.lowerBound
213

214 def __str__(self):
215 ’’’ Reader friendly representation ’’’
216 return u’#%s %s %s %s %s %s ’ %(self.numberOfOrders,

self.buysell,
217 self.pair.label, self.amount, self.upperBound,
218 self.lowerBound)
219

220

221 class TimeBasedOrder(BtceOrder):
222 ’’’
223 Class containing attributes and methods to create a time based

order.
224

225 The execute method creates a TimerBaseOrder object and stores it
in the database.

226 After it sends a message with the object narrowed to the backend.
The

227 backend will cancel the order if the expiration time arrives and
the order

228 is still active.
229

230 The cancel method will cancel a timer order making a call to the
btce API

231

232 status: ’created’ || ’started’ || ’canceled’ || ’executed’ ||
’expired’

233 ’’’
234 expiration_time = models.DateTimeField()
235

236 @classmethod
237 def create(cls, pair, user, buysell, amount, price, exptime):
238 order = cls(pair=pair, amount=amount, price=price,

buysell=buysell,

173

10.3. Base Chapter 10. Appendix

239 user=user, status=’created’, expiration_time=exptime)
240 order.save()
241 return order
242

243 def execute(self):
244 ’’’
245 This method creates an order in the market and sets up a time
246 limit when the order will be canceled if was not executed or
247 canceled before
248 ’’’
249 from wallet.btceapi import create_order
250 r = create_order(self.user.userprofile.btce_secret_key,
251 self.user.userprofile.btce_key,

self.pair,self.buysell,self.price,self.amount)
252 if ’error’ in r:
253 log.error(’A problem occurs when starting time based

order: %s’,r)
254 return r, -1
255 else:
256 self.btceid = r[’return’][’order_id’]
257 # If btceid is 0 means that the order was filled
258 if self.btceid == 0:
259 self.status = ’executed’
260 self.save()
261 log.info(’Created and executed order’)
262 return r, 0
263 self.status = ’started’
264 self.save()
265 log.info(’Time based order created successfully:

%s’,self.btceid)
266 send_time_based_order(self)
267 return r, 0
268

269 def cancel(self):
270 ’’’
271 This method cancels a time based order.
272 It set the status to ’canceled’ and the backend will delete it
273 ’’’
274 from wallet.btceapi import cancel_order
275 r = cancel_order(self.user.userprofile.btce_secret_key,

self.user.userprofile.btce_key,
276 self.btceid)
277 if ’error’ in r:
278 log.error(’A problem occurs when canceling a time based

order: %s’,r)
279 return r
280 else:
281 self.status = ’canceled’
282 self.save()

174

Chapter 10. Appendix 10.3. Base

283 log.info(’Order canceled successfully: %s’,self.btceid)
284 return r
285

286 def __str__(self):
287 return u’%s %s %s %s %s’ % (self.buysell, self.pair.label,

self.amount,
288 self.price, self.expiration_time)
289

290

291 def send_time_based_order(order):
292 ’’’
293 This function sends a TimeBasedOrder to its correspondent queue

where it
294 will be handled by the the backend
295 ’’’
296 sl = pickle.dumps(order)
297 con =

pika.BlockingConnection(pika.ConnectionParameters(host=’localhost’))
298 chan = con.channel()
299 chan.basic_publish(exchange = ’’, routing_key=’order_timer’,

body=sl,properties=pika.BasicProperties(delivery_mode = 2,))
300

301

302 class PairedOrder(BtceOrder):
303 ’’’
304 This class represents a paired order.
305 A paired order will be executed when both orders has been

executed.
306 Its status will be canceled if one of the two orders has been

canceled.
307

308 status: ’created’ || ’started’ || ’canceled’ || ’executed’ ||
309 ’cont_started’ || ’cont_canceled’ || ’cont_executed’
310 ’’’
311 contraprice = models.FloatField(null=True)
312 contrabuysell = models.CharField(max_length = 4,null=True)
313 contrabtceid = models.IntegerField(null = True)
314 @classmethod
315 def create(cls, pair, user, buysell, amount, price, cp=None):
316 cbs = ’sell’ if buysell == ’buy’ else ’buy’
317 order = cls(pair=pair, amount=amount, price=price,

buysell=buysell,
318 user=user, status=’created’, contrabuysell= cbs)
319 order.save()
320 return order
321

322 def execute_contraorder(self):
323 from wallet.btceapi import create_order

175

10.3. Base Chapter 10. Appendix

324 log.debug(’Executing contraorder: %s %s %s
%s’,self.buysell,self.amount,self.pair,self.price)

325 r = create_order(self.user.userprofile.btce_secret_key,
326 self.user.userprofile.btce_key, self.pair.label,
327 self.contrabuysell, self.contraprice, self.amount)
328 if ’error’ in r:
329 log.error(’The order could not be created. Message:

%s’,r[’error’])
330 return r, -1
331 else:
332 self.contrabtceid = r[’return’][’order_id’]
333 # If btceid is 0 means that the order was filled
334 if self.contrabtceid == 0:
335 self.status = ’cont_executed’
336 self.save()
337 log.info(’Created and executed order’)
338 return r, 0
339 self.status = ’cont_started’
340 self.save()
341 log.info(’Created contraorder %s’, self.btceid)
342 return r, 0
343

344 def cancel(self):
345 from wallet.btceapi import cancel_order
346 log.info(’Canceling a paired order’)
347 if self.btceid is not None:
348 r = cancel_order(self.user.userprofile.btce_secret_key,

self.user.userprofile.btce_key,
349 self.btceid)
350 if ’error’ in r:
351 log.error(’The order %s could not be

canceled’,self.btceid)
352 return r, -1
353 if self.contrabtceid is not None:
354 r = cancel_order(self.user.userprofile.btce_secret_key,

self.user.userprofile.btce_key,
355 self.contrabtceid)
356 if ’error’ in r:
357 log.error(’The order %s could not be

canceled’,self.btceid)
358 return r, -1
359 self.status = ’canceled’
360 self.save()
361 log.info(’The paired order %s has been canceled’,self.btceid)
362 return r, 0
363

364 def __unicode__(self):
365 return u’%s %s %s’ % (self.pair, self.amount, self.buysell)
366

176

Chapter 10. Appendix 10.3. Base

367

368 class StopLossOrder(BtceOrder):
369 ’’’
370 Class containing attributes and methods to create a stop loss

order, manage
371 it and store it in the db.
372

373 Attributes:
374 stoploss: Amount at which sell automatically
375 status: ’created’ || ’started’ || ’canceled’ || ’executed’
376 ’’’
377

378 def _send_to_queue(self):
379 ’’’
380 Sends itself to the stop loss queue to be picked
381 and managed by the stop loss backend
382 ’’’
383 return 0
384

385 def _cancel_from_queue(self):
386 ’’’
387 Send a message to the queue to cancel itself.
388 ’’’
389 return 0
390

391 def execute(self):
392 from wallet.btceapi import create_order
393 log.debug(’Adding stop loss order to the market: %s %s %s

%s’,self.buysell,self.amount,self.pair,self.price)
394 r = self._send_to_queue()
395 if r == 0:
396 self.status = ’executed’
397 self.save()
398 log.info(’Created stop loss order %s’, self.btceid)
399 return ’success’, 0
400 else:
401 self.status = ’canceled’
402 self.save()
403 log.error(’The stop loss order could not be created.

Message: %s’,r[’error’])
404 return r, -1
405

406 return r, 0
407

408 def cancel(self):
409 from wallet.btceapi import cancel_order
410 self._cancel_from_queue()
411 if r ==0:
412 self.status = ’started’

177

10.3. Base Chapter 10. Appendix

413 self.save()
414 log.info(’The stop loss order %s has been

canceled’,self.btceid)
415 return ’success’, 0
416 else:
417 log.error(’The stop loss order %s could not be

canceled’,self.btceid)
418 return r, -1
419

420 def __str__(self):
421 return u’%s %s %s %s %s’ % (self.buysell, self.pair.label,

self.amount,
422 self.price, self.stoploss)

Views

Listing 10.30: Order views.
1 from __future__ import division
2 from django.shortcuts import render
3 from django.contrib.auth.decorators import login_required
4 from django.db.models import Q
5 from orders import forms
6 from orders.models import *
7 from wallet.btceapi import *
8 import time
9 import pika, pickle

10 import logging
11 logger = logging.getLogger(__name__)
12

13 @login_required
14 def simpleOrder(request):
15 ’’’
16 When the method is GET it renders the web page displaying: the

left
17 navigation menu, a table with the available funds, and the

simpleOrderFormto
18 create a simple order.
19 When the method is POST it validates the form, creates a simple

order and
20 renders again the page of before showing a message with the

result of the
21 order creation.
22 ’’’
23 context = {}
24 if request.method == ’POST’:
25 form = forms.simpleOrderForm(request.POST)

