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València, Valencia 46022, Spain.

Abstract. In this article the instabilities appearing in a liquid layer are studied nu-
merically by means of the linear stability method. The fluid is confined in an annular
pool and is heated from below with a linear decreasing temperature profile from the
inner to the outer wall. The top surface is open to the atmosphere and both lateral
walls are adiabatic. Using the Rayleigh number as the only control parameter, many
kind of bifurcations appear at moderately low Prandtl numbers, and depending on the
Biot number. Several regions on the Prandtl-Biot plane are identified, their boundaries
being formed from competing solutions at codimension-two bifurcation points.
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1 Introduction

The problem of thermoconvective instabilities in fluid layers driven by a temperature
gradient has become a classical subject in fluid mechanics [1], [28]. Two different effects
are responsible for the onset of motion when the temperature difference becomes larger
than a certain threshold: gravity and capillary forces. When both effects are taken into
account the problem is called Bénard-Marangoni (BM) convection [1]. Classically, heat
is applied uniformly from below [1] where the conductive solution becomes unstable
for increasing temperature gradients. A more general set-up may be considered which
includes thermoconvective instabilities by imposing a basic dynamic flow through non-
zero horizontal temperature gradients, either in rectangular geometries [3,6,10,13,15,17,
21,22,28] or in cylindrical and annular geometries [7,8,12,13,19]. In particular, references
[8, 14] and Garnier’s PhD thesis [9] include a revision of the flow configuration found in
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this sort of problems. It is also worthy mentioning the experimental work of Schwabe et
al [24], performed in low gravity conditions.

These studies are characterized by a set of dimensionless numbers:

1. Rayleigh number, Ra= gα∆Td4/κν: Representative of the buoyancy effect.

2. Marangoni number, Ma=γ∆Td2/ρκν: Accounts for the surface tension effects.

3. Prandtl number, Pr=ν/κ: The ratio of momentum diffusivity (kinematic viscosity)
to thermal diffusivity. In this article Pr values range from 1 to 20.

4. Bond number, Bo = Ra/Ma = αρd2/γ: Ratio of Rayleigh to Marangoni numbers,
which is kept constant in this article.

5. Biot Number, Bi: Accounts for heat transmission between the fluid and the atmo-
sphere. Values inside the range [0.2−1.5] are explored in this article.

6. Aspect ratio, Γ=δ/d.

Here γ stands for the rate of change of surface tension with temperature, κ is the
thermal diffusivity, ν is the kinematic viscosity of the liquid, α is the thermal expansion
coefficient, g is the gravitational acceleration, ∆T stands for a temperature increment, and
δ and d are characteristic lengths to be defined later. The reference values used are similar
to those employed in [12], so that Bo ∼ 70 and buoyancy effects are dominant. In this
work, Prandtl, Biot and Rayleigh numbers were supposed to be independent parameters,
and their effects on the solution of the problem was carefully studied.

In recent years Shi, Peng and several collaborators have studied numerically an annu-
lar geometry, [23,25–27], with a method similar to that used in [12]. The main differences
between these works and the present article is that in those contributions the effects of
the Biot number were not considered, and that the lateral walls of the annular pool were
conductive. Other approximations to this sort of problems have been proposed which
make use of tools coming from functional analysis, see [20] for details and references
therein, but the presence of a tangential derivative in the Marangoni condition (see next
section) makes this approximation almost impracticable.

Results on this problem were obtained in [12, 13] which evidenced the importance
of heat-related parameters in the development of the instabilities. In [14] the authors
found that very diverse bifurcations are controlled by the Biot number, and compared
their solutions with the experimental results obtained by the group of Garnier [8]. The
main interest of this paper is to generalized the results of these works, removing the
infinite-Prandtl number approximation.

The paper is structured as follows. In the second section the formulation of the prob-
lem and the numerical method used to solve it are presented. Then, in the third section
the results are presented and discussed. In the fourth section conclusions are presented
and future works are proposed.



3

2 Formulation and Numerical Method

The considered physical situation is sketched in figure 1. A horizontal fluid layer of
depth d (z coordinate) is contained in the space limited by two concentric cylinders of
radii a and a+δ (r coordinate). In all the following, the aspect ratio Γ=δ/d is set to 4 and
a= δ. The bottom plate is rigid and the top is open to the atmosphere, while the lateral
walls are both adiabatic. A decreasing linear temperature profile from the inner to the
outer cylinder was imposed on the bottom plate. The horizontal temperature gradient at
the bottom had a value of TG =2K and remained constant throughout the computations.
The temperature used in the definition of the Rayleigh and Marangoni numbers was the
mean temperature difference between the bottom plate and the atmosphere, ∆T.

