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Factorization theorems for multiplication
operators on Banach function spaces

E. A. Sánchez Pérez

Abstract. Let X Y and Z be Banach function spaces over a measure

space (Ω,Σ, µ). Consider the spaces of multiplication operators XY ′

from X into the Köthe dual Y ′ of Y , and the spaces XZ and ZY ′

defined in the same way. In this paper we introduce the notion of fac-

torization norm as a norm on the product space XZ · ZY ′
⊆ XY ′

that
is defined from some particular factorization scheme related to Z. In
this framework, a strong factorization theorem for multiplication oper-
ators is an equality between product spaces with different factorization
norms. Lozanovskii, Reisner and Maurey-Rosenthal theorems are con-
sidered in our arguments to provide examples and tools for assuring some
requirements. We analyze the class d∗p,Z of factorization norms, prov-
ing some factorization theorems for them when p-convexity/p-concavity
type properties of the spaces involved are assumed. Some applications
in the setting of the product spaces are given.

Mathematics Subject Classification (2010). Primary 46E30; Secondary
47B38, 46B42, 46B28.

Keywords. Banach function spaces, Köthe dual, generalized dual spaces,
multiplication operator, factorizations, product spaces.

1. Introduction

Factorization of operators through Banach function spaces is a common tool
for solving problems in functional analysis. Often, these factorizations occur
through a multiplication operator defined between Banach function spaces.
Maurey-Rosenthal theorems through Lp spaces (see for instance [6, 8]), Pisier
factorization theorems through Lorentz spaces (see [20, 9]), Nikishin theorem
through weak Lp spaces ([26, Th. III.H.6]) are some relevant examples of
these results, but this kind or arguments can be found in a lot of different
settings, in which a multiplication operator plays a fundamental role (see for
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example [5]). Sometimes, the only information that gives the factorization
theorem regarding the function appearing in it is continuity of the multipli-
cation operator. However, a deeper knowledge about it improves the power of
these results specially if it can be given as a new factorization of the multipli-
cation operator, since it produces an enrichment of the factorization scheme
for the original operator. This is the motivation of the study that we develop
in this paper in which we introduce a technique for analyzing the factoriza-
tion properties of the multiplication operators in a systematic way, following
the research project that we started in [10].

From the technical point of view, as the reader will notice soon, we mimic
in a sense the procedure for constructing reasonable topologies for tensor
products in the representation theory of operator ideals by means of tensor
norms (see [7]). The main differences are that we change tensor products of
Banach spaces by products of function spaces, and the usual Banach space
duality by the generalized duality for Banach function spaces (see [4, 17,
24]). Recently, a new effort has been made in order to develop the theory of
products of Banach function spaces and general multiplication operators, that
are a particular —but central— case of the general factorization norms and
spaces that we develop here. The reader can find more information on that
in the papers by Kolwicz, Leśnik and Maligranda (see [13] and the references
therein), Schep ([24], see also [23]), Sukochev and Tomskova (see [22]) and
Calabuig, Delgado and the author (see [4, 10]).

2. Factorization norms and strong factorization theorems

Let (Ω,Σ, µ) be a σ-finite measure space and let X(µ), Y (µ) and Z(µ) be
Banach function spaces over µ (we shall write X, Y , Z for short if no explicit
reference to the measure is needed). Let Y ′ be the Köthe dual of Y and XZ ,

ZY
′

and XY ′
the corresponding spaces of multiplication operators from X

to Z, Z to Y ′ and X to Y ′, respectively. In this paper we continue with
the analysis of the topological products of function spaces that we started
in [10] (see also [4]); with the aim of establishing factorization theorems for
multiplication operators, we define and characterize the family d∗p,Z of what

we call factorization norms for the product spaces XZ ·ZY ′
. We show that the

elements of the completion of the product space XZ ·ZY ′
with a factorization

norm d∗p,Z always belong to XY ′
and can be described in terms of a common

factorization scheme. We also prove the main factorization theorems for this
class of product spaces. We will use some classical factorization theorems
(Lozanoskii, Reisner and Maurey-Rosenthal) in our arguments in order to
assure some requirements that are needed. The class of norms d∗p,Z that we
investigate here is modeled for satisfying suitable equalities between product
spaces under p-convexity/p-concavity assumptions for the spaces involved.
Such an equality is what we call a strong factorization theorem.

Let us fix some introductory ideas. Take three Banach function spaces
X, Y and Z such that the spaces XZ and ZY

′
are saturated (see Section 2
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for the definition). It is easy to check that ZY
′

= Y Z
′

(see Lemma 3.7 in

[4], or [17]). The product of the space XZ · Y Z′
is defined to be the subset

of the space of (classes of µ-a.e. equal) measurable functions L0(µ) given by

the finite sums of functions f · g, where f ∈ XZ and g ∈ Y Z
′
. Note that

such a function defines a multiplication operator from X to Y ′. We analyze
subspaces of XY ′

instead of XY because for the definition of the norms that
we define in the paper the generalized duality given by the bilinear form
Z×Z ′ → R given by the integral is needed (see [4, 13, 17, 24]). However, the
reader can notice that a great part of the results of the paper applies also to
the case XY .

Two natural “extreme” norms can be defined in the space XZ · Y Z′
.

The first one (that we will denote by εZ) is given by the restriction of the

operator norm to the completion of such subspace of XY ′
. This is the weaker

“reasonable” topology that we will consider; we use the symbol XZεZY
Z′

to
denote the Banach function subspace of XY ′

generated in this way. For the
second one we define the function norm on L0(µ) given by the formula

π(h) := inf
∑
i≥1

‖fi‖XZ · ‖gi‖Y Z′ , h ∈ L0(µ),

where the infimum is computed over all possible dominations of h as |h| ≤∑
i≥1 |figi|, fi ∈ XZ , gi ∈ ZY

′
; if there is no such a domination, then π(h) =

∞ (see [25] for the general theory of function norms, and [10, 13, 24] for the
properties of the π-norm, but note that the definitions are slightly different
in these papers). This norm gives the strongest topology on the product

XZ · Y Z′
that we consider, and defines a function norm that generates the

Banach function space XZπY Z
′

in L0(µ); under certain requirements an
equivalent norm π̃ for this space can be computed as the infimum of the
single product of norms of functions f ∈ XZ and g ∈ Y Z

′
that provide a

decomposition of |h| as |h| = hg, h ∈ XZπY Z
′

(see [4, 10, 13, 24]). It is

easy to check that for every f ∈ XZπY Z
′
, εZ(f) ≤ π(f). We will deal with

norms α on XZ · Y Z′
satisfying εZ ≤ α ≤ π. We say that such a norm α

is a factorization norm if α(h) can be computed as an infimum of products
of the norms of suitable operators belonging to a fixed family that factorize
the multiplication operator given by h; a strong factorization theorem is an
equality XZαZY

′
= XZβZY

′
for a couple of factorization norms α and β.

