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CUBIPOD ARMOR LAYERS 2 
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 4 

 Abstract: Although little attention is usually given to the armor porosity and armor randomness 5 

of randomly-placed concrete armor units in mound breakwaters, significant model effects may 6 

occur if armor porosity and randomness are different for prototype and small-scale models. 7 

Armor randomness and porosity are easier to control in small-scale models because they are 8 

generally constructed by hand in dry and perfect viewing conditions; equipment and 9 

environmental constraints make control at prototype scale more difficult. Results from 3D 10 

small-scale placement tests are analyzed when cube and Cubipod units are placed with a small-11 

scale crawler crane and pressure clamps. Armor porosity was not workable below 37% for cubes 12 

and 35% for Cubipods; placement grids were obtained for feasible armor porosities, considering 13 

row settlements during construction as well. A methodology to measure armor randomness 14 

using high-precision laser scanning, similar to terrestrial LIDAR, was tested with small-scale 15 

cube and Cubipod armor. Three armor randomness indexes (ARIs) measured the randomness 16 

of cube and Cubipod armor; the values for ARIs were higher for Cubipod armor than for cube 17 

armor. 18 
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CE Database subject headings: Breakwaters; Armor units; Concrete blocks; Porosity; Cranes; 2 

Laboratory tests.  3 

Author Keywords: Breakwater; Armor porosity; Placement grid; Cubic block; Cubipod; 4 

Random placement; Randomness; Laser scanning; Model effects. 5 

 6 

Introduction 7 

For centuries, mound breakwaters have been constructed to protect ports from wave attack. Over the last 8 

60 years, small-scale laboratory tests using Froude similarity have been able to assess breakwater armor 9 

performance under storm conditions and to optimize breakwater design. Small-scale tests are useful to 10 

reduce construction and maintenance costs, as well as to enhance long-term breakwater safety and 11 

reliability. In most cases, an initial design is significantly improved after conducting the corresponding 12 

model tests. However, not all the prototype characteristics are properly reproduced in the scale models. 13 

In addition to scale effects, which may be negligible when using the appropriate scale, model effects may 14 

be significant when prototype and scaled models have relevant differences. 15 

 16 

Armor porosity and the orientation of the armor units are two parameters which can cause significant 17 

model effects. This research focuses on cube and Cubipod concrete armor unit placement grids to obtain 18 

the armor porosity tested in the laboratory and on the quantification of armor unit randomness. These 19 

two armor characteristics may significantly reduce the model effects of scale models. 20 

 21 

Researchers, including Van der Meer (1999), VandenBosch et al. (2002) and Frens (2007), have carried 22 

out small-scale physical experiments to analyze the hydraulic stability of different CAUs; all report a 23 

significant influence of armor porosity on the hydraulic stability of the armor layer, higher armor porosity 24 

leads to less stable structures. However, very few armor stability formulae explicitly include armor 25 

porosity as a parameter. Armor porosity is usually considered a constant design parameter; USACE 26 

(1984) fixed a nominal armor porosity P=47% and a layer coefficient kΔ=1.10 for modified cubes, 27 

packing density φ  =2kΔ(1-P)=1.17. 28 

 2 



 1 

The armor unit placement technique is widely recognized as a variable relevant to the stability of the 2 

armor layer (Hudson et al., 1979). Specific placement patterns are the simplest way to obtain a given 3 

target porosity in the laboratory; nevertheless, it is not easy to reproduce the patterns at prototype scale. 4 

Breakwater armor layers are easier to construct with higher porosity, regardless of the equipment used. 5 

Real breakwater armors tend to increase porosity above the recommended values, and the armor unit 6 

placement technique is a critical consideration. In the design phase, armor porosity must be defined to 7 

estimate the volume of materials required to build the armor layer; an uncontrolled increase in armor 8 

porosity during the construction phase may result in an uncontrolled change in the construction logistics 9 

and hydraulic stability. 10 

 11 

It is widely accepted that armor layers built with uniform, patterned or oriented armor units have specific 12 

structural responses which are highly dependent on armor unit placement; therefore, armor units must be 13 

accurately placed, both in prototype and in laboratory tests. However, the engineering community views 14 

randomly placed armor units differently because there is no clear definition for “random placement”. 15 

