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Abstract

Scattering theory has its origin in Quantum Mechanics. From the mathematical
point of view it can be considered as a part of perturbation theory of self-adjoint
operators on the absolutely continuous spectrum. In this work we deal with the
passage from the time-dependent formalism to the stationary state scattering theory.
This problem involves applying Fubini’s Theorem to a spectral measure integral
and a Lebesgue integral of functions that take values in spaces of operators. In our
approach, we use bilinear integration in tensor product of spaces of operators with
suitable topologies and generalize the results previously stated in the literature.
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1 Introduction

Scattering theory can be considered as a part of the more general perturbation
theory in physics [17]. The main idea is that detailed information about an
unperturbed self-adjoint operator H0 (the free hamiltonian) enables us to draw
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b.jefferies@unsw.edu.au (B. Jefferies).
1 Supported by the Spanish Ministry of Education and Science and FEDER, under
grant MTM2009-14483-C02-02.
2 We would like to thank Susumu Okada for his tireless help on this paper.

Preprint submitted to Elsevier 2 April 2015



conclusions about another self-adjoint operator H (the total hamiltonian H =
H0 + V where V is the potential) provided that H0 and H differ little from
one to another in an appropriate sense.

Scattering theory requires classification of the spectrum based on measure
theory. Given a self-adjoint operator H with the spectral family EH in a
Hilbert space H, this can be spanned as a direct sum as folllows:

H = H(p) ⊕H(sc) ⊕H(ac),

where the subspace H(p) is spanned by eigenvectors of H (the typical ex-
ample is given by the Hamiltonian for the harmonic oscillator that has a
quadratic potential; this Hamiltonian has pure point spectrum that corre-
sponds with the energy of bound states in Quantum Mechanics), and the sub-
spaces H(sc) and H(ac) are distinguished by the conditions that the measures
X 7−→ (EH(X)f, f), where X is a Borel subset of R, are absolutely or singu-
larly continuous with respect to the Lebesgue measure, for every f ∈ H(ac) or
f ∈ H(sc) . Typically the singularly continuous part is absent, that is, in phys-
ical applications hamiltonians do not have the singular continuous spectrum
so that H(sc) = {0}. Scattering theory is concerned with the structure of the
absolutely continuous part H(ac).

There are two main approaches to the mathematical formulation of quantum
mechanical scattering theory, the time dependent and the time-independent
or stationary scattering theory.

In the time-dependent scattering theory, we consider the time evolution of
an incident particle (wave packet) under the influence of the interaction with
a scattering center or with another particle. This interaction (force) is rep-
resented by the existence of a potential. The asymptotic behavior of such a
wave packet in the remote past and the distant future is considered that of
the free particles. The assumption is that far away from the influence area
of the potential, particles must behave as a free particles with no change in
the values of the observables that represent the particle. The operator which
connects the two asymptotic states is the scattering operator or S-operator
that is in deep relation with the physical observables of the scattering process.

In the time-independent or stationary scattering theory, one studies solutions
of the time-independent Schrödinger equation with a parameter that belongs
to the continuous part of the spectrum of the total hamiltonian operator.
These solutions lie outside the Hilbert space and are characterized by cer-
tain asymptotic properties partly motivated by physical considerations.The
observables, in particular the S-operator, are obtained from the asymptotic
properties of such solutions [4].

2



It has been well known for a long time that these two methods are mathe-
matically very different. The connections between them has been a problem
studied since the seventies. Of fundamental importance is the task to establish
conditions for which the final objects of the calculations (the S operator) are
identical in both cases. This question is not easy to answer because of the
nature of the calculations in the stationary scattering formalism. This theory
uses mathematical manipulations that must first be interpreted in some sense
before they can be made rigorous so that it is possible to compare with the
time-dependent method, which is a very well developed mathematical theory.

The recent developments in scattering theory can be found, for example, in
[22] and references therein. Specially important is the work developed by M.
Sh. Birman and D. R. Yafaev in stationary scattering theory and for the
time-dependent theory, the work developed by Werner O. Amrein, Vladimir
Georgescu, J.M. Jauch and K. B. Shina (see for example [2,3,5]). We can cite
also the book from Berthier [7] and the work of J. Dereziński and C. Gérard
(see for example [10] and references therein).

In this paper we focus our attention in the passage from time-dependent to
the stationary formalism. Our starting point is the paper from W.O. Amrein,
V. Georgescu, J.M. Jauch [4]. The principal problem to solve in this passage is
the following: the basic quantities in the time-dependent theory (e.g. the wave
operator) will be expressed in terms of a Bochner integral of certain operators
over the time available. These formulas have been known for a long time.
Operators in the Bochner integral can be expressed as a spectral integrals
via the Spectral Theorem. Then the passage is achieved if we are able to
interchange the two integrals and evaluate the time integral. The main problem
of mathematical nature is under which conditions we can interchange the two
integrals and verify that the conditions are in fact satisfied for the integrals
that we encounter in scattering theory.

In order to develop this alternative approach, we have to change the definition
of wave operators replacing the unitary groups by the corresponding resolvents
R0(z) = (H0− z)−1 and R(z) = (H − z)−1 ([22]). In this stationary approach,
in place of the limits in time, one has to study the boundary values in a
suitable topology of the resolvents as the spectral parameter z tends to the
real axis. An important advantage of the stationary approach is that it gives
convenient formulas for the wave operators and the scattering matrix. The
temporal asymptotics of the time-dependent Schrödinger equation is closely
related to the asymptotics at large distances of solutions of the stationary
Schrödinger equation:

−∆Ψ + V (x)Ψ = λΨ. (1)

In other words, from the physical point of view, in the time-dependent for-

3



malism we consider that the particle being scattered have to behave as a
free particle in the far past and in the far future (t → ±∞). In the time-
independent formalism we consider that the particle being scattered have to
behave as a free particle far away from the scattering center, where the influ-
ence of the potential is negligible and the total hamiltonian is practically the
free hamiltonian. In terms of boundary values of the resolvent, the scatter-
ing solution, or eigenfunction of the continuous spectrum, can be constructed
using the Lippmann-Schwinger equation (see for example [22]).

The paper is divided into four sections and two appendices. After the introduc-
tion, we show in Section 2 the main results on bilinear integration in tensor
products of locally convex spaces in order to develop our theory. Section 3
will be devoted to the introduction of the formalism necessary for the passage
from the time-dependent scattering to the stationary theory and Section 4 is
devoted to the main theorem of the paper. In Appendix A, we establish some
technical facts about measurability in spaces of operators and in Appendix B,
we state the necessary elements of the theory of tensor products of Banach
spaces in order to the correct understanding of the ideas and proofs developed
in the paper.

2 Bilinear integration

Following [4], the passage from the time-dependent formalism to the time-
independent one depends on the correct formulation of a Fubini’s Theorem.
In this section we will introduce several definitions in a very general framework
that will be useful for this purpose. All the definitions and results respect to
vector measures can be found in [11] and definitions and results related to
bilinear integration in tensor products can be found in [14,15].

If X and Y are Banach spaces, then L(X, Y ) denotes the space of all contin-
uous linear operators from X into Y . We write L(X,X) as L(X). The space
L(X, Y ) (or L(X)) equipped with the strong operator topology is written as
Ls(X, Y ) (or Ls(X)), otherwise, L(X, Y ) and L(X) are assumed to have the
uniform operator topology.

From here to the end of this section, let Xj and Yj, j = 1, 2, be Banach
spaces and (Ω,S) a measurable space. Consider the tensor product X2⊗̂τY2

completed for one fixed topology τ and suppose the product X ′2⊗Y ′2 separates
points in X2⊗̂τY2. If τ = τε, the topology defined by the injective tensor norm
(for the definition of the injective tensor norms, and in general reasonable
tensor norms, see for example [9,20]), this is true if either X2 or Y2 has the
approximation property.
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Definition 2.1 A set function m : S → L(Y1, Y2) is called an operator valued
measure if m(·)y1 : S → Y2 is a σ-additive vector measure for each y1 ∈ Y1, in
other words if m(·) is σ-additive in L(Y1, Y2) with the strong operator topology.