178

Chapter 10. Appendix 10.3. Base

26 if form.is_valid():
27 sp=SimpleOrder.create(form.cleaned_data[’pair’],

request.user, form.cleaned_data[’buysell’],
28 form.cleaned_data[’amount’],

form.cleaned_data[’price’])
29 resp=sp.execute()
30 print resp
31 if resp[1] == -1:
32 context[’error’] = resp[0][’error’]
33 else:
34 context[’success’] = ’Order created successfully’
35 else:
36 context[’error’] = form.errors
37 context[’funds’] =

get_funds(request.user.userprofile.btce_secret_key,
38 request.user.userprofile.btce_key, nround=4)
39 context[’form’] = forms.simpleOrderForm()
40 return render(request,’orders/simpleorder.html’,context)
41

42

43

44 @login_required
45 def slicedOrder(request):
46 """
47 Renders the sliced order page and accepts POST request for

creating sliced
48 orders.
49

50 """
51 context = {}
52 if request.method == ’POST’:
53 form = forms.slicedOrderForm(request.POST)
54 if form.is_valid():
55 f = form.cleaned_data
56 slo = SlicedOrder.create(request.user,

f[’numberOfOrders’], f[’upperBound’],
57 f[’lowerBound’],f[’pair’],f[’amount’],f[’buysell’])
58 resp = slo.execute()
59 if resp[1] == -1:
60 context[’error’] = resp[0][’error’]
61 else:
62 context[’success’] = ’Created %s orders successfully’

% \
63 f[’numberOfOrders’]
64 else:
65 context[’error’] = form.errors
66 context[’form’] = forms.slicedOrderForm()
67 context[’funds’] =

get_funds(request.user.userprofile.btce_secret_key,

179

10.3. Base Chapter 10. Appendix

68 request.user.userprofile.btce_key, nround=4)
69 return render(request,’orders/slicedorder.html’,context)
70

71

72 @login_required
73 def timeBasedOrder(request):
74 """
75 Renders the timer order page and accepts POST request creating

time based
76 orders.
77

78 """
79 context = {}
80 if request.method == ’POST’:
81 form = forms.timeBasedOrderForm(request.POST)
82 if form.is_valid():
83 f = form.cleaned_data
84 to = TimeBasedOrder.create(f[’pair’], request.user,
85 f[’buysell’], f[’amount’], f[’price’],

f[’expiration_time’])
86 resp = to.execute()
87 if resp[1] == -1:
88 context[’error’] = resp[0][’error’]
89 else:
90 context[’success’] = ’Order created successfully’
91 else:
92 context[’error’] = form.errors
93 context[’funds’] =

get_funds(request.user.userprofile.btce_secret_key
94 ,request.user.userprofile.btce_key, nround=4)
95 context[’form’] = forms.timeBasedOrderForm()
96 return render(request,’orders/timebasedorder.html’,context)
97

98

99 @login_required
100 def pairedOrder(request):
101 """
102 Renders the paired order page and accepts POST request creating

paired
103 orders.
104

105 """
106 context = {}
107 if request.method == ’POST’:
108 if request.POST.get("_order"):
109 form = forms.pairedOrderForm(request.POST)
110 if form.is_valid():
111 f = form.cleaned_data
112 po = PairedOrder.create(f[’pair’], request.user,

180

Chapter 10. Appendix 10.3. Base

113 f[’buysell’], f[’amount’], f[’price’])
114 resp = po.execute()
115 if resp[1] == -1:
116 context[’error’] = resp[0][’error’]
117 else:
118 context[’success’] = ’Order created successfully’
119 else:
120 context[’error’] = form.errors
121 elif request.POST.get("_contraOrder"):
122 form = forms.contraOrderForm(request.POST, user =

request.user)
123 if form.is_valid():
124 f = form.cleaned_data
125 po = PairedOrder.objects.filter(user =
126 request.user).filter(id = f[’opened’].id)[0]
127 po.contraprice = f[’contraprice’]
128

129 resp = po.execute_contraorder()
130 if resp[1] == -1:
131 context[’error’] = resp[0][’error’]
132 else:
133 context[’success’] = ’Contra order created

successfully’
134 else:
135 context[’error’] = form.errors
136 context[’funds’] =

get_funds(request.user.userprofile.btce_secret_key
137 ,request.user.userprofile.btce_key, nround=4)
138 context[’orderForm’] = forms.pairedOrderForm()
139 context[’contraOrderForm’] = forms.contraOrderForm(user =

request.user)
140 return render(request,’orders/pairedorder.html’,context)
141

142

143 @login_required
144 def stopLossOrder(request):
145 """
146 Renders the stop loss order page and accepts POST request

creating stop
147 loss orders.
148

149 """
150 context = {}
151 if request.method == ’POST’:
152 form = forms.stopLossOrderForm(request.POST)
153 if form.is_valid():
154 f = form.cleaned_data
155 to = StopLossOrder.create(f[’pair’], request.user,
156 f[’amount’], f[’price’], f[’stoploss’])

181

10.3. Base Chapter 10. Appendix

157 resp = to.execute()
158 if resp[1] == -1:
159 context[’error’] = resp[0][’error’]
160 else:
161 context[’success’] = ’Order created successfully’
162 else:
163 context[’error’] = form.errors
164 context[’funds’] =

get_funds(request.user.userprofile.btce_secret_key
165 ,request.user.userprofile.btce_key, nround=4)
166 context[’form’] = forms.stopLossOrderForm()
167 return render(request,’orders/stoplossorder.html’,context)
168

169

170 @login_required
171 def activeOrders(request):
172 ’’’
173 Render a page with a user’s active orders.
174

175 Each order can be canceled from this page.
176 Each order shows its different attributes agrupted by column.
177 ’’’
178 simple =

SimpleOrder.objects.filter(user=request.user).filter(status =
179 ’started’)
180 sliced = SlicedOrder.objects.filter(user =

request.user).filter(status =
181 ’started’)
182 timed = TimeBasedOrder.objects.filter(user =

request.user).filter(status =
183 ’started’)
184 paired = PairedOrder.objects.filter(user =

request.user).filter(~Q(status =
185 ’canceled’) & ~Q(status = ’cont_executed’))
186 stoploss = StopLossOrder.objects.filter(user =

request.user).filter(status =
187 ’started’)
188

189 simp = {}
190 slic = {}
191 pair = {}
192 time = {}
193 stop = []
194 for o in simple:
195 id = str(o.btceid)
196 simp[id] = {}
197 simp[id][’pair’] = o.pair.label
198 simp[id][’amount’] = o.amount
199 simp[id][’type’] = o.buysell

182

Chapter 10. Appendix 10.3. Base

200 simp[id][’price’] = o.price
201 simp[id][’total’] = o.amount * o.price
202 for o in sliced:
203 id = str(o.id)
204 slic[id] = {}
205 slic[id][’pair’] = o.pair.label
206 slic[id][’amount’] = o.amount
207 slic[id][’type’] = o.buysell
208 slic[id][’number’] = o.numberOfOrders
209 slic[id][’upper’] = o.upperBound
210 slic[id][’lower’] = o.lowerBound
211 slic[id][’total’] = o.totalAmount()
212 slic[id][’active’] = o.numActive()
213 slic[id][’executed’] = o.numExecuted()
214 for o in paired:
215 id = str(o.id)
216 pair[id] = {}
217 pair[id][’pair’] = o.pair.label
218 pair[id][’amount’] = o.amount
219 pair[id][’type’] = o.buysell
220 pair[id][’price’] = o.price
221 pair[id][’total’] = o.amount * o.price
222 pair[id][’cprice’] = o.contraprice
223 for o in timed:
224 id = str(o.id)
225 time[id] = {}
226 time[id][’pair’] = o.pair.label
227 time[id][’amount’] = o.amount
228 time[id][’type’] = o.buysell
229 time[id][’price’] = o.price
230 time[id][’total’] = o.amount * o.price
231 time[id][’exp’] = o.expiration_time
232 for o in stoploss:
233 id = str(o.btceid)
234 stop[id] = {}
235 stop[id][’pair’] = o.pair.label
236 stop[id][’amount’] = o.amount
237 stop[id][’type’] = o.buysell
238 stop[id][’price’] = o.price
239 stop[id][’total’] = o.amount * o.price
240

241 context={’simple’: simp, ’sliced’ : slic , ’paired’: pair,
’time’: time}

242 return render(request,’orders/activeorders.html’,context)
243

244

245 @login_required
246 def cancelSimpleOrder(request,order_id):
247 ’’’

183

10.3. Base Chapter 10. Appendix

248 It cancels a simple active order
249 ’’’
250 order =

SimpleOrder.objects.filter(btceid=order_id,user=request.user)[0]
251 order.cancel()
252 return activeOrders(request)
253

254

255 @login_required
256 def cancelSlicedOrder(request,order_id):
257 ’’’
258 It cancels a simple active order
259 ’’’
260 order =

SlicedOrder.objects.filter(id=order_id,user=request.user)[0]
261 order.cancel()
262 return activeOrders(request)
263