Armor units, such as conventional cubes, parallelepiped blocks, Antifer cubes and Cubipods, are usually 16 

placed randomly, but no measurement of armor randomness is given for small-scale models or 17 

prototypes. 18 

 19 

In this study, the placement method, armor porosity and armor randomness of cube and Cubipod units 20 

are analyzed. Realistic 3D small-scale placement tests were carried out using a small-scale crawler crane 21 

and pressure clamps under moderate wave attack. The Punta Langosteira and San Andrés breakwater 22 

models were studied to obtain feasible armor porosities at prototype scale. These models were also used 23 

to determine the placement grids required to obtain the armor porosity tested in laboratory (p=37% and 24 

p=42% for cube and Cubipod armors, respectively). The placement tests were carried out in straight 25 

trunks, curved trunks and roundheads. The prototype placement grid used in the Punta Langosteira main 26 

breakwater, armored with 150 tonne cubes, was also tested. To quantify the randomness of cube and 27 

Cubipod armor layers, the methodology developed by Medina et al. (2011) was followed. Three armor 28 

randomness indexes (ARIs) described herein were used to measure armor randomness. 29 

 3 



Placement Grids, Armor Porosity and Model Effects 1 

Prototype versus Small-Scale: Model Effects 2 

The construction of armor layers at prototype scale is restricted by underwater viewing conditions, the 3 

availability of equipment and the given environmental conditions. On the contrary, small-scale model 4 

construction is generally done by hand, with perfect views and optimal environmental conditions. As a 5 

result, armor porosity and armor unit randomness are two parameters that can differ significantly between 6 

prototype and scale models.  7 

 8 

On the one hand, armor hydraulic stability depends on porosity; therefore, it should always be measured 9 

in laboratory tests. A significant deviation between armor porosity measured in the small-scale model 10 

and the prototype may lead to a significant model effect with an uncontrolled outcome in terms of 11 

breakwater armor performance. The higher the discrepancy, the higher the structural uncertainty is. On 12 

the other hand, it is well known for coastal engineers that overtopping rates depend on the orientation of 13 

the concrete armor units; runup and overtopping rates significantly increase in poor randomly-placed 14 

cube armor with common face-to-face fitting arrangements.  15 

 16 

The Importance of Specifying Armor Porosity in Scale Tests 17 

Porosity or void porosity is an intuitive concept that refers to the percentage of voids in a granular system. 18 

Normally, armor porosity is used to characterize the armors of mound breakwaters; however, it is not 19 

easy to define or quantify. Armor thickness must first be defined, which is not a simple task for randomly-20 

placed armor units. Generally, the armor thickness is assumed to be one or two times the equivalent cube 21 

size or nominal diameter, Dn=(W/γr)1/3, for single- and double-layer armors. Most engineering manuals, 22 

like USACE (1984) or CIRIA (2007), recommend pairs of nominal armor porosity and layer coefficient 23 

(P and kΔ or nv and kt) for different armor units. According to USACE (1984), the placing density (φ 24 

[units/m2]) is related to both nominal armor porosity (P) and layer coefficient (kΔ) by: 25 

3/2))(1(
W

Pnk
A

N ra γ
ϕ −== ∆                                                    (1) 26 

where Na= number of armor units placed on the surface, A, n= number of layers, kΔ= layer coefficient, 27 

P= nominal armor porosity, W= armor unit weight, and γr= armor unit material specific weight. Different 28 

pairs of nominal armor porosity and layer coefficient (P, kΔ) have the same value for placing density, φ. 29 
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A nominal porosity of P=47% with a layer coefficient of kΔ=1.10 (modified cube in USACE, 1984) is 1 

equivalent to a porosity of p=42% with a layer coefficient of kΔ=1.00. Unfortunately, the different criteria 2 

used by different authors to define kΔ has caused some misunderstandings (see Frens, 2007); for instance, 3 

both USACE (1984) and CIRIA (2007) recommend a nominal armor porosity of 50% for double-layer 4 

Tetrapod armor, but different layer coefficients, kΔ=1.04 and kt=1.02, respectively. 5 

 6 

To prevent misunderstandings, this study applies the criterion given by Medina et al. (2010), valid for 7 

randomly-placed armor units; the armor porosity, p=(1- φ /n), is defined as the porosity associated to a 8 

layer coefficient of kΔ=1.00. The assumed armor layer thickness is Dn for single-layer armor and 2Dn for 9 

double-layer armor. The packing density (φ ) is a parameter to measure the relative consumption of 10 

concrete in the armor layer, associated to armor porosity and the number of layers. The packing density 11 

can be considered the dimensionless placing density using Dn as the length unit: 12 

2)1()1)(( nDpnPkn ϕφ =−=−= ∆                                                (2) 13 

where n= number of layers, kΔ= layer coefficient, P= nominal armor porosity, p= armor porosity, φ= 14 

placing density, and Dn=(W/γr)1/3= equivalent cube size or nominal diameter.  15 

 16 

Although it is well known that armor porosity may significantly affect hydraulic stability (see Van der 17 

