
Design, Implementation and Analysis of Router Architectures and Network
Topologies for FPGA-Based Multicore Systems

Author:

Boldbaatar Juvaa

Advisor:

José Flich Cardo

A thesis submitted in partial satisfaction of the

requirements for the degree of

Master of Science

in

Computer Engineering

September 2015

1

Abstract

Design, Implementation and Analysis of Router Architectures and Network Topologies for
FPGA-Based Multicore Systems

by

Boldbaatar Juvaa

Master of Science in Computer Engineering

Universitat Politècnica de València

This work involves the design, implementation and analysis of different 2D mesh-based
network topologies for the Partitioned-Enabled Architecture for Kilocore Processors (PEAK)
architecture. PEAK is a fully scalable architecture, implemented on an FPGA device, which
uses advanced partitioning methods and coherence protocols to efficiently handle many core
systems. In this work we implement several network topologies for the PEAK architecture
and their associated routers.

Nowadays, manycore systems are rapidly evolving. In these systems, the network on-
chip (NoC) is one of the defining components which influences performance. The NoC
design relies on several structures and functions including the topology used and how data
is routed on it. PEAK currently uses a 2D mesh topology with straightforward XY and
LBDR routing approaches. It is obvious that if more efficient topologies are implemented,
system performance will increase. Therefore several topologies and their satisfying router
architectures need to be implemented and analyzed to evaluate their impact on system
performance. Design, simulation, synthesis and implementation processes in this work are
performed in Verilog by using Xilinx Vivado Suite software. For the validation in FPGA, an
advanced multi-FPGA Prodesign board is targeted. Overheads in terms of FPGA resources
are provided, together with initial performance analysis. The evaluation leads clustered
topologies to become a good selection when trading performance and overheads for PEAK.

i

Contents

Contents i

List of Figures ii

List of Tables iv

1 Introduction 1
1.1 Partitioned-Enabled Architecture for Kilocore Processors 2
1.2 Structure of the Thesis . 2

2 Background and Manycore Examples 4
2.1 Some Fundamental Concepts of NoCs . 4
2.2 TSAR Project . 9
2.3 Kalray . 11
2.4 Intel Phi . 12
2.5 Tilera . 14
2.6 Conclusion . 16

3 Methodology 17
3.1 PEAK Architecture . 17
3.2 PEAK Modules . 20
3.3 Hardware Description Language: Verilog . 26
3.4 Vivado Design Suite . 26

4 Topology Implementation and Evaluation 29
4.1 New Topologies for PEAK . 29
4.2 Performance and Implementation Results . 39

5 Conclusion 49

Bibliography 51

ii

List of Figures

2.1 Three versions of k-ary n-cube topologies . 5
2.2 4-ary 2-cube mesh with b=4. Boxes represent routers and circles represent nodes. 6
2.3 Examples of indirect topologies. Boxes represent routers and circles represent

nodes. 6
2.4 TSAR architecture overview (Image source: [8]) 10
2.5 Kalray’s MPPA architecture overview (Image source: [9]) 12
2.6 Intel Phi architecture overview (Image source: [13]) 13
2.7 Tilera tile based architecture overview (Image source: [15]) 15

3.1 PEAK general architecture overview. 18
3.2 Core architecture. 19
3.3 PEAK router architecture. Router’s main components are the Ibuffer (buffer),

Routing, SA (arbiter) and XOP (output). 20
3.4 PEAK module hierarchy. 20
3.5 Structure of module tile with associated ports. 21
3.6 Code part shows basic routing logic. 22
3.7 Flow diagram of module Routing. 22
3.8 Code part of arbiter logic. 23
3.9 Flow diagram of module arbiter. 24
3.10 Module output . 25
3.11 Screenshot of Xilinx Vivado Suite. 27
3.12 Vivado Suite during simulation. 28

4.1 Circular requests create deadlock condition when using diagonal links 30
4.2 Implemented NoC Topologies, each has 32 cores 31
4.3 Router architecture for DMESH . 33
4.4 Previous and DMESH arbiter . 34
4.5 Router module interface of DMESH . 35
4.6 Routing algorithm for EMESH . 36
4.7 Routing algorithm for CMESH . 37
4.8 Structures of current tile and ctile . 38
4.9 Routing algorithm for FBFLY . 40

iii

4.10 Switch components overheads for the different topologies to be supported. . . . 41
4.11 Switch overheads for the different topologies to be supported. 42
4.12 Port overheads for the different topologies to be supported. 42
4.13 Tile overheads for the different topologies to be supported. 43
4.14 Overhead of top modules . 44
4.15 Calculation time . 47
4.16 Total flits crossed in percentages. 48

iv

List of Tables

2.1 Bisection of direct and indirect topologies for 64 nodes, measured as the number
of bidirectional links crossing the bisection. 7

2.2 Comparison of architectures based on NoC features 16

4.1 Total flits crossed over all routers. Depending on the topology, some ports are
empty valued which means not attached. 48

v

Acknowledgments

I would like to thank my advisor Dr J.Flich for the limitless support, guidance and ad-
vises that he has given to me.

I want to thank to rest of the GAP PEAK team members and lab colleagues at UPV for
all of their kindness, help and support. Especially, many thanks to Jose Martinez and Rafael.

Special thanks to Carlos Calafate who was always available for me when I need assistance.

I would like to thank my wife who always encourages me and helps me, and my beautiful
two daughters, for their patience while I completed this thesis. Finally, I want to thank to
my parents for supported and motivated me.

1

Chapter 1

Introduction

Performance of traditional single core systems is limited by the clock frequency. Thermal
problems like heating and power dissipation (the power wall problem) prevent engineers from
increasing the clock frequency. At the same time, the increasing capacity in the number of
transistors in emerging chip technologies, which follows the Moore’s law [1], allows to benefit
from the concept of putting multiple cores (but simpler ones) in one chip. Many slower cores
show a better performance/power relationship than a monolithic single high-performant
core. Although putting more cores in a single die is possible, it needs to be done taking into
account new challenges so to achieve an efficient architecture. Several challenges are: (1) to
keep consistency between all cores, (2) to achieve reliable interconnection between cores, and
(3) to take full benefit from all cores when running applications. If technology continues to
shrink, future systems will use more and more cores, thus demonstrating we effectively are
in the manycore era.

At the time when microprocessors were composed of very few units building a single
core, interconnection inside the chip was not a major concern and, thus, an issue worth not
to consider. Mainly, a bus or several buses were used to provide the required connectivity
between units inside the chip. When multicores emerge and more cores are added, a common
bus is not longer a satisfying communication method. The reason is that tens of cores inter-
connected by a single bus easily lead the bus to become the bottleneck. Thus, increasing the
number of cores in manycore chips requires more than a bus structure. That requirement
pushes the Network on Chip (NoC) concept to become one of the most important issues
in chip design. The NoC concept and its technology covers the fully functioning communi-
cation infrastructure for the chip with its own characterized concepts and techniques such
as topologies, routing algorithms and switching techniques. The NoC research field is still
growing as there is a need to develop more and more efficient and adapted networks.

This thesis deals with the implementation and analysis of NoCs for manycore systems.
Well-known topologies are analyzed and adapted to an emulated manycore system, leading to
new router models and routing algorithms, and ultimately leading to the unavoidable trade
off between performance and cost. This thesis develops on top of the PEAK architecture,
which is briefly introduced next.

CHAPTER 1. INTRODUCTION 2

1.1 Partitioned-Enabled Architecture for Kilocore

Processors

The never satisfying demand of high performance computing in many industrial sectors such
as space, avionics, car industry and many different research fields, requires highly efficient
and powerful solutions. Partitioned-Enabled Architecture for Kilocore Processors (PEAK)
has been recently proposed at UPV to address manycore architectures dealing with the
demand of high performance computing by implementing a novel approach for NoCs.

PEAK is a manycore architecture designed for general purpose computing. It follows a
tile-based approach which makes design easier and allows greater flexibility. The architecture
has the ability to put some of its resources to sleep in order to save power and wake them
up to get back on work when needed. That ability makes PEAK a candidate architecture
addressing capacity computing where the target is to run as many small applications as
possible. In order to achieve this, it enables partitioning methods for the NoC and the
cache hierarchy. The current NoC in PEAK implements a 2D mesh topology. This topology
enables connectivity between all the cores and has a low overhead impact when implemented.
However, more advanced topologies may be designed for PEAK. This is the target in this
thesis.

PEAK has several major components and significant properties. One important compo-
nent is its partitioning capability which enables scalability of the architecture for efficiency
and performance. The partitioning process reserves resources as groups and assigns them to
every task or application. Another component is the coherence protocol. This protocol is
responsible to guarantee every data shared between cores is kept coherent among all cores.
Especially, manycore architectures have caches to store data which means the same data
can be replicated at several places at the same time. The coherence protocol enables the
simplified shared memory programming model.

Another key property of PEAK is its exposure to the software layer. Indeed, PEAK
defines a lot of configurable registers and a protocol to access them. By doing this, the PEAK
architecture can be fully exploited by an appropriate resource manager. PEAK has been
coded in a hardware description language (HDL) and ported to a multi-FPGA prototyping
system. This means the manycore system is emulated and not simulated. Anyway, the tools
used to code the architecture allow behavioral simulations to be performed before going to
emulation. In this thesis we take advantage of that previous step in order to analyze our
implementations.

1.2 Structure of the Thesis

The document is structured as follows, after this introduction to PEAK architecture and
motivation of this thesis, Chapter 2 starts with brief descriptions of some fundamental con-
cepts of NoCs. This allows to a better understanding of the contributions of this thesis.
Then, it follows the literature overview including four well-known examples of manycore

CHAPTER 1. INTRODUCTION 3

architectures. Chapter 3 describes PEAK in greater detail as well the tools and program-
ming models used in this thesis. Then, in Chapter 4 we introduce and describe the different
topologies analyzed and implemented, together with their associated routing algorithms. We
show results also in Chapter 4. Finally, we conclude in Chapter 5 with some conclusions and
future work.