Remark 2.2 A σ-additive scalar measure µ on S can be considered as an
operator valued measure µ : S → L(Y1, Y2) with Y1 = Y2 = K, if we define
µ(S)y1 = µ(S) . y1 with S ∈ S and y1 ∈ Y1. A σ-additive vector valued
measure m : S → Y2 can be considered as an operator valued measure µ : S →
L(Y1, Y2) with Y1 = K, the scalar field of Y2, if we define µ(S)y1 = y1 . µ(S)
with S ∈ S and y1 ∈ Y1, that is, the notion of operator valued measure
subsumes those of σ-additive scalar and vector measures.

Definition 2.3 A function f : Ω → X2 is said to be integrable with respect
to a measure m : S → Y2 in X2⊗̂τY2 if for every x′2 ∈ X ′2 and y′2 ∈ Y ′2 , the
scalar valued function

〈f, x′2〉 : ω 7−→ 〈f(ω), x′2〉, ω ∈ Ω,

is integrable with respect to the scalar valued measure

〈m, y′2〉 : S 7−→ 〈m(S), y′2〉, S ∈ S,

and for every S ∈ S there exists (f ⊗m)(S) ∈ X2⊗̂τY2 such that

〈(f ⊗m)(S), x′2 ⊗ y′2〉 =
∫
S

〈f, x′2〉d〈m, y′2〉, ∀x′2 ∈ X ′2, y′2 ∈ Y ′2 (2)

Because X ′2 ⊗ Y ′2 separates points in X2⊗̂τY2, the operator (f ⊗ m)(S) is
uniquely determined by (2). In the case that Y2 = K, the X2-valued function
f is sometimes said to be Pettis m-integrable in X2 [1].

As we shall see in next sections, we have to deal with functions that have
range in a space of parametrized operators between fixed Hilbert spaces and
integrals of these with respect to spectral measures. This is the reason that
motivates the next definition:

Definition 2.4 Let κ be a tensor product topology on X1 ⊗ Y1. A function

f : Ω→ L(X1, X2)

is said to be integrable with respect to a measure

m : S → Ls(Y1, Y2)

in L(X1⊗̂κY1, X2⊗̂τY2), if for every x1 ∈ X1 and y1 ∈ Y1 the X2-valued func-
tion

fx1 : ω 7−→ f(ω)x1, ω ∈ Ω,
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is integrable with respect to the Y2-valued measure

my1 : S 7−→ m(S)y1, S ∈ S,

in the sense of the previous definition and for every S ∈ S, there exists an
operator (f ⊗m)(S) ∈ L(X1⊗̂κY1, X2⊗̂τY2) such that

[(f ⊗m)(S)](x1 ⊗ y1) =
∫
S

(fx1)⊗ d(my1), x1 ∈ X1 y1 ∈ Y1, (3)

for a suitable tensor product topology κ.

A bounded linear operator on X1⊗̂κY1 in uniquely determined by its values on
the dense subspace X1 ⊗ Y1, so the definition makes sense. We use the same
definition if Y1 = Y2 = C.

If {(f ⊗m)(S) : S ∈ S} is an equicontinuous family of operators, then

S 7−→ (f ⊗m)(S), S ∈ S

is σ-additive for the strong operator topology in L(X1⊗̂κY1, X2⊗̂τY2).

In Section 4, we have Hilbert spaces X1 = Y2 = D(A), X2 = H, Y1 = C with
respect to a selfadjoint operator A : D(A) → H defined in H. Then we must
deal with the problem of determining whether or not the tensor product

D(A)⊗H⊗D(A)

separates a subspace of operators belonging to L(D(A),H⊗̂τD(A)) for an ap-
propriate locally convex tensor product topology τ with respect to the duality

〈T, ψ ⊗ φ⊗ ξ〉 = 〈Tψ, φ̃⊗ ξ̃〉, ψ, ξ ∈ D(A), φ ∈ H.

The tilde denotes the continuous linear functional corresponding to the given
element of Hilbert space via the inner product. We deal with this question in
detail in Appendix B.

Let Σ, Ω be two nonempty sets. If E is a subset of the cartesian product Σ×Ω,
then

E(σ) = {ω : (σ, ω) ∈ E}, E(ω) = {σ : (σ, ω) ∈ E}
are the sections of E corresponding to fixed σ ∈ Σ and ω ∈ Ω.

The proof of the following observation is a straightforward consequence of the
definitions.

Proposition 2.5 Let (Σ, E , µ) be a finite measure space, m : S → Ls(Y1, Y2)
an operator valued measure, and f : Σ × Ω → Ls(X1, X2) be an operator
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valued µ⊗m-integrable function in L(X1⊗̂κY1, X2⊗̂τY2), for suitables tensor
topologies κ and τ .

(1) If there exist a set Σ0 ⊂ Σ of full µ-measure such that for every σ ∈ Σ0

the function ω → f(σ, ω), ω ∈ Ω is m-integrable in L(X1⊗̂κY1, X2⊗̂τY2),
then the function

σ →
∫

E(σ)

f(σ, ω)⊗ dm(ω), σ ∈ Σ0

is µ-integrable in L(X1⊗̂κY1, X2⊗̂τY2) with respect to the separating fam-
ily X1⊗Y1⊗X ′2⊗Y ′2 of continuous linear functionals on L(X1⊗̂κY1, X2⊗̂τY2)
and

(f ⊗ (µ⊗m))(E) =
∫
Σ

 ∫
E(σ)

f(σ, ω)⊗ dm(ω)

 dµ(σ), E ∈ E ⊗ S(4)

(2) If there exists a set Ω0 ⊂ Ω of full m-measure such that for every ω ∈ Ω0

the function σ → f(σ, ω), σ ∈ Σ is Pettis µ-integrable in Ls(X1, X2),
then the function

ω →
∫

E(ω)

f(σ, ω)dµ(σ), ω ∈ Ω0

is m-integrable in L(X1⊗̂κY1, X2⊗̂τY2) and

(f ⊗ (µ⊗m))(E) =
∫
Ω

 ∫
E(ω)

f(σ, ω)dµ(σ)

 dm(ω), E ∈ E ⊗ S (5)

(3) The existence of either

(f ⊗ (µ⊗m))(E) =
∫
Σ

 ∫
E(σ)

f(σ, ω)⊗ dm(ω)

 dµ(σ), E ∈ E ⊗ S(6)

or

(f ⊗ (µ⊗m))(E) =
∫
Ω

 ∫
E(ω)

f(σ, ω)dµ(σ)

⊗ dm(ω), E ∈ E ⊗ S(7)

suffices to ensure the µ ⊗ m-integrability of f and the equality of the
integrals.

Remark 2.6 The notion of Pettis integrability can be found in several books,
for example in [1].
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Now let X2 = Y , Z = X1 = Y2 and Y1 = X and let π be the projective tensor
product topology defined in Appendix B. Suppose that L(Z, Y )⊗̂πL(X,Z) is
embedded in L(Z⊗̂κX, Y ⊗̂τZ) by the continuous extension map A ⊗ B →
(A⊗B)̃ defined for A ∈ L(Z, Y ) and B ∈ L(X,Z) by

(A⊗B)̃(z ⊗ x) = (Az)⊗ (Bx), z ∈ Z, x ∈ X

This is always true if X, Y , Z are Hilbert spaces and κ, τ are Hilbert space ten-
sor product topologies. Then the continuous linear map given by J : A⊗B →
AB, A ∈ Ls(Z, Y ) and B ∈ Ls(X,Z), is defined on the dense linear subspace
L(Z, Y ) ⊗ L(X,Z) of L(Z, Y )⊗̂πL(X,Z). There may be other subspaces of
L(Z⊗̂κX, Y ⊗̂τZ) where J is defined. Such a kind of map J will be fundamen-
tal in our discussion in Section 4 about the interchange of spectral integrals
and time integrals as a previous step for our Fubini’s Theorem.