Meer, 1999, and VandenBosch et al., 2002) and breakwater armor performance during lifetime, most 18 

armor stability formulae and tests reported in the literature do not explicitly consider this a significant 19 

parameter. When no measurements for placing or packing densities are given in the corresponding papers 20 

or reports, armor porosity may not be fully considered despite its importance; in some cases, laboratory 21 

tests and prototypes are implicitly assumed to be built with the same packing density. 22 

 23 

During the construction phase, armor porosity is a critical issue because it affects material procurements 24 

and payments. However, armor porosity is hard to measure in practice and difficult to measure below the 25 

mean water level (MWL) due to poor visibility. Additionally, porosity changes during the lifetime and 26 

heterogeneous packing is more likely to occur if armor porosity is higher than designed. 27 

 28 

Appropriate Placement Grids for Trunks and Roundheads 29 

 5 



Armor units may be placed uniformly, patterned, oriented or randomly (Dupray and Roberts, 2009). 1 

Whatever the armor unit orientation required, all units are placed using a specific placement grid whose 2 

characteristics depend on the type of armor units and design considerations. The placement grid provides 3 

the exact planar X-Y coordinates, indicating how each unit must be placed by the crawler crane, which 4 

is often equipped with precise GPS positioning. 5 

 6 

There are a variety of techniques to place each type of armor unit. The specific placement technique is 7 

directly related to armor porosity and interlocking. Hudson et al. (1979) placed long-axis stones with the 8 

long axis perpendicular to the slope plane to increase the stability in the rock armor layer under wave 9 

attack. Yagci and Kapdasli (2003) analyzed different laboratory placement arrangements for Antifer 10 

cubes; the optimum placement technique was selected considering armor stability, prototype placement, 11 

clarity of the placement technique definition, armor cost and wave runup. Özkan-Çevik et al. (2005) 12 

compared the effects of two alternative placement arrangements for Core-LocTM on armor stability; they 13 

concluded that random placement was preferable because it was more stable. 14 

 15 

In addition to placement arrangement, the armor unit handling method may have a significantly impact 16 

on the completed armor. Depending on armor unit geometry, a variety of slings methods may be used 17 

for handling and placement. Furthermore, conventional cubes, Cubipods and other armor units may be 18 

handled and placed using several types of pressure clamps. Muttray et al. (2005) tested two different 19 

sling methods for placing Xbloc®; attaching the sling to one leg of the X-shaped base achieved the 20 

recommended armor porosity which led to significantly higher armor stability and facilitated unit 21 

placement.  Medina et al. (2010) pointed out the advantages of using pressure clamps to handle armor 22 

units; however, the clamps tended to produce undesired arrangements of conventional cubes with the 23 

faces being parallel to the armor slope. 24 

 25 

Special attention must be given to the toe berm and the placement of the first row of armor units in the 26 

armor. Gravitational force is always relevant for armor stability; an armor unit placed in the armor layer 27 

is supported by the neighboring units in the lower rows. If the first row of armor units is not correctly 28 

placed on the toe berm, the errors may affect the interlocking, porosity and stability of the complete 29 

armor, especially in the case of single-layer armor. Turk and Melby (1997) recommended placing the toe 30 

 6 



berm and the first two rows of Core-LocTM armor units with special care to obtain a more stable 1 

arrangement. Yagci et al. (2004) focused on the first row to assure that the semi-cylindrical grooves of 2 

Antifer cubes made contact with the base surface. Oever et al. (2006) attached a different sling for the 3 

first row of the Xbloc® armor to achieve accurate placement. 4 

 5 

As a general rule, random placement requires placing armor units with a fixed placement diamond grid, 6 

which means the units of one row are placed in the openings of units in the lower row. Fig. 1 shows a 7 

typical placement grid, where a is the fixed horizontal distance between two contiguous armor unit 8 

centers of gravity, and b is the fixed distance between two contiguous armor unit rows measured in a 9 

horizontal plane. 10 

[Insert Fig. 1 here] 11 

In this study, a new type of placement grid was developed to take into consideration row settlements 12 

during armor construction; instead of a fixed row distance (b in Fig. 1), the grid progressively reduces 13 

the distance between rows from the toe berm to the armor crest. Fig. 2 shows the progressive placement 14 

grid, where a is the fixed horizontal distance between two contiguous armor unit centers of gravity, and 15 

b is the distance between two contiguous armor unit rows measured in a horizontal plane. The distance 16 

between armor unit rows i and i-1 (i=2,3,…I) is given by: 17 

( )[ ]212 −∆−= ibbbi                                                            (3) 18 

where i= row index (i=1 is the first row placed on the toe berm), Δb= reduction in b to compensate for 19 

armor settlement on the slope, and I=the number of armor unit rows in the armor layer. 20 