4

Chapter 2

Interconnection Network Background
and Manycore Examples

In this chapter we provide an introduction to basic concepts of interconnection networks,
focusing on NoCs. Then, we describe some exemplary cases of real manycore systems,
focusing on the interconnect they implement. We will focus on real products from Kalray,
Intel and Tilera. We will also include a recent research project which defines an architecture
similar to PEAK.

2.1 Some Fundamental Concepts of NoCs

Network on Chip defines how modules such as cores, registers and caches are connected
and managed to transfer data over the chip. As technology advances, rapid growth of
multiprocessor designs become a reality, and thus, demanding more sophisticated networks to
achieve better performance and productivity. That demand makes NoCs a rapid developing
field. Since NoC is a network, it has a topology, routing methods, flow control mechanisms
and so on. In this section we introduce some basics of NoCs paying more attention to the
topics that are more related to our work (namely topology and routing).

Topologies

Topology is a way to define which components or units are physically connected to each
other. Before the NoC concept emerged many topologies were proposed for massively parallel
processors. Many of those topologies have been proposed for the NoC environment, although
few of them are suitable. Roughly speaking, topologies can be divided in two categories:
direct and indirect topologies (hybrid systems mixing both also exist).

In direct topologies each node has a router to connect to others. The node, indeed, has
embedded the router and has a direct and private link to reach the router. Routers, then
connect between them providing shared paths between nodes. The term direct refers to the

CHAPTER 2. BACKGROUND AND MANYCORE EXAMPLES 5

(a) 4-ary 2-cube mesh (b) 4-ary 2-cube torus (c) 2-ary 4-cube hypercube

Figure 2.1: Three versions of k-ary n-cube topologies

fact that the node is directly connected to the router (they are tightly coupled). The most
famous direct topology is the k-ary n-cube, where all the routers (and nodes) are structured
in an n-dimensional field and each dimension has k routers. Therefore, the number of routers
is kn. Each pair of neighbor routers in each dimension is connected by an exclusive link.
Each link is usually bidirectional. Figure 2.1 shows three versions of k-ary n-cubes, such
as the mesh, torus, and hypercube [2]. In the torus network routers at the end of each
dimension are connected with an added link, thus forming rings. In mesh variation those
links do not exist. In hypercubes the number of routers per dimension is kept to 2. Therefore,
dimensionality grows rapidly as network size is increased.

An important aspect of those topologies for NoCs is the fact that when implemented on
top of a die the links showing larger lengths tend to introduce more complexity in the design
and lead to poorer results. This means a simpler topology like the mesh version may perform
better once implemented than the torus or hypercube versions (although those topologies
exhibit better throughput and message latency numbers in principle). Another important
aspect in those topologies is the bristling factor (b). It defines the number of nodes attached
to a router. Indeed, in the previous examples, b was assumed to have a value of one. When
the b value increases, the relative cost of the network (when compared with the overall system
cost) decreases. However, performance of the network may suffer as the network has lower
capacity. However, this only points the need to evaluate the trade off between performance
and cost of such alternative designs. Figure 2.2 shows the case of a 4-ary 2-cube mesh with
b=4. Thus, 64 nodes are connected through a network of 16 routers. The number of nodes
in a k-ary n-cube with b factor is kn × b. This alternative design is appealing for NoCs and
is being exploited by some current products (as we will see). We will exploit also this aspect
in our designs.

In addition, in the literature we can find variations of k-ary n-cubes where extra links
are added in order to provide more connectivity and performance. We will explore such
topologies in Chapter 4.

In indirect topologies nodes are connected to routers but not all the routers have nodes
attached to them. Therefore, routers and nodes are decoupled and used separately. The
term indirect refers to the fact that nodes need to use an external router to communicate.

CHAPTER 2. BACKGROUND AND MANYCORE EXAMPLES 6

Figure 2.2: 4-ary 2-cube mesh with b=4. Boxes represent routers and circles represent nodes.

(a) Crossbar

(b) Fat Tree

Figure 2.3: Examples of indirect topologies. Boxes represent routers and circles represent
nodes.

Two clear examples of such topologies are the crossbar and the fat-tree network (see Figure
2.3). A crossbar allows N nodes to communicate with N nodes allowing all possible direct
connections. Indeed, is built as a matrix of switches where each switch communicates in
a pair of nodes. This full connectivity allows maximum performance but does not scale
with system size. Thus, a tradeoff topology is the multistage network (fat tree is a variant)
where smaller crossbar routers are used and more than one is needed to allow two nodes to
communicate. Indirect topologies are rarely considered for NoCs as they are too complex
when mapped on a die.

Comparing direct topologies with indirect topologies, indirect ones show higher bisection

CHAPTER 2. BACKGROUND AND MANYCORE EXAMPLES 7

Table 2.1: Bisection of direct and indirect topologies for 64 nodes, measured as the number
of bidirectional links crossing the bisection.

2D mesh 2D torus FatTree Crossbar
Bisection Bandwidth 8 16 32 32

bandwidth. Bisection bandwidth is the bandwidth achieved at the smallest section that splits
the network in two equal halves. In fat-trees the network achieves full bisection bandwidth in
the sense the network does not behave as a bottleneck. Direct topologies are more appealing
for NoCs, but with lower dimensionality (i.e. n=2). Indeed, in direct topologies nodes are
spread over the chip and closely located to the attached router. Links are also homogeneous
and have the same length. Contrary to this, in indirect topologies nodes are located on the
periphery of the NoC and thus require longer links. Table 2.1 shows bisection (measured in
number of bidirectional links crossing the bisection) of several direct and indirect topologies.

Switching

Once the network is structured by its topology, switching plays an important role as it
instructs how data travels from source to destination. Switching techniques are implemented
by using resources in the router in a coordinated and structured way. Although many designs
exist, two became most widely adopted in interconnection networks for high-performance
systems. Those have been also adopted for NoCs. We can mainly identify wormhole [3] and
virtual cut-through [3] switching techniques.

Wormhole

Data or messages transferring through NoCs are divided into packets. Packets are then
divided into flits - the smallest flow-controllable unit of data. Because wormhole (WH)
switching takes into account flits, small sized buffers that can store only a few flits are
implemented at routers thus saving resources. But nodes can still send very large mes-
sages. Thus, wormhole switching reserves the whole path for the message until its tail passes
through. Only the header flit contains destination information and the remaining flits just
follow their header so the flow is completely sequential. The routers must forward flits when
the downstream router has free space to store a flit and even before the complete message
arrives to the router. Because of path reservation, large contentions may occur in the net-
work. Indeed, this is the main drawback of wormhole switching. To reduce such contention,
virtual channels can be used.

CHAPTER 2. BACKGROUND AND MANYCORE EXAMPLES 8

Virtual Cut-Through

In Virtual Cut-Through (VCT) switching, flow control is applied at packet granularity in-
stead of flit granularity. Thus, routers need to have large buffers to store complete pack-
ets. Flits, however, are forwarded downstream without waiting for the whole packet being
buffered in the current router. Because of the use of large buffers, contention of the network
is smaller, as compared to WH, thus exhibiting better performance.

Flow Control

Once the switching techniques are set in the applied topology, the flow control mechanism
manages resources of every connected two devices (routers or nodes) in order to make suc-
cessful data transmission and avoiding buffer overruns. Its main purpose is to avoid data
loss caused by buffer overflow and to use resources as efficient as possible. We can, basically,
identify two strategies: stop&go [4] and credits [5].

Stop&Go

Every buffer has two thresholds: one for stop and another for go. An status bit is used at the
upstream router to keep the status of the flow. If the stop threshold is reached the router
will send a stop signal to the upstream router to stop transmission. When the buffer reaches
to go threshold it will send the go signal to start transmission again. An important aspect
is when the receiver node sends the stop signal, as the sender router may still send flits until
it receives the stop signal. Indeed, flits will be droped if the receiver router can not provide
enough storage. To avoid this situation, stop and go thresholds need to be set based on the
round trip latency of the link.

Credits

With credits the sender router receives credits from the downstream router. Whenever a
credit is freed, the router sends back the credit to the upstream router. So, the number of
credits is equal to the number of flits that the sender router can send to or the number of
flits that the receiver router can store. Once the sender sends a flit it decrements its credit
counter by one. The counter is incremented when a credit comes from the downstream
router.

Routing

Finally, we have network structures connected by the topology. Depending on which topology
is used nodes have multiple paths to send data. This leads to the need to define routing.
Routing makes decisions that result from an algorithm to select a path (as short as possible)
to send data from a source to a destination. Usually, the routing method completely depends
on the topology that is used.

CHAPTER 2. BACKGROUND AND MANYCORE EXAMPLES 9

Even though routing can be flexible in deciding the paths, there are some paths that
are not available or suitable in order to avoid the following difficult situations. The livelock
problem is a sort of a milestone in networking, when packets always move but never reach
their destinations. Another situation is named deadlock, and occurs when several packets
wait for each other holding resources forever. The routing algorithm can prevent both
livelock and deadlock situations. Routing algorithms can be also categorized. For example,
if the routing algorithm always selects the same path for each source-destination pair, the
algorithm is called deterministic. One of the well known deterministic routing algorithms for
k-ary n-cubes is Dimension-order routing (DOR) which is safe from deadlock and livelock
situations. On the counterpart there are adaptive routing algorithms which may provide
more than one different path for each source-destination pair.

DOR is used in k-ary n-cube topologies and is based on using links in an ordered way,
thus avoiding deadlock conditions. Indeed, each dimension is crossed in an ordered way
and following shortest paths. For example, in a 4-ary 2-cube mesh network, dimension X
is crossed and once the message reaches the column of the destination node, the message is
sent through the Y dimension, following minimal path. Notice that DOR can not be used
in torus networks without other provisions to avoid deadlock. This is because physical rings
exist in torus networks along the same dimension, and combination of messages could lead
also to deadlocks. Virtual channels or more advanced flow control strategies (like the bubble
flow control [6]) can be used. However, this means more resources and, thus, being more
complex topologies at the end.