3 Mathematical framework for the scattering problem

In this section we are going to focus on the problem of the passage from time-
dependent to the stationary formalism. Following the reference [4], we would
like to be able to integrate the operator valued function fε defined by

fε(t, λ) = e−i(λ−iε)tV ∗t V ∈ L(D(A),H)

for t ≥ 0 and λ ∈ R, where Vt = e−it(A+V ) for t ∈ R. Here Vt is a parametrized
family of unitary operators, A is a self-adjoint operator (the free Hamiltonian)
and V represents the potential, a real symmetric operator. The domain D(A)
of A is equipped with the graph norm

φ 7−→ (‖Aφ‖2 + ‖φ‖2)
1
2 , φ ∈ D(A), (8)

under which it becomes a Hilbert space. We shall require that D(A) is included
in the domain D(V ) of the operator V and that A + V is selfadjoint as an
operator with domain D(A).

The treatment of the function fε above is representative of the many identities
established in [4] concerning the connection between stationary state and time-
dependent scattering theory by applying a version of Fubini’s Theorem and
taking the limit as ε→ 0+.

If F is the spectral measure associated with A, then informally, we have
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∫
R

fε(t, λ) d(Fψ)(λ) =
∫
R

e−i(λ−iε)tV ∗t V d(Fψ)(λ)

=V ∗t V
∫
R

e−i(λ−iε)t d(Fψ)(λ) (9)

= e−εtV ∗t V e
−itAψ

and

∞∫
0

∫
R

fε(t, λ) d(Fψ)(λ) dt=

∞∫
0

e−εtV ∗t V e
−itAψ dt

for each ψ ∈ D(A). On reversing the order of integration, we need to integrate
the L(D(A),H)-valued function λ 7−→

∫∞
0 V ∗t V e

−i(λ−iε)t dt, λ ∈ R with respect
to the D(A)-valued measure Fψ.

Because F is a spectral measure, the classical approaches to bilinear inte-
gration [6,12], are not well adapted to integrating an operator valued func-
tion with respect to the vector measure Fψ. Typically, the H-valued measure
B 7−→ (Fψ)(B), B ∈ B(R), will have infinite variation on every set of positive
measure, so the theory of [6,12] is inapplicable.

The approach of the present work is suggested by equation (9) where for each
t ∈ R+ = [0,∞), the operator V ∗t V is taken outside the integral, that is, the
integrals with respect to t and λ are “decoupled” when the iterated integral
is written in this order. “Decoupling” is a feature of many recent applications
of bilinear integration to diverse areas of analysis, see [16]. If we use tensor
product notation [14], then we have

∞∫
0

∫
R

fε(t, λ)⊗ d(Fψ)(λ)dt =

∞∫
0

e−εtV ∗t V ⊗ e−itAψ dt.

Applying the evaluation map J : T ⊗ x 7−→ Tx, informally we have

∞∫
0

∫
R

fε(t, λ) d(Fψ)(λ) dt := J

∞∫
0

∫
R

fε(t, λ)⊗ d(Fψ)(λ)dt

= J

∞∫
0

e−εtV ∗t V ⊗ (e−itAψ) dt

=

∞∫
0

e−εtJ(V ∗t V ⊗ (e−itAψ)) dt

=

∞∫
0

e−εtV ∗t V e
−itAψ dt
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Writing the iterated integrals in the opposite order:

∫
R

∞∫
0

fε(t, λ) dt d(Fψ)(λ) := J
∫
R

 ∞∫
0

fε(t, λ)dt

⊗ d(Fψ)(λ)

= J
∫
R

 ∞∫
0

e−εtV ∗t V e
−itλ dt

⊗ d(Fψ)(λ) (10)

=
∫
R

J

 ∞∫
0

e−εtV ∗t V e
−itλ dt

⊗ d(Fψ)(λ)


=
∫
R

 ∞∫
0

e−εtV ∗t V e
−itλ dt

 d(Fψ)(λ). (11)

Making sense of the last equations poses a problem. Our solution is to define
the integral (11) of the operator valued function λ 7−→

∫∞
0 V ∗t V e

−i(λ−iε)t dt,
λ ∈ R with respect to the vector measure Fψ to be equal to the element of H
on the right hand side of equation (10) and then appeal to a vector version of
Fubini’s theorem for tensor product valued integrals.

The evaluation map J : T ⊗ x 7−→ Tx, x ∈ D(A), T ∈ L(D(A),H) extends
linearly to the vector space L(D(A),H) ⊗ D(A) of all finite linear combina-
tions

∑
j cj(Tj ⊗ xj) of tensor products Tj ⊗ xj. Integrating a function in-

volves taking the limit of integrals of a sequence of elementary functions, so
the integral

∫∞
0 e−εtV ∗t V ⊗ (e−itAψ) dt will belong to some suitable completion

L(D(A),H)⊗̃D(A) of the linear space L(D(A),H) ⊗ D(A). The choice of a
suitable complete linear tensor product space L(D(A),H)⊗̃D(A) is fundamen-
tal to our approach.

To motivate our solution, we look at a simple (non-physical) example. Suppose
that A and V are bounded selfadjoint operators acting on the Hilbert space
H. Let Vt = e−it(A+V ) be the unitary group generated by the bounded linear
operator −i(A+V ). We are now seeking a linear space L(H)⊗̃H in which the
tensor product integral

∞∫
0

e−εtV ∗t V ⊗ (e−itAψ) dt (12)

belongs, and for which the evaluation map J : L(H)⊗H → H has a continuous
linear extension from L(H)⊗H to L(H)⊗̃H. An obvious candidate is obtained
by noting that for Tj ∈ L(H), xj ∈ H, j = 1, . . . , n, we have

‖J(
n∑
j=1

Tj ⊗ xj)‖ ≤
n∑
j=1

‖Tjxj‖ ≤
n∑
j=1

‖Tj‖.‖xj‖,
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for all n = 1, 2, . . . . The projective tensor product L(H)⊗̂πH of the space
L(H) of bounded linear operators on H with the Hilbert space H is obtained
by taking the completion of the linear space L(H) ⊗ H with respect to the
norm

‖u‖π = inf

∑
j

‖Tj‖.‖xj‖ : u =
∑
j

Tj ⊗ xj

 , u ∈ L(H)⊗H.

The infimum is over all possible representations of u in the linear space L(H)⊗
H. It is well known that any element u of L(H)⊗̂πH can be represented as
u =

∑∞
j=1 Tj ⊗ xj with

∑∞
j=1 ‖Tj‖.‖xj‖ < ∞ [9,20]. Then the evaluation map

J : T⊗x 7−→ Tx has a unique continuous linear extension J̃ : L(H)⊗̂πH → H
given by

Ju =
∞∑
j=1

Tjxj

for any represention u =
∑∞
j=1 Tj ⊗ xj with

∑∞
j=1 ‖Tj‖.‖xj‖ <∞.

We now see that under the assumptions that A and V are bounded selfadjoint
operators, the integral (12) is actually the Bochner integral of the L(H)⊗H-
valued function

t 7−→ e−εtV ∗t V ⊗ (e−itAψ), t > 0, (13)

in the projective tensor product L(H)⊗̂πH. The projective tensor product
norm is the strongest reasonable cross norm [11, Chap. 8].