[Insert Fig. 2 here] 21 

Roundheads and curved trunks also require special attention. The curvature of roundheads and curved 22 

trunks reduces the lengths of the armor unit rows from the bottom to the crest; therefore, the placement 23 

grids must be modified to ensure a workable placement. In these cases, the average horizontal distance 24 

between armor units decreases progressively from the bottom row to the top (ai>ai+1). When the 25 

horizontal distance between armor units in a row is too small, the homogeneous grid geometry described 26 

in Fig. 1 is no longer adequate. If the curvature of the armor is large (roundheads), it is not possible to 27 

place all the armor units in the openings between the two units in the previous row; thus, a heterogeneous 28 

placement scheme is required. To correctly place units in roundheads or curved trunks, it is necessary to 29 

adapt the placement grid to the slope and curvature to minimize the number of irregular points in the 30 
 7 



grid. Oever et al. (2006) recommended a placement grid for Xbloc® in roundheads and curved trunks in 1 

which each armor unit may be shifted up to 0.4Dn from its original placement center to create more space 2 

for the next unit; when the unit to be placed requires armor units to be moved more than 0.4Dn, the new 3 

unit is not placed. 4 

 5 

In this study, specific heterogeneous placement grids were developed for curved trunks and roundheads. 6 

Fig. 3 shows the basic placement grid scheme proposed for low-curvature curved trunks, where aj 7 

(j=1,2,3,…J) is the distance between two contiguous armor unit centers of gravity in the row j, b is the 8 

fixed distance between two contiguous armor unit rows, and Rj (j=1,2,3,…J) is the radius of the 9 

circumference corresponding to row j; all of these are measured in the horizontal plane projection. 10 

[Insert Fig. 3 here] 11 

In roundheads and high-curvature curved trunks, the distance between elements in the row (i) 12 

significantly decreases in regard to the next row (i+1); the reduction rate is given by ai+1/ai=Ri+1/Ri. 13 

Therefore, the criteria for placing units of row (i+1) in the openings of the previous row (i) cannot be 14 

maintained if the radius reduction is too high. Fig. 4 shows a placement grid scheme appropriate for 15 

roundheads and high-curvature curved trunks; the unit rows are grouped in an annulus of a specific 16 

placement grid which is decoupled from the placement grid of the contiguous annulus. The grid number 17 

index m (m=1,2,3,…M) identifies the annulus sector, am.j is the distance between two contiguous armor 18 

unit centers of gravity in the row j (j=1,2,3,…J), b is the fixed distance between two contiguous armor 19 

unit rows, and Rm.j is the row radius. The distance between elements in the first row, am.1, is the same for 20 

all annulus placement grids, and the distance between elements in the upper row in the annulus must 21 

fulfill am.J ≥ amin and am.J+1< amin. 22 

[Insert Fig. 4 here] 23 

Dimensionless placement grids are usually defined according to a specific geometric armor unit 24 

characteristic, such as the equivalent cube size or nominal diameter, Dn, which allows for a comparison 25 

of different placement grids (a/Dn and b/Dn) at different scales.  26 

 27 

In laboratory tests, placement is most often done by hand (Gürer et al., 2005, Özkan-Çevik et al., 2005). 28 

Sometimes armor units are dropped from a given height (Verhagen et al., 2002, Yagci and Kapdasli, 29 

2003) or more realistic placement devices are used such as slings manipulated by hand (Muttray et al., 30 
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2005, Oever et al., 2006). In this study, the realistic 3D placement technique, proposed by Medina et al. 1 

(2010), using a small-scale crawler crane and pressure clamps, was applied to place cube and Cubipod 2 

units in the small-scale armor layers. 3 

 4 

Methodology to Measure Armor Unit Randomness  5 

Armor layers are frequently constructed using crawler cranes equipped with either pressure clamps 6 

(conventional cubes, parallelepiped blocks, Cubipods, etc.) or slings (Tetrapod, Accropode™, Core-7 

Loc™, Xbloc®, etc.) which place the armor units according to the horizontal coordinates on a specific 8 

placement grid. Even for armor units that are meant to be randomly-oriented, a pure random arrangement 9 

is unlikely to occur because some armor unit geometries favor self-arrangement on the slope, which tends 10 

to reduce armor randomness. Cubic blocks, which should be placed randomly on a breakwater slope, 11 

tend to put one face parallel to the slope and create face-to-face arrangements with neighboring blocks. 12 

Usually “random placement” is taken for granted when the crane operator does not follow specific 13 

placement arrangements. During cubic block placement, the crane operator will try to favor randomness 14 