Relevant known examples of strong factorization theorems for multipli-
cation operators are the following. Some particular instances of Lozanovskii´s

theorem ([16, 21]) can be written as the isometry (L∞)Y πY L
1

= (L∞)Y π̃Y ′ =

L1 = (L∞)L
1

, whenever the adequate requirements are satisfied and π̃ is
a norm. The same happens concerning Reisnerś theorem ([21]): if 1/p =
1/q+ 1/r, it gives the equality (Lq)Y πY L

p

= (Lq)Y π̃Y L
p

= Lr when the ad-
equate requirements on convexity and concavity for Y are assumed and so π̃ is
a norm. Also, the Maurey-Rosenthal theorem (see [6, Cor. 5] or [19, Ch.6]) for

the case of multiplication operators gives the equality XY ′
= XLp

π(Lp)Y
′

whenever X is order continuous and p-convex, and Y ′ is p-concave. Other
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example of the same methodological point of view for the case of sequence
spaces can be found in the analysis of classical inequalities exposed in [2].

After this introductory section and the following one —where some no-
tation and basic definitions are given—, we present our results in three parts.
Section 4 is devoted to the analysis of the properties of the norm d∗p,Z as a

factorization norm. The extreme cases (the norms εZ and π) are also consid-
ered as d∗p,Z norms. In Section 5 we give some applications and prove some
factorization theorems related with the d∗p,Z norms. For instance, Theorem
5.1 establishes that, under the adequate convexity properties, the multipli-
cation operators of the space defined by d∗p,Z satisfy a special factorization

theorem that can be written as the equality XZπY Z
′

= XZd∗p,ZY
Z′

(Sec-

tion 5.1). More applications involving the order continuity of the π norm are
also given. Finally, we present in Section 5.2 the main results concerning the
complementary equality XZd∗p,ZY

Z′
= XY ′

.

3. Notation and basic concepts

Let (Ω,Σ, µ) be a measure space. Let L0(µ) be the space of all (classes of
µ-a.e. equal) real functions on Ω. A Banach function space over µ is a Banach
space X ⊂ L0(µ) with a norm ‖ · ‖X satisfying that if f ∈ L0(µ), g ∈ X and
|f | ≤ |g| µ–a.e. then f ∈ X and ‖f‖X ≤ ‖g‖X . A Banach function space
X is order continuous if increasing sequences that are bounded µ-a.e. are
convergent in norm. We say that a Banach function space X has the Fatou
property if for every sequence (fn) ⊂ X such that 0 ≤ fn ↑ f µ–a.e. and
supn ‖fn‖X < ∞, f ∈ X and ‖fn‖X ↑ ‖f‖X . A weaker property for X is
given by what we call the order semi-continuity ; a Banach function space X
satisfies this property if for every f, fn ∈ X such that 0 ≤ fn ↑ f µ–a.e.,
‖fn‖X ↑ ‖f‖X .

Throughout the paper the Banach function spaces are considered to be
over the same measure space. If X is a Banach function space, we denote
by X ′ its Köthe dual or associate space, i.e. the Banach function space of
functions that define multiplication operators from X to L1 (see for example
[15]). In general, we identify a function inXY with the multiplication operator
that it defines. The generalized duality induced on X and XZ by the bilinear
map X × XZ → Z given by the product has been defined and studied by
Maligranda and Persson in [17] and also by Calabuig and the authors in [4]
(see also [10, 3, 13, 24]).

The space of multiplication operators XZ is a Banach function space
(with the natural operator norm) if XZ is saturated, i.e. if there is no A ∈ Σ
with µ(A) > 0 such that fχA = 0 µ–a.e. for all f ∈ XZ . Through the paper
the saturation property is always required for all the spaces involved ; this fact
will be explicitly mentioned only if we consider that it is specially relevant
in the context. Our references for the definition and properties of Banach
function spaces are [25, Ch. 15], considering the function norm ρ defined as
ρ(f) = ‖f‖X if f ∈ X and ρ(f) =∞ in other case, and [1, 14, 18].
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The following notation for norms of sequences of functions involving the
generalized duality will be used. Let (xi) be a sequence in X. Let 1 ≤ p ≤ ∞.
Then we write

πp((xi)) :=
(∑
i≥1

‖xi‖pX
)1/p

,

with the obvious modification if p =∞. If πp((xi)) <∞, we say that (xi) is
strongly p-summable. If (fi) a sequence in XZ , we define the function

w∗p,Z((fi)) := sup
x∈BX

(∑
i≥1

‖fix‖pZ
)1/p

.

In the case that w∗p,Z((fi)) <∞, we say that (fi) is weakly (p, Z)-summable;

the “dual” definition and the corresponding analysis can be found in [10].
Also, if (fi) is a sequence of functions in XY and 1 ≤ p ≤ q ≤ ∞, we will
consider the operators defined in the natural way, that may change depending
on for which spaces are defined, using the same symbol (fi) to denote the
corresponding operator. The reader will find the following three cases, that
will be used without further explanations; of course, in each one of them the
sequence (fi) must satisfy an adequate boundedness condition in order the
operator to be well defined.

(1) (fi) : X → `p(Y ), (fi)(x) := (fix), x ∈ X.
(2) (fi) : `q(X)→ `p(Y ), (fi)(xi) := (fixi), (xi) ∈ `q(X).
(3) (fi) : `p(X)→ Y, (fi)(xi) :=

∑
i≥1 fixi, (xi) ∈ `p(X).

Throughout the paper, if 1 ≤ p ≤ ∞, p′ denotes the (extended) real
number satisfying 1/p + 1/p′ = 1. A Banach function space X is p-convex
with constant M (p)(X) if for every sequence (xi) in X,∥∥∥(∑

i≥1

|xi|p
)1/p∥∥∥

X
≤M (p)(X)

(∑
i≥1

‖xi‖pX
)1/p

.