Because A and V are bounded linear operators, the L(H)-valued functions
t 7−→ V ∗t V , t > 0, and t 7−→ e−itA, t > 0 are continuous for the uniform
operator topology. It follows that the L(H)⊗H-valued function

t 7−→ V ∗t V ⊗ (e−itAψ), t > 0,

is continuous for the projective tensor product norm ‖ · ‖π and

∞∫
0

e−εt‖V ∗t V ‖.‖(e−itAψ)‖ dt ≤ ‖V ‖‖ψ‖/ε.

Consequently, the function (13) is Bochner integrable in the projective tensor
product L(H)⊗̂πH. Moreover, the continuous H-valued function

t 7−→ e−εtV ∗t V (e−itAψ), t > 0,

is Bochner integrable in H and the equalities

11



J

∞∫
0

e−εtV ∗t V ⊗ e−itAψ dt=

∞∫
0

e−εtJ
(
V ∗t V ⊗ e−itAψ

)
dt

=

∞∫
0

e−εtV ∗t V
(
e−itAψ

)
dt

hold [11, Theorem II.2.6]. Next, we see that the integral

∫
R

 ∞∫
0

e−εtV ∗t V e
−itλ dt

⊗ d(Fψ)(λ) (14)

exists as an element of the projective tensor product L(H)⊗̂πH and that the
equality

∫
R

 ∞∫
0

e−εtV ∗t V e
−itλ dt

⊗ d(Fψ)(λ) =

∞∫
0

e−εtV ∗t V ⊗ e−itAψ dt

is valid, so that the equality

J
∫
R

 ∞∫
0

e−εtV ∗t V e
−itλ dt

⊗ d(Fψ)(λ) =

∞∫
0

e−εtV ∗t V (e−itAψ) dt (15)

also holds.

In fact, for x, h, ξ ∈ H, the scalar version of Fubini’s Theorem implies that

∫
S

 ∞∫
0

e−εt〈V ∗t V x, h〉e−itλ dt

 d〈Fψ, ξ〉(λ)

=

∞∫
0

e−εt〈V ∗t V x, h〉
(
〈e−itAF (S)ψ, ξ〉

)
dt

=

〈 ∞∫
0

e−εtV ∗t V ⊗ (e−itAF (S)ψ) dt, x⊗ h⊗ ξ
〉
,

so the integral (14) must belong to L(H)⊗̂πH too and equation (15) is valid.

The above argument breaks down for unbounded A and V because the t 7−→
V ∗t V , t > 0, and t 7−→ e−itA, t > 0, are no longer continuous for the uniform
operator topology. We can only expect them to be continuous in the strong
operator topology on their respective domains. Moreover, strong measurability
in the uniform operator norm no longer holds, so applying the Bochner integral
in the Banach space L(H) is no longer an option.
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For unbounded densely defined selfadjoint operators A and V , we modify the
preceding argument, essentially by replacing the uniform operator topology
of L(H) in the projective tensor product L(H)⊗̂πH by the strong operator
topology on the appropriate space of operators. The projective tensor product
L(H)⊗̂πH is auxiliary to the final definition of the integral (11) but it is a
feature of the “decoupling” approach to bilinear integration that allows the
integration of operator valued functions with respect to spectral measures.
An argument analogous to the one above holds, but first, certain technical
difficulties which we now describe must be overcome. This is essentially the
purpose of the next section.

4 Fubini’s Theorem for the passage from time-dependent to the
stationary formalism

This last section contains the main result of this paper: adopting a new math-
ematical perspective (the bilinear integration in tensor products) we want to
extend and generalize the results obtained in [4] and open a new path for
revisiting these problems. We start with the Theorem 3 of this reference:

Theorem 4.1 (W.O. Amrein, V. Georgescu & J.M. Jauch) Let:

I. Fλ be a spectral family defining a self-adjoint operator A =
∫
λdFλ in a

separable Hilbert space H.
II. (a, b) and (c, d) two (finite or infinite) intervals on the real line and

u : (a, b)× (c, d) −→ C

a complex valued function denoted by u(λ, t), λ ∈ (a, b) and t ∈ (c, d).
III. Bt (t ∈ R) a family of (not necessarily bounded) linear operators in H.
IV. ψ ∈ DA a fixed vector in the domain of A.

Assume:

1. The integrals
∫ b
a u(λ, t)dFλψ and

∫ b
a u(λ, t)dFλAψ exist for all t ∈ (c, d).

2. For all t ∈ (c, d) one has DA ⊂ DBt, and there exist positive constants α(t),
β(t), such that for every ϕ ∈ DA

‖Btϕ‖ ≤ α(t)‖Aϕ‖+ β(t)‖ϕ‖

3. For all ϕ ∈ DA and for all λ ∈ (a, b) the function t 7−→ u(λ, t)Btϕ is
Bochner integrable on (c, d).

4. There exists a function v : (c, d) −→ R such that
(a) |u(λ, t)| ≤ v(t) for all λ ∈ (a, b) and t ∈ (c, d).
(b) t 7−→ v(t) (α(t)‖Aψ‖+ β(t)‖ψ‖) is Lebesgue integrable in (c, d).

13



Then the existence of one of the integrals below entails the existence of the
other one and W = W ′

W =

d∫
c

Bt

 b∫
a

u(λ, t)dFλψ

 dt, W ′ =

b∫
a

 d∫
c

u(λ, t)Btdt

 dFλψ.

The integrals W and W ′ above are defined as a type of limit of Riemann sums.

In Theorem 4.4 below, our assumptions imply the existence of the integrals
W and W ′ in the sense described below and it follows that W = W ′. First we
need some results that we state in the form of Lemma 4.2 and Proposition 4.3
to prove Theorem 4.4.

Let H be a separable Hilbert space with inner product (·|·)H, linear in the
first variable and antilinear in the second. Suppose that A : D(A) → H a
selfadjoint operator with domain D(A), equipped with the graph norm (8),
under which it becomes a separable Hilbert space with inner product (·|·)D(A).
Then the corresponding Hilbert space norms are given by

‖φ‖H = (φ|φ)
1
2
H, φ ∈ H and ‖ψ‖D(A) = (ψ|ψ)

1
2

D(A), ψ ∈ D(A).

If T : D(A) → H is a continuous linear map, then its Hilbert space adjoint
T ∗ : H → D(A) is defined by the formula

(Tψ|φ)H = (ψ|T ∗φ)D(A), φ ∈ H, ψ ∈ D(A).

Let µ : B(R+) → R+ be a σ-finite measure on the Borel σ-algebra B(R+) of
R+. A function f : R+ → X with values in a Banach space X is said to be
strongly µ-measurable if it is the limit µ-almost everywhere of X-valued Borel
simple functions.

A strongly µ-measurable function f : R+ → X is Bochner µ-integrable in X
if and only if ∫

R+

‖f(t)‖ dµ(t) <∞.

Equivalently, there exist X-valued Borel simple functions sj, j = 1, 2, . . .,
converging to f µ-a.e. such that∫

R+

‖sj − sk‖X dµ −→ 0 as j, k →∞.

Then
∫
B f dµ = limn→∞

∫
B sn dµ for each B ∈ B(R+). In particular, f is Pettis

µ-integrable and the integrals agree.

14



Let X, Y be Banach spaces. A function f : R+ → L(X, Y ) is said to be
strongly µ-measurable in Ls(X, Y ) if and only if there exist L(X, Y )-valued
Borel simple functions sj, j = 1, 2, . . ., converging to f µ-a.e.