(above MWL) by preventing the blocks from having one face parallel to the slope plane and thus avoid 15 

face-to-face arrangements among neighboring units. However, poor underwater viewing makes it 16 

difficult for crane operators to avoid self-arrangements and poor randomness. Therefore, some 17 

breakwater armors are actually more randomly-placed than others. 18 

 19 

In this study, the methodology proposed to measure armor randomness considers each 3D armor unit 20 

orientation in relation to two specific references: (a) the breakwater slope plane, and (b) the faces of the 21 

two closest armor units. This research focuses on cube and Cubipod armor units, which both have three 22 

orthogonal planes of symmetry. Cube and Cubipod orientations in the space can be described by these 23 

three orthogonal planes which are parallel to the cube and Cubipod faces.  24 

 25 

To quantify the randomness of cube and Cubipod armor units placed on the armor, the three armor 26 

randomness indexes (ARIs) proposed by Medina et al. (2011) are considered: 27 

- ARI0, to measure the spatial orientation of an armor unit in relation to the armor slope plane, 28 

- ARI1, to measure the relative orientation of an armor unit with the closest unit in the armor layer, 29 

 9 



- ARI2, to measure the relative orientation of an armor unit with the second closest unit in the armor 1 

layer. 2 

 3 

Thus, ARI0 assesses the parallelism between the armor unit faces and the underlayer slope plane on which 4 

the armor units are placed, while ARI1 and ARI2 evaluate the face-to-face arrangements. 5 

 6 

ARIs were calculated from angles α and β, defined between cube and Cubipod faces and the armor slope 7 

plane or the neighboring armor unit faces, respectively. For each armor unit placed on the armor layer, α 8 

is defined as the minimum of the three angles of the breakwater slope plane and the three orthogonal 9 

faces of the armor unit. Fig. 5 illustrates α=10º between a cube armor unit and the armor slope plane. For 10 

randomly-placed cube-like armor units, the maximum α is αmax=arctan(2)1/2≈54.7º; thus, 0º≤α≤54.7º. If 11 

a specific armor unit has α=0º, one of its faces is parallel to the underlayer slope plane. 12 

[Insert Fig. 5 here] 13 

Using Monte Carlo numerical simulations, one million cubes were randomly oriented in the space to 14 

estimate the cumulative distribution function of α, F0(α) for pure randomly-oriented armor units. The 15 

10%, 50% and 90% percentiles of α ([α10]0, [α50]0 and [α90]0) were used to characterize F0(α). Given a 16 

group of randomly-placed armor units in the breakwater armor, the same three percentiles of α ([α10], 17 

[α50] and [α90]) were used to characterize the sample distribution function, F(α). Fig. 6 shows a scheme 18 

of the percentiles of the distribution function F0(α) and the sample distribution function F(α) used to 19 

calculate the first armor randomness index (ARI0) for one specific case of cube armor. If the armor units 20 

were randomly placed, F(α) would be similar to F0(α) and the ratios between corresponding percentiles 21 

would be [αm]/[αm]0≈1.0, for m=10, 50 and 90. The observations of the case represented in Fig. 6 suggest 22 

that the actual cube armor placement may differ significantly from pure random placement. 23 

[Insert Fig. 6 here] 24 

For cube and Cubipod armor units placed on the breakwater armor layer, the ARI0 is defined by Eq. 4 as 25 

the average of ratios, not higher than one, between percentiles {α10, α50, α90} of the sample distribution 26 

function, F(α), and the corresponding percentiles of the pure random distribution function, F0(α). If 27 

ARI0≈100%, the armor units are randomly placed in relation to the armor slope plane. If ARI0≈0%, all 28 

the armor units are placed with one face parallel to the armor slope plane. The lower the ARI0, the worse 29 

the armor randomness. The cube geometry and the use of pressure clamps favor units being positioned 30 

 10 



with one face parallel to the underlayer slope plane; therefore, in the case of cubes, ARI0 is expected to 1 

be significantly lower than ARI0=100%, depending on variables such as armor slope, armor porosity or 2 

placement technique. 3 
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To measure the armor unit randomness in relation to the first and second closest neighboring armor units, 5 

for each orthogonal face of the unit, the βi (i=1, 2 and 3) is defined as the minimum of the three angles 6 

between face i of one unit and the three orthogonal faces of the neighboring unit. The β between two 7 

armor units placed on the breakwater armor layer is defined as the average of βi of the three orthogonal 8 

faces of the unit, β=(β1+β2+β3)/3. For a randomly-placed armor unit, the maximum βi is 9 

arctan(2)1/2≈54.7º and the maximum β is 47.9º; therefore, 0º≤βi≤54.7º and 0º≤β≤47.9º. Fig. 7 shows an 10 

example β calculation between two neighboring cubes. 11 

[Insert Fig. 7 here] 12 

Using Monte Carlo numerical simulations, one million pairs of cubes were randomly oriented in the 13 

space to estimate the cumulative distribution function of β, F0(β) for randomly placed armor units. The 14 