The space X is p-concave if there is a constant M(p)(X) such that for every
sequence (xi) in X,(∑

i≥1

‖xi‖pX
)1/p

≤M(p)(X)
∥∥∥(∑

i≥1

|xi|p
)1/p∥∥∥

X
.

The constants M (p)(X) and M(p)(X) are the best ones in the above inequal-
ities.

4. The d∗p,Z-factorization norms

Consider a space Z such that XZ and Y Z
′

are saturated. If f ∈ XZ and
g ∈ Y Z

′
= ZY

′
, the product fg defines an element of XY ′

. The function
norm εZ : L0(µ)→ R+ ∪ {∞} is defined by

εZ(h) := inf{‖
∑
i≥1

|figi|‖XY ′ : |h| ≤
∑
i≥1

|figi|, fi ∈ XZ , gi ∈ Y Z
′
},



6 E. A. Sánchez Pérez

where the infimum is computed over all possible ‖ · ‖XY ′ -convergent series
that dominates |h| (εZ(h) = ∞ if no domination occurs). Now, define the
space

XZεZY
Z′

:=
{
h ∈ L0(µ) : there exist (fi) ⊂ XZ , (gi) ⊂ Y Z

′
such that

the series
∑
i≥1

|figi| converges inXY ′
and |h| ≤

∑
i≥1

|figi|
}
.

Consequently, XZεZZ
Y ′

can be identified with the (normed) subspace
of all the functions h ∈ L0(µ) that satisfy that εZ(h) is finite. Since the space

XY ′
is an ideal, we have in particular that XZεZZ

Y ′ ⊆ XY ′
isometrically. We

also assume thatXZεZZ
Y ′

is saturated; otherwise εZ maybe just a seminorm.
In the case of the other product spaces defined in this section, saturation is
also assumed.

Lemma 4.1. Let h ∈ XZεZY
Z′

. Then there is a µ-a.e. convergent series∑
i≥1 |f0

i g
0
i | defined by functions f0

i ∈ XZ and g0
i ∈ Y Z

′
such that |h| =∑

i≥1 |g0
i f

0
i | (convergence in XY ′

) and εZ(h) = ‖h‖XY ′ . Consequently, the

space (XZεZY
Z′
, εZ), where XZεZY

Z′
:=
{
h ∈ L0(µ) : εZ(h) < ∞

}
is

(isometrically) a Banach function subspace of XY ′
that contains the closure

in XY ′
of the linear combinations of products of elements of XZ and Y Z

′
.

Proof. Take δ > 0. Since h ∈ XZεZY
Z′

, there is a series of functions∑
i≥1 |figi| convergent in XY ′

that dominates |h|, fi ∈ XZ , gi ∈ Y Z
′
, and

‖
∑
i≥1 |figi|‖XY ′ ≤ εZ(h) + δ. Consider the function h0 = |h|/

∑
i≥1 |figi|.

Clearly, h0 ≤ 1 µ-a.e. and the functions f0
i := fih0, i = 1, 2, ... belong to XZ ,

since XZ is in particular an ideal in L0(µ). Define g0
i := gi for every i. Note

that h and
∑
i≥1 |f0

i g
0
i | are elements of XY ′

, since it is an ideal, and

‖h‖XY ′ ≤ ‖
∑
i≥1

|f0
i g

0
i |‖XY ′ ≤ ‖

∑
i≥1

|figi|‖XY ′ ≤ εZ(h) + δ.

The series
∑
i≥1 |f0

i g
0
i | converges in XY ′

(and then also µ-a.e.) to |h|, since

‖|h| −
n∑
i=1

|f0
i g

0
i |‖XY ′

=
∥∥∥h0

(∑
i≥1

|figi| −
n∑
i=1

|figi|
)∥∥∥
XY ′
≤ ‖

∑
i≥1

|figi| −
n∑
i=1

|figi|‖XY ′‖ → 0.

Consequently,

‖h‖XY ′ = ‖
∑
i≥1

|f0
i g

0
i |‖XY ′ = εZ(h).

This gives the result on the representation of |h|. Note also that the Riesz-
Fischer property is satisfied. To see this, consider a sequence of functions
(hk) ⊂ XZεZY

Z′
such that

∑
k≥1 εZ(hk) < ∞. Since XY ′

is complete, the

function h :=
∑
i≥1 hi belongs to XY ′

and
∑n
k=1 hi converges to

∑
i≥1 hi
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in the norm of this space. Also, it can be found for each k a decomposition
of |hk| as the ‖ · ‖XY ′ -convergent sequence

∑
i≥1 |fki gki |, where fki ∈ XZ

and gki ∈ ZY
′
. Therefore, straightforward calculations show that the se-

ries
∑n
i=1

∑n
k=1 |fki gki | converges in XY ′

to
∑
i≥1

∑
k≥1 |fki gki |, and obvi-

ously |h| ≤
∑
i≥1

∑
k≥1 |fki gki | µ-a.e. This shows that h ∈ XZεZY

Z′
, and

so XZεZY
Z′

is a Banach space.
�

Definition 4.2. Let 1 ≤ p ≤ ∞. Consider a couple of Banach function spaces
(X,Y ) and a Banach function space Z satisfying that XZ and ZY

′
are sat-

urated. We define the function d∗p,Z : XY ′ → R+ ∪ {∞} by the formula

d∗p,Z(h) := inf{w∗p′,Z((fi)) · πp((gi)) : |h| ≤
∑
i≥1

|figi|, fi ∈ XZ , gi ∈ ZY
′
}.

Lemma 4.3. d∗p,Z defines a function norm on XY ′
that is complete and such

that εZ ≤ d∗p,Z ≤ π. In particular, XZd∗p,ZY
Z′

is a Banach function space.

Proof. Let us prove that d∗p,Z satisfies the triangular inequality. Let δ > 0.

Take a couple of functions f1 and f2 in XZd∗p,ZY
Z′

and note that we can

always find two series of functions
∑
i≥1 |g1

i h
1
i | and

∑
i≥1 |g2

i h
2
i | of elements

of XZ and Y Z
′

dominating |f1| and |f2|, respectively, and satisfying that

w∗p′,Z((gji )) ≤ (d∗p,Z(fj) + δ)1/p′ and πp((h
j
i )) ≤ (d∗p,Z(fj) + δ)1/p, j = 1, 2.