A function f : R+ → L(X, Y ) is said to be strongly Bochner µ-integrable in
L(X, Y ) if and only if there exist L(X, Y )-valued Borel simple functions sj,
j = 1, 2, . . ., converging to f µ-a.e. such that∫

R+

‖sjx− skx‖Y dµ −→ 0 as j, k →∞,

for every x ∈ X. The function f is necessarily strongly µ-measurable in
Ls(X, Y ). Then ∫

S

f dµ = lim
j→∞

∫
S

sj dµ, S ∈ B(R+),

in the strong operator topology and∫
R+

‖f(t)x‖Y dµ(t) = lim
j→∞

∫
R+

‖sj(t)x‖Y dµ(t)

is finite for each x ∈ X, see Appendix A.

Lemma 4.2 Let µ : B(R+) → R+ be a σ-finite measure on the Borel σ-
algebra B(R+) of R+. Suppose that B : R+ → L(D(A),H) with the following
properties:

(i) the L(D(A),H)-valued function t 7−→ B(t), t ∈ R+, is strongly µ-measurable
in Ls(D(A),H) and

(ii) there exist µ-integrable functions t 7→ α(t), t ∈ R+, and t 7→ β(t), t ∈ R+

such that
‖B(t)ψ‖H ≤ α(t)‖Aψ‖H + β(t)‖ψ‖H

for all ψ ∈ D(A) and t ∈ R+.

Then the following statements hold.

(a) sup‖Ψ‖∞≤1

∫∞
0 ‖B(t)Ψ(t)‖H dµ(t) <∞. The supremum is taken over all sim-

ple functions Ψ : R+ → D(A) uniformly norm bounded in D(A) by one.
(b) The H-valued function t 7−→ B(t)Ψ(t), t > 0, is Bochner µ-integrable in
H for every uniformly bounded, strongly µ-measurable function Ψ : R+ →
D(A).

(c)
∫∞

0 ‖B(t)∗φ‖D(A) dµ(t) <∞ for every φ ∈ H.

Proof. For any Borel simple function Ψ : R+ → D(A), by (ii) we have

‖B(t)Ψ(t)‖H≤α(t)‖AΨ(t)‖H + β(t)‖Ψ(t)‖H
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≤ (α(t) + β(t)) max(‖AΨ(t)‖H, ‖Ψ(t)‖H)

≤ (α(t) + β(t))‖Ψ(t)‖D(A),

so that (a) follows from condition (ii). Part (b) follows by approximating Ψ
pointwise in D(A) by a uniformly bounded sequence of D(A)-valued Borel sim-
ple functions and appealing to Part (a). Part (c) follows from the observation
that

sup
‖Ψ‖∞≤1

∞∫
0

|(Ψ(t)|B(t)∗φ)D(A)| dµ(t)

≤ ‖φ‖H. sup
‖Ψ‖∞≤1

∞∫
0

‖B(t)Ψ(t)‖H dµ(t) <∞, φ ∈ H.

�

Denote by Ls(D(A),H)⊗̃τD(A) the locally convex space tensor product in-
duced from the linear map defined by S ⊗ x 7−→ x ⊗ S∗ into the projective
tensor product D(A)⊗̃πLs(H,D(A)). Then the linear map induced by the
evaluation map J : S ⊗ x 7→ Sx is the restriction to Ls(D(A),H) ⊗ D(A)
of a unique continuous linear map from Ls(D(A),H)⊗̃τD(A) into the weak
topology of H. We denote the continuous extension by J as well. The locally
convex space Ls(D(A),H)⊗̃τD(A) is sequentially complete and

J : Ls(D(A),H)⊗̃τD(A) −→ H

is a continuous linear map for the weak topology of H. The details of this
construction and the following basic result are given in Appendix B.

Proposition 4.3 D(A)⊗H⊗D(A) separates the lcs Ls(D(A),H)⊗̃τD(A).

As in Definition 2.3, we say that an Ls(D(A),H)-valued function

f : R+ −→ Ls(D(A),H)

is Fψ-integrable in Ls(D(A),H)⊗̃τD(A) for ψ ∈ D(A), if 〈fφ, h〉 is 〈Fψ, η〉-
integrable for each φ ∈ D(A), h ∈ H and η ∈ D(A) and for each S ∈ B(R),
there exists a vector

(f ⊗ (Fψ))(S) ∈ Ls(D(A),H)⊗̃τD(A)

such that

〈(f ⊗ (Fψ))(S), φ⊗ h⊗ η〉 =
∫
S

〈f(σ)φ, h〉 d〈Fψ, η〉(σ)
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for every φ ∈ D(A), h ∈ H and η ∈ D(A). By virtue of Proposition 4.3, the
integral is well defined, because if T1, T2 ∈ Ls(D(A),H)⊗̃τD(A) satisfy

〈(T1, φ⊗ h⊗ η〉 = 〈(T2, φ⊗ h⊗ η〉

for every φ ∈ D(A), h ∈ H and η ∈ D(A), then necessarily T1 = T2.

Here we are considering the tensor product space

Ls(D(A),H)⊗̃τD(A)

as a dense subspace of the linear space Ls(D(A),H⊗̃κD(A)) of operators for
a suitable locally convex tensor product topology κ on H⊗D(A), see Remark
B.10.

If f : R+ → Ls(D(A),H) is Fψ-integrable in Ls(D(A),H)⊗̃τD(A) for ψ ∈
D(A), then we define∫

S

f(σ) d(Fψ)(σ) := J [f ⊗ (Fψ))(S)].

We can also write this definition more suggestively as∫
S

f(σ) d(Fψ)(σ) := J
∫
S

f(σ)⊗ d(Fψ)(σ),

where J(T ⊗ x) = Tx for every T ∈ Ls(D(A),H) and x ∈ D(A). Because J
maps the space Ls(D(A),H)⊗̃τD(A) to H, the integral

∫
S f(σ) d(Fψ)(σ) is

an element of H for each S ∈ B(R).

Theorem 4.4 Let ψ ∈ D(A). Suppose u : R × R+ → C is a measurable
function for which u( · , t) is (Fψ)-integrable and F (Aψ)-integrable in H for
each t > 0.

Suppose that the L(D(A),H)-valued function t 7−→ B(t), t ∈ R+, is strongly
µ-measurable in Ls(D(A),H) and there exists a measurable function v : R+ →
[0,∞) with the following properties:

(i) |u(λ, t)| ≤ v(t) for all λ ∈ R, t ∈ R+,
(ii) The function t 7−→ v(t)‖B(t)∗φ‖D(A), t > 0 is integrable for each φ ∈ H.

Then,

(1) for each S ∈ B(R), the function

t 7−→ B(t)
∫
S

u(λ, t) d(Fψ)(λ), t > 0,

is integrable in H,
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(2) the function t 7−→ u(λ, t)B(t)φ, t > 0, is integrable in H for each φ ∈ D(A)
and λ ∈ R,

(3) for each T ∈ B(R+), the L(D(A),H)-valued function λ 7−→
∫
T u(λ, t)B(t) dt,

λ ∈ R is (Fψ)-integrable in Ls(D(A),H)⊗̃τD(A).

Moreover, the equality

∫
T

B(t)

∫
S

u(λ, t) d(Fψ)(λ)

 dt =
∫
S

∫
T

u(λ, t)B(t) dt

 d(Fψ)(λ)

holds for every S ∈ B(R), T ∈ B(R+).

If, furthermore, there exist measurable functions t 7→ α(t), t > 0, and t 7→
β(t), t > 0 such that

‖B(t)φ‖ ≤ α(t)‖Aφ‖+ β(t)‖φ‖, for all φ ∈ D(A)

and
∫
R+
v(t)(α(t)+β(t)) dt <∞, then the integrals in (1) and (2) are Bochner

integrals.

Proof. The spectral measure F is the resolution of the identity of the self-
adjoint operator A, so for every Borel subset B of R, we have F (B)D(A) ⊂
D(A) and F (B)Aψ = AF (B)ψ for every ψ ∈ D(A).