10%, 50% and 90% percentiles of β ([β10], [β50] and [β90]) were used to characterize the distribution 15 

function of pure randomly placed armor units. Fig. 8 shows a scheme of the three percentiles of the 16 

distribution function F0(β) and the sample distribution function F(β) used to calculate the ARI1 for one 17 

specific case of cube armor. 18 

[Insert Fig. 8 here] 19 

After selecting a group of armor units placed on the breakwater armor layer, each unit was compared 20 

with the two closest units in the group; the closest one was used to calculate the ARI1, and the second 21 

closest unit was used to calculate the ARI2. The β was calculated for each pair of armor units in the group. 22 

ARI1 and ARI2 are defined by Eq. 5 as the average of ratios, not higher than one, between {β10, β50 and 23 

β90} percentiles of the sample distribution function F(β) and the corresponding percentiles of F0(β)). If 24 

ARI1≈ARI2≈ 100%, the armor units are pure randomly placed. If ARI1≈ARI2≈ 0%, all armor units have 25 

their three orthogonal faces parallel to each other in a perfectly ordered pattern. The lower the ARI1 and 26 

ARI2, the worse the armor randomness. The cube geometry tends to favor face-to-face arrangements; 27 

 11 



therefore, ARI1 and ARI2 are expected to be significantly lower than 100%, depending on variables such 1 

as armor slope, armor porosity or placement technique. 2 
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 4 

Placement Grids from Realistic 3D Small-Scale Placement Tests 5 

In small-scale models, the usual placement of armor units by hand is faster and much more flexible than 6 

placement with small-scale crawler cranes. At prototype scale, using a crawler crane with GPS 7 

positioning, the armor unit placement grid is the most critical tool to control armor porosity. The main 8 

objective of these realistic 3D placement tests was to define workable placement grids that provide the 9 

prescribed armor porosity used in small-scale hydraulic stability tests to minimize the corresponding 10 

model effects.  11 

 12 

A series of realistic 3D small-scale placement tests was carried out at the UPV wave basin (15.0m x 7.0m 13 

x 0.45m), equipped with a piston-type wavemaker, emulating prototype armor construction of cube and 14 

Cubipod armors. Both cubes and Cubipods are massive armor units usually handled with pressure clamps 15 

and placed with crawler cranes. These small-scale placement tests employed the methodology described 16 

by Medina et al. (2010) and Pardo et al. (2012). The placement tests were based on two different models 17 

corresponding to real prototypes: 18 

 19 

1)  Straight trunk. 1/100 scale model of the straight trunk in the Punta Langosteira breakwater (Port 20 

of A Coruña, Spain), armored with conventional 150 tonne (64 m3) cubic blocks (Burcharth et 21 

al., 2002). The breakwater armor is placed on a conventional double-layer 15-tonne cube filter, 22 

slope H/V=2.0. The placement of cube and Cubipod units was executed under moderated wave 23 

attack (prototype values Hs=1.5 m and 2.5 m; Tp=10 s and 12 s). Fig. 9 shows the 1/100 small-24 

scale crawler crane (LIEBHERR LR 11350) used in these tests. 25 

2)  Curved trunk and roundhead. 1/36 scale model of the San Andrés breakwater (Port of Málaga, 26 

Spain), armored with 6 tonne (2.55 m3) Cubipod units. The breakwater armor is placed on a 27 
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double-layer 1-tonne rock filter, slope H/V=2.0. The placement of the Cubipod units was 1 

executed without waves. 2 

 3 

The characteristics of the units used in the placement tests were the following: {Dn=4.00 cm, W=145 g, 4 

and ρr=2.26 g/cm3} for cubes and {Dn=3.82 cm, W=128 g, and ρr=2.29 g/cm3} for Cubipods. 5 

[Insert Fig. 9 here] 6 

Depending on the unit size, a conventional prototype crawler crane takes 4 to 15 minutes to place a cube 7 

or Cubipod unit on the armor using pressure clamps. In the realistic 3D placement tests, a small-scale 8 

crawler crane takes one to two minutes to place each unit on the armor; therefore, these tests are intensive 9 

and time-consuming compared to conventional placement by hand as done in most laboratory tests, 10 

which just take a few seconds per unit. To reduce the time required to build the models in the realistic 11 

3D small-scale placement tests, the cartesian blind placement system (CBPS), described in detail by 12 