The domination of |f1 + f2| given by
∑
i≥1 |g1

i h
1
i |+

∑
i≥1 |g2

i h
2
i | satisfies that

w∗p′,Z((g1
i ) ∪ (g2

i ))πp((h
1
i ) ∪ (h2

i ))

≤ (w∗p′,Z((g1
i ))p

′
+ w∗p′,Z((g2

i ))p
′
)(πp((h

1
i ))

p + πp((h
2
i ))

p)

≤ (d∗p,Z(f1) + d∗p,Z(f2) + 2δ)1/p(d∗p,Z(f1) + d∗p,Z(f2) + 2δ)1/p′

= d∗p,Z(f1) + d∗p,Z(f2) + 2δ

(here the notation (g1
i )∪ (g2

i ) means the sequence (g1
1 , g

2
1 , g

1
2 , g

2
2 , g

1
3 , ...)). Con-

sequently, d∗p,Z is a (lattice) seminorm for the space of functions f satisfying

that d∗p,Z(f) < ∞. This, together with Lemma 4.1, implies that d∗p,Z is in
fact a function norm. A straightforward argument using the inequalities above
for infinite sequences of functions shows that d∗p,Z satisfies the Riesz-Fischer

property, and so XZd∗p,ZY
Z′

is a Banach function space. Let us prove now

the inequalities εZ(f) ≤ d∗p,Z(f) ≤ π(f) for every f ∈ XZd∗p,ZZ
Y ′

. For such

a function f and any series
∑
i≥1 |figi| dominating |f |

εZ(f) = sup
x∈BX

‖fx‖Y ′ ≤ sup
x∈BX ,y∈BY

∑
i≥1

∫
xy|figi| dµ

≤ sup
x∈BX

(∑
i≥1

‖fix‖p
′

Z

)1/p′(∑
i≥1

‖gi‖pZY ′

)1/p
.
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Thus εZ(f) ≤ d∗p,Z(f). Also, taking into account

inf{πp′((fi))πp((gi)) : |h| ≤
∑
i≥1

|figi|, fi ∈ XZ , gi ∈ ZY
′
} = π(h),

(see the comments after Proposition 3.2 in [10]) we obtain d∗p,Z ≤ π. �

Theorem 4.4. Let 1 < p < ∞. The following assertions are equivalent for a
multiplication operator h ∈ XY ′

.

(1) h ∈ XZ d∗p,Z Y
Z′

.

(2) The function h defines a multiplication operator of XY ′
that factorizes

as

`p
′
(Z)

X(µ)

(fi)

?

C

-
(gi)

`1(Y ′)

Y ′(µ)-
h

6

where w∗p′,Z((fi)) < ∞, πp((gi)) < ∞ and C is defined by C((y′i)) :=∑
i≥1 y

′
i, (y′i) ∈ `1(Y ′).

(3) h can be written as an almost everywhere sum of the product of a weakly
(p′, Z)-summable sequence (fi) of elements of XZ and other strongly p-
summable sequence (gi).

Moreover, if (1), (2), (3) hold, then d∗p,Z(h) = inf ‖(fi)‖‖(gi)‖, where the infi-

mum is computed over all suitable factorizations in (2).

Proof. (1) ⇒ (3). Since d∗p,Z(h) is finite, for any 1 < p < ∞ there is a

couple of sequences of functions (f0
i ) and (g0

i ) such that |h| ≤
∑
i≥1 |f0

i g
0
i |,

w∗p′,Z((f0
i )) <∞ and πp((g

0
i )) <∞. Let us show that we can obtain a couple

of sequences (fi) and (gi) such that h =
∑
i≥1 figi µ-a.e., w∗p′,Z((fi)) < ∞

and πp((gi)) < ∞. Write h as the sum of the positive and the negative
parts h = h+ − h−. Let us define the functions of disjoint support ϕ+ =
h+/

∑
i≥1 |f0

i g
0
i | and ϕ− = h−/

∑
i≥1 |f0

i g
0
i |, that satisfy that 0 ≤ ϕ+ ≤ 1

and 0 ≤ ϕ− ≤ 1 µ-a.e. Consequently, h =
∑
i≥1 |f0

i g
0
i |ϕ+ −

∑
i≥1 |f0

i g
0
i |ϕ−.

The µ-a.e. pointwise convergence of this sum is guaranteed by the convergence
of
∑
i≥1 |f0

i g
0
i |, since clearly

|
∑
i≥1

|f0
i g

0
i |ϕ+ − |f0

i g
0
i |ϕ−| ≤

∑
i≥1

|f0
i g

0
i |.

Now consider each of the elements |f0
i g

0
i |ϕ+ and |f0

i g
0
i |ϕ− in this sum. There

are functions 0 ≤ f1
i ≤ |f0

i | and 0 ≤ g1
i ≤ g0

i such that f1
i g

1
i = |f0

i g
0
i |ϕ+,

and functions 0 ≤ f2
i ≤ |f0

i | and 0 ≤ g2
i ≤ g0

i such that f2
i g

2
i = |f0

i g
0
i |ϕ−.
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Note that f ji and gkl can be chosen to be disjointly supported for every i and

l whenever j 6= k. The same is true for f ji and fkl , and gji and gkl , for j 6= k.
Therefore, h =

∑
i≥1(f1

i − f2
i )(g1

i + g2
i ), since for every i,

(f1
i − f2

i )(g1
i + g2

i ) = f1
i g

1
i − f2

i g
1
i + f1

i g
2
i − f2

i g
2
i = f1

i g
1
i − f2

i g
2
i .

Moreover, w∗p′,Z((f1
i − f2

i )) ≤ w∗p′,Z((f0
i )) and πp((g

1
i + g2

i )) ≤ πp((g
0
i )), by

the lattice properties of the Banach function spaces Z and XZ .
Clearly, (3) implies (2) and (2) implies (1) as a consequence of the

computation of the norms in the factorization, since

‖(fi)‖L(X,`p′ (Z)) = sup
x∈BX

(∑
i≥1

‖fix‖p
′

Z

)1/p′

= w∗p′,Z((fi))

and

‖(gi)‖L(`p′ (Z),`1(Y ′)) =
(∑
i≥1

‖gi‖pZY ′

)1/p

= πp((gi)).