264

265 @login_required
266 def cancelPairedOrder(request,order_id):
267 ’’’
268 It cancels a paired order
269 ’’’
270 order =

PairedOrder.objects.filter(id=order_id,user=request.user)[0]
271 order.cancel()
272 return activeOrders(request)
273

274 @login_required
275 def cancelTimeBasedOrder(request,order_id):
276 ’’’
277 It cancels a time based order
278 ’’’
279 order =

TimeBasedOrder.objects.filter(id=order_id,user=request.user)[0]
280 order.cancel()
281 return activeOrders(request)
282

283 @login_required
284 def cancelStopLossOrder(request,order_id):
285 ’’’
286 It cancels a stop loss order
287 ’’’
288 order =

StopLossOrder.objects.filter(id=order_id,user=request.user)[0]
289 order.cancel()
290 return activeOrders(request)

184

Chapter 10. Appendix 10.3. Base

Forms

Listing 10.31: Order forms.
1 from django import forms
2 from wallet.models import Change as wChange
3 from orders.models import *
4 from datetimewidget.widgets import DateTimeWidget
5

6

7 class simpleOrderForm(forms.Form):
8 pair = forms.ModelChoiceField(queryset=wChange.objects.all(),
9 empty_label="Select a pair",

widget=forms.Select(attrs={’class’: ’form-control’,
’style’:’width:130px;’}),required=True)

10 amount = forms.FloatField(widget=forms.TextInput(
attrs={’style’:’width:130px;’,
’class’:’form-control’}),required=True)

11 price = forms.FloatField(widget=forms.TextInput(
attrs={’style’:’width:130px;’,
’class’:’form-control’}),required=True)

12 buysell = forms.ChoiceField(required=True,
widget=forms.RadioSelect,
choices=((’buy’,’buy’,),(’sell’,’sell’,)))

13

14

15 class slicedOrderForm(forms.Form):
16 pair = forms.ModelChoiceField(queryset=wChange.objects.all(),
17 empty_label="Select a pair",

widget=forms.Select(attrs={’class’: ’form-control’,
’style’:’width:130px;’}))

18 amount = forms.FloatField(widget=forms.TextInput(
attrs={’style’:’width:130px;’,
’class’:’form-control’}),required=True)

19 numberOfOrders = forms.IntegerField(widget=forms.TextInput(
attrs={’style’:’width:130px;’,
’class’:’form-control’}),required=True)

20 lowerBound = forms.FloatField(widget=forms.TextInput(
attrs={’style’:’width:130px;’,
’class’:’form-control’}),required=True)

21 upperBound = forms.FloatField(widget=forms.TextInput(
attrs={’style’:’width:130px;’,
’class’:’form-control’}),required=True)

22 buysell= forms.ChoiceField(required=True,
widget=forms.RadioSelect,
choices=((’buy’,’buy’,),(’sell’,’sell’,)))

23

24

25 class timeBasedOrderForm(simpleOrderForm):

185

10.3. Base Chapter 10. Appendix

26 expiration_time = forms.DateTimeField(required=True, widget =
27 DateTimeWidget(usel10n = True,bootstrap_version=3,

attrs={’class’:’form-control’}))
28

29

30 class pairedOrderForm(simpleOrderForm):
31 ’’’
32 This form is used to create the first of the two paired orders
33 ’’’
34 pass
35

36

37 class contraOrderForm(forms.Form):
38 ’’’
39 This form allows a user to create the contra order of a paired

order. Note
40 that the first order have to be already executed
41 ’’’
42 def __init__(self,*args,**kwargs):
43 user = kwargs.pop(’user’)
44 super(contraOrderForm,self).__init__(*args,**kwargs)
45 self.fields[’opened’] = forms.ModelChoiceField(queryset =

PairedOrder.objects.filter(user =
46 user).filter(status = ’executed’), empty_label="Parent

order", widget=forms.Select(attrs={’class’:
’form-control’, ’style’:’width:130px;’}),required=True)

47 self.fields[’contraprice’] = \
48 forms.FloatField(widget=forms.TextInput(attrs =

{’style’:’width:130px;’,
’class’:’form-control’}),required=True)

49

50 opened = forms.MultipleChoiceField()
51 contraprice = forms.FloatField()
52

53

54 class stopLossOrderForm(simpleOrderForm):
55 pass

Base order template

Listing 10.32: Base order template.
1 {% extends ’base.html’ %}
2 {% block body_main %}
3 {% load staticfiles %}
4 {% load static %}
5 {% static "" as baseUrl %}

186

Chapter 10. Appendix 10.3. Base

6 <section id="content" style="margin-bottom:60px; width:100%"
class="wide-content">

7 <div class="row">
8 <div class="grid_3"><!-- aside menu content -->
9 <div class="mini-submenu">

10
11
12
13
14
15
16 </div>
17 <div class="list-group" style="max-width:86%">
18 <a href="/orders/activeorders/" class="list-group-item {%

if ’orders/activeorders/’ in request.path%} active {%
endif%}" ><i class="fa fa-play"></i> Active orders

19 <a href="/orders/simpleorder/" class="list-group-item {% if
’orders/simpleorder/’ in request.path%} active {%
endif%}" ><i class="fa fa-circle-o"></i> Simple
order

20 <a href="/orders/slicedorder/" class="list-group-item {% if
’orders/slicedorder/’ in request.path%} active {%
endif%}" ><i class="fa fa-signal"></i> Sliced order

21 <a href="/orders/pairedorder/" class="list-group-item {% if
’orders/pairedorder/’ in request.path%} active {%
endif%}" ><i class="fa fa-retweet "></i> Paired order

22 <a href="/orders/timebasedorder/" class="list-group-item {%
if ’orders/timebasedorder/’ in request.path%} active {%
endif%}" ><i class="fa fa-clock-o "></i> Time based
order

23 <a href="/orders/stoplossorder/" class="list-group-item {%
if ’orders/stoplossorder/’ in request.path%} active {%
endif%}" ><i class="fa fa-ban "></i> Stop loss order

24 </div>
25 </div>
26 <div class="grid_3">
27 <div class="row">
28 {% block funds %}
29 {% if funds %}
30 <h4>Available funds:</h4>

31 <table class="table table-hover table-bordered"

style="width: auto;" summary="Funds in your wallet">
32 <thead>
33 <tr><th></th><th>Currency</th><th>Amount</th></tr>
34 </thead>
35 <tbody>
36 {% for fund, amount in funds.items %}
37 <tr><td><img src="{{ baseUrl }}/images/{{ fund}}_40x40.png"

style="width:25px; height:25px;"></td><td><a

187

10.3. Base Chapter 10. Appendix

href="/wallet/funds/{{ fund }}/">{{ fund }}</td><td>{{
amount }}</td></tr>

38 {% endfor %}
39 </tbody>
40 </table>
41 {% else %}
42 <p>No funds availables!</p>
43 {% endif %}
44 {% endblock %}
45 </div>
46 </div>
47 <div class="grid_6">
48 <div class="row">
49 {% block message %}{% endblock %}
50 </div>
51 <div class="row" style="margin-left: auto; margin-right:

auto;">
52 {% block order %}{% endblock %}
53 </div>
54 </div>
55 </div>
56 <div class=’row’>
57 <div class=’grid_3’></div>
58 <div class="grid_9">
59 {% block help %}{% endblock %}
60 </div>
61 </div><!-- end row-->
62 </section>
63

64 {% endblock %}

Active orders template

Listing 10.33: Active orders template.
1 {% extends ’base.html’ %}
2 {% block body_main %}
3 {% load staticfiles %}
4 {% load static %}
5 {% static "" as baseUrl %}
6 <section id="content" style="margin-bottom:60px; width:100%"

class="wide-content">
7 <div class="row">
8 <div class="grid_3"><!-- aside menu content -->
9 <div class="mini-submenu">

10
11

188

Chapter 10. Appendix 10.3. Base

12
13
14
15
16 </div>
17 <div class="list-group" style="max-width:86%">
18 <a href="/orders/activeorders/" class="list-group-item {%

if ’orders/activeorders/’ in request.path%} active {%
endif%}" ><i class="fa fa-play"></i> Active orders

19 <a href="/orders/simpleorder/" class="list-group-item {% if
’orders/simpleorder/’ in request.path%} active {%
endif%}" ><i class="fa fa-circle-o"></i> Simple
order

20 <a href="/orders/slicedorder/" class="list-group-item {% if
’orders/slicedorder/’ in request.path%} active {%
endif%}" ><i class="fa fa-signal"></i> Sliced order

21 <a href="/orders/pairedorder/" class="list-group-item {% if
’orders/pairedorder/’ in request.path%} active {%
endif%}" ><i class="fa fa-retweet "></i> Paired order

22 <a href="/orders/timebasedorder/" class="list-group-item {%
if ’orders/timebasedorder/’ in request.path%} active {%
endif%}" ><i class="fa fa-clock-o "></i> Time based
order