We first observe that
∫
S u(λ, t) d(Fψ)(λ) ∈ D(A) for each t > 0 and S ∈ B(R)

because Fψ is countably additive with respect to the topology defined by
the graph norm of A and u( · , t) is (Fψ)-integrable in D(A). Moreover, by
condition (i), ∥∥∥∥ ∫

S

u(λ, t) d(Fψ)(λ)
∥∥∥∥
D(A)
≤ v(t)‖Fψ‖sv(D(A))

with respect to the D(A)-semivariation ‖Fψ‖sv(D(A)) [11, Chapter 1] of the
vector measure Fψ. Consequently,

|〈B(t)
∫
S

u(λ, t) d(Fψ)(λ), φ〉|= |〈
∫
S

u(λ, t) d(Fψ)(λ), B(t)∗φ〉|

≤ v(t)‖Fψ‖sv(D(A))‖‖B(t)∗φ‖D(A).

By condition (ii), the function t 7−→ B(t)
∫
S u(λ, t) d(Fψ)(λ) is scalarly inte-

grable in H and so integrable in H, because H is reflexive [11]. This establishes
(1). A similar estimate proves (2).

Because ∫
R

|〈
∫
T

u(λ, t)B(t)φ dt, h〉| d|〈Fψ, η〉|
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≤ ‖η‖D(A)‖φ‖D(A)‖Fψ‖sv(D(A))

∞∫
0

v(t)‖B(t)∗h‖D(A) dt,

the scalar-valued function λ 7−→ 〈
∫
T u(λ, t)B(t)φ dt, h〉, λ ∈ R is 〈Fψ, η〉-

integrable. Moreover, (λ, t) 7−→ 〈u(λ, t)B(t)φ, h〉 is 〈Fψ, η〉 ⊗ dt-integrable on
R× R+ by the Fubini-Tonelli theorem and we have

∫
S

〈
∫
T

u(λ, t)B(t)φ dt, h〉 d〈Fψ, η〉(λ) =
∫
T

〈B(t)φ, h〉

∫
S

u(λ, t) d〈Fψ, η〉(λ)

 dt.

For each S ∈ B(R), the function

t 7−→ B(t)⊗

∫
S

u(λ, t) d(Fψ)(λ)

 , t > 0, (16)

is Bochner integrable in the quasicomplete space Ls(D(A),H)⊗̃τD(A). To see
this, observe that the function given by (16) certainly has values in the tensor
product Ls(D(A),H) ⊗ D(A). For the continuous seminorm ph, h ∈ H, on
Ls(D(A),H)⊗τ D(A) given by

ph (α) = inf {
∑
j

‖ψj‖.‖T ∗j h‖D(A) : α =
∑
j

Tj⊗ψj}, α ∈ Ls(D(A), H)⊗D(A),

we have

ph

B(t)⊗

∫
S

u(λ, t) d(Fψ)(λ)

 ≤ v(t)‖B(t)∗h‖D(A)‖Fψ‖sv,

so by condition ii) above, it follows that

∞∫
0

ph

B(t)⊗

∫
S

u(λ, t) d(Fψ)(λ)

 dt ≤ ‖Fψ‖sv ∞∫
0

v(t)‖B(t)∗h‖D(A) dt <∞.

It is not hard to see that the function (16) is the pointwise limit in Ls(D(A),H)⊗
D(A) of simple functions, from which Bochner integrability follows.

As in Proposition 2.5, it follows that the L(D(A),H)-valued function λ 7−→∫
T u(λ, t)B(t) dt, λ ∈ R is Fψ-integrable in the lcs Ls(D(A),H)⊗̃τD(A) and

we have

∫
T

B(t)

∫
S

u(λ, t) d(Fψ)(λ)

 dt=
∫
T

J

B(t)⊗

∫
S

u(λ, t) d(Fψ)(λ)

 dt
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= J
∫
T

B(t)⊗

∫
S

u(λ, t) d(Fψ)(λ)

 dt

= J
∫
S

∫
T

u(λ, t)B(t) dt

⊗ d(Fψ)(λ)

=
∫
S

∫
T

u(λ, t)B(t) dt

 d(Fψ)(λ).

The final assertion is proved in Lemma 4.2. �
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Appendix

A Measurability in spaces of operators on a separable Banach
space

Let (Ω,S, µ) be any σ-finite measure space. A function f : Ω → X with
values in a Banach space X is said to be strongly µ-measurable if it is the
limit µ-almost everywhere of X-valued S-simple functions. In the case that
X is a locally convex space which is not metrizable, we run into difficulties
with strong measurability, because all fundamental families of seminorms are
uncountable. We see how to deal with the situation in the special case of the
strong operator topology on the space of continuous linear operators between
separable Banach spaces. The idea goes back to the work of G.Y.H. Chi [8] in
1975.

Suppose that X and Y are separable Banach spaces. If f : Ω→ L(X, Y ) is a
function for which 〈fx, y′〉 : ω 7−→ 〈f(ω)x, y′〉, t ≥ 0, is µ-measurable for each
x ∈ X and y′ ∈ Y ∗. Then the sets

{ω ∈ Ω : <〈f(ω)x, y′〉 < a}, {ω ∈ Ω : =〈f(ω)x, y′〉 < b}

are µ-measurable for each a, b ∈ R, so that f−1(B) is µ-measurable for every
Borel set B in the weak operator toplogy of Ls(X, Y ).

If we set Ωn = f−1(nB1) for n = 1, 2, . . . , with

B1 = {T ∈ L(X, Y ) : ‖T‖L(X,Y ) ≤ 1},

20



then each set Ωn, n = 1, 2, . . ., is µ-measurable with Ω =
⋃∞
n=1 Ωn and each

operator belonging to the range f(Ωn) of f on Ωn is bounded by n in the
uniform operator norm.

Because X is assumed to be separable, we can find a dense subset

{xk : k = 1, 2, . . . }

of the closed unit ball of X. For each T ∈ L(X, Y ), set pk(T ) = ‖Txk‖Y ,
k = 1, 2, . . . . By an ε/2 argument, the strong operator topology on each ball
nB1, n = 1, 2, . . ., is given by the family {pk : k = 1, 2, . . . } of seminorms. Let
p =

∑∞
k=1 2−kpk. Then p is a norm on L(X, Y ) that gives the strong operator

topology to each ball nB1, n = 1, 2, . . ..

Because Y is assumed to be separable, the Pettis Measurability theorem [11]
ensures that the Y -valued function fnx : ω 7−→ f(ω)x, ω ∈ Ωn, is strongly
µ-measurable for each x ∈ X and n = 1, 2, . . . . Hence, for each n = 1, 2, . . .,
we can choose a sequence of L(X, Y )-valued µ-measurable simple functions
sj,n, j = 1, 2, . . ., such that p(f(ω) − sj,n(ω)) → 0 as j → ∞ for µ-almost all
ω ∈ Ωn \ Ωn−1, where Ω0 = ∅. Let

sj =
∞∑
n=1

sj,nχΩn\Ωn−1 j = 1, 2, . . . .

Then sj, j = 1, 2, . . . is a sequence of L(X, Y )-valued µ-measurable simple
functions such that sj → f µ-a.e. in the strong operator topology as j →∞.

If, in addition,
∫
Ω ‖f(ω)x‖Y dµ(ω) < ∞ for each x ∈ X, we can choose sj,

j = 1, 2, . . . such that we also have∫
Ω

‖f(ω)x− sj(ω)x‖Y dµ −→ 0 as j →∞.