Finally, note that the computation at the end of the proof of (1)⇒ (3) proves
in particular that the infimum of the products ‖(fi)‖ · ‖(gi)‖ for all suitable
factorizations gives d∗p,Z(h).

�

Remark 4.5. Let us show how the factorization for the norms εZ and π
can also be considered in a sense as the extreme cases of the factorization
theorems for the d∗p,Z norms.

(a) The factorization theorem for the εZ norm. As a consequence of the

isometry XY ′
πY ′Y

′
= XY ′

πL∞(µ) (see [4, 17, 24]), we obtain the fol-
lowing result for the εZ norm for the particular case Z = Y ′. For a
function h ∈ L0(µ), the following statements are equivalent.

(1) h ∈ XY ′
.

(2) There is a factorization for h as

X
h

- Y ′

(fi)

HH
HHHHj

`1(Y ′)
�
��

�
��*

(gi) ,

where (fi) satisfies w∗1,Y ′((fi)) < ∞, and (gi) is a sequence in

`∞(L∞).
Moreover, if (1), (2) hold, then ‖h‖XY ′ = inf ‖(fi)‖‖(gi)‖, where the
infimum is computed over all suitable factorizations as the one given in
(2). (Here the norms for the sequences are understood as their norms
as operators)

This is a consequence of the following easy arguments. Take a func-
tion h ∈ XY ′

and consider the following factorization through `1(Y ′) of

the map h : X → Y ′ given by the sequence (h, 0, 0, ...) ∈ `1(XY ′
) and
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the map (gi) : `1(Y ′)→ Y ′ given by the sequence (gi), where g1 = χΩ,
gi = 0 for each i = 2, .... Clearly, ‖h‖XY ′ = ‖(h, 0, 0, ...)‖‖(gi)‖.

On the other hand, take a couple of sequences (fi) and (gi) satis-
fying the requirements in (2). Since for every x ∈ X,

‖hx‖ ≤ ‖
∑
i≥1

|figi|x‖Y ′ ≤ sup
i
‖gi‖L∞

∑
i≥1

‖fix‖,

the map is well defined and continuous. Moreover,

‖h‖XY ′ ≤ ‖
∑
i≥1

|figi|‖XY ′ ≤
∑
i≥1

‖fi‖XY ′‖gi‖L∞ ≤ ‖(fi)‖‖(gi)‖.

This, together with the particular factorization given at the beginning
of the proof, gives the formula

‖h‖XY ′ = inf ‖(fi)‖‖(gi)‖,

where the infimum is computed over all suitable factorizations, and fin-
ishes the proof.

(b) The factorization theorem for the π norm. Even in the case when we

have no information about the coincidence of π and π̃ on XZ · Y Z′
,

it is still possible to get a factorization theorem for the elements of
the π product; in the case that the equivalence holds, then we have a
strong factorization theorem in the sense that has been explained in the
Introduction.

The following assertions are equivalent for a function h ∈ XY ′
.

(1) h ∈ XZ π Y Z
′
.

(2) There is a real number 1 < p <∞ such that there is a factorization
of h as

`∞(X)

X(µ)

I

?

C

-
(fi)

`p
′
(Z) - `1(Y ′)

(gi)

Y ′(µ)-
h

6

where I(x) := (x, x, x, ...), x ∈ X, and C((y′i)) =
∑
i≥1 y

′
i, (y′i) ∈

`1(Y ′).
(3) There is a real number 1 < p <∞ (and then for every such number

p) such that h can be written as an almost everywhere sum of the
product of a strongly p′-summable sequence (fi) of elements of XZ

and other strongly p-summable sequence (gi) of elements of ZY
′
.

Moreover, if (1), (2), (3) hold, then π(h) = inf ‖(fi)‖‖(gi)‖, where the
infimum is computed over all the factorizations as in (2).
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The implication (1) ⇒ (3) can be shown as (1) ⇒ (3) in Theorem
4.4. For (2) ⇒ (1), let us compute the norm of the factorization. By
hypothesis, there are strongly p′ and p summable sequences (fi) and
(gi), respectively, such that |h| ≤

∑
i≥1 |figi|, and define a factorization

as the one in (2). But note that

‖(fi)‖L(`∞(X),`p′ (Z)) = sup
‖xi‖X≤1

(∑
i≥1

‖fixi‖p
′

Z

)1/p′

=
(∑
i≥1

‖fi‖p
′

XZ

)1/p′

= πp′((fi)),

and, by duality of the spaces `p and `p
′
,

‖(fi)‖L(`p′ (Z),`1(Y ′)) = sup
(zi)∈B`p

′
(Z)

(∑
i≥1

‖gizi‖Y ′

)
=
(∑
i≥1

‖gi‖pZY ′

)1/p

= πp((gi)).

The equivalent formula for the norm π given in the proof of Lemma 4.3
and these computations gives also π(h) = inf ‖(fi)‖‖(gi)‖. (3) ⇒ (2) is
direct, since (2) is just the factorization expression for (3).

5. Applications: p-convexity, p-concavity and strong
factorization theorems for the d∗p,Z norms

5.1. Coincidence of the π norm and the d∗p,Z norm

In this section we use the results of the previous ones to obtain strong factor-
ization theorems for multiplication operators in XZd∗p,ZY

Z′
. The key for our

results are the convexity properties of the spaces involved. As we shall show,
under these requirements it is possible to improve the factorization for the
elements of this product given by Theorem 4.4 in order to obtain a strong
factorization theorem through Z.

Theorem 5.1. Let 1 < p < ∞. Let Z be a p′-convex space and let Y Z
′

be
a p-convex space. Then XZ π̃Y Z

′
= XZd∗p,ZY

Z′
. Consequently, if a function

h allows a decomposition as the one given in (3) of Theorem 4.4, then it
factorizes as

X
h

- Y ′,

f

HH
HHHHj

Z
�
��

�
��*

g

i.e. it can be written as a single product of a function f ∈ XZ and a function

g ∈ ZY ′
. Moreover, in this case

π̃(h) ≤M (p′)(Z)M (p)(Y Z
′
)d∗p,z(h) ≤M (p′)(Z)M (p)(Y Z

′
)π(h).