In this thesis we will use DOR routing and will propose variations when applied to
alternative topologies (derived also from the mesh topology). We will not assume adaptive
routing algorithm as they may introduce out of order delivery, which is not compatible with
the coherence protocols implemented in PEAK.

Next we describe some real products and projects which use NoCs. This will allow us to
put our work in perspective.

2.2 TSAR Project

TSAR (Tera Scale Architecture) [7] is a European funded project which aims to develop
a coherent, scalable, manycore architecture reaching up to 4096 cores. TSAR uses a MIPS
32-bit processor and the DSPIN (Distributed, Scalable, Predictable, Interconnect Network)
[7] NoC. The DSPIN network has a 5-port router and is based on regular 2D mesh topology
with wormhole switching.

The main considered issue in TSAR is scalability, as this architecture is intended to
integrate up to 4096 cores (even if the first prototype will contain only 128 cores). The
second issue is power consumption, and all other technical solutions implemented in this
project are driven by these two important issues.

CHAPTER 2. BACKGROUND AND MANYCORE EXAMPLES 10

Figure 2.4: TSAR architecture overview (Image source: [8])

Architecture Overview

TSAR uses a simple 32-bit processor core with a single instruction issue RISC without any
of the followings: superscalar features, out of order execution, branch prediction, speculative
execution. TSAR is composed as a clustered architecture. Every cluster consists of up to 4
cores each with its own L1 cache.

Because of the scalability target, TSAR implements a logically shared but physically dis-
tributed memory based on NUMA (Non Uniform Memory Access) architecture where every
processor can access every memory bank, but the access time, and the power consumption
depends on the distance between the processor and the memory bank.

The TSAR project also implements the DHCCP protocol (Distributed Hybrid Cache
Coherence Protocol) to maintain consistency for data between main memory and caches.
The TSAR architecture is depicted in Figure 2.4.

Network On-Chip Approach

Generally two categories of interconnection networks are used in TSAR system: local inter-
connection network between units inside each cluster, and global interconnection network
responsible for the communication between clusters.

Depending on the different purposes TSAR has three networks implemented: data read
and write (Dnetwork); transfer coherence protocol information (Cnetwork); and external
memory access in case of a miss on the memory cache (Xnetwork). The DSPIN network

CHAPTER 2. BACKGROUND AND MANYCORE EXAMPLES 11

on chip (developed by the LIP6 laboratory) implements the Dnetwork and the Cnetwork.
It implements a 2D mesh topology, and provides scalable bandwidth to the shared memory
TSAR architecture [7]. It provides two fully separated virtual channels for the direct
traffic and for the coherence traffic. For the D and C network the local interconnection uses
a crossbar or a ring topology and the global interconnection is structured by a 2D mesh
topology.

The Xnetwork between the memory cache and the external memory controller is imple-
mented by a physically separated network using a 3D mesh topology. As we will see, the
TSAR architecture is very similar to the current PEAK architecture. Indeed, the 2D mesh
and DOR algorithm are used in both architectures. However, bristling with factor 4 is used
in TSAR. We will adapt in our work the bristling factor to PEAK in this thesis.

2.3 Kalray

Kalray is a leading industrial player in chip industry which commercializes the Multi-Purpose
Processor Array (MPPA) manycore technology. Kalray started in 2008 in Paris (France).
Their first ever produced mainstream product is MPPA 256 integrated manycore processor
composed of 16 clusters which have 16 cores on each cluster and connected by full duplex links
using 2D torus topology. The core used in MPPA is a 32-bit VLIW (very long instruction
word) processor.

With advancements of their MPPA processor architecture design, Kalray produces accel-
erators or coprocessors. The Kalray accelerator consists of 4 MPPA processors with 2 DDR3
memories for each processor all connected in the same daughterboard.

Architecture Overview

The MPPA processor chip integrates 16 compute clusters and 4 Input/Output subsystem
controllers for managing Input/Output devices. Each Input/Output subsystem consists
of SMP quadcore with a shared D-cache memory and DDR controller for accessing up to
64GB of external DDR3-1600 memory. The 16 compute clusters and the 4 Input/Output
subsystems are connected by two NoCs with bidirectional links, one for data transfers (D-
NoC), and the other for control information transfers (C-NoC). In the MPPA architecture
the cluster is a basic unit. Each cluster contains 16 cores for processing purposes, one
management core, shared memory and direct memory access unit. The total size of the
shared memory is 2MB but it is organized as a 16 separate bank whose size is 128KB each.
Figure 2.5 shows Kalray’s MPPA architecture.

The MPPA processor is a 32 VLIW core with 7 stage pipeline. The core supports idle
modes and wake on interrupt for energy savings. The core includes the main units such as
arithmetic and logic unit, multiply and floating point units, load/store units, branch and
controlling unit and registers.

CHAPTER 2. BACKGROUND AND MANYCORE EXAMPLES 12

Figure 2.5: Kalray’s MPPA architecture overview (Image source: [9])

NoCs implement a 2D torus topology. The network of MPPA 256 uses credit-based flow
control and wormhole switching where the header flit contains all the routing information
and other flits are all payloads. MPPA 256 has fully configurable Quality of Service (Qos)
which provides bandwidth allocation in network environment. Also QoS plays big role in
avoiding deadlock, by ensuring buffers never get filled at routers.

Processors on the accelerator board are connected by a network named NocX which refers
to NoC extended version. NocX provides bandwidth of 40 Gb/s connection for multiple
MPPA processors on the same board. Also, NocX allows to connect the MPPA processor or
Kalray accelerator to external FPGA boards.

2.4 Intel Phi

Intel Xeon Phi is the first product based on Intel’s MIC (Many Integrated Core) architecture
[10]MIC can be seen as a symmetric multiprocessor architecture.

According to top 500 supercomputer list of June 2015 [11] Intel Xeon Phi was used in
Tianhe-2 (MilkyWay-2) [12], the world’s fastest supercomputer.

Intel has launched several production models for coprocessor, each with Xeon Phi proces-
sor and PCI bus to connect the host from a computer. The main component is the processor
which consists of up to 61 Xeon Phi cores connected by a bidirectional ring network, up
to 8 memory controllers that support GDDR5 and second generation PCI express system
interface that supports up to 256-byte packet transmission. GDDR5 is a special type of
DRAM that supports higher bandwidth. Every core includes 512-bit wide Vector Processor
Unit (VPU) with Extended Math Unit (EMU).

Coprocessors have different system specifications varying on models. But generally its

CHAPTER 2. BACKGROUND AND MANYCORE EXAMPLES 13

Figure 2.6: Intel Phi architecture overview (Image source: [13])

components are the processor, memory, PCI express interface. Depending on the cooling
method coprocessors can be categorized into 2 categories named passive cooling and active
cooling. Passive cooling coprocessor is dedicated to use in a supercomputing cluster or data
center and active cooling coprocessor is suitable for desktop-like environments. Nowadays,
Intel is offering three different coprocessor models: 3100 series has 57 cores, 5100 series has
60 cores and 7100 series has 61 cores.

Architecture Overview

Intel Xeon Phi processor is composed with computational section and input-output section.
High speed bidirectional on-chip network with ring topology supports connection to all the
cores, memory controllers and PCI express system input-output logics. The On-chip network
implements shortest path algorithm to route in a ring. Each core has 512 kB second level
cache. Phi has coherent management which keeps data consistent over the caches, named Tag
Directory (TD) distributed mechanism. Figure 2.6 shows the Intel Phi processor architecture
design.

Actually, the ring is a simple topology, where the cores connect with one another through
one or multiple hops in both directions [14]. Intel Phi has three pairs of independent ring
networks traveling in opposite directions (bidirectional). First pair, we may call it data
ring is 64 bytes wide and dedicated to transfer data between the cores. Another pair is the
address ring which is responsible for carrying addresses and read/write commands. The last

CHAPTER 2. BACKGROUND AND MANYCORE EXAMPLES 14

pair of rings carries flow control and coherence messages, named acknowledgement ring. The
ring topology (1-ary k-cube torus) has different properties: (1) its average number of hops
is N/4 where N is the number of cores, (2), as the number of cores in the ring increases, the
number of hops increases and so message’s latency, (3) bottleneck can easily appear as the
load increases in the ring, and (4) any link failure will lead to whole network to fail.

The ring uses shortest path algorithm to route the message. Once a message is on the
ring there is no queuing or any turns so the message just needs to continue deterministically
until it reaches its destination.

2.5 Tilera

Tilera, a tile-based processor architecture firstly launched in 2007 is nowadays owned by
EZChip semiconductor company. First product was named Tile64 [15] which has 64 cores.
Now they offer several products from processor TileGx9 with 9 cores to TileGx72 which
contains 72 cores. Tilera is focused on high performance computing, digital media and cloud
computing. Tilera equipped with NoC named Imesh which provides 5 way communication
for each tile with static network support. Its coherent cache subsystem provides memory con-
sistency and multicore scalability technology enables to use one or more cores as a processing
group.

Architecture Overview

Here we describe the most well-known architecture from Tilera: its Tile64 architecture with
64 cores. Homogeneous tile (called full featured processor core) is composed of processor
engine, cache engine and switch engine. One tile is capable of running an operating system.

The processor engine consists of a fetch unit, instruction decoder unit, issue logic unit,
and general purpose and special purpose registers. Processor is 32-bit VLIW processor
architecture with 3 execution pipelines to perform following operations: arithmetic and
logical, bit manipulations, select operations, register reads/writes, memory maintenance
operations, flow control and load/store.

The cache engine is responsible for caching of the instructions and data and also provides
memory address translation. Cache subsystem consists of simple organization of dynam-
ically distributed cache such as shared L2 cache. But depending on the Tilera processor
model every cache organization is different. For example, model TILE64 has 8KB level 1
cache, TILE64pro provides 16KB level 1 cache. The switch engine is responsible for network
communication to each tile. Switch engine contains multiple dynamic networks and a sin-
gle static network. If tile is located just adjacent to the I/O device, switch engine directly
connects to I/O device. Figure 2.7 shows Tilera many core architecture.