23 <a href="/orders/stoplossorder/" class="list-group-item {%
if ’orders/stoplossorder/’ in request.path%} active {%
endif%}" ><i class="fa fa-ban "></i> Stop loss order

24 </div>
25 </div>
26 <div class="grid_9">
27 <div class="row">
28 {% if simple %}
29 <h4>Simple orders:</h4>
30 <table class="table table-bordered" data-height="400"

style="width: auto;" summary="Simple active orders">
31 <thead>
32 <tr><th class="col-md-2">Id</th><th

class="col-md-2">Pair</th><th
class="col-md-2">Amount</th><th
class="col-md-2">Price</th><th
class="col-md-1">Total</th><th
class="col-md-1"></th></tr>

33 </thead>
34 <tbody>
35 {% for k, v in simple.items %}
36 {% ifequal v.type ’buy’ %}
37 <tr style="background-color: rgba(0, 255, 0,

0.22);" ><td>{{ k }}</td><td>{{ v.pair
}}</td><td>{{ v.amount }}</td><td>{{ v.price
}}</td><td>{{ v.total }}</td><td><a

189

10.3. Base Chapter 10. Appendix

href="/orders/cancelsimple/{{ k
}}/">cancel</td></tr>

38 {% endifequal %}
39 {% ifequal v.type ’sell’ %}
40 <tr style="background-color: rgba(255, 0, 0,

0.22);"><td>{{ k }}</td><td>{{ v.pair
}}</td><td>{{ v.amount }}</td><td>{{ v.price
}}</td><td>{{ v.total }}</td><td><a
href="/orders/cancelsimple/{{ k
}}/">cancel</td></tr>

41 {% endifequal %}
42 {% endfor %}
43 </tbody>
44 </table>
45 <h5>Note: Buy orders are displayed in green and sell orders in

red.</h5>

46 {% else %}
47 <p><h4>No simple orders active.</h4></p>
48 {% endif %}
49 {% if sliced %}
50 <h4>Sliced orders:</h4>
51 <table class="table table-bordered" data-height="400"

style="width: auto;" summary="Simple active orders">
52 <thead>
53 <tr><th class="col-md-1">Id</th><th

class="col-md-1">Pair</th><th
class="col-md-1">Amount</th><th class="col-md-2">#
orders</th><th class="col-md-1">Lower</th><th
class="col-md-1">Upper</th><th
class="col-md-1">Total</th><th
class="col-md-1">Active</th></th><th
class="col-md-1">Executed</th><th
class="col-md-1"></th></tr>

54 </thead>
55 <tbody>
56 {% for k, v in sliced.items %}
57 {% ifequal v.type ’buy’ %}
58 <tr style="background-color: rgba(0, 255, 0, 0.22);"

><td>{{ k }}</td><td>{{ v.pair }}</td><td>{{
v.amount }}</td><td>{{ v.number }}</td><td>{{
v.lower }}</td><td>{{ v.upper }}</td><td>{{
v.total }}</td><td>{{ v.active }}</td><td>{{
v.executed }}</td><td><a
href="/orders/cancelsliced/{{ k
}}/">cancel</td></tr>

59 {% endifequal %}
60 {% ifequal v.type ’sell’ %}
61 <tr style="background-color: rgba(255, 0, 0,

0.22);" ><td>{{ k }}</td><td>{{ v.pair

190

Chapter 10. Appendix 10.3. Base

}}</td><td>{{ v.amount }}</td><td>{{
v.number }}</td><td>{{ v.lower
}}</td><td>{{ v.upper }}</td><td>{{ v.total
}}</td><td>{{ v.active }}</td><td>{{
v.executed }}</td><td><a
href="/orders/cancelsliced/{{ k
}}/">cancel</td></tr>

62 {% endifequal %}
63 {% endfor %}
64 </tbody>
65 </table>
66 <h5>Note: If you cancel a a sliced order, all the single orders

composing the sliced order will be canceled.</h5>
67 <h5>Note: Buy orders are displayed in green and sell orders in

red.</h5>

68 {% else %}
69 <p><h4>No sliced orders active.</h4></p>
70 {% endif %}
71 {% if paired %}
72 <h4>Paired orders:</h4>
73 <table class="table table-bordered" data-height="400"

style="width: auto;" summary="Paired active orders">
74 <thead>
75 <tr><th class="col-md-2">Id</th><th

class="col-md-2">Pair</th><th
class="col-md-2">Amount</th><th
class="col-md-2">Price</th><th
class="col-md-1">Total</th><th
class="col-md-1">Contraprice</th><th
class="col-md-1"></th></tr>

76 </thead>
77 <tbody>
78 {% for k, v in paired.items %}
79 {% ifequal v.type ’buy’ %}
80 <tr style="background-color: rgba(0, 255, 0,

0.22);" ><td>{{ k }}</td><td>{{ v.pair
}}</td><td>{{ v.amount }}</td><td>{{ v.price
}}</td><td>{{ v.total }}</td><td>{{ v.cprice
}}</td><td><a href="/orders/cancelpaired/{{ k
}}/">cancel</td></tr>

81 {% endifequal %}
82 {% ifequal v.type ’sell’ %}
83 <tr style="background-color: rgba(255, 0, 0,

0.22);"><td>{{ k }}</td><td>{{ v.pair
}}</td><td>{{ v.amount }}</td><td>{{ v.price
}}</td><td>{{ v.total }}</td><td>{{ v.cprice
}}</td><td><a href="/orders/cancelpaired/{{ k
}}/">cancel</td></tr>

84 {% endifequal %}

191

10.3. Base Chapter 10. Appendix

85 {% endfor %}
86 </tbody>
87 </table>
88 <h5>Note: Buy orders are displayed in green and sell orders in

red.</h5>

89 {% else %}
90 <p><h4>No paired orders active.</h4></p>
91 {% endif %}
92 {% if time %}
93 <table class="table table-bordered" data-height="400"

style="width: auto;" summary="Time based active
orders">

94 <thead>
95 <tr><th class="col-md-1">Id</th><th

class="col-md-1">Pair</th><th
class="col-md-1">Amount</th><th
class="col-md-1">Price</th><th
class="col-md-1">Total</th><th
class="col-md-2">Expiration time</th><th
class="col-md-1"></th></tr>

96 </thead>
97 <tbody>
98 {% for k, v in time.items %}
99 {% ifequal v.type ’buy’ %}

100 <tr style="background-color: rgba(0, 255, 0,
0.22);" ><td>{{ k }}</td><td>{{ v.pair
}}</td><td>{{ v.amount }}</td><td>{{ v.price
}}</td><td>{{ v.total }}</td><td>{{ v.exp
}}</td><td><a href="/orders/canceltimebased/{{
k }}/">cancel</td></tr>

101 {% endifequal %}
102 {% ifequal v.type ’sell’ %}
103 <tr style="background-color: rgba(255, 0, 0,

0.22);"><td>{{ k }}</td><td>{{ v.pair
}}</td><td>{{ v.amount }}</td><td>{{ v.price
}}</td><td>{{ v.total }}</td><td>{{ v.exp
}}</td><td><a href="/orders/canceltimebased/{{
k }}/">cancel</td></tr>

104 {% endifequal %}
105 {% endfor %}
106 </tbody>
107 </table>
108 <h5>Note: Buy orders are displayed in green and sell orders in

red.</h5>

109 {% else %}
110 <p><h4>No time based orders active.</h4></p>
111 {% endif %}
112 {% if stoplossorders %}
113 {% else %}

192

Chapter 10. Appendix 10.3. Base

114 <p><h4>No stop loss orders active.</h4></p>
115 {% endif %}
116 </div>
117 </div>
118 </div><!-- end row-->
119 </section>
120

121 {% endblock %}

Simple order template

Listing 10.34: Simple order template.
1 {% extends ’orders/orders_base.html’ %}
2 {% block message %}
3 {% if error %}
4 <h4>{{ error }}</h4>
5 {% elif success %}
6 <h4>{{ success }}</h4>
7 {% endif %}
8 {% endblock %}
9

10 {% block order %}
11 <form action="" method="post">
12 <h4>Create a simple order:</h4>

13 {% csrf_token %}
14 {{ form.non_field_errors }}
15 <table>
16 <tr><td>
17 <p>
18 {% for radio in form.pair %}
19 {{radio}}
20 {% endfor %}
21 </p>
22 </td></tr>
23 <tr><td>
24 <p>
25 {{form.buysell.0}}

26 {{form.buysell.1}}
27 </p>
28 </td></tr>
29 <tr><td>
30 <p>
31 <div class="f_amount">
32 <label for="id_amount">Amount: </label>
33 </div>