Figure 1: Sketch of the geometry. Lateral walls are considered adiabatic. The fluid is
heated from below and the top surface is open to the atmosphere.

The system evolves according to the momentum and mass balance equations and to
the energy conservation principle, non-dimensionalized as in [5, 12]. As usual in this
sort of problems, the Bousinesq approximation was used. In the equations governing the
system ur, uθ and uz are the components of the velocity field u, Θ is the temperature and
p is the pressure. The non-dimensionalized equations then become

∇·u = 0, (2.1)
∂tu+(u·∇)u = Pr

(
∇p+∇2u+RaΘez

)
, (2.2)

∂tΘ+u·∇Θ = ∇2Θ. (2.3)

In these equations the operators and fields are expressed in cylindrical coordinates
and ez is the unit vector in the z direction.

Boundary conditions are similar to those of references [12, 13] and are summarized
in Table 1. Briefly, the velocity on the cylinders and the bottom plate correspond to rigid
walls. In the top surface, the thermo-capillarity forces are modeled trough the Marangoni
condition [12], whereas for the heat transmission the Biot condition is used. As is said
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previously, both lateral walls are considered adiabatic and a linear profile of temperature
is imposed at the bottom.

z=0 z=d r= a,a+δ

ur =0 ∂zur+Ma∂rΘ=0 ur =0
uφ =0 r∂zuφ+Ma∂φΘ=0 uφ =0
uz =0 uz =0 uz =0
Θ=∆T−(TG/δ)r ∂zΘ+BiΘ=0 ∂nΘ=0

Table 1: Boundary conditions.

2.1 Basic state

As soon as a temperature gradient is imposed, the fluid evolves until a stationary convec-
tive motion is reached, called basic state. Due to the symmetry of the problem and given
that the flow is laminar, it is possible to consider a 2D axisymmetric approximation to this
problem. In this case, any dependence on φ is neglected. Thus, the equations become

r−1∂r (rur)+∂zuz = 0, (2.4)

Pr−1(ur∂rur+uz∂zur) = −∂r p+∆cur−
ur

r2 , (2.5)

Pr−1(ur∂ruz+uz∂zuz) = −∂z p+∆cuz+RaΘ, (2.6)
ur∂rΘ+uz∂zΘ = ∆cΘ, (2.7)

where ∆c = r−1∂r (r∂r)+∂2
z is the Laplacian operator in cylindrical coordinates. These

equations are supplemented with the appropriate boundary conditions coming from Ta-
ble 1.

In order to solve this problem a collocation method was used. The fluid magnitudes
were expanded in a truncated series of orthonormal Chebyshev polynomials, as

ur (r,z) '
N

∑
n=0

M

∑
m=0

anmTn (r)Tm (z), (2.8)

uz (r,z) '
N

∑
n=0

M

∑
m=0

bnmTn (r)Tm (z), (2.9)

Θ(r,z) '
N

∑
n=0

M

∑
m=0

cnmTn (r)Tm (z), (2.10)

p(r,z) '
N

∑
n=0

M

∑
m=0

dnmTn (r)Tm (z), (2.11)
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where the unknowns are the polynomial coefficients anm, bnm, cnm, and dnm. These poly-
nomials were evaluated in the Chebyshev-Gauss-Lobatto (CGL) points [4],

ri = cos
(

π
i
N

)
, j=0,1,...,N,

zi = cos
(

π
i

M

)
, j=0,1,...,M,

where N and M correspond to the order of the method. Non-linearities are solved by
using a Newton-like iterative method, where the first approximation is either a slightly
different basic state previously computed, or a solution of the system neglecting the non-
linearities. In both cases, the solution is exactly the same. This method works as follows:

Let Xi =
(
ui

r,ui
z,Θi,pi) be the approximation at step i. The next step is defined as

Xi+1 =Xε+Xi being Xε much smaller than Xi. Imposing Xi+1 as a solution of (2.4-2.7),
and neglecting non-linear terms including only Xε terms, a linear problem for Xε is ob-
tained. This procedure is finished when the l2 norm of each component of Xε is less than
a prefixed error. Typically, a threshold of 10−9 was used, obtaining convergence in less
than 20 iterations.

By using this technique, the problem of the spurious modes [2] arose, which was
solved by using the method proposed in [11, 16], i.e., taking the normal projection of the
momentum equations onto the boundary and replacing this condition at the top by the
free divergence equation. As in [12], a test on the convergence of the method has been
carried out and it will be described at the end of this section.