CHAPTER 2. BACKGROUND AND MANYCORE EXAMPLES 15

Figure 2.7: Tilera tile based architecture overview (Image source: [15])

Network On-Chip

Tilera’s NoC, the Imesh is composed of multiple two-dimensional mesh networks to provide
communication between tiles and I/O devices. Those networks dedicated to flow traffics
like Memory System traffic, Cache System traffic, I/O traffic and software-based messages.
The Imesh networks can be classified into two groups: Memory Networks and Messaging
Networks. Memory Networks are responsible for handle all memory traffic such as cache
misses, DDR2 requests, and so on. And Messaging Networks allow software to have control
of the network and manually send messages between tiles and I/O devices. In additionally,
Imesh has support of fully configurable static network. Instead of writing destination in
flit header, routing is performed by value of special purpose register in every intermediate
routers when static network is used.

The Imesh network implements a dimension-ordered routing policy. It uses XY rout-
ing algorithm but the TilePro (extended version of Tile64) family of processors allow each
network to be configured to either route X dimension first or Y dimension first.

Main unit of data that transmits over the Imesh networks, is called ”packets”. Packets
are divided into multiple N bit ”flits”, where N is the width of the network. Each packet
contains a header flit designating the destination of the packet and the size of the packet,
and a payload of data flits. Flow control between neighboring switch points is implemented

CHAPTER 2. BACKGROUND AND MANYCORE EXAMPLES 16

via a credit based scheme. Each switch point has an input buffer that may hold three flits
[16].

2.6 Conclusion

Table 2.2 shows the comparisons of the above mentioned architectures. Note that comparison
is made with consideration only to NoC related main components including routing algo-
rithm, network topologies, switching techniques and flow control mechanisms. The following
conclusions are highlighted from this comparison.

In all the cases k-ary n-cube topologies are used, instead of using indirect topologies.
Also, low dimensionality (2D or 1D) is used. This is due to the fact those topologies are
floorplan aware and thus becomes easier to implement such topologies. Wormhole is also
preferred, so buffer needs are low. In Intel Phi the message size equals the flit size thus
reverting in VCT switching. For routing DOR is used in all the cases, demonstrating its
simplicity when implemented.

Table 2.2: Comparison of architectures based on NoC features

Architecture Topology Switching Flow Control Routing algorithm
Intel Phi Ring VCT N/A Shortest Distance
Tsar project 2D Mesh Wormhole FIFO XY routing
Tilera 2D Mesh Wormhole N/A XY routing
Kalray 2D Torus Wormhole Credit based N/A

In the next chapter we describe the PEAK architecture, where we develop our designs,
as well as the methodology and tools used in this work.

17

Chapter 3

Methodology

In this chapter we present the methodology followed to accomplish the goals of this thesis.
The chapter begins with detailed description of the PEAK architecture, which is the under-
line architecture we improve. Then, the chapter provides descriptive information about the
hardware language used when coding several topologies and the software framework used to
develop, simulate, synthesize and implement the modules.

3.1 PEAK Architecture

PEAK is a manycore architecture based on the tile concept. Tiles are designed, replicated,
and connected, building the complete system. Each tile is composed mainly by eight modules:
a core, one private 32KB cache for data (L1), 128KB shared cache (L2), one network interface
(NI), three routers (R0, R1, R2) and a tile register (TR). Figure 3.1 depicts the PEAK
architecture.

The MIPS architecture [17] is used for the core, which follows a pipelined design with
in-order execution of instructions. The core has a private L1 cache for data (internally has
one private cache for instructions). The NI module provides connectivity between modules
within the tile. Basically, the NI is a buffered crossbar. The TR module is responsible for
storing important configuration data of the tile and its components (described next). The
L2 cache of the system is compounded of L2 banks on each tile, thus being a unified large
L2 cache. An invalidation-based coherence protocol is implemented at the L2 cache level.
The three routers provide connectivity between tiles (described next). Finally, main memory
is accessed through the memory controller (MC) unit, which can be attached to any tile.
Currently, one single MC is attached to tile 0.

Tile Register (TR)

The TR module is the main configuration component in PEAK. TR implements a set of
registers to completely configure the behavior of the tile. The registers are divided in three

CHAPTER 3. METHODOLOGY 18

Figure 3.1: PEAK general architecture overview.

different categories: configuration registers, notification registers and statistics registers. By
using configuration registers, PEAK can define the number of tiles of the system, set the
core frequency, put the core to sleep, configure alternative coherence protocols, configure
the routing algorithm in the router, enable broadcast support and gather network support,
and even configure the memory controller attached to the tile. Notification registers are
used by the applications running on top of PEAK. Notification registers allow applications
to communicate each other and to synchronize. Statistic registers provide core, cache and
network statistics. Cache misses and cache accesses can be tracked in real time. Tile registers
are memory mapped to allow maximum flexibility as any core with privileges can access any
TR from any tile in the system.

The Core

The PEAK core is a 32-bit pipelined in-order MIPS processor. It provides basic arithmetic
and logic instructions. The processor is designed in 5 stages: fetch, decode, execution,
memory access and write back. The data path is composed of the instruction cache (32KB,
64-byte blocks, direct mapping), the bank register for read operations (32 32-bit registers),
the ALU, one L1D cache interface, one TR access interface, and the bank register for write
operations. The control path is composed of a branch target buffer (BTB), the control unit
(CU), the branch control unit and the data risks module [18]. Branch target buffer is used to
cover conditional and unconditional branch instructions. Figure 3.2 shows the architecture
of core.

Networks On Chip

Three networks named VN0, VN1 and VN2 are implemented for different purposes. VN0
and VN1 are used to transfer coherence protocol traffic between L1 and L2 modules. The
VN2 network is dedicated to data transfer between the cores and TR/MC modules. 2D Mesh

CHAPTER 3. METHODOLOGY 19

Figure 3.2: Core architecture.

topology is used in PEAK. Stop and Go flow control is implemented in the three networks.
The router consists of 5 input ports (West, North, East, South and Local), buffer which can
store four flits, routing unit, arbitration unit and the crossbar for output. A one flit which
has size of 64 bits contains fields such as source address, destination address and payload.
For VN0 and VN1, LBDR method performs routing. VN2 is the simplified router that uses
XY routing algorithm. Router or switch architecture is shown in Figure 3.3.

Each input port consists in a pair of modules connected between them: the IBUFFER and
ROUTING modules. These modules are in charge of storing incoming flits from the input
port and computing the proper output port to forward the flits. The IBUFFER module
implements a FIFO queue where flits are stored. The flit at the header is forwarded to the
ROUTING module. Stop&Go is implemented in the IBUFFER module.

Each output port consists in a pair of modules, namely SA and XOP modules. The
SA module performs switch arbitration and decides which input port is allowed at each
cycle to send its flit through the associated output port. The XOP module just perfoms a
multiplexing to select the proper input port granted.

All ROUTING modules are connected to all SA modules and XOP modules, with the
exception of the input and output ports in the same dimension but in different direction (U
turns are not possible). The PEAK router design has implemented 5 ports, namely North,
East, West, South and Local port. Therefore, each input port (the ROUTING module) is
connected to four output ports (e.g. North input port connected to East, South, West, and
Local output ports). Notice that the figure only shows connections to only one output port
(for the sake of clarity in the picture). The most important modules for our work are the
ROUTING modules and the SA and XOP modules since we will need to add new topologies
with more ports and new routing algorithms. Next, we describe these modules.

CHAPTER 3. METHODOLOGY 20

Figure 3.3: PEAK router architecture. Router’s main components are the Ibuffer (buffer),
Routing, SA (arbiter) and XOP (output).

Figure 3.4: PEAK module hierarchy.

3.2 PEAK Modules

As previously commented, PEAK modules are implemented by Verilog language. It follows
a hierarchical organization where modules are embedded into other modules. Figure 3.4
shows part of the modules and how they are related to each other. Specifically, the figure
only shows the modules modified in this thesis.

The top module defines the whole PEAK system and instantiates all the tile modules of
PEAK, providing also connection between tiles. Then, the tile module provides all the mod-

CHAPTER 3. METHODOLOGY 21

Figure 3.5: Structure of module tile with associated ports.

ules implemented at tile level, mainly the core, L1 cache, L2 cache bank, network interface,
the three switches, and the tile register modules.

Figure 3.5 provides basic organizational plan of the tile module with all the ports associ-
ated to communicate with other tiles. The switch module includes all the modules to build
a switch, namely the input buffer, the output crossbar, the routing module and the switch
allocator module.

In the next section we provide brief explanation of modules routing and arbiter as an
examples.

Module Routing

This module is in charge of deciding where to send the buffered flits. Depending on the
routing algorithm used, the module routing reads destination address of the flit to calculate
right next path. The module routing is provided with registers to store previous calculated
route decision. Notice this is needed since we are assuming wormhole switching and all
flits pass through the routing module. Only the header contains routing information. This
module also supports broadcasting possibilities, thus our methods must respect and be com-
patible with broadcast traffic. Figure 3.6 shows some code part from module routing which
is written in Verilog.

First 5 lines of code in figure 3.6 set values of wires named x cur and y cur which have
the purpose of keeping current location of router and x dst and y dst which store destination

CHAPTER 3. METHODOLOGY 22

Figure 3.6: Code part shows basic routing logic.

location of buffered flit. These locations are defined by X and Y coordinates of a 2D mesh.
We can see first level of route calculations from last 5 lines of codes from figure 3.6. For
example we can see that if value of x cur is less than value of x dst, flit should go to east
port. We can see flow diagram of this module in figure 3.7.

Figure 3.7: Flow diagram of module Routing.

Figure 3.7 shows following logic. If the X coordinate of the destination is the same of
the X coordinate of the current switch, then the Y coordinate is inspected. In that case, it
gives 3 options to check. First of all, if Y coordinate of current is higher that Y coordinate of
destination switch, switch must route the flit to north port. And the second, if Y coordinate
of destination is higher that Y coordinate of current, flit should be routed to south port.