193

10.3. Base Chapter 10. Appendix

34 </td></tr>
35 <tr><td>
36 <div class="f_amount">
37 {{ form.amount }}
38 </div>
39 </p>
40 </td></tr>
41 <tr><td>
42 <p>
43 <div class="f_price">
44 <label for="id_price">Price: </label>
45 </div>
46 </td></tr>
47 <tr><td>
48 <div class="f_price">
49 {{ form.price }}
50 </div>
51 </p>
52 </td></tr>
53 <tr><td>
54 <p><input type="submit" value="Order" name="_order" class="btn

btn-default"></p>
55 </td></tr>
56 </table>
57 </form>
58 {% endblock %}
59

60 {% block help %}
61 <p><h4>What is a simple order?</h4>
62 A simple order allows you to create an order in the btc-e.com

exchange.</p>
63

64 <p><h4>How to create it?</h4>
65 After selecting the pair you want to trade with, choose the amount

and the price to buy or sell the asset. Then press the order
button to confirm.</p>

66

67 {% endblock %}

Sliced order template

Listing 10.35: Sliced order template.
1 {% extends ’orders/orders_base.html’ %}
2

3 {% block message %}
4 {% if error %}

194

Chapter 10. Appendix 10.3. Base

5 <h4>{{ error }}</h4>
6 {% elif success %}
7 <h4>{{ success }}</h4>
8 {% endif %}
9 {% endblock %}

10

11 {% block order %}
12 <form action="" method="post">
13 <h4>Create a sliced order:</h4>

14 {% csrf_token %}
15 {{ form.non_field_errors }}
16 <table>
17 <td><tr>
18 <p>
19 {% for radio in form.pair %}
20 {{radio}}
21 {% endfor %}
22 </p>
23 </select>
24 </tr></td>
25 <td><tr>
26 {{form.buysell.0}}

27 </tr><tr>
28 {{form.buysell.1}}
29 </tr></td>
30 <td><tr>
31 <p>
32 <div class="f_amount">
33 <label for="id_amount">Amount: </label>
34 </tr><tr>
35 {{ form.amount }}
36 </div>
37 </p>
38 </tr></td>
39 <td><tr>
40 <p>
41 <td><tr>
42 <div class="f_norders">
43 <label for="id_norders">Number of orders: </label>
44 </tr><tr>
45 {{ form.numberOfOrders }}
46 </div>
47 </p>
48 </tr></td>
49 <p>
50 <td><tr>
51 <label for="id_lbound">Lower bound: </label>
52 </tr><tr>

195

10.3. Base Chapter 10. Appendix

53 {{ form.lowerBound }}
54 </p>
55 </tr></td>
56 <p>
57 <td><tr>
58 <label for="id_ubound">Upper bound: </label>
59 </tr><tr>
60 {{ form.upperBound }}
61 </p>
62 </tr></td>
63 <p><input type="submit" value="Order" name="_order" class="btn

btn-default"></p>
64 </tr></td>
65 </table>
66 </form>
67 {% endblock %}
68

69 {% block help %}
70 <p><h4>What is a sliced order?</h4>
71 A sliced order allows you to create several orders for the same

asset, slicing the total amount into smaller suborders inside
the specified range of prices.</p>

72

73 <p><h4>How to create it?</h4>
74 After selecting the pair you want to trade with, choose the amount

you want to splice in smaller orders. Then set the price
boundaries in which the orders will be splitted. Finally press
the order button to confirm.</p>

75 {% endblock %}

Time based order template

Listing 10.36: Time based order template.
1 {% extends ’orders/orders_base.html’ %}
2 {% block header %}
3 {% if form %} {{ form.media }} {% endif %}
4 {% endblock %}
5 {% block message %}
6 {% if error %}
7 <h4>{{ error }}</h4>
8 {% elif success %}
9 <h4>{{ success }}</h4>

10 {% endif %}
11 {% endblock %}
12

13 {% block order %}

196

Chapter 10. Appendix 10.3. Base

14 <form action="" method="post">
15 <h4>Create a time based order:</h4>

16 {% csrf_token %}
17 {{ form.non_field_errors }}
18 <table>
19 <td><tr>
20 <p>
21 {% for radio in form.pair %}
22 {{radio}}
23 {% endfor %}
24 </p>
25 </select>
26 </tr></td>
27 <td><tr>
28 {{form.buysell.0}}

29 </tr><tr>
30 {{form.buysell.1}}
31 </tr></td>
32 <td><tr>
33 <p>
34 <div class="f_amount">
35 <label for="id_amount">Amount: </label>
36 </tr><tr>
37 {{ form.amount }}
38 </div>
39 </p>
40 </tr></td>
41 <td><tr>
42 <p>
43 <label for="id_price">Price: </label>
44 </tr><tr>
45 {{ form.price }}
46 </p>
47 </tr></td>
48 <p>
49 <td><tr>
50 <div class="f_exptime">
51 </tr><tr>
52 <label for="id_exptime">Expiration time: </label>
53 </tr><tr>
54 {{ form.expiration_time }}
55 </div>
56 </p>
57 </tr></td>
58 <td><tr>
59 <p><input type="submit" value="Order" name="_order" class="btn

btn-default"></p>
60 </tr></td>

197

10.3. Base Chapter 10. Appendix

61 </table>
62 </form>
63 {% endblock %}
64

65 {% block help %}
66 <p><h4>What is a time based order?</h4>
67 A time based order allows you to create an order that will expire

in the selected time if it was not executed.</p>
68

69 <p><h4>How to create it?</h4>
70 After selecting the pair you want to trade with, choose the amount,

the price to buy or sell the asset and select the expiration
date and time. Then press the order button to confirm.</p>

71 {% endblock %}

Paired order template

Listing 10.37: Paired order template.
1 {% extends ’orders/orders_base.html’ %}
2 {% block message %}
3 {% if error %}
4 <h4>{{ error }}</h4>
5 {% elif success %}
6 <h4>{{ success }}</h4>
7 {% endif %}
8 {% endblock %}
9

10 {% block order %}
11 <table>
12 <tr><td>
13 <form action="" method="post">
14 <h4>Create a paired order:</h4>

15 {% csrf_token %}
16 {{ orderForm.non_field_errors }}
17 <table>
18 <tr><td>
19 <p>
20 {% for radio in orderForm.pair %}
21 {{radio}}
22 {% endfor %}
23 </p>
24 </td></tr>
25 <tr><td>
26 {{orderForm.buysell.0}}

27 {{orderForm.buysell.1}}

198

Chapter 10. Appendix 10.3. Base

28 </td></tr>
29 <tr><td>
30 <p>
31 <div class="f_amount">
32 <label for="id_amount">Amount: </label>
33 </td></tr>
34 <tr><td>
35 {{ orderForm.amount }}
36 </div>
37 </p>
38 </td></tr>
39 <tr><td>
40 <p>
41 <div class="f_price">
42 <label for="id_price">Price: </label>
43 </td></tr>
44 <tr><td>
45 {{ orderForm.price }}
46 </div>
47 </p>
48 </td></tr>
49 <tr><td>
50 <p><input type="submit" value="Order" name="_order" class="btn

btn-default"></p>
51 </td></tr>
52 </form>
53 </table>
54 </td>
55 <td style="vertical-align:top; padding:0 30px">
56 <table>
57 <form action="" method="post">
58 <h4>Create a contra order:</h4>

59 {% csrf_token %}
60 {{ contraOrderForm.non_field_errors }}
61 <tr><td>
62 <p>
63 {% for radio in contraOrderForm.opened %}
64 {{radio}}
65 {% endfor %}
66 </p>
67 </td></tr>
68 <tr><td>
69 <p>
70 <div class="f_contraprice">
71 <label for="id_contrprice">Contra order price: </label>
72 </div>
73 </td></tr>
74 <tr><td>
75 <div class="f_contraprice">

199

10.3. Base Chapter 10. Appendix

76 {{ contraOrderForm.contraprice }}
77 </div>
78 </p>
79 </td></tr>
80

81 <tr><td>
82 <p><input type="submit" value="Contra order" name="_contraOrder"

class="btn btn-default"></p>
83 </td></tr>
84 </form>
85 </table>
86 </td></tr>
87 </table>
88 {% endblock %}
89

90 {% block help %}
91 <p><h4>What is a paired order?</h4>
92 A paired order is a composition of two orders. The first order is a

normal order and the second one will have the opposite
position, trading with the same amount. This kind of order
allows you to view the benefit obtained when buying and selling
or selling and buying an asset.

93

94 <p><h4>How to create it?</h4>
95 For creating a paired order you have to fill the first form. Once

the order is executed, you can select the id in the second
form, and choose the price to trade with.