2.2 Linear stability

The linear stability analysis provides the critical Rayleigh number values and the shape
of growing instabilities for fixed Prandtl and Biot numbers. Basic solutions are perturbed
with fields depending on r,φ and z, in a full 3D analysis. Due to the periodicity in φ, fluid
magnitudes may be expanded in Fourier modes in φ as

ur (r,φ,z) = ub
r (r,z)+ūr (r,z)eikφ+λt, (2.12)

uφ (r,φ,z) = ub
φ (r,z)+ūφ (r,z)eikφ+λt, (2.13)

uz (r,φ,z) = ub
z (r,z)+ūz (r,z)eikφ+λt, (2.14)

Θ(r,φ,z) = Θb (r,z)+Θ̄(r,z)eikφ+λt, (2.15)
p(r,φ,z) = pb (r,z)+p(r,z)eikφ+λt. (2.16)

where k≥0 is the wavenumber and superscript b denotes the basic state. The eigenvalue λ
characterizes the instability: when its real part is negative the basic state is stable whereas
if it is positive the basic solution is unstable. In this case, the imaginary part of λ can be
either zero –the bifurcation is stationary– or non zero –the bifurcation is oscillatory. In the
first case, the stationary longitudinal rolls solution (SR) is observed. In the second case,
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Figure 2: Velocity diagram and temperature distribution of the basic state in x−z plane
for several Prandtl, Biot and Rayleigh numbers. In all cases, Rayleigh number is the
critical one. Temperature has been normalized by the maximum value of Θ in each case.
Ra

the system exhibits hydrothermal waves (HW). In the range of Biot and Prandtl numbers
studied it has always been possible to find a Rayleigh number such that the basic state is
stable. For higher values of the Rayleigh number the basic state becomes unstable, and
the shape and class of the growing solution depends only on the Biot and the Prandtl
numbers. In all cases, as Bond number is constant, the Marangoni number is such that
Ma=Ra/Bo

In order to compute the eigenvalues of the problem, equations (2.12-2.16) are intro-
duced into equations, (2.1-2.3), and after neglecting the nonlinear terms, and recalling
that the basic state is a solution of the problem (2.4-2.7), the non-dimensionalized equa-
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z=0 z=d r= a,a+δ

ur =0 ∂zur+Ma∂rΘ=0 ur =0
uφ =0 ∂zuφ+ir−1kMaΘ=0 uφ =0
uz =0 uz =0 uz =0
Θ=0 ∂zΘ+BiΘ=0 ∂nΘ=0

Table 2: Boundary conditions for the linear stability problem

tions of the basic state become

∂r (rūr)+ikūφ+∂zrūz = 0 (2.17)

σ−1
(

λūr+ub
r ∂rūr+ūr∂rub

r +ub
z∂rūr+ūz∂rub

r

)
=

−∂r p̄+∆kūr−r−2(ūr+2ikūφ

)
(2.18)

σ−1
(

λūφ+ub
r ∂rūφ+ub

z∂zūφ+r−1ub
r ūφ

)
=

− 1
r

ikp̄+∆kūφ+r−2(2ikūr−uφ

)
(2.19)

σ−1
(

λūz+ub
r ∂rūz+ūz∂rub

r +ub
z∂zūz+ūz∂zub

z

)
= ∂z p̄+∆kūz+RaΘ̄z (2.20)

λΘ+ur A∂rΘb+ub
r A∂rΘ+2ub

z∂zΘ+2uz∂zΘb = ∆kΘ (2.21)

where ∆k =∂2
r +r−1∂r−k2r−2+∂2

z . Boundary conditions are given in Table 2.
This is a generalized eigenvalue problem, of the form

AX=λBX,

where X =
(
ānm,b̄nm, c̄nm,d̄nm, ēnm

)
is the vector containing the polynomial coefficients of

the perturbations and ēnm are the coefficients of the uφ expansion. A and B are full com-
plex matrices, of dimension 5(N+1)(M+1). It is clear from the equations and boundary
conditions that λ, which is a vector of dimension 5(N+1)(M+1), is a function of Ra, Bi,
Pr, and k.

In previous works, in which the Pr = ∞ approximation was used, the computation
time for the eigenvalues was two orders of magnitude larger than that required for the
basic state, which strongly limits the amount of cases that can be studied. However, a
new algorithm developed by Navarro et al [18], and specially designed for the matrix
structure of these sorts of problems, accelerated notably this computation, with a total
time reduction of nearly 70%. The numerical approach of this article (generalized Arnoldi
method) uses the idea of preconditioning the eigenvalue problem with a modified Cayley
transformation before applying the Arnoldi method, computing only the eigenvalues
with greater real part. All the algorithms described above, including this last one, were
implemented in Fortran90 using standard BLAS and LAPACK routines.