CHAPTER 3. METHODOLOGY 23

Figure 3.8: Code part of arbiter logic.

And third option is the case only both X and Y coordinates coincide between source and
destination IDs then the local port is selected for routing.

However, if the X coordinate of the destination is not the same of the X coordinate of
the current switch, flit will be routed along X coordinate to get destination. Thus it has to
use west port or east port.

Module Arbiter

Module arbiter is one of the main components of the module switch. The main purpose of
this module is to grant requested output ports by module routing. Generally arbiters grant-
ing mechanism based on arbitration algorithms like serve-longest-queue which prioritizes a
longest queues and round robin which treats all requests have a equal priority.

The arbitration uses round robin algorithm. Module arbiter uses register named token
to identify last granted output port. Last granted port has low priority in next cycle.

From figure 3.8 we can see that inside of a arbiter it has a switch case to check every value
of token register. Also we can see arbiter logic completely from figure 3.9 which shows that
flow diagram of module arbiter. Then inside of a each case it checks every possible requests
with if else statement. Finally arbiter grants the requested port. After module arbiter grants
the requested port of module routing flit can travel through that port by module output.

According to figure 3.9 we can see that how round robin arbiter works. Depending on
the token it checks every requests in a different order. Then if request is true it grants that
port. If tail flit is true it keeps token unless it increases token value to accomplish round
robin principles by changing the order (no one is always in the first or last. All are equally
prioritized). If all requests are false, arbiter will not grant any port.

CHAPTER 3. METHODOLOGY 24

Figure 3.9: Flow diagram of module arbiter.

Module Output

Module output is a simple module which responsible for outs the flits that already routed
and granted. This is the last module that flits must pass in the switch. This module has
connection to module routing and at the same time it connects with module arbiter. As a
input, output module takes flit from routing module and grant signal from arbiter. It uses
conditional statements to check flits from routing module is granted or not.

CHAPTER 3. METHODOLOGY 25

(a) Verilog code (b) Flow diagram

Figure 3.10: Module output

If the arbiter module grants requested port, output module puts routed flit to that output
port. We can see this logic from figure 3.10a as Verilog code and also from figure 3.10b as a
flow diagram.

If north port is granted the output module outs the flit which comes from north port. If
granted port is east port, flit which comes from east will out. And same for all other ports
like west port, south port and local port.

CHAPTER 3. METHODOLOGY 26

3.3 Hardware Description Language: Verilog

A hardware description language (HDL) is similar to a typical computer programming lan-
guage except its purpose. HDL is used to describe hardware rather than implement a
program to be executed on a machine. Both Verilog HDL and VHDL (Very High Speed
Integrated Circuit Hardware Description Language) languages are the most popular in the
hardware industry.

In Verilog code, signals in the circuit are represented as variables in the source code, and
logic functions are expressed by assigning values to these variables. Verilog source code is
just a plain text. This feature, makes Verilog a portable and widely used, encourages sharing
and reuse of Verilog-described circuits.[19].

It also allows faster development of new products in cases where existing Verilog code
can be adapted for use in the design of new circuits. Verilog is based on C programming
language so it has a similar syntax. Both structural and behavioral paradigms of integrated
design circuit production are included in Verilog language. PEAK baseline architecture is
coded mostly in Verilog.

Verilog or other hardware description languages have to provide two main objectives:
simulation and synthesis.

Simulation is the process of verifying the functional characteristics of models at any level
of abstraction [20]. For simulation we use special Verilog files named test benches. Actually
test benches are not so different than normal Verilog file. But its purpose makes it special.
We can say that test benches are Verilog modules to test other modules.

Synthesis is the process in which synthesis tool like design compiler takes RTL (register
transfer level - model representation of a digital circuit design) in Verilog, target technology
and constraints as input and maps the RTL to target technology primitives. During this
process we have to set target board and constraints.

3.4 Vivado Design Suite

We use Vivado Design Suite software 2014.2 mostly and 2015.1 few times for design, simu-
lation and implementation phases of our work. Vivado Design Suite is a powerful tool that
includes all the necessary features to accomplish every process of hardware development such
as simulation and synthesis. In figure 3.11 screenshot of Vivado Suite software is shown.

Design and Coding

The suite supports both VHDL and Verilog hardware description languages. Vivado provides
a friendly source editor equipped with every necessary tool for efficiently write and edit
codes. It also includes source viewer with four different types: hierarchical view, view by IP

CHAPTER 3. METHODOLOGY 27

Figure 3.11: Screenshot of Xilinx Vivado Suite.

source, library view and by compile order. As well as, status windows named Messages, Log,
Reports, Design runs and Tcl consoles are very useful tools in Vivado environment. Suite’s
dynamic sliding navigator pane contains all necessary configuration shortcuts and so on.

Simulation

In order to run simulations, simulation source (test benches) files must prepared. Test
benches are just similar source files written by Verilog or other languages. The system
allows to make simulation related configurations like choosing target simulator depending
on the installed simulators, used language in sources to be simulated, directory path to
save simulation related files such as settings and results and top module of project to be
simulated. After simulation run, the system shows result as a waveform configuration file
where every signal can be seen as variable lines with a value in time. Side windows named
Scope and Objects are also provided to list the modules and their values. Modules can be
addable from those windows to waveform to see more signals and removable from existing
entries in waveform too. It enables users to create their own modified waveform and save it
to see desired simulation. Some important menus are available to use to control simulation
process. Those menus are dedicated to perform tasks like re-launching the simulation process,
restart the simulation and set specific time for simulation. We can see screenshot of running
simulation in Figure 3.12.

CHAPTER 3. METHODOLOGY 28

Figure 3.12: Vivado Suite during simulation.

29

Chapter 4

Topology Implementation and
Evaluation

In the previous chapter we described the tools and methods used. In this chapter we show the
details of the implemented topologies and the performance achieved. First, we describe each
topology designed and implemented on the PEAK system by using Vivado software suite
with Verilog hardware description language. Then, we compare each topology performance
and resource usage. Routing and switch arbitration modifications for selected topologies are
described as well when needed.

4.1 New Topologies for PEAK

In this Section we describe all the new topologies implemented for PEAK. These topologies
derive from the baseline 2D mesh topology. We add new links and new logic functionality.
We start with the topologies that use more connectivity by using more links. Then, we focus
on topologies with concentrated nodes (bristling factor b set to 4).

DMESH: 2D Mesh with Diagonal Links

2D Mesh with diagonal links (DMESH) is a mesh-based topology with additional diagonal
links between switches. Figure 4.2b illustrates a DMESH. Every node (tile) has four links
connecting the four tile neighbors at one hop distance on each direction and dimension,
plus four diagonal links connecting tiles to neighbors at one hop distance at each quadrant.
Notice that edge and border nodes (tiles) have not all the diagonal links implemented.

Diagonal links can be very useful when the destination node is located at a different
row and column from the source tile. By using a diagonal link the destination tile can be
accessed by a lower number of (logical) hops. However, care must be taken when designing
the routing algorithm in order to avoid deadlocks. Indeed, we can not use XY routing with
non-diagonal links and randomly use diagonal links. One clear case would be four messages

CHAPTER 4. TOPOLOGY IMPLEMENTATION AND EVALUATION 30

routed along diagonal links building a cycle. Each message is using one diagonal link and
requesting a non-diagonal one. Figure 4.1 shows the case. Message m1 is using X- and
X-Y+ diagonal link and requests X+ link. The X+ link is used by m2 which is using also
link X+Y+ and requests link Y+. That link is being used by m3 which also uses X+Y- and
requests Y- link. Finally, m4, which uses Y- and X-Y-, is requesting link X- which is used by
m1. Therefore, a cycle arises and no message makes forward progress, leading to a deadlock
condition.

Figure 4.1: Circular requests create deadlock condition when using diagonal links

Implementation Details of DMESH Topology on PEAK

In order to implement DMESH we modified different modules in PEAK. Next we describe
major modifications performed.

Module Top. At this level links between tiles are defined and instantiated. Thus, we
instantiate new diagonal links based on a tile’s position in the grid. These new links are
named North-West, North-East, South-West and South-East. In the best case, one tile can
have 9 links defined, including the local link. However, other tiles may have a lower number.

CHAPTER 4. TOPOLOGY IMPLEMENTATION AND EVALUATION 31

(a) EMESH links (b) DMESH links

(c) CMESH (d) CEMESH

(e) CDMESH (f) FBFLY

Figure 4.2: Implemented NoC Topologies, each has 32 cores

CHAPTER 4. TOPOLOGY IMPLEMENTATION AND EVALUATION 32

Module Tile. As tiles are homogeneous in PEAK, we add four more ports in order to
provide full diagonal connectivity. Notice that we instantiate input and output ports sepa-
rately. As we have three networks in PEAK we provided ports to each network. This means
twelve input and twelve output ports added to the tile module. Inside the tile module we
connect the new ports to the three switches instantiated inside the module. These switches
need to be adapted.

Module Switch (and its derived internal modules). At switch level, new logic needs
to be implemented. More ports have been added to the switch module to provide flit trans-
fers. This means more buffers created to serve flits from diagonal connections. In particular,
an input buffer (IBUFFER) is instantiated for each new input port and a crossbar output
port (XOP) is instantiated for each new output port. Connections between input buffers
and new output ports have been created. We can see switch module structure from figure
4.3. We can see in the figure in red the new added modules and connections.

One additional aspect is the switch arbiter at each output port (previous ports and new
ports). Each output port may potentially forward flits from any input port and this means
arbitration needs to be changed. The current arbiter in PEAK is a round-robin arbiter
which arbitrates between all input ports (excluding the port with the same dimension and
in opposite direction). In order to support new ports, we extended the round-robin arbiter
with new inputs. Figure 4.4 shows the previous arbiter and the new one. Notice that no
priority is given to any input port.