96 {% endblock %}

Stop loss order template

Listing 10.38: Stop loss order template.
1 {% extends ’orders/orders_base.html’ %}
2 {% block message %}
3 {% if error %}
4 <h4>{{ error }}</h4>
5 {% elif success %}
6 <h4>{{ success }}</h4>
7 {% endif %}
8 {% endblock %}
9

10 {% block order %}
11 <form action="" method="post">
12 <h4>Create a stop loss order:</h4>

13 {% csrf_token %}
14 {{ form.non_field_errors }}

200

Chapter 10. Appendix 10.3. Base

15 <table>
16 <tr><td>
17 <p>
18 {% for radio in form.pair %}
19 {{radio}}
20 {% endfor %}
21 </p>
22 </td></tr>
23 <tr><td>
24 <p>
25 {{form.buysell.0}}

26 {{form.buysell.1}}
27 </p>
28 </td></tr>
29 <tr><td>
30 <p>
31 <div class="f_amount">
32 <label for="id_amount">Amount: </label>
33 </div>
34 </td></tr>
35 <tr><td>
36 <div class="f_amount">
37 {{ form.amount }}
38 </div>
39 </p>
40 </td></tr>
41 <tr><td>
42 <p>
43 <div class="f_price">
44 <label for="id_price">Threshold: </label>
45 </div>
46 </td></tr>
47 <tr><td>
48 <div class="f_price">
49 {{ form.price }}
50 </div>
51 </p>
52 </td></tr>
53 <tr><td>
54 </td></tr>
55 <tr><td>
56 <p><input type="submit" value="Order" name="_order" class="btn

btn-default"></p>
57 </td></tr>
58 </table>
59 </form>
60 {% endblock %}
61

201

10.3. Base Chapter 10. Appendix

62 {% block help %}
63 <p><h4>What is a stop loss order?</h4>
64 A stop loss order allows you to create an order which will be

trigered in case that the market cross a defined threshold.
65

66 <p><h4>How to create it?</h4>
67 Fill the form choosing the threshold price for which, if the market

cross it, the order to trade will be created into the market.
68 </p>
69

70 {% endblock %}

URLs

Listing 10.39: Order URLs.
1 from django.conf.urls import patterns, url, include
2

3 import views
4

5 urlpatterns = patterns(’’,
6 url(r’^activeorders/$’, views.activeOrders,

name=’activeOrders’),
7 url(r’^cancelsimple/(?P<order_id>\d+)/$’,

views.cancelSimpleOrder,
8 name=’cancelSimple’),
9 url(r’^cancelsliced/(?P<order_id>\d+)/$’,

views.cancelSlicedOrder,
10 name=’cancelSliced’),
11 url(r’^cancelpaired/(?P<order_id>\d+)/$’,

views.cancelPairedOrder,
12 name=’cancelPaired’),
13 url(r’^canceltimebased/(?P<order_id>\d+)/$’,

views.cancelTimeBasedOrder,
14 name=’cancelTimeBased’),
15 url(r’^simpleorder/$’,
16 views.simpleOrder,name=’simpleorder’),
17 url(r’^slicedorder/$’, views.slicedOrder,

name=’slicedOrder’),
18 url(r’^timebasedorder/$’, views.timeBasedOrder,
19 name=’timebasedorder’),
20 url(r’^pairedorder/$’, views.pairedOrder,

name=’pairedOrder’),
21 url(r’^stoplossorder/$’, views.stopLossOrder,
22 name=’stoplossOrder’),
23)

202

Chapter 10. Appendix 10.4. Back end

10.4 Back end

10.4.1 Time order manager

Listing 10.40: Time based order manager.
1 #!/usr/bin/env python
2 import pika
3 import pickle
4 from datetime import datetime
5 import time
6 import logging
7 from os import environ
8 from sys import path
9 from pytz import timezone

10

11 def check_canceled_order(order):
12 ’’’
13 Return true if the status of the order is ’canceled’, false

otherwise
14 ’’’
15 order = TimeBasedOrder.objects.filter(btceid = order.btceid)[0]
16 if order.status == ’canceled’:
17 loggger.info(’Time backend: The order %s was canceled by a\
18 user’ % order.btceid)
19 return True
20 else:
21 return False
22

23 def check_expired_order(order):
24 ’’’
25 Return true if the time_expiration_period has arrived, false

otherwise
26 ’’’
27 if order.expiration_time <= datetime.now(timezone(’UTC’)):
28 return True
29 else:
30 return False
31

32 def cancel_order(order):
33 ’’’ Cancels an order’’’
34 # call btce api
35 sk = order.user.userprofile.btce_secret_key
36 ak = order.user.userprofile.btce_key
37 # The order has to be taken from the db to reflect the change in

the status
38 order = TimeBasedOrder.objects.filter(btceid = order.btceid)
39 if len(order) == 0:

203

10.4. Back end Chapter 10. Appendix

40 logger.error(’Something weird happend: The time queue
contains a non\

41 existing order’)
42 pass
43 else:
44 order = order[0]
45 if order.status == ’canceled’:
46 logger.info(’Expired a canceled order. Non doing nothing’)
47 pass
48 else:
49 oid = order.btceid
50 r = cancel_order_btce(sk, ak, oid)
51 order.status = ’expired’
52 order.save()
53 logger.info(’Canceling order with id %s’ % order.btceid)
54

55 def callback(ch, method, properties, body):
56 ’’’
57 If the order have expired: Mark it as expired.
58 If the order has been canceled by the user: Don’t add it to the

queue
59 Otherwise: Add it to the queue again
60 ’’’
61 order = pickle.loads(body)
62 ch.basic_ack(delivery_tag = method.delivery_tag)
63 logger.debug(’Time backend: new order recieved with id %s’ %

order.btceid)
64 if check_expired_order(order):
65 cancel_order(order)
66 elif check_canceled_order(order):
67 pass
68 else:
69 ch.basic_publish(exchange = ’’, routing_key = ’order_timer’,

body = pickle.dumps(order), properties =
pika.BasicProperties(delivery_mode = 2,))

70 time.sleep(10)
71

72 def main():
73 chan_consumer.start_consuming()
74

75 if __name__ == ’__main__’:
76 ’’’ Setup django environment ’’’
77 environ[’DJANGO_SETTINGS_MODULE’] = "MillonesApp.settings"
78 path.append(’/var/cryptomoneymakers/venv/MillonesApp/’)
79 from orders.models import TimeBasedOrder
80 from wallet.btceapi import cancel_order as cancel_order_btce
81 import django.db
82 logger = logging.getLogger(’wallet’)
83

204

Chapter 10. Appendix 10.4. Back end

84 logger.debug(’timer manager started’)
85 con = pika.BlockingConnection(pika.ConnectionParameters(host =

’localhost’))
86 chan_consumer = con.channel()
87 chan_consumer.basic_qos(prefetch_count=1)
88 chan_consumer.queue_declare(queue = ’order_timer’, durable = True)
89 chan_consumer.basic_consume(callback, queue = ’order_timer’)
90 main()

10.4.2 Tickers fetcher

Listing 10.41: Fetch tickers process.
1 #!/usr/bin/env python
2 import pika
3 from time import sleep
4 import json
5 import os
6 import sys
7

8 ’’’
9 This program query the btc-e API to get the tickers for all the pairs

10 and write them in the ticker fanout queue
11 ’’’
12

13 if __name__ == ’__main__’:
14 # Setup environ
15 os.environ[’DJANGO_SETTINGS_MODULE’] = "MillonesApp.settings"
16 sys.path.append(’/var/cryptomoneymakers/venv/MillonesApp/’)
17 from btceapi import get_tickers
18 from wallet.models import Change
19 logger = logging.getLogger(’wallet’)
20

21 con =
pika.BlockingConnection(pika.ConnectionParameters(host=’localhost’))

22 channel = con.channel()
23 channel.exchange_declare(exchange = ’tickers’, type = ’fanout’)
24

25 while True:
26 try:
27 t = Change.objects.values_list(’label’).all()
28 tickers = get_tickers(t)
29 tickerstr = json.dumps(tickers)
30 channel.basic_publish(exchange=’tickers’, routing_key = ’’,

body = tickerstr)
31 sleep(2)
32 except:

205

10.4. Back end Chapter 10. Appendix

33 logger.error(’An exception ocurred while getting tickers for
the fanout’)

34 pass
35

36 con.close()

10.4.3 Funds fetcher

Listing 10.42: Fetch user funds.
1 from django.core.management.base import BaseCommand, CommandError
2 from django.contrib.auth.models import User
3 from wallet.models import Funds
4 from wallet.btceapi import get_funds, calculate_total_usd
5

6 class Command(BaseCommand):
7 args = ’<username1 username2 ...>’
8 help = ’Write into the database the current state of the users

wallet’
9

10 def handle(self, *args, **options):
11 for uname in args:
12 try:
13 u = User.objects.get(username = uname)
14 up = u.userprofile
15 except:
16 raise CommandError(’User "%s" does not exist’ % uname)
17

18 funds = get_funds(str(up.btce_secret_key),
str(up.btce_key), availables=False)

19 totalusd = calculate_total_usd(funds=funds)
20

21 #First add the total, and after add the currencies one by
one

22 f = Funds(currency = ’ttl’, amount = totalusd, user = u)
23 f.save()
24

25 for fund in funds:
26 f = Funds(currency = fund, amount = funds[fund], user

= u)
27 f.save()

206

Chapter 10. Appendix 10.4. Back end

10.4.4 Feed executed orders

Listing 10.43: Feed executed orders.
1 #!/usr/bin/env python2.7
2

3 ’’’
4 This script marks orders in the database as executed
5 if they had been executed.
6 It compares the result from the orders marked as
7 ’active’ in the database with the ones coming from the btce-e
8 API. It marks as a executed the one which are not in the second
9 list but in the first.