8

2.3 Critical eigenvalue and convergence

As it has been mentioned above, for any Biot-Prandtl pair lying in the intervals studied,
it was always possible to find a Rayleigh number such that the eigenvalue with the max-
imum real part, µ=max(Re(λ)) is always lower than 0, i.e., the basic state is stable. As
the Rayleigh number is increased, and keeping Pr and Bi constants, a critical Rayleigh
number exists, defined by the condition

min
k∈I

µ
(

Rak
c ,k

)
=0,

where I is the wavenumber range studied. The search for this critical eigenvalue was
accelerated through an extrapolation iterative method. This algorithm usually obtains
Rak

c ≤ 10−6 in less than 5 iterations. In Figure 3, the marginal stability diagram for two
different cases is shown. In Figure 3a the value of µ is shown for several Rayleigh num-
bers and for Pr=20 and Bi=0.7. Two branches of competing solutions can be observed,
one stationary and the other oscillatory. In this Figure, complex eigenvalues are denoted
by using closed symbols, whereas open ones denote real eigenvalues. In this case, the
right branch reaches zero for Rak

c =2489 and kc=17, the corresponding bifurcation being
stationary. In this case this eigenvalue codimension is one. On the contrary, in Figure
3b, it is found that, for the same Rac =2608, µ(Rac,13)=µ(Rac,17)=0. This is an exam-
ple of codimension-two bifurcations. It was found that curves formed by (Pr,Bi) pairs
where a codimension-two bifurcation takes place, divide the Biot-Prandtl plane in sev-
eral regions (see Figure 5). In each of these three regions the growing perturbation are
completely different in shape, as will be discussed in next section.

(a) Pr=20,B=0.7 (b) Pr=10,B=0.655

Figure 3: Marginal stability diagrams. Codimension-1 (3a) and 2 (3b) bifurcations are
shown. Closed symbols denote complex eigenvalues, whereas open symbols stand for
real ones.
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Pr 21x13 33x13 21x17 33x17 21x21 33x21 kc

40 1921.79 1921,56 1921,79 1921.56 1921.79 1921.56 14
30 1927.65 1927.38 1927.65 1927.38 1927.65 1927.38 14
20 1934.76 1934.69 1934.76 1934.69 1934.76 1934.69 15
10 1956.57 1956.51 1956.57 1956.51 1956.57 1956.51 15
5 1992.46 1992.08 1992.46 1992.08 1992.46 1992.08 13i
1 2151.11 2151.62 2151.11 2151.62 2151.05 2151.52 0

Table 3: Critical Rayleigh number for several expansions of N and M. Six digits of preci-
sion are reached for M=13 in all cases

The convergence of the method was estimated as in [12], both in r and z. In Table
3 the values of Rac for several (N,M) expansion pairs are shown. In every case there
is coincidence in the critical wavenumber for each Prandtl number. As it is clear from
the table, convergence in z is obtained for M = 13. Results for convergence in N for
some Prandtl numbers are plotted in Figure 4. In all the cases (not shown), the critical
wavenumber remains constant for each Prandtl number. In this figure the relative error ε
referred to N=39,

εn =
Ran

c −Ra39
c

Ra39
c

has been plotted. It is always lower than 10−4 for n greater than 21. As the shape and
type of the growing perturbation was the main interest of this work, all the simulations
were performed with N=21 and M=13, which was sufficient for this purpose.

3 Discussion

3.1 Basic state

In the range of Prandtl numbers studied, the shape of the basic state at the critical Rayleigh
number depends mostly on the Biot number, see Figure 2. This agrees with the results
shown in [14], where the authors found that for Pr=∞ the basic state shape was charac-
terized by the Biot number, the aspect ratio and the horizontal temperature gradient. This
is not unexpected, taking into account that the latter are constant. However, it is remark-
able that the Prandtl number does not affect the basic state. Probably this is due to the
fact that Pr≥1 was considered in this work. The basic state is formed by two co-rotating
rolls perpendicular to the temperature gradient. This result is similar to that obtained in
the experiments reported in [3, 6], where co-rotating rolls perpendicular to the gradient
were also found, and is also in good agreement with [8].