The most important module with major modifications is the routing module. This module
has been replicated for each input port as it is in charge of routing flits from a specific input
port. As commented previously, XY routing is no valid any more since it may introduce
deadlocks when using diagonal links. The approach we follow to avoid deadlocks and still
route messages is to consider diagonal links as a subset of links that can not be arbitrarily
mixed with non-diagonal links. Indeed, we define an order of usage of both types of links. If
all messages use diagonal links and then request non-diagonal links, but then never request
again diagonal links then no deadlock can occur. Non-diagonal links are used using XY
routing as before. Diagonal links, however, are used with a minimal path policy.

When a message is injected into the network all links can be used (diagonal ones and
non-diagonal ones). Obviously, diagonal links have more priority since they provide shorter
paths. The message is then routed and selects the most suitable link to take. After some
cycles, the message arrives to the next switch. There, the same routing strategy applies
if the message came through a diagonal link, thus, the message considers both types of
links. If diagonal links are not available (or are not profitable for the message), then the
message selects a non-diagonal link, following XY rule. From that moment, the message is
routed through non-diagonal links until it reaches final destination. By doing this, we are
considering non-diagonal links as escape paths that are used when diagonal ones are not
available or are not profitable for the message.

In order to implement the new routing approach, we add two new signals to every routing

CHAPTER 4. TOPOLOGY IMPLEMENTATION AND EVALUATION 33

Figure 4.3: Router architecture for DMESH

module named isDiagonal and isLocal. The isDiagonal signal is used to identify that the
current routing module is associated with a diagonal port. Similarly, the isLocal port defines
a current routing module is associated with a local port. DMESH new routing module
interface is shown in figure 4.5.

CHAPTER 4. TOPOLOGY IMPLEMENTATION AND EVALUATION 34

(a) Previous arbiter (b) DMESH arbiter

Figure 4.4: Previous and DMESH arbiter

EMESH: 2D Mesh with Express Links

If we add some express links to 2D mesh topology, it will become 2D mesh with express links
topology (we refer to this topology as EMESH). The express link connects the current node
(tile) to tiles at two hops distance in the same dimension and direction, thus bypassing the
neighbor tile. Thus, by using express links, we can save one hop in every routing module.
Easily, we can deduce that two hops in a 2D mesh equals to one hop in EMESH. Figure 4.2a
shows the mesh topology with express links.

Implementation Details of EMESH on PEAK

With EMESH, every tile may have up to four express links to transfer data besides four
normal mesh links and a local link. The express links are used following the XY rule,
therefore, being compatible with non-express links. This makes routing deadlock-free since
there will be no cycles. No message will use an Y channel (either express or normal) and
then request an X channel (either express or normal).

To implement EMESH we follow a similar approach as performed for the DMESH topol-
ogy. At the top module we defined and instantiated new wires building the new links. In

CHAPTER 4. TOPOLOGY IMPLEMENTATION AND EVALUATION 35

Figure 4.5: Router module interface of DMESH

total, up to 24 ports (taking into account we have three networks and ports are unidirec-
tional). Depending on the tile position the number of ports used varies. Similarly, all the 24
ports have been instantiated at the tile level (tiles are homogeneous) and connected properly
to the three internal switches.

The switch and its associated modules have been also changed to host the EMESH
topology in PEAK. New input buffers have been used, new arbiters instantiated to the new
output ports, new XOP modules at the output ports and the proper wiring between the
input and output ports. In addition, the arbiters have been redefined to host new inputs.

Finally, the routing module has been modified to consider the new express channels.
Those channels, coded as NN, EE, WW, and SS have higher priority meaning they are
selected when the destination is at least two hops away from the current tile. For this, we
added a comparator inside the routing module. The express channels follow the XY rule,
meaning the X ports (either normal or express) need to be canceled before considering Y
ports (either normal or express). Figure 4.6 shows the algorithm implemented in the module.

CMESH: 2D Concentrated Mesh

The concentrated mesh (CMESH) is a special kind of mesh with a lower number of switches
and links. The concentration factor (bristling factor) defines how many tiles share the same

CHAPTER 4. TOPOLOGY IMPLEMENTATION AND EVALUATION 36

Figure 4.6: Routing algorithm for EMESH

switch. In our case, four tiles share a switch (bristling factor set to four). Switches connect
between them as in the original mesh topology. The CMESH topology shortens the network
diameter in comparison with the original mesh topology. Figure 4.2c shows the CMESH
topology for 32 tiles.

Implementation Details of CMESH on PEAK

Implementing CMESH has deep implications on the PEAK architecture. Indeed, one of the
first issues to address is the tile identification system. Unique IDs are used for each tile to,
first, identify the tile resources, and second, to correctly route messages within the network.
Now that we have in CMESH more than one tile per router how IDs are labelled and used
becomes crucial. The current PEAK system has defined the maximum supported number
of tiles to 256. This means, the ID is sized to 8 bits. In a regular mesh (or the previous
DMESH and EMESH topologies) all the ID bits are used at the routing level to decide the
destination tile position within the grid. Now, because of the concentration factor, we need
to differentiate between tiles and clusters of tiles. For a bristling factor of four, groups of
four tiles share the same switch. Therefore, they are in the same cluster. The 8 bits of the
ID field are then used in a different manner. The two least significant bits of the ID are
used to select the tile within the cluster and the six most significant remaining bits are used
to route messages between clusters. This leads to a consecutive numbering of tiles within a
cluster. Thus, tiles 0, 1, 2, and 3 are in cluster 0, tiles 4, 5, 6, and 7 are in cluster 1, and so
on until we reach tiles 252, 253, 254 and 255 in cluster 63.

Also, the complete tile is replicated inside the cluster. In order to provide such clustering
approach, we define a new module in PEAK termed ctile (clustered tile). This structure
includes four tiles and the routing infrastructure needed. In particular, the core, the NI, the
L1D, the L2 bank, and the tile register module are replicated and instantiated in ctile. Also,
the three routers are embedded into ctile and connected properly to the four NIs. Figure 4.8
shows the original tile structure and the new ctile structure.

CHAPTER 4. TOPOLOGY IMPLEMENTATION AND EVALUATION 37

Each core in tile has connection with its own L1 cache, L2 cache and Tile Register
provided by its own Network Interface. We can consider them as a one sub-tile each has
its own unique ID and address. Thus, tile of concentrated mesh or we can say concentrated
tile consists of four sub-tiles. We can see 4x2 sized Cmesh topology with 32 cores in Figure
4.1(c).

This topology requires many major changes at many levels (top level, tile level, new ctile
module, switch module and its components). First, the top module needs to be modified
in order to provide support to four IDs per ctile module. The top module, instead of
instantiating a set of tiles, now it instantiates a set of ctiles and each ctile module embeds
four tiles. Links between ctiles do not change as the topology is still a 2D mesh. The ctile
module is a new module which instantiates four different (and internally connected) tiles
and the associated switches.

The switch module and its associated modules have also major modifications. In detail,
three new local ports are defined and instantiated to host the three new tiles connected to
the router. This means a pair of IBUFFER and RT modules per new input port and a
pair of SA and XOP modules per new output port. In addition, the RT module has been
adapted to discriminate internally whether the message needs to be routed to a different ctile
or delivered internally. In the later case, the RT module needs to select the proper local port
to be used as output port. This is performed based on the current ID of the ctile (notice that
this means the upper 6 bits of the ID field) and the destination ID. The following algorithm
describes the RT module implementation.

Figure 4.7: Routing algorithm for CMESH

Finally, the arbiter has been adapted to host eight requests (from N, E, W, S, L0, and
the new L1, L2, and L3).

CHAPTER 4. TOPOLOGY IMPLEMENTATION AND EVALUATION 38

(a) Tile structures with main components

(b) Ctile structures with main components

Figure 4.8: Structures of current tile and ctile

C{DE}MESH: Concentrated Mesh with Diagonal/Express Links

We can combine the previous topologies to create more advanced ones. This is the case
when we mix the clustered topology with either diagonal or express links. This leads to
the CDMESH (concentrated mesh with diagonal links) and to the CEMESH (concentrated
mesh with express links). The complexity of these new topologies is additive and relies on

CHAPTER 4. TOPOLOGY IMPLEMENTATION AND EVALUATION 39

the fact of combining the ctile module implemented for the CMESH topology and adding
the resources used in the DMESH and EMESH topologies. Figures 4.2e and 4.2d show both
topologies.

FBFLY: Flattened Butterfly Topology

Figure 4.2f shows the Flattened butterfly topology for a 32-core system. In this topology,
FBFLY, every node has one exclusive link to every other node along the same row and
column. In addition, a bristling factor of four is used. This topology allows to reach any
node in just two (logical) hops maximum. However, resources to implement the topology
seem high.

We implement this topology as is a close variation of the previous ones. With this topol-
ogy we close the spectrum of alternative topologies PEAK may have, taking as a background
the underlying 2D mesh topology.

Implementation Details of FBFLY on PEAK

The first modifications for FBFLY are in the use of ctile module instead of tile. This module
is adapted to the new situation with more links to connect to other ctiles. Indeed, now have,
for a 32-node system, eight ctiles and thus four new links to connect between ctiles. These
new links are termed EE, EEE, WW, WWW. The switch module, therefore, needs to be
improved with four new input buffer modules and four new RT modules. The same applies
for the output ports (four new XOP and SA modules).

The RT module needs to be adapted as well, since now a message may request up to four
new output ports. Also, those output ports need to be selected with the XY rule in mind so
to avoid deadlocks. In addition, EEE/WWW ports have higher priority than EE/WW ports.
The same applies between EE/WW ports and E/W ports. Minimal paths are enforced. The
following algorithm shows the RT module behavior.

Finally, the arbiter is adapted to host the new requests from the new ports.