Pardo et al. (2010), was used to estimate the minimum and maximum armor porosity which can be 13 

achieved in real construction. The CBPS is more realistic than the usual armor unit placement by hand 14 

in small-scale experiments, but the CBPS is not as realistic as armor unit placement with small-scale 15 

crawler cranes and pressure clamps similar to those used at prototype scale. The advantage of the CBPS 16 

is the reduction in the placement cycle time; it takes approximately 10 seconds per unit. Hence, as a rule-17 

of-thumb, placement by hand requires one second per unit; the CBPS requires 10 seconds per unit, and 18 

a small-scale crawler crane requires 100 seconds per unit.  19 

 20 

The minimum porosities when constructing by hand in the laboratory are p=0% and p=29% for cubes 21 

and Cubipods, respectively. By contrast, using pressure clamps and slings requires placement grids with 22 

a much higher porosity. If the target armor porosity is too small, it is not possible to place all the armor 23 

units in the desired position on the armor layer; if it is too large, armor units are subjected to excessive 24 

settlement after placement. The CBPS was employed for a preliminary estimation of the feasible porosity 25 

ranges for cube and Cubipod armor units. The placement quality of the CBPS was visually assessed after 26 

each test; acceptable and unacceptable armor layer placements were subjectively determined to calculate 27 

the acceptable porosity range for each armor unit. The workable armor porosities obtained with the CBPS 28 

were 37%<p<51% for cubes and 35%<p<45% for Cubipods. USACE (1984) recommends p=42% for 29 
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cubes; therefore, attention should be paid both to the armor porosity in small-scale models and the 1 

feasible porosity at prototype scale. 2 

 3 

Once the feasible armor porosity was known for cubes and Cubipods, realistic 3D placement tests were 4 

carried out. As stated earlier, the conventional and the progressive placement grids were tested using the 5 

Punta Langosteira trunk breakwater model. The placement grid for curved trunks and roundheads was 6 

tested using the San Andrés breakwater model. After each placement test, the armor porosity was 7 

estimated by counting the units in a given area, A. The sampling porosity was calculated by counting the 8 

units whose centers of gravity were placed within the sampling area, p=1-[(NaDn
2)/A], where Na is the 9 

number of units within the sampling area, Dn is the nominal diameter, and A is the sampling area. To 10 

reduce the boundary error, the sampling area was displaced ten Dn/5 intervals horizontally and along the 11 

slope; armor porosity was then estimated as the average value of the 21 sampling values. 12 

 13 

For the double-layer Cubipod armor in a straight trunk, the progressive grid {a/Dn=1.61, b/Dn=1.05 and 14 

Δb/b=1.0%} obtained an average porosity p=41.3%, close to the target porosity p=42%. For the double-15 

layer cube armor in a straight trunk, the conventional placement grid {a/Dn=1.44 and b/Dn=1.06} gave 16 

an average porosity p=36.9%, close to the target porosity p=37%. 17 

 18 

For the double-layer Cubipod armor in the curved trunk (R1/Dn =109), the placement grid {a1/Dn=1.61 19 

and b/Dn=1.05} obtained an average armor porosity p=42.0%. For the roundhead (R1.1/Dn =19), the 20 

placement grid {am.1/Dn=1.61 , b/Dn=1.05, and M=4 with amin/Dn=1.34} gave an average porosity 21 

p=45.4%. 22 

 23 

Armor Randomness Measurement 24 

To measure armor randomness, cube and Cubipod armor units were characterized by the position of their 25 

centers of gravity and their three orthogonal vectors, associated with the three orthogonal planes of 26 

symmetry. After each placement test, a short-range high-precision (0.1mm error) laser scanner, similar 27 

to terrestrial LIDAR survey, was used to scan small-scale cube and Cubipod armors. Fig. 10 shows 28 

images from the laser scanning process and a screen view of the raw data. 29 
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[Insert Fig. 10 here] 1 

The raw data were processed to determine the position and the orientation of each armor unit; ARIs were 2 

calculated to measure the armor randomness. The average ARIs and the coefficient of variation (CV) 3 

values for the straight trunk were: (1) ARI0=67% (CV=17.9%), ARI1=60% (CV=15.7%) and ARI2=70% 4 

(CV=11.5%) for cube armors, and (2) ARI0=93% (CV=7.5%), ARI1=74% (CV=14.5%) and ARI2=82% 5 

(CV=12.9%) for Cubipod armors. Comparing cubes and Cubipods randomly placed using a crawler crane 6 

and pressure clamps, Cubipods show significant-ly higher randomness. The CV values for ARI0 indicate 7 

that Cubipod armor randomness is more homogeneous than cube armor in regard to the underlayer plane. 8 