10 ’’’
11 import sys
12 import logging
13 from os import environ
14

15 if __name__ == ’__main__’:
16 environ[’DJANGO_SETTINGS_MODULE’] = "MillonesApp.settings"
17 sys.path.append(’/var/cryptomoneymakers/venv/MillonesApp/’)
18 from orders.models import *
19 from wallet.btceapi import get_active_orders
20 from django.contrib.auth.models import User
21 import django.db
22 logger = logging.getLogger(’wallet’)
23

24 def mark_executed_orders(btce_active, app_active):
25 ’’’
26 Marked the orders in app_active and not included in btce_active

as executed
27 ’’’
28 for o in btce_active[’return’].keys():
29 # excluding order active in btc-e from the one in db
30 #executed_orders = executed_orders.exclude(btceid=o)
31 aod = app_active.exclude(btceid=o)
32

33 # Mark the orders as ’executed’ and save them into the db
34 for o in app_active:
35 if isinstance(o, PairedOrder):
36 o.status = ’cont_executed’
37 else:
38 o.status = ’executed’
39 o.save()
40 logger.info(’Marking order as executed: %s’,o.id)
41

42 def mark_sliced_orders_as_finished(user):
43 ’’’
44 Marks sliced orders with all suborders executed as executed.

207

10.4. Back end Chapter 10. Appendix

45 ’’’
46 asliced = SlicedOrder.objects.filter(user = user, status =

’started’)
47 for sliced in asliced:
48 finished = 1
49 for simple in sliced.btceOrders.all():
50 if simple.status == ’started’:
51 finished = 0
52 if finished == 1:
53 sliced.status = ’executed’
54 sliced.save()
55 logger.info(’marked sliced order %s as a executed’,

sliced_order.id)
56

57

58 # TODO removed hard coded username
59 user = User.objects.all()[2]
60 sk = user.userprofile.btce_secret_key
61 ak = user.userprofile.btce_key
62 executed_orders=[]
63 # get oders marked as a ’active’ on the database
64 aod = BtceOrder.objects.filter(user = user).filter(status=’started’)
65 # get orders marked as a active in btc-e
66 aob = get_active_orders(sk, ak)
67 # get list of orders which are in database but not in btc-e
68 if aob == None or ’error’ in aob[’return’]:
69 # This is not an error if the user has no active orders at the

moment.
70 # TODO solve issue
71 logger.error(’Error getting the list of active orders for user

%s’,user.username)
72 #sys.exit(-1)
73 pass
74 else:
75 for o in aob[’return’].keys():
76 # excluding order active in btc-e from the one in db
77 #executed_orders = executed_orders.exclude(btceid=o)
78 aod = aod.exclude(btceid=o)
79

80 # Mark the orders as ’executed’ and save them into the db
81 for o in aod:
82 o.status = ’executed’
83 o.save()
84 logger.info(’Marking order as executed: %s’,o.id)
85

86 # Mark also the ones for pairedorder
87 aod = PairedOrder.objects.filter(user =

user).filter(status=’cont_started’)
88 if len(aod)> 0:

208

Chapter 10. Appendix 10.4. Back end

89 mark_executed_orders(aob, aod)
90

91 # Now, that the simple/btce orders are marked as executed, let’s see
if some

92 # sliced order is completed.
93 mark_sliced_orders_as_finished(user)

10.4.5 Store tickers

Listing 10.44: Fetch tickers.
1 from django.core.management.base import BaseCommand, CommandError
2 from wallet.models import Ticker
3 from wallet.btceapi import get_tickers
4

5 ’’’
6 TODO: This functions has to be deprecated in favour on a process that

reads
7 from the tickers fanout queue and write the results into the database
8 ’’’
9

10 class Command(BaseCommand):
11 args = ’label1 label2 ...’
12 help = ’It fetchs the current value of a ticket and writes into

the db’
13

14 def handle(self, *args, **options):
15 for lab in args:
16 try:
17 t = get_tickers([lab])
18 except:
19 raise CommandError(’Unable to retrieve the ticker for

%s’ %lab)
20

21 t = t[lab]
22 f = Ticker(label = lab, high = t[’high’], low = t[’low’],

avg = t[’avg’],
23 vol = t[’vol’], vol_cur = t[’vol_cur’], last =

t[’last’], buy = t[’buy’],
24 sell = t[’sell’], updated = t[’updated’],

server_time = t[’server_time’])
25 f.save()
26 self.stdout.write(’Wroted ticker for %s’ % lab)

209

10.4. Back end Chapter 10. Appendix

10.4.6 btc-e API methods

Listing 10.45: btc-e API methods.
1 from __future__ import division
2 import urllib
3 import json
4 import hmac
5 import httplib
6 import hashlib
7 from utils.utils import get_nonce
8

9 def remove_key(d,key):
10 r = dict(d)
11 del r[key]
12 return r
13

14

15 ’’’Public btc-e api’’’
16 def get_tickers(labels=None):
17 ’’’
18 This function receives a list of valid btc-e labels and return a

dictionary composed by label:ticker
19 :param labels: list of labels to retrieve the tickers
20 :return: Dictionary label:ticker
21 ’’’
22 if labels == None:
23 from wallet.models import Change
24 labels = Change.objects.all()
25 labels = [p.label for p in labels]
26

27 tickers={}
28 #TODO: create threads for paralel execution
29 for label in labels:
30 conn=httplib.HTTPSConnection(’btc-e.com’)
31 url = ’/api/2/’+ label + ’/ticker/’
32 conn.request("GET",url)
33 response = conn.getresponse()
34 respjson=json.load(response)
35 try:
36 tickers[label] = respjson[’ticker’]
37 except:
38 tickers[label] = respjson[’error’]
39 # TODO logging the error
40 conn.close()
41

42 return tickers
43

44 def get_trades(pair):

210

Chapter 10. Appendix 10.4. Back end

45 con = httplib.HTTPSConnection(’btc-e.com’)
46 url = ’/api/2/’+pair + ’/trades’
47 con.request(’GET’,url)
48 resp= con.getresponse()
49 respjson=json.load(resp)
50 con.close()
51 return respjson
52

53 def get_depth(pair,number=None):
54 conn=httplib.HTTPSConnection(’btc-e.com’)
55 if number:
56 conn.request("GET",’/api/2/’+pair+’/depth/’+number)
57 else:
58 conn.request("GET",’/api/2/’+pair+’/depth’)
59 response = conn.getresponse()
60 respjson=json.load(response)
61 conn.close()
62 return respjson
63

64 ’’’Private btc-e api’’’
65 def get_info(sk, ak):
66 ’’’This function call the getInfo method from the btc-e api
67 retrieving a python dict with the next info:
68 -Funds
69 -Rights of current API key
70 -Transaction count
71 -Open orders
72 -Server time’’’
73 params = {"method":"getInfo","nonce": get_nonce()}
74 params = urllib.urlencode(params)
75 # Hash the params string to produce the Sign header value
76 H = hmac.new(sk, digestmod=hashlib.sha512)
77 H.update(params)
78 sign = H.hexdigest()
79

80 headers = {"Content-type": "application/x-www-form-urlencoded",
81 "Key": ak,
82 "Sign": sign}
83 conn = httplib.HTTPSConnection("btc-e.com")
84 conn.request("POST", "/tapi", params, headers)
85 response = conn.getresponse()
86 respjson=json.load(response)
87 if respjson.has_key(’error’):
88 # logging error
89 print(respjson[’error’])
90 conn.close()
91 return
92 info = respjson
93 conn.close()

211

10.4. Back end Chapter 10. Appendix

94 return info
95

96

97 def get_active_orders(secretkey,apikey):
98 ’’’
99 Query the btc-e API to get the list of active orders for a user

100 ’’’
101 #mehod name and nonce go into the POST parameters
102 params = {"method":"ActiveOrders","nonce": get_nonce()}
103 params = urllib.urlencode(params)
104 # Hash the params string to produce the Sign header value
105 H = hmac.new(secretkey, digestmod=hashlib.sha512)
106 H.update(params)
107 sign = H.hexdigest()
108

109 headers = {"Content-type": "application/x-www-form-urlencoded",
110 "Key": apikey,
111 "Sign": sign}
112 conn = httplib.HTTPSConnection("btc-e.com")
113 conn.request("POST", "/tapi", params, headers)
114 response = conn.getresponse()
115 respjson=json.load(response)
116 if respjson.has_key(’error’):
117 print(respjson[’error’])
118 conn.close()
119 return
120

121 activeorders=respjson
122 conn.close()
123 return activeorders
124

125

126 def get_funds(secretkey, apikey, nround=0, availables=True,
null=False):