4.2 Performance and Implementation Results

In this section we show and analyze the achieved results. This section has two differentiated
parts. The first part (overhead analysis) shows the synthesis results of the topologies, with a
focus at different levels: switch, tile and top. The target FPGA board (V2000T) is selected
for the analysis, and we will see how all the topologies fit the resources for a target 32-core
system. The second part (performance analysis) shows the performance achieved by the
different topologies. To build this part we opted for simulation results with Vivado when
running successfully the PEAK manager and an instance of a matrix multiplication (mmul)
application. We simulate two different cases for mmul: with 32 cores and with 8 cores.

CHAPTER 4. TOPOLOGY IMPLEMENTATION AND EVALUATION 40

Figure 4.9: Routing algorithm for FBFLY

Overhead Analysis

To obtain overheads of the topologies we use the synthesis tool of Vivado suite software and
a 32-core system implementation. This leads to 8×4 configurations for MESH, DMESH and
EMESH topologies, and 4×2 configurations for CMESH, CDMESH, CEMESH, and FBFLY
topologies. We first analyze switch overhead, then tiles overheads, and finally overall system
overheads.

Switch Overheads

We have synthesized all the seven switch architectures, one for each of 7 topologies. Notice
that they differ in the switch radix and the internal logic to support the different routing
modules, mainly. We provide the breakdown of FPGA resources per component, mainly the
input buffer module (IB), routing module (RT), arbiter module (SA), and crossbar output
module (OUT). All these components are associated to an input or output port in the switch,
so they represent the resources needed for only one instance of such module. The switch,
later will be evaluated with all the needed modules, replicated per port.

Figure 4.10 shows the results. According to those results we can see that the OUT
module has more resources demand than any other. This happens in all the topologies and
mostly in LUTs resources. This is due to the use of an internal 64-bit register to store the
flit at the output channel and how this is implemented in Vivado. Anyway, we see that
all the modules increase in resources (mainly LUTs) except IB module. In particular, the
RT module increases when moving from the MESH topology to any other topology. This
increase in size is, however, small and lower always than 50% overhead. This increase is due
to the new routing functionality needed to support new output ports in the new topologies.
The SA module also increases in area and its increase is proportional to the number of input

CHAPTER 4. TOPOLOGY IMPLEMENTATION AND EVALUATION 41

Figure 4.10: Switch components overheads for the different topologies to be supported.

ports coded in the new topologies. For instance, for DMESH we see an almost 100% increase
in LUTs when compared to MESH topology. Indeed, we are moving from a 5-port switch
to a 9-port switch. The increase is higher in CDMESH, CEMESH, and FBFLY topologies.
In such topologies we have up to 150% increase in LUTs and this is because we are moving
from a 5-port switch up to a 12-port switch (for the CDMESH topology). Therefore, in
LUTs we see a linear increase that somehow was expected. The OUT module also increases
almost linearly with the switch degree. Therefore, we do not see any deficiency introduced
by our designs, when compared to the baseline PEAK architecture. For register LUTs we
see almost the same results regardless topologies and we can also see that BRAMs and DSPs
are not used by the switch components.

Figure 4.11 shows now the total resource needs to implement a complete switch for each
analyzed topology. We can see an interesting result here. For LUTs, the CMESH topology
exhibits lower resources than DMESH and EMESH. This is mainly due to the lower number
of ports coded in the topology but not exclusively by this fact. Indeed, results are somehow
in accordance with the number of ports implemented in the different switches to support
the topologies. Figure 4.12 shows the resources broken down by port (dividing resources
by the number of implemented ports). As we can see, differences between implementations
are smaller when considered the port granularity. However, there are major differences still.
The MESH topology is still the most efficient one at port level. However, the rest fall within
100% increase in resources at port level. This is mainly in LUTs. The higher radices of the
switch leads to more alternative switching paths which necessarily leads to higher resources.
However, overheads are not as large as expected when considering port granularity.

Tile Overheads

Now we analyze the overheads of the tiles embedding the corresponding switch versions and
the clustered approach (ctile) for some configurations. It is worth noticing the tile structure

CHAPTER 4. TOPOLOGY IMPLEMENTATION AND EVALUATION 42

Figure 4.11: Switch overheads for the different topologies to be supported.

Figure 4.12: Port overheads for the different topologies to be supported.

(and now also the ctile structure) is the basic building block in PEAK that is repeated to
build the complete system. Thus, it is important to analyze its overhead.

Figure 4.13 shows the obtained tile overhead results in resources. Because of the similar
results we obtained, we categorize results in two categories: mesh-based and cmesh-based.

Mesh-based tiles (those for MESH, DMESH, and EMESH) have much less overhead in any
type of FPGA resource when compared to cmesh-based tiles (those for CMESH, CDMESH,
CEMESH, and FBFLY). Indeed, we see an approximate factor of resource utilization of four
between mesh-based and cmesh-based tiles. This corresponds to the bristling factor.

If we focus on the mesh-based tiles, we can see that MESH tile has less resources in LUTs
and slightly in register LUTs. This is due to the simpler switch as the switch radix is lower.
However, here we can see that the switch overhead is much lower when compared at tile

CHAPTER 4. TOPOLOGY IMPLEMENTATION AND EVALUATION 43

(a) Tile overhead LUTs and Registers

(b) Tile overhead BRAMs and DSPs

Figure 4.13: Tile overheads for the different topologies to be supported.

granularity. The cores and caches play a major role in resource demand. Therefore, we can
deduce that overhead of topologies with diagonal and express channels is not significant at
tile level. Anyway, we could see still a 15% increase in LUTs when moving from MESH to
EMESH.

If we focus on cmesh-based topologies, we can see that the same trend occurs, being
the CMESH topology the one with less resource demand, specially in LUTs. However, the
percentage difference here is much smaller as the tiles have now four fully deployed cores with
the associated cache hierarchy components. Therefore, we can deduce also those topologies
do not play a significant role in resource usage when compared between them.

The main conclusion we can obtain from those results is that it is worth using topologies
with high radixes as the network resource needs are not high. When compared with con-
nectivity and provided bandwidth, thus, the best topology is the FBFLY one as its resource
needs are similar to the baseline CMESH topology.

For the BRAMs and DSPs resources we see also the factor of four from mesh-based
topologies to cmesh-based ones. Also, resource needs for the different topologies do not
change significantly.

CHAPTER 4. TOPOLOGY IMPLEMENTATION AND EVALUATION 44

Topology Overheads

Up to now we have compared the switch architectures and the tiles for the seven topologies.
Now we compare 7 tops (top is the module name which implemented a certain topology).
According to figure 4.14 (b) BRAMs and DSPs usage are exact same in every top. Now,
we provide final synthesis results when considering the whole PEAK system instantiated for
each of the seven topologies. This is an important analysis since it puts the seven topologies
under the same number of cores configuration. We target a 32-core system which currently
fits in the target FPGA device.

Figure 4.14 shows the overhead of the seven topologies compared. According to the
previous tile-based analysis, the FBFLY was the best topology. However, according to the
top analysis now, the best topology is the CMESH one followed by the ones with added
links, CEMESH and CDMESH, and lastly the FBFLY. Overheads, however, are not large.

(a) Overhead of top by LUTs and Registers

(b) Overhead of top by BRAMs and DSPs

Figure 4.14: Overhead of top modules

Performance Analysis

In order to obtain performance results we have used the behavioral simulation capabilities
of Vivado design suite. We target 32 cores which is the largest system size that currently is
supported in PEAK. This leads to 8 × 4 configuration when using tiles (MESH, DMESH,
and EMESH), and 4 × 2 configuration when using ctiles (CMESH, CDMESH, CEMESH,
and FBFLY). The matrix multiplication code is listed next. The MMUL code is a simple
program. Each instantiated process takes a row and computes all the elements of the row
for the final matrix. The row is accessed via a protected section via a semaphore. For the

CHAPTER 4. TOPOLOGY IMPLEMENTATION AND EVALUATION 45

simulations we assume a 40×40 matrix size. We show results here for matrix multiplications
with 32 cores (results with 8 cores showed a similar trend and are not shown here). Following
is the MMUL code written by programming language C.

char matrixA[rows][cols]; char matrixB[rows][cols];

char matrixC[rows][cols]; unsigned int sem; int row; //initializing arrays and varaibles to be used

void mmul(int argc, int *argv) //function to set mmul

{

peak_print_str("Starting matrix multiplication (master)...\n"); //starting mmul

row = 0; peak_unlock(&sem); //row starts from 0

unsigned int this_tile = peak_get_tile_id();

unsigned int cores = peak_get_notification_bits();

unsigned int task_id = peak_get_task_id(this_tile);

peak_print_str("cores assigned: "); peak_print_hex(cores); peak_print_str("\n");

unsigned int i = MAX_NUM_CORES;

while (cores) { //performing mmul in every assigned core

if ((cores & 0x00000001) && (i!=this_tile)) {

peak_print_str("launching on core ");

peak_print_int(i);

peak_print_str("\n");

peak_assign_pc_address_core(i, mmul_func);

peak_set_task_id(i, task_id);

peak_unfreeze_core(i);

}

i=i-1; cores = cores >> 1;}

peak_print_str("launching on this core\n");

mmul_func(); }

void mmul_func() //main work function

{

int i, j, pos;

peak_print_str("starting matrix multiplication (slave)...\n");

while (1) { //starting loop

peak_lock(&sem);

if (row == rows) { //checks wether all the rows processed or not

peak_print_str("end of mmul\n"); //if all rows finished

unsigned int this_tile = peak_get_tile_id();

peak_set_notification_bit(0, this_tile);

peak_unlock(&sem);

peak_freeze_local_core();

} else { //case of row calculation did not finish

i = row;

row = row + 1;} //incrementing row number

peak_unlock(&sem);

peak_print_str("processing row "); peak_print_int(i); //Printing number of row which being processed

peak_print_str("\n");

void init_matrixA() //Initializing array A. And set 0 to all items.

{

peak_print_str("initializing matrix A\n");

int i, j;

for (i=0;i<rows;i++) {

CHAPTER 4. TOPOLOGY IMPLEMENTATION AND EVALUATION 46

for (j=0;j<cols;j++) {

matrixA[i][j] = 0;}}}

void init_matrixB() //Initializing array B. And set 0 to all items.