On average, ARI1<ARI2, which further indicates that proximity affects armor unit randomness; the 3D 9 

orientation of a specific armor unit has a greater effect on the 3D orientation of the closest armor units in 10 

the armor layer.  11 

 12 

Discussion 13 

Model effects caused by differences between prototype and small-scale models can lead to significant 14 

differences in terms of structural response. For cube armor, uncontrolled armor unit randomness, as well 15 

as differences between design and prototype armor porosity, may alter the hydraulic stability, run-up, 16 

overtopping rates and forces on the crown wall. In general, insufficient attention is given to armor 17 

porosity and armor unit randomness in prototype and in small-scale model tests for armors with 18 

randomly-placed units. 19 

Armor unit randomness and armor porosity are relatively easy to control in laboratory small-scale 20 

models, constructed by hand, with complete views in ideal conditions. However, they are difficult to 21 

control at prototype scale, with crane placement, waves and poor underwater viewing conditions. 22 

Different engineering manuals recommend a specific nominal armor porosity for each armor unit 23 

associated to a given layer coefficient, kΔ; different criteria used to define the layer coefficient has lead 24 

to misunderstandings. To avoid confusion, packing density φ  and armor porosity p=(1-φ /n) 25 

corresponding to a layer coefficient of kΔ=1.00 are recommended for randomly placed armor units; layer 26 

thickness is one or two times the equivalent cube size for single-layer or double-layer armors, 27 

respectively. 28 

 29 
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The realistic 3D small-scale placement tests allow us to determine the placement grids and feasible 1 

porosities with which the armor units can be placed on the slope. Placement grids for straight and curved 2 

trunks as well as roundheads should be carefully designed to avoid weak points in the armor that 3 

jeopardize the integrity of the structure. The toe berm and the placement of the first row of armor units 4 

in the armor require special care, particularly in the case of single-layer armors. The minimum feasible 5 

armor porosity in the trunk is p=37% for cubes and p=35% for Cubipods. Placement diamond grids 6 

adapted for curved trunks and roundheads increase the minimum feasible armor porosities. Armor 7 

porosity depends to the placement grid and size of the bottom layer; in double-layer armor, armor porosity 8 

is higher in the upper layer.  9 

 10 

Short-range high-precision laser scanning proved to be valuable to estimate armor unit positioning and 11 

to assess armor randomness. Similar to terrestrial LIDAR, which may be used at prototype scale, laser 12 

scanning of small-scale armor models may be routinely used to measure the armor for placement or 13 

hydraulic stability tests. The results obtained in this study proved cubes are more likely to reduce armor 14 

randomness than Cubipods. 15 

  16 

Conclusions 17 

The construction by hand of small-scale armor models in laboratory is very efficient; however, small-18 

scale models should emulate prototype placement to reduce model effects. Both armor porosity and 19 

armor randomness must be controlled and characterized for small-scale physical models and prototypes. 20 

In this study, placement grids for cubes and Cubipods, randomly placed using a small-scale crawler crane 21 

and pressure clamps, were tested in the laboratory. Cube and Cubipod placement grids were obtained for 22 

double-layer armor, H/V=2.0 slope, in straight and curved trunks and in roundheads. Double-layer cube 23 

armors were only tested in the straight trunk, while double-layer Cubipod armors were tested in the 24 

straight trunk, curved trunk (maximum radius R1/Dn =109) and roundhead (maximum radius R1.1/Dn =19). 25 

Armor porosity in the trunk was found to be not feasible below 37% for cubes and 35% for Cubipods; 26 

placement grids were obtained for feasible armor porosities, considering row settlement during 27 

construction as well. These minimum feasible armor porosities were higher for curved trunks and 28 

roundheads. 29 
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 1 

Armor units can be placed in straight trunks using a homogeneous placement grid; by contrast, curved 2 

trunks and roundheads require different placement annulus with non-homogeneous placement grids. 3 

Using similar placement grid parameters, the armor porosity of roundheads is higher than that of straight 4 

trunks, and the armor porosity of the bottom armor layer is lower than that of the upper layer. There are 5 

several parameters affecting the placement (slope, radius, armor unit, b/Dn, a/Dn, Δb/Dn, etc.), but only 6 

a limited number of combinations were tested. Therefore, more research is needed to properly optimize 7 

the design of the placement grids for general cases.  8 

 9 

A short-range high-precision laser scanner, similar to terrestrial LIDAR survey, was used in this study to 10 

assess the randomness of cube and Cubipod armors. The comparison of armor randomness indexes 11 

revealed that cube armor was significantly less random than Cubipod armor. 12 
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