It is also worthy mentioning that in all the cases simulated the temperature gradient
always point from right to left. Evidence of vertical inversions of the temperature gra-
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Figure 4: Relative error in the computation of the critical Rayleigh number for several
Prandtl numbers and Bi=1.2. Error for n=35,37 is in the range of the iterative method
used to find µ

dient “return flow” are not observed, contrarily to what it was reported at [14]. This is
probably because return flow is an aspect-ratio related effect.

3.2 Linear stability

Depending on the shape of the growing bifurcation, there exist three regions in the plane
Pr−Bi, referred to as I, II and III in Figure 5. The curves delimiting the regions are formed
by codimension-two points as those plotted in 3b. Representative isotherms in the r−z
top plane of each perturbation zone are also shown. In Table 4, a summary of the main
characteristics of each zone is given.

Zone Type Wavenumber Biot range Prandtl range
I Stationary 0 0.2−1.2 1−1.5

II Oscillatory 8−14
{

0.2−1.2 if Pr<6
0.2−0.6 if Pr≥6

1.5−∞

III Stationary ≥16 0.6−1.5 5.7−∞

Table 4: Main characteristics of the three regions found.

The dependence of the critical Rayleigh number on the Biot and Prandtl numbers
is depicted in Figures 6a and 6b, respectively. It is clear from these plots that if either
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Figure 5: Prandtl-Biot plane stability diagram showing regions I, II and III. Representa-
tive top r−φ plane isotherms corresponding to marked points are shown

the Prandtl or the Biot number decreases, then Rac increases. In the case of the Biot
number, the system stored more heat as it decreased, so that the Rayleigh number had to
increase. The Prandtl number effects can also be easily understood if one thinks in terms
of decreasing viscosity. Figure 6a also shows the transition between the different regions,
due to the regime change of the growing solution. It is also clear, however, that there was
almost no change in the profile of the curves, until Pr is close to 1.

The three-dimensional shape of the perturbations is quite different. Representative
3D structures of these perturbations can be seen in Figure 7. The growing solution of
Region I presents several stationary longitudinal counter-rotating rolls, similar to those
found by Garnier [8]. In this region, the influence of the Biot number on the shape is not
quite evident, as can be seen in Figure 5. The boundary between Regions I and II seems
to be strongly related to the Prandtl number as in the experiments of [28]. Dependencies
on the Biot number are more evident in regions II and III. In Region II, HW are found
for Pr < 5 for all Biot numbers. The shape of these HW depend on both the Prandtl
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Figure 6: Critical Rayleigh number as a function of Prandtl number, figure 6a and Biot
number 6b

and the Biot numbers. As the Biot number increases, the HW are shortened and their
leftmost parts are closer to the hottest part (i.e. the inner cylinder) of the annulus. Prandtl
number effects are essentially the same in this region. However, for Prandtl numbers
ranging roughly from 5 to 10, the Biot number is critical in order to determine the type
of the growing solution. For Pr > 10, the main parameter controlling the shape of the
perturbation is the Biot number. The rightmost branch of the curve forming the boundary
between regions II and III continues until Pr= 100 (not shown) for an almost constant
value of Bi= 0.47. This agrees with the results of [14]. Lastly, Region III presents a SR
solution, not showing any clear influence of the Prandtl number on the structure of the
growing perturbation when Pr≥10.

4 Conclusions

In this work the instabilities appearing in a cylindrical annulus heated from below were
analyzed by means of the linear stability method. This thermo- and fluid-dynamic prob-
lem is governed by mass, momentum and energy conservation equations in primitive
variables, where the Bousinesq approximation has been used. Basic state and linear sta-
bility equations were solved by using spectral methods. All the parameters and dimen-
sionless numbers were fixed but three: the Rayleigh, Prandtl and Biot numbers

The main conclusion of this article is that for Pr < 2, approximately, the main pa-
rameter controlling the shape of the growing bifurcation is the Prandtl number. For Pr
between 2 and 10, the Biot and Prandtl numbers are both important and for Pr>10, the
Bi value defines the shape of the growing bifurcation.

As a future work, the situation when Pr is below 1 is not clear, and the eventual exis-
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Figure 7: Velocity diagram, temperature isotherms in x−z plane and top view of the
growing perturbation for several Prandtl and Biot numbers. Temperature has been nor-
malized by the maximum value of Θ in each case.

tence of any new regions in the Bi−Pr plane has not been studied. As it is necessary to
increase the order of the method, this is a costly initiative. It would also be very interest-
ing to verify the eventual influence of changes in the aspect ratio Γ, and try to replicate
the results of [8].
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