{

peak_print_str("initializing matrix B\n");

int i, j;

for (i=0;i<rows;i++) {

for (j=0;j<cols;j++) {

matrixB[i][j] = 0;}}}

Matrix Multiplication Performed by 32 Cores

Figure 4.15 shows the total execution time of the matrix multiplication when using all 32
cores.1 We can see that the MESH topology (the baseline topology) is the one which takes
more time to run the matrix multiplication. When using diagonal links (DMESH) and
express links (EMESH) we see a decrease in execution time. However, most of the reduction
comes with all the concentrated topologies. Those topologies achieve a reduction in execution
time when compared to the non-concentrated topologies. Therefore, the trend of increasing
connectivity or providing concentration helps in obtaining higher performance.

When looking at absolute numbers we can see that execution time reduction is not very
large. Indeed, difference between the MESH and CDMESH topologies (exhibiting the highest
and lowest execution time, respectively varies only in 1%. This small reduction is due to the
low usage of the NoC by the application. Indeed, this occurs as the data set (the two source
matrices and the destination matrix) fit in the cache hierarchy and therefore many accesses
to the matrix end up in hit accesses to the L1D cache. The 1% execution reduction is due
only to the small percentage of the traffic when cold misses occur. Nonetheless, this is a
clear indication there is an impact on performance by the more advanced and sophisticated
topologies. It is expected also that with more intensive applications (or applications with
larger data sets) topology will play an increasing role in determining the execution time of
the application.

Looking at results we may deduce CDMESH is the best topology in our current system
and configuration. However, if we take into account also implementation results the choice
could be different. Indeed, the FBFLY topology may become a better topology. First, its
execution time does not differ much from the CDMESH topology. And second, its imple-
mentation overhead is almost similar with the one of CDMESH. One thing that needs to be
taken into account is that the tested system size (32 cores) does not allow FBFLY to fully
deploy its potential, since it is implemented only with two rows of ctiles. A fully deployed
FBFLY topology would mean 64 cores in a 4 × 4 grid.

Performance results were not extended with more benchmarks as they were not avail-
able in PEAK at the time of coding the topologies. A complete suite of topology analysis
benchmark is under development at this stage.

1Note that one core does not run the mmul application as it is running the PEAK manager. Therefore,
in total there are 31 cores running the matrix multiplication

CHAPTER 4. TOPOLOGY IMPLEMENTATION AND EVALUATION 47

Figure 4.15: Calculation time

As previously stated, we also run the mmul application in 8 cores configuration (with the
same target 32-core systems). We expected execution time would be significantly reduced
as the eight cores would be confined inside 2 ctiles. However, due to the low usage of the
network, execution time was not significantly impacted in this situation. Anyway, the same
slight differences were appreciated.

In order to obtain a more insightful explanation of the performance results, we plot the
number of flits injected by each possible port in all the configurations. We assume the
complete execution of the MMUL application.

From Table 4.1 we can see the number of flits crossed over the ports of the topologies.
It also shows the percentage with respect the baseline MESH case. We need to consider the
memory controller (MC) is connected to tile (or ctile) zero. Some ports are more used than
others due to data location. For example, as a general trend, the east output port is more
used than others. Also because of the limited network size (8 × 4 or 4 × 2), the number of
cores (32) and the used topologies, some ports are just never used. For example, we have
only 2 rows in FBFLY, thus NNN and SSS ports are never used. Notice also that the same
message that travels through two hops is counted twice in the number of flits that crossed
links. Thus, higher numbers means also larger distances when comparing overall number of
injected flits for different topologies. Indeed, concentrated topologies exhibit a much smaller
number of injected flits due to locality exploitation and reduced hop distance. This will have
an impact also on energy and power consumption.

Figure 4.16 shows the percentages of crossed flits normalized to the MESH baseline case.
According to results, the FBFLY topology reduces hop distance by a 60% when compared to
the MESH case. Indeed, concentrated topologies significantly reduce hop distance. DMESH
and EMESH did also reduce hop distance but to a lower extent, thus not justifying their

CHAPTER 4. TOPOLOGY IMPLEMENTATION AND EVALUATION 48

Table 4.1: Total flits crossed over all routers. Depending on the topology, some ports are
empty valued which means not attached.

Figure 4.16: Total flits crossed in percentages.

higher costs. We can, thus, deduce, concentrated topologies offer a good tradeoff between
performance and implementation costs for PEAK.

49

Chapter 5

Conclusion

Our thesis main goal was to implement mesh based variations of topologies and to design
and implement appropriate router architectures for those topologies. Then, to evaluate best
ones by analysis. In this work we implemented up to 6 different topologies for the NoC used
in PEAK architecture. During implementation we also designed and implemented different
router architectures for each topology. We performed simulation and obtained synthesis
results to evaluate the topologies in terms of performance and overhead. Based on those
results, we obtain the following conclusions:

• All targeted topologies have been successfully implemented, synthesized and simulated.

• From the point of view of performance the best topologies are the ones based on
concentrated tiles, like cmesh with diagonal links and cmesh with flattened butterfly.
The added connectivity provided to those topologies allows to achieve more flexibility
when choosing network paths. Execution time is reduced, although not to a high
extent.

• High radix routers are an efficient choice for NoCs. This means more connection paths
are provided. However, benefits in terms of area and performance are lower than the
ones achieved by using concentrated tiles.

• According to ctile, we can say that bristling factor is useful in big networks with more
nodes. It can save wires, routers and even it can be helpful to deal with addressing
problem of network with many nodes.

This project was a challenging one not because of the complexity of the implemented
topologies, but because of the complexity of the PEAK architecture and its definition. Many
new signal protocols and connection patterns had to be learnt from scratch and thus posed
major challenge to us. In addition, the non-trivial size of the system (32 cores; fully deployed)
led to very time consuming (both in time and in memory resources of the PC) simulation
processes. Detecting bugs was challenging as the simulation time took millions of cycles to
reach where the bug reproduced.

CHAPTER 5. CONCLUSION 50

This project opens the doors of PEAK to become more flexible and more powerful when
defining and using topologies. All the topologies experienced in this project will be added
to the main version of the PEAK architecture and will be adjusted in a parametrizable and
configurable environment, so the designer can just indicate which topology the design must
use.

As future work, this work will evolve to a deeper analysis of the topologies with explicit
NoC related benchmarks which will test the topologies in the full range of traffic, from
very low load to saturation. Also, as future work, virtual channels and QoS metrics and
mechanisms will be added on top of these topologies.

51

Bibliography

[1] Gordon E. Moore, ”Cramming more components onto integrated circuits”, Electronics,
1965

[2] Jie Chen, Cheng Li and Paul Gillard, ”Network-on-Chip (NoC)
Topologies and Performance: A Review”, NECEC 2011 forum, 2011,
http://necec.engr.mun.ca/ocs2011/viewabstract.php?id=41,

[3] J. Duato and A. Robles et al., ”A comparison of router architectures for virtual cut-
through and wormhole switching in a NOW environment”, Journal of Parallel and Dis-
tributed Computing, pp. 224–253, 2001

[4] Ankur Agarwal et al., ”Survey of Network on Chip (NoC) Architectures and Contribu-
tions”, Engineering, Computing and Architecture, 2009

[5] Rostislav (Reuven) Dobkin, ”Credit-based Communication in NoCs”,
http://eecourses.technion.ac.il/049036/Reuven%20Dobkin%20Credits%2024apr08-
print.pdf”, 2007

[6] Lizhong Chen and Timothy M. Pinkston, ”Worm-Bubble Flow Control”, IEEE, The 19th
IEEE International Symposium on High Performance Computer Architecture, pp. 366 -
377, 2013

[7] TSAR Project, https://www-soc.lip6.fr/trac/tsar

[8] Alain Greiner, ”TSAR: a scalable shared memory many-cores architecture with global
cache coherence”, http://www.mpsoc-forum.org/previous/2009/slides/Greiner.pdf, 2009

[9] Duco van Amstel and Benot Dupont de Dinechin, ”Guaranteed Services
on the Network-on-Chip of a Manycore Processor”, http://2014.rtas.org/wp-
content/uploads/Amstel.pdf, 2014

[10] Jim Jeffers, ”Intel Many Integrated Core Architecture: An Overview and Program-
ming Models”, https://www.olcf.ornl.gov/wp-content/training/electronic-structure-
2012/ORNL Elec Struct WS 02062012.pdf, 2012

BIBLIOGRAPHY 52

[11] www.top500.org, ”Supercomputer list of June 2015”, http://top500.org/lists/2015/06/,
2015

[12] www.top500.org, ”Tianhe-2 (MilkyWay-2) - TH-IVB-FEP Cluster, Intel Xeon E5-2692
12C 2.200GHz, TH Express-2, Intel Xeon Phi 31S1P”, http://top500.org/system/177999,
2015

[13] George Chrysos, ”Intel Xeon Phi Coprocessor - the Architecture, Intel Corpo-
ration”, https://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-codename-
knights-corner

[14] Rezaur Rahman, Intel Xeon Phi Coprocessor Architecture and Tools The Guide for
Application Developer, Appress Media, 2013

[15] Tilera Corporation, ”TILE PROCESSOR ARCHITECTURE OVERVIEW FOR THE
TILEPRO SERIES”, http://www.tilera.com/scm/docs/UG120-Architecture-Overview-
TILEPro.pdf”, 2013

[16] Tilera Corporation, ”Tilera Tile Processor User Architecture Manual”, 2011

[17] MIPS, http://imgtec.com/mips/architectures/

[18] J. Flich et al., ”PEAK: Partitioned-Enabled Architecture for Kilocore Processors”, 2014

[19] Stephen Brown and Zvonko Vranesic, ”Fundamentals of Digital Logic with Verilog De-
sign”, McGraw-Hill, 2014

[20] Deepak Kumar Tala, ”Verilog Tutorial”, http://www.asic-world.com