Remark 1 Another proof is obtained from the theory of Lusin spaces [21].
Under the given assumptions, µ◦f−1 is a Borel measure for the weak operator
topology on Ls(X, Y ). Because Ls(X, Y ) =

⋃∞
n=1 nB1 is the countable union of

complete metrizable sets (Polish spaces), Ls(X, Y ) is itself a Lusin space [21].
It follows that µ ◦ f−1 is a Radon measure for the strong operator topology
[21]. There exists a pairwise disjoint collection {Kn : n = 1, 2, . . . } of compact
metrizable subsets in the strong operator topology of Ls(X, Y ) such that

µ ◦ f−1

(
Ls(X, Y ) \

∞⋃
n=1

Kn

)
= 0.

On each set Ωn = µ ◦ f−1(Kn), using a metric on the compact set Kn, we
find S-measurable Kn-valued simple functions sj,n, j = 1, 2, . . ., converging
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uniformly to f on Ωn. Piecing these together gives Ls(X, Y )-valued simple
functions sj, j = 1, 2, . . ., converging µ-a.e. to f on Ω.

B Tensor products of spaces of operators

In this appendix we present the elements of the theory of tensor products of
Banach spaces necessary for the correct understanding of the ideas presented
in this paper. A basic reference in this subject can be found in [19]. The
conditions we require are satisfied by Hilbert spaces, but stating the results
for Banach spaces isolates the essential elements of the proof. As indicated in
Section 3, consideration of the strong operator topology in place of the uniform
operator topology introduces some technical complications. In this section we
will deal with these questions and we clarify what we want to say when, in
the above section, we have talked about suitable topologies.

Let Xj, Yj, j = 1, 2, be Banach spaces. The projective tensor product
L(X1, Y1)⊗̂πL(X2, Y2) has the norm

‖T‖π = inf


∞∑
j=1

‖Sj‖.‖Tj‖ : T =
∑
j

Sj ⊗ Tj

 ,
where the infimum is over all norm absolutely convergent representations of
T with Sj ∈ L(X1, Y1) and Tj ∈ L(X2, Y2), j = 1, 2, . . . .

For the projective tensor product Ls(X1, Y1)⊗̂πLs(X2, Y2) with the strong op-
erator topology on L(Xj, Yj), j = 1, 2, we take the completion of L(X1, Y1)⊗
L(X2, Y2) with respect to the fundamental family of seminorms rx1,x2 , x1 ∈ X1,
x2 ∈ X2, defined by

rx1,x2(T ) = inf


n∑
j=1

‖Sjx1‖.‖Tjx2‖ : T =
n∑
j=1

Sj ⊗ Tj

 ,
where the infimum is over all representations of T with Sj ∈ L(X1, Y1) and
Tj ∈ L(X2, Y2), j = 1, 2, . . . , n and n = 1, 2, . . . [19, §41.2 (4)].

Let τ be the topology of L(X1, Y1) ⊗ L(X2, Y2) defined from Ls(Y ′1 , X ′1) ⊗π
Ls(X2, Y2), that is, let j : L(X1, Y1) ⊗ L(X2, Y2) → L(Y ′1 , X

′
1) ⊗ L(X2, Y2) be

the linear map defined by

j(A⊗B) = A′ ⊗B, A ∈ L(X1, Y1), B ∈ L(X2, Y2).

Then we define τ to be the coarsest topology on L(X1, Y1) ⊗ L(X2, Y2) for
which j is continuous into Ls(Y ′1 , X ′1)⊗πLs(X2, Y2). Thus, τ has a fundamental
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family of seminorms ry′1,x2 , y
′
1 ∈ Y ′1 , x2 ∈ X2, defined by

ry′1,x2(T ) = inf


n∑
j=1

‖S ′jy′1‖X′1 .‖Tjx2‖Y2 : T =
n∑
j=1

Sj ⊗ Tj

 ,
where the infimum is over all representations of T with Sj ∈ L(X1, Y1) and
Tj ∈ L(X2, Y2), j = 1, 2, . . . , n and n = 1, 2, . . . .

Let X, Y, Z be Banach spaces. The composition map J : L(Z, Y )⊗L(X,Z)→
L(X, Y ) is the linear map defined by

J(A⊗B) = AB, A ∈ L(Z, Y ), B ∈ L(X,Z).

Lemma B.1 The linear map J : L(Z, Y )⊗L(X,Z)→ L(X, Y ) is continuous
for the topology τ on L(Z, Y ) ⊗ L(X,Z) and the weak operator topology of
L(X, Y ).

Proof. For any representation T =
∑n
j=1 Aj ⊗ Bj ∈ L(Z, Y ) ⊗ L(X,Z) and

x ∈ X, y′ ∈ Y ′, we have

|〈J(T )x, y′〉|=

∣∣∣∣∣∣
n∑
j=1

〈AjBjx, y
′〉

∣∣∣∣∣∣
≤

n∑
j=1

|〈Bjx,A
′
jy
′〉|

≤
n∑
j=1

‖Bjx‖Z‖A′jy′‖Z′ ,

so that

|〈J(T )x, y′〉| ≤ ry′,x(T ). (17)

Hence, J is τ -σ(L(X, Y ), X ⊗ Y ′)–continuous. �

Denote L(Z, Y )⊗̃τL(X,Z) the quasicompletion of the lcs L(Z, Y )⊗τ L(X,Z)
and Lw(X, Y ) denotes L(X, Y ) equipped with the weak operator topology.

Lemma B.2 If Y is a reflexive Banach space, then J is the restriction to
L(Z, Y )⊗ L(X,Z) of a continuous linear map

J̃ : L(Z, Y )⊗̃τL(X,Z)→ Lw(X, Y ),

Proof. The first part is a consequence of the proof of Lemma B.1. If Y is
reflexive, then Lw(X, Y ) is quasicomplete because Y is weakly quasicomplete
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[18, §23.3(2)] and X is barrelled, so we may appeal to [19, §39.6(5)]. A contin-
uous linear map has a unique extension to the quasicompletion of its domain
[18, §23.2(4)] �

Lemma B.3 The linear map j : L(Z, Y ) ⊗ L(X,Z) → L(X,Z) ⊗ L(Y ′, Z ′)
defined by j(S⊗T ) = T⊗S ′ extends to an embedding j̃ : L(Z, Y )⊗̃τL(X,Z)→
Ls(X,Z)⊗̃πLs(Y ′, Z ′) of locally convex spaces. If Y and Z are reflexive, then
j̃ is an isomorphism.

Proof. {Tβ}β is τ -Cauchy iff {jTβ}β is π-Cauchy. If Y and Z are reflexive,
then every linear operator T ∈ L(Y ′, Z ′) is the dual of an element of L(Z, Y ).
The map j̃ is onto if Y and Z are reflexive because the inverse map k :
L(X,Z) ⊗ L(Y ′, Z ′) → L(Z, Y ) ⊗ L(X,Z) also extends to a one-to-one map
k̃ : Ls(X,Z)⊗̃πLs(Y ′, Z ′)→ L(Z, Y )⊗̃τL(X,Z). �

Let B(U × V ) denote the linear space of all separately continuous bilinear
forms on the cartesian product U × V of the locally convex spaces U and V .
If E and F are locally convex spaces, then Be(E

′
s × F ′s) denotes the space

B(E ′s×F ′s) of bilinear forms equipped with the topology of bi-equicontinuous
convergence, see [19, p. 167].

Lemma B.4 Let E and F be quasicomplete locally convex spaces. Then the
space Be(E

′
s × F ′s) of bilinear forms is quasicomplete.

Proof. By [19, §40.4(5)], Be(E
′
s×F ′s) is topologically isomorphic to Le(E ′k, F )

where E ′k has the Mackey topology of uniform convergence on weakly compact
absolutely convex subsets of E. We show that Le(E ′k, F ) is quasicomplete.