Proof. The inclusion XZπY Z
′ ⊆ XZd∗p,ZY

Z′
always holds, as a consequence

of Lemma 4.3. On the other hand, if h ∈ XZd∗p,ZY
Z′

, for every couple
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of sequences of functions (fi) and (gi) such that |h| ≤
∑
i≥1 |figi|, where

w∗p′,Z((fi)) <∞ and πp((gi)) <∞, we have

‖(
∑
i≥1

|fi|p
′
)1/p′‖XZ · ‖(

∑
i≥1

|gi|p)1/p‖Y Z′

= sup
x∈BX

‖(
∑
i≥1

|fi|p
′
)1/p′x‖Z · ‖(

∑
i≥1

|gi|p)1/p‖Y Z′

≤M (p′)(Z)M (p)(Y Z
′
) sup
x∈BX

(∑
i≥1

‖fix‖p
′

Z

)1/p′(∑
i≥1

‖gi‖pY Z′

)1/p
.

Now, taking into account that

|h| ≤
∑
i≥1

|figi| ≤
(∑
i≥1

|fi|p
′)1/p′(∑

i≥1

|gi|p
)1/p

µ-a.e., we obtain

π(h) ≤ π̃(h) ≤M (p′)(Z)M (p)(Y Z
′
) sup
x∈BX

(∑
i≥1

‖fix‖p
′

Z

)1/p′(∑
i≥1

‖gi‖pY Z′

)1/p
.

This gives the result. �

The canonical example of the situation described in Theorem 5.1 is given
when Z = Lp

′
(µ); this is a consequence of the fact that (Lp

′
(µ))′ = Lp(µ)

and Y Z
′

is p-convex whenever Z ′ is p-convex. However, there are more cases
for other spaces for which this also hold, as we show in what follows. Recall
that the saturation requirement is always assumed for XZ , ZY

′
and XY ′

; it
holds in all the examples that we explain.

Example 5.2. Clearly, the most interesting examples are found when the
convexity properties of the space ZY

′
improve the ones of Y ′. Let us show

some of them.

(1) Spaces of integrable functions with respect to a vector measure. Let
1 ≤ p < ∞ and let m be a (countably additive) Banach space val-
ued vector measure. Consider the class of spaces Lp(m) and Lpw(m) of
p-integrable and weakly p-integrable functions, respectively. Take any
Banach function space X and consider the case Y ′ = L1(m); remark
that this example is rather general, since every order continuous Ba-
nach function space with a weak order unit can be written (order iso-
metrically) as an L1(m) of a vector measure m (see for instance [19,
Prop. 3.9]). The Banach function spaces Lp(m) and Lpw(m) are always
p-convex; the reader can find more information on these spaces in [19,

Ch.3]. Take p such that 1 < p ≤ p′ < ∞ and Z = Lp
′

w (m). Then

ZY
′

= (Lp
′

w (m))L
1(m) = Lp(m), that is p-convex (see for instance [4,

Ex. 4.3], or [19, Prop. 3.43]). Therefore, Theorem 5.1 gives that every
function h of

XLp′
w (m)d∗

p,Lp′
w (m)

Lp
′

w (m)
L1(m)

= XLp′
w (m)d∗

p,Lp′
w (m)

Lp(m)



Factorizations theorems for multiplication operators 13

factorizes through Lp
′

w (m) as h = fg, where f ∈ XLp′
w (m) and g ∈

Lp
′

w (m)
L1(m)

= Lp(m). Similar examples can be found for p-th powers
of Banach function spaces, see for instance [4, Prop. 4.2] or [19, 17].

(2) Orlicz spaces. The space of multiplication operators between Orlicz
spaces can be sometimes represented as other Orlicz space. For the fol-
lowing particular choice of Young functions, this can be found in [4,
Th.6.7]. Consider three Young functions Φ,Φ0,Φ1 satisfying:

(i) Φ(st) ≤ 1
2

(
Φ0(s) + Φ1(t)

)
, for all s, t ≥ 0, and

(ii) Φ−1(t) ≤ Φ−1
0 (t)Φ−1

1 (t), for all t ≥ 0.

Then, (LΦ0)L
Φ

= LΦ1 . On the other hand, the following character-
ization holds for p-convex Orlicz spaces defined on non-atomic measure
spaces: An Orlicz space Lϕ is p-convex (with p-convexity constant one)

if and only if ϕ(s1/p) is convex ([11, Th. 5.1.]). Using both results we
can construct the following example, that illustrates also Theorem 5.1.

Consider the Young functions Φ,Φ0,Φ1 satisfying the requirements

given above. Take a Banach function space X such that XLΦ0
is sat-

urated, Z = LΦ0 and Y such that Y ′ = LΦ (for instance, if (LΦ)′ has

the Fatou property, take Y = (LΦ)′). Then ZY
′

= LΦ1 . Suppose also

that Φ1(s1/p) and Φ0(s1/p′) are convex functions. Then an application
of Theorem 5.1 gives that every function h belonging to

XLΦ0
d∗p,LΦ0 (LΦ0

LΦ

) = XLΦ0
d∗p,LΦ0L

Φ1

factorizes through an scheme

X
h

- LΦ,

f

HHH
HHHj

LΦ0
�
��

�
��*

g

where f ∈ XLΦ0
and h ∈ LΦ1 . Note that this example generalizes

the case Φ1(s) = sp and Φ0(s) = sp
′
, that gives the spaces Z = LΦ0 =

Lp
′
, Y = L∞ and ZY

′
= LΦ1 = Lp.