127 ’’’
128 Get the funds from a user
129 if nround>0 return the funds rounded to nround decimals
130 if availables = True, get only the availables, if Flase, get

also the one
131 in get_active_orders
132 ’’’
133 params = {"method":"getInfo","nonce": get_nonce()}
134 params = urllib.urlencode(params)
135 h = hmac.new(secretkey, digestmod=hashlib.sha512)
136 h.update(params)
137 sign = h.hexdigest()
138 headers = {"Content-type": "application/x-www-form-urlencoded",
139 "Key": apikey,
140 "Sign": sign}

212

Chapter 10. Appendix 10.4. Back end

141 conn = httplib.HTTPSConnection("btc-e.com")
142 conn.request("POST", "/tapi", params, headers)
143 response = conn.getresponse()
144 respjson=json.load(response)
145 conn.close()
146

147 if respjson.has_key(’error’):
148 return respjson[’error’]
149

150 funds=respjson[’return’][’funds’]
151

152

153 # Now sum the funds which are in active orders
154 if availables == False:
155 ao = get_active_orders(secretkey,apikey)
156 if ao != None and ao[’success’] == 1:
157 ao = ao[’return’]
158 for o in ao:
159 p = ao[o][’pair’]
160 p = p.split(’_’)
161 if ao[o][’type’] == ’sell’: #if buy, the currency

owned is the first in the pair
162 cur=p[0]
163 funds[cur] += ao[o][’amount’]
164 else:
165 cur=p[1]
166 funds[cur] += ao[o][’amount’]
167

168 if nround>0:
169 for f in funds:
170 funds[f]=round(funds[f],nround)
171 # eliminate null values
172 if null == False:
173 funds = {k:v for k, v in funds.iteritems() if v>0}
174

175 return funds
176

177 def create_order(secretkey,apikey,pair,sellbuy,rate,amount):
178 params = {"method":"Trade","nonce":

get_nonce(),"pair":pair,"type":sellbuy,"rate":rate,"amount":amount}
179 params = urllib.urlencode(params)
180 H = hmac.new(secretkey, digestmod=hashlib.sha512)
181 H.update(params)
182 sign = H.hexdigest()
183

184 headers = {"Content-type": "application/x-www-form-urlencoded",
185 "Key":apikey,
186 "Sign":sign}
187 conn = httplib.HTTPSConnection("btc-e.com")

213

10.4. Back end Chapter 10. Appendix

188 conn.request("POST", "/tapi", params, headers)
189 response = conn.getresponse()
190 respjson=json.load(response)
191 conn.close()
192 #if respjson[’error’]:
193 # logger.error("btc-eAPI: New order: %s" % respjson[’error’])
194 #else
195 # logger.info(’btc-eAPI: New order created correctly’)
196 return respjson
197

198

199 def cancel_order(secretkey,apikey,orderid):
200 params = {"method":"CancelOrder","nonce":

get_nonce(),"order_id":orderid}
201 params = urllib.urlencode(params)
202

203 # Hash the params string to produce the Sign header value
204 H = hmac.new(secretkey, digestmod=hashlib.sha512)
205 H.update(params)
206 sign = H.hexdigest()
207

208 headers = {"Content-type": "application/x-www-form-urlencoded",
209 "Key":apikey,
210 "Sign":sign}
211 conn = httplib.HTTPSConnection("btc-e.com")
212 conn.request("POST", "/tapi", params, headers)
213 response = conn.getresponse()
214 respjson=json.load(response)
215 if respjson.has_key(’error’):
216 return respjson[’error’]
217

218 res=respjson[’return’]
219 conn.close()
220 return res
221

222 def
calculate_total_usd(secretkey=None,apikey=None,funds=None,availables=True):

223 #TODO get from db all the available tickers/labels and pass to
get_tickers

224 labels=[’btc_usd’, ’ltc_usd’, ’nmc_usd’, ’ppc_usd’, ’eur_usd’,
’nvc_usd’, ’usd_rur’]

225 changes={’btc’:’btc_usd’, ’ltc’:’ltc_usd’, ’nmc’:’nmc_usd’,
226 ’nvc’:’nvc_usd’,’ppc’:’ppc_usd’, ’eur’:’eur_usd’,

’rur’:’usd_rur’}
227 tickers = get_tickers(labels)
228 total = 0
229 if funds == None:
230 if availables == True:
231 funds = get_funds(secretkey,apikey,availables=True)

214

Chapter 10. Appendix 10.4. Back end

232 else:
233 funds = get_funds(secretkey,apikey,availables=False)
234

235 for c in funds:
236 if funds[c] > 0.0:
237 if ’usd’ in c:
238 total = total + funds[c]
239 else:
240 change = changes[c]
241 if ’usd’ in change:
242 # This means there is a direct path from ’currency’

to usd
243 usd = tickers[change][’last’] * funds[c]
244 total = total + usd
245 else:
246 # This happens when is not direct change between

currency and usd,
247 # change first to btc
248 btc = tickers[change][’last’] * funds[c]
249 usd = tickers[’btc_usd’][’last’] * btc
250 total = total + usd
251 return total
252

253 #TODO change params for the parameters
254 def trade_history(secretkey,apikey,params):
255 ’’’Retrieve history of trades from btc-e
256 Atributes:
257

258 secretkey -- User’s btce secret key
259 apikey -- User’s btce secret api
260 params -- #TODO fill me!
261 ’’’
262 params["method"]="TradeHistory"
263 params["nonce"]= get_nonce()
264

265 params = urllib.urlencode(params)
266 H = hmac.new(secretkey, digestmod=hashlib.sha512)
267 H.update(params)
268 sign = H.hexdigest()
269

270 headers = {"Content-type": "application/x-www-form-urlencoded",
271 "Key":apikey,
272 "Sign":sign}
273 conn = httplib.HTTPSConnection("btc-e.com")
274 conn.request("POST", "/tapi", params, headers)
275 response = conn.getresponse()
276 respjson=json.load(response)
277 if respjson.has_key(’error’):
278 return respjson[’error’]

215

10.4. Back end Chapter 10. Appendix

279

280 conn.close()
281 return respjson[’return’]
282

283

284 def transaction_history(secretkey,apikey,params):
285 ’’’Retrieve history of transfers from btc-e’’’
286 params["method"]="TransHistory"
287 params["nonce"]= get_nonce()
288

289 params = urllib.urlencode(params)
290 H = hmac.new(secretkey, digestmod=hashlib.sha512)
291 H.update(params)
292 sign = H.hexdigest()
293

294 headers = {"Content-type": "application/x-www-form-urlencoded",
295 "Key":apikey,
296 "Sign":sign}
297 conn = httplib.HTTPSConnection("btc-e.com")
298 conn.request("POST", "/tapi", params, headers)
299 response = conn.getresponse()
300 respjson=json.load(response)
301 if respjson.has_key(’error’):
302 return respjson[’error’]
303

304 conn.close()
305 return respjson[’return’]

216

	I Introduction
	Overview
	Cryptocurrencies
	History
	Early Days
	Digital Cash
	Web Based Money
	The regulation period

	Bitcoin
	Overview
	History
	Satoshi Nakamoto
	Transactions
	Security
	Block chain
	Wallet
	Mining

	Altcoins
	Namecoin
	Litecoin
	Dogecoin
	Other Altcoins

	Markets
	btc-e.com
	BtcChina
	Bitstamp
	Service disruptions

	Coinbase
	History
	Products

	Mt. Gox
	History
	Security breach
	Insolvency and shutdown

	Cryptsy
	Markets comparison

	II Currency trading platform
	Architecture overview
	Introduction
	Web server and gateway interface
	Front end
	Back end
	Database

	Project deployment
	Server
	First server
	Current server

	Configuration management: Chef
	Python virtual environment
	Processes manager: Supervisor
	Git

	Front end
	Django overview
	Introduction
	Security
	Structure of a Django project

	Implementation
	Base template
	CSS
	Charts
	Disclaimer

	Application insights
	Introduction to the chapter
	Users
	Settings
	Log in
	Log out

	Wallet
	Summary
	Funds
	Fund
	Reports
	Trade history
	Transaction history

	Orders
	Active orders
	Base order
	Btce order
	Simple order
	Sliced order
	Time based order
	Paired order
	Stop loss order

	Back end
	Introduction
	Long running processes
	Timer order manager
	Fetch tickers

	Queues
	Tickers queue
	Timer order queue

	Scheduled processes
	User funds
	Feed executed orders
	Store tickers

	Btc-e API
	Introduction
	Nonce generator
	Public methods
	Private methods

	III Ending
	Conclusion and future work
	Conclusions
	Future of the platform

	Appendix
	Configuration files
	NGINX
	uWSGI
	Django
	Chef

	Application code
	Base
	Main navigation menu
	URLs
	Users
	Wallet
	Orders

	Back end
	Time order manager
	Tickers fetcher
	Funds fetcher
	Feed executed orders
	Store tickers
	btc-e API methods