Let M denote the family of equicontinuous subsets of E ′. Then (E ′k)
′ = E

and E = E(TM) is quasicomplete, so by [19, §39.6(3) p. 297ff], the space
Le(E ′k, F ) = LM(E ′k, F ) is quasicomplete. �

Proposition B.5 [19, §43.2(12)] Let E be a quasicomplete locally convex
space with a fundamental system of absolutely convex neighbourhoods U of
zero such that every ẼU has the approximation property. Then for every qua-
sicomplete lcs F , the canonical map

ψ̃ : E⊗̃πF → Be(E
′
s × F ′s)

from the quasicompletion E⊗̃πF of E ⊗π F into the linear space Be(E
′
s × F ′s)

of bilinear maps is one-one.

Proof. Because Be(E
′
s × F ′s) is quasicomplete, the canonical map ψ̃ is well-

defined. The proof in [19, §43.2(12)] works in this case too. �
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Lemma B.6 Let X and Z be Banach spaces and E = Ls(X,Z). If x1, . . . , xn,
n = 1, 2, . . . , are elements of X, ε1, . . . , εn > 0 and

U ε1,...,εn
x1,...,xn

= {T ∈ E : ‖Txj‖Z ≤ εj, j = 1, . . . , n },

then EUε1,...,εnx1,...,xn
is a Banach space norm equivalent to L(span{x1, . . . , xn}, Z)

for the uniform norm, with the norm of X on span{x1, . . . , xn}.

Lemma B.7 Let X and Z be Banach spaces. If Z has the approximation
property then the space E = Ls(X,Z) of linear operators with the strong op-
erator topology has a fundamental system of absolutely convex neighbourhoods
U of zero such that every normed space EU is complete and has the approxi-
mation property.

Proof. If x1, . . . , xn, n = 1, 2, . . . , are elements ofX, then L(span{x1, . . . , xn}, Z)
is topologically isomorphic to ZF where F is a basis of the finite dimensional
space span{x1, . . . , xn}. By [19, 43.4(3)], ZF has the approximation property.
Clearly, ZF is complete. By Lemma B.6, U ε1,...,εn

x1,...,xn
are the required neighbour-

hoods of zero. �

Lemma B.8 Let X, Y , Z be Banach spaces. If Z ⊗ X ⊗ Y ′ ⊗ Z ′ acts on
Ls(X,Z)⊗ Ls(Y ′, Z ′) via the unique linear extension of the map

T ⊗ U 7−→ 〈Tx, z′〉〈Uy′, z〉, T ∈ L(X,Z), U ∈ Ls(Y ′, Z ′), (18)

for all z ∈ Z, x ∈ X, y′ ∈ Y ′ and z′ ∈ Z ′, then

Z ⊗X ⊗ Y ′ ⊗ Z ′ ⊂ (Ls(X,Z)⊗π Ls(Y ′, Z ′))′

Proof. For every z ∈ Z, x ∈ X, y′ ∈ Y ′ and z′ ∈ Z ′, the bound

|〈T, z ⊗ x⊗ y′ ⊗ z′〉|= |
∑
j

〈Tjx, z′〉〈Ujy′, z〉|

≤ ‖z′‖.‖z‖
∑
j

‖Tjx‖Z‖Ujy′‖Z′

holds for T =
∑
j Tj ⊗ Uj ∈ Ls(X,Z)⊗ Ls(Y ′, Z ′), so

|〈T, z ⊗ x⊗ y′ ⊗ z′〉| ≤ ry′,x (T ) ‖z′‖.‖z‖.

Hence, z⊗x⊗y′⊗z′ is a continuous linear functional on Ls(X,Z)⊗πLs(Y ′, Z ′)
�

Proposition B.9 Let X, Y , Z be Banach spaces. If Z is a reflexive Banach
space with the approximation property, then the linear space Z ⊗ X ⊗ Y ′ ⊗
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Z ′ separates the quasicompletion L(Z, Y )⊗̃τL(X,Z) via the continuous linear
extension of the map

S ⊗ T 7−→ 〈Sz, y′〉〈Tx, z′〉, S ∈ L(Z, Y ), T ∈ L(X,Z) (19)

for every z ∈ Z, x ∈ X, y′ ∈ Y ′ and z′ ∈ Z ′.

Proof. By Lemma B.3, the lcs L(Z, Y )⊗̃τL(X,Z) may be identified via the em-
bedding j̃ with a linear subspace of the quasicompletion Ls(X,Z)⊗̃πLs(Y ′, Z ′)
of the projective tensor product of Ls(X,Z) with Ls(Y ′, Z ′). By Lemma B.8,

Z ⊗X ⊗ Y ′ ⊗ Z ′ ⊂ (Ls(X,Z)⊗π Ls(Y ′, Z ′))′ ,

with the identification defined by formula (18). Moreover, the equality

〈α, z ⊗ x⊗ y′ ⊗ z′〉 = 〈j̃α, z ⊗ x⊗ y′ ⊗ z′〉, α ∈ L(Z, Y )⊗̃τL(X,Z),

holds for all z ∈ Z, x ∈ X, y′ ∈ Y ′ and z′ ∈ Z ′. The left hand side of the
equation above is defined by formula (19). It suffices to show that Z ⊗ X ⊗
Y ′ ⊗ Z ′ separates points of the lcs Ls(X,Z)⊗̃πLs(Y ′, Z ′).

According to Lemma B.7, the space E = Ls(X,Z) has a fundamental system
of absolutely convex neighbourhoods U of zero such that every EU is a Banach
space with the approximation property. Moreover, E = Ls(X,Z) and F =
Ls(Y ′b , Z ′b) are quasicomplete by [19, 39.6(5)], so appealing to Proposition B.5,
the canonical map ψ̃ : E⊗̃πF → Be(E

′
s × F ′s) is one-one. The dual E ′ of

E = Ls(X,Z) can be identified with X⊗Z ′ and the dual F ′ of F = Ls(Y ′b , Z ′b)
can be identified with Y ′⊗Z ′′. [19, 39.7(2)]. The assumption that the Banach
space Z is reflexive means Z ′′ = Z.

For S ∈ Ls(Y ′, Z ′) and T ∈ L(X,Z), we have

ψ(T ⊗ S)(x⊗ z′, y′ ⊗ z) = 〈T ⊗ S, z ⊗ x⊗ y′ ⊗ z′〉

and by linearity and continuity we obtain

ψ̃(α)(x⊗ z′, y′ ⊗ z) = 〈α, z ⊗ x⊗ y′ ⊗ z′〉

for every element α of the quasicompletion Ls(X,Z)⊗̃πLs(Y ′, Z ′) of Ls(X,Z)⊗π
Ls(Y ′, Z ′).

Consequently, if α ∈ Ls(X,Z)⊗̃πLs(Y ′, Z ′) and 〈α, z⊗x⊗y⊗z′〉 = 0 for every
tensor z⊗x⊗y′⊗ z′ ∈ Z⊗X⊗Y ′⊗Z ′, then ψ̃(α) = 0. Because ψ̃ is one-one,
α = 0 and so Z⊗X⊗Y ′⊗Z ′ separates points of the lcs Ls(X,Z)⊗̃πLs(Y ′, Z ′)
and of the embedded space L(Z, Y )⊗̃τL(X,Z). �
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Remark B.10 The linear space Ls(X,Z)⊗̃πLs(Y ′, Z ′) may be identified with
a subspace of the space L(X⊗Y ′, Zσ⊗̃πZ ′σ) of all linear maps from the tensor
product X ⊗ Y ′ into the quasicompletion Zσ⊗̃πZ ′σ. Because Z ′ ⊗ Z separates
Zσ⊗̃πZ ′σ [19], the tensor product X⊗Y ′⊗Z ′⊗Z separates L(X⊗Y ′, Zσ⊗̃πZ ′σ)
and hence, Ls(X,Z)⊗̃πLs(Y ′, Z ′). Our Hilbert space integrals are therefore
consistent with Definition 2.4.
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