(3) Lorentz function spaces. Recall that given 1 ≤ p <∞, the Lorentz space
Λp,w is the subspace of the classes of functions f of L0 that satisfy that
the norm

‖f‖p,w :=
(∫

I

f∗p(s)w(s)ds
)1/p

is finite, where I = (0, 1] or I = (0,∞), and f∗ is the decreasing re-
arrangement of f . It is known that these spaces are always p-convex with
p-convexity constant 1 (see for instance [12, Th. 3] and the references
therein). Consider the following case. Fix 1 < p < ∞. Let Z = Λp′,w
for some function w. Take numbers 1 ≤ r, t <∞ satisfying that r′t = p
and t ≤ p′, and take Y ′ = Lt. Then it is known (see [4, Prop. 5.3] and
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the comments that follow its proof), that since Λp′,w is t-convex (recall
t ≤ p′), the equalities

(Λp′,w)L
t

=
((

(Λp′,w)1/t
)′)t

=
(

(Λp′/t,w)′
)t

hold, where the symbol Xq represents the q-th power of the space X, see
[4, 17, 19] for more information. Assume also that Λp′/t,w is r-concave
(conditions for this to hold are given in [12, Th. 7]). Then (Λp′/t,w)′ is
r′-convex and so ((Λp′/t,w)′)t is r′t-convex, i.e. p-convex. Consequently,

if X is a Banach function space such that XΛp′,w is saturated, under
all the requirements exposed we obtain by Theorem 5.1 that for every
function h belonging to(

XΛp′,w

)
d∗p,Λp′,w

(
(Λp′/t,w)′

)t
there are functions f ∈ XΛp′,w and g ∈

(
(Λp′/t,w)′

)t
such that h = fg.

A particular choice of parameters for which the example is meaningful
are given by p = p′ = 2, t =

√
2 and r′ =

√
2. For w being the constant

function 1, this example gives also the case of Lp spaces, as in (2).

Let us finish this section by giving some applications related with the
order continuity of the product spaces. Some interesting results follow when π
is equivalent to π̃ (i.e. there exists a constant C > 0 such that π̃(z) ≤ C ·π(z)
for all z ∈ XπY ). For instance, this happens when there is a factorization for

every function f ∈ XY ′
as the one given by a strong factorization theorem

(see Introduction and [24]). The following result can be applied in this setting.
A general factorization theorem also holds for the π norm, even if it is not
equivalent to π̃, as we have explained in Remark 4.5(b).

Proposition 5.3. Let X and Y be saturated Banach function spaces such that
X is order continuous, XY ′

is saturated and the norm π on XπY is equivalent
to π̃. Then, XπY is order continuous. Moreover, in this case, XπY has the
Fatou property if and only if (XY ′

)′ is order continuous.

Proof. First note that the hypothesis guarantees that XπY is a saturated
Banach function space. . Given z ∈ XπY such that 0 ≤ z µ–a.e. and Ei ↓ ∅
in Ω, we have to prove that π(zχEi

)→ 0 as i→∞. Denote by A the support
of z. Since π and π̃ are equivalent, π̃(z) <∞. So, there exist 0 ≤ x ∈ X and
0 ≤ y ∈ Y such that z = |xy|. Assume without loss of generality that π = π̃.
Then

π(zχEi
) ≤ ‖xχEi

‖X‖y‖Y → 0.

This implies that XπY is order continuous.

Concerning the Fatou property, the result is consequence of the following
fact: if L is an order continuous Banach function space, then it has the Fatou
property if and only is L′′ is order continuous. Its proof is a simple exercise
taking into acount that simple functions are dense in order continuous Banach
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function spaces and that a Banach function space has the Fatou property if
and only if L = L′′.

�

The order continuity of the spaces X and Y is not a necessary condition
for XπY to be order continuous: it is enough to consider the case XπL∞(µ) =
X.

Corollary 5.4. Let Z be a p′-convex space and let Y Z
′

be an order continuous
p-convex space such that all the elements of XY ′

factorize as in Theorem 4.4.
Then XZ π̃Y Z

′
= XY ′

, and if XZ is order continuous, then XY ′
is order

continuous.

The proof is a direct consequence of the equality XZd∗p,ZY
Z′

= XY ′

given by Theorem 4.4 that is given by hypothesis, Theorem 5.1 and Propo-
sition 5.3.

Remark 5.5. Clearly, by Lemma 4.3, under the hypothesis of each of the
strong factorization theorems given in the introduction (Lozanovskii, Reisner

and Maurey-Rosenthal), all the product spaces XZπY Z
′
, XZd∗p,ZY

Z′
and

XZεZY
Z′

coincide with XY ′
.

5.2. Coincidence of the ε norm and the d∗p,Z norm

In this section we analyze the complementary case of strong factorization
theorems for the d∗p,Z norm. We provide conditions under which the spaces

XZd∗p,ZY
Z′

and XY ′
coincide. This can happen even if there is no coincidence

with the space XZπZY
′
. Let us show some examples of this situation.

Example 5.6. Banach function spaces satisfying XZd∗p,ZY
Z′

= XY ′
but

XZd∗p,ZY
Z′
6= XZπY Z

′
.

(1) Let us consider first a simple case: take X = `2, Z = `3 and Y ′ = `1.

We have that XZ = (`2)`
3

= `∞, ZY
′

= (`3)`
1

= `3/2 and XY ′
= (`2)`

1

= `2,
and then

XZπZY
′

= (`2)`
3

π(`3)`
1

= `∞π`3/2 = `3/2,

which do not coincide withXY ′
= `2. However, let us show thatXZd∗2,ZZ

Y ′
=

XY ′
. Take an element (λi) ∈ `2 = (`2)`

1

. Then it can be written as the prod-
uct (δi) · (γi) =

∑∞
i=1 δiλiei, where δi = 1 for every i and (γi) = (λi) ((ei) is

the canonical basis). But notice that

w∗2,Z((δiei)) = sup
(τi)∈B`2

(

∞∑
i=1

‖τiei‖2`3)1/2 = ‖(τi)‖`2 = 1, and

π2((γiei)) = (

∞∑
i=1

‖γiei‖2)1/2 = ‖(λi)‖`2 .

Therefore XZd∗2,ZZ
Y ′

= (`2)`
3

d∗2,`3(`3)`
1

= `2 = XY ′
.
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(2) Consider a measure space (Ω,Σ, µ) and a measurable partition {Ai}∞i=1,
0 < µ(Ai) for each i ∈ N and call µi to the restriction of µ to the set Ai.
Take three sequences of Banach function spaces {Xi(µi)}∞i=1, {Zi(µi)}∞i=1 and

{Y ′i (µi)}∞i=1, i ∈ N. Assume also that XZi
i π̃Y

Z′
i

i = X
Y ′
i

i isometrically for every
i.

Consider the Banach function spacesX(µ) = ⊕p′Xi(µi), Z(µ) = ⊕qZi(µi)
and Y (µ) = ⊕1Y

′
i (µi), where 1 < p′ < q < ∞. Note that for the case p = 2,

q = 3 and Xi(µi) = Zi(µi) = Y ′(µi) = R, that satisfy the requirements
above, we obtain the example given in (1).

By the definition of the spaces, XY ′
= (⊕p′Xi(µi))

(⊕1Zi(µi)) = ⊕pXZi
i .

Fix h ∈ XY ′
; for every x ∈ X we can consider the decompositions of h and x

as the pointwise sums
∑∞
i=1 hi and

∑∞
i=1 xi, where hi = hχAi

and xi = xχAi
.

By hypothesis for each 0 < ε < 1 there is a couple of sequences of elements

(fi)
∞
i=1 and (gi)

∞
i=1 with fi ∈ XZi

i and gi ∈ Z
Y ′
i

i such that hi = figi, ‖fi‖ = 1
and (1− ε)‖gi‖ ≤ ‖hi‖, i ∈ N.

We have that

w∗p′,Z((fi)) = sup
x∈BX

( ∞∑
i=1

‖xifi‖p
′

Zi

)1/p′ ≤ sup
x∈BX

( ∞∑
i=1

‖xi‖p
′

Xi

)1/p′ ≤ 1,

and

(1− ε)πp((gi)) =
( ∞∑
i=1

‖gi‖p(1− ε)
)1/p ≤ ( ∞∑

i=1

‖hi‖p
)1/p

= ‖h‖XY ′ .

This proves the equality

XZd∗p,ZY
Z′

=
(

(⊕p′Xi(µi))
⊕qZi(µi)

)
d∗p,Z

(
(⊕qZi(µi))⊕1Y

′
i (µi)

)
= ⊕pXi(µi)

Y ′
i (µi) = (⊕p′Xi(µi))

⊕1Y
′
i (µi) = XY ′

,

and, as we have shown in (1), this space do not coincide in general with the
π-product.

In a sense, this example gives the rule for giving a criterion under which
the inequality d∗p,Z ≤ εZ on XZd∗p,ZY

Z′
holds. In order to do that, we intro-

duce the following concavity type notion, that is weaker than the inequality
π ≤ εZ . We say that XY ′

satisfies a lower (p, Z)-estimate for 1 ≤ p ≤ ∞ if
there is a constant K > 0 such that for every function h in the space we have

inf
( ∞∑
i=1

(‖fi‖‖gi‖)p
)1/p

≤ K‖h‖

(changing the p-sum by the supremum in the case p =∞ as usual) where the
infimum is computed over all decomposition of h as a sum of disjoint products
figi of functions fi ∈ XZ and gi ∈ ZY

′
. Note that if XZ π̃Y Z

′
= XY ′

, this
can be obtained as a consequence of the fact that XY ′

has a lower p-estimate
in the usual sense. Recall that a Banach lattice X is said to have a lower
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p-estimate if and only if there is a constant k > 0 such that for every element
x ∈ X, (∑

i≥1

‖xi‖pX
)1/p

≤ k‖x‖X

for all the decompositions of x as a pointwise sum of disjoint elements xi ∈ X
(see for instance Definition 1.f.4. [15]). Notice that p-concavity implies lower
p-estimate.

We say that d∗p,Z(h) can be computed over disjoint sums if it coincides

with the infimum of w∗p′,Z((fi)) · π((gi)) when only disjoint sums of products

figi satisfying |h| ≤
∑
i≥1 |figi| are considered.

Theorem 5.7. Let 1 < p < ∞ and let X be a Banach function space that
satisfies a lower p′-estimate. If XY ′

satisfies a lower (p, Z)-estimate, then

XZd∗p,ZY
Z′

= XY ′
. Moreover, under the assumption that d∗p,Z can be com-

puted over disjoint sums the converse is also true.

Proof. Take ε > 0. Consider a disjoint representation of h as disjoint products
of elements of XZ · Y Z′

, h =
∑∞
i=1 figi such that( ∞∑

i=1

(‖fi‖‖gi‖)p
)1/p

≤ K‖f‖(1 + ε)

and write it as h =
∑∞
i=1

fi
‖fi‖gi‖fi‖. Then, if for every x ∈ X we write xi for

xχAi
, where Ai is the support of each fi, by the lower p′-estimate of X we

obtain

sup
x∈BX

( ∞∑
i=1

‖x fi
‖fi‖
‖p

′
)1/p′

≤ sup
x∈BX

( ∞∑
i=1

‖xi‖p
′
)1/p′

≤ k,

and ( ∞∑
i=1

(‖‖fi‖gi‖)p
)1/p

=
( ∞∑
i=1

(‖fi‖‖gi‖)p
)1/p

≤ ‖h‖K(1 + ε).

Since this can be done for every ε, we obtain that d∗p,Z(h) ≤ kKεZ(h), that
implies the result. A direct computation using the formula of the d∗p,Z norm
gives the converse result. �

Corollary 5.8. Let 1 < p < ∞, let X satisfy a lower p′-estimate and let
XY ′

satisfy a lower p-estimate. Assume also that there is a measurable par-
tition {Ai}∞i=1 of Ω such that the restriction spaces Xi, Zi and Y ′i satisfy

XZi
i πZ

Y ′
i

i = X
Y ′
i

i isometrically for every i ∈ N. Then XZd∗p,ZY
Z′

= XY ′
.

Remark 5.9. In this paper only the d∗p,Z factorization norm has been de-
fined and studied. In the same way, it is possible to define the norms g∗p,Z by

computing the infimum over the products πp′((fi))w
∗
p,Z((gi)) and m∗p,Z , com-

puting in this case the infimum over all the products w∗p′,Z((fi))w
∗
p,Z((gi)).

Similar results to the ones that have been shown for the norm d∗p,Z regarding
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equality between product spaces associated to the convexity properties of the
spaces (Theorem 5.1) can be expected also in these cases.

Remark 5.10. For general operators on Banach function spaces, the Maurey-
Rosenthal factorization theory provides factorization of operators through
multiplication operators. Consequently, the results that have been obtained
here gives additional information for the development of this theory and for
finding more applications in the theory of operators between Banach spaces.
More information about this research program can be found for instance in
[5, 6, 8, 9, 19].

The author wants to thank Prof. Olvido Delgado for her help during the
preparation of this paper. He also thanks the anonymous referee for several
useful suggestions and the new and easier proof of Proposition 5.3.
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