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Abstract 
In this paper, a method to construct an analytic-numerical solution for homogeneous parabolic 
coupled systems with homogeneous boundary conditions of the type t xxu Au= ,  

( ) ( )1 10, 0, 0xA u t B u t+ = , ( ) ( )2 21, 1, 0xA u t B u t+ = , 0 1x< < , 0t > , ( ) ( ),0u x f x= , where A  is a 
positive stable matrix and 1A , 2A , 1B , 2B  are arbitrary matrices for which the block matrix 
 
 
 

1 1

2 2

A B
A B

 is non-singular, is proposed. 

 
Keywords 
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1. Introduction 
Coupled partial differential systems with coupled boundary-value conditions are frequent in different areas of 
science and technology, as in scattering problems in Quantum Mechanics [1]-[3], in Chemical Physics [4]-[6], 
coupled diffusion problems [7]-[9], modelling of coupled thermoelastoplastic response of clays subjected to 
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nuclear waste heat [10], etc. The solution of these problems has motivated the study of vector and matrix Sturm- 
Liouville problems, see [11]-[14] for example. 

Recently [15] [16], an exact series solution for the homogeneous initial-value problem  

( ) ( ), , 0,     0 1,    0t xxu x t Au x t x t− = < < >                                   (1) 

( ) ( )1 10, 0, 0,     0xA u t B u t t+ = >                                       (2) 

( ) ( )2 21, 1, 0,     0xA u t B u t t+ = >                                      (3) 

( ) ( ),0 ,     0 1u x f x x= ≤ ≤                                         (4) 

where ( )1 2, , , T
mu u u u=   and ( ) ( ) ( ) ( )( )1 2, , ,

T
mf x f x f x f x=   are a m -dimensional vectors, was cons-  

tructed under the following hypotheses and notation: 
1. The matrix coefficient A  is a matrix which satisfies the following condition  

( ) ( )Re 0,     z z Aσ> ∀ ∈                                        (5) 

where ( )Cσ  denotes the set of all the eigenvalues of a matrix C  in m m× . Thus, A  is a positive stable 
matrix (where ( )Re z  denotes the real part of z∈ ). 

2. Matrices ,  ,  1,  2i iA B i = , are m m×  complex matrices, and we assume that the block matrix  

1 1

2 2

 is regular,
A B
A B

 
 
 

                                       (6) 

and also that the matrix pencil  

1 1  is regular.A Bρ+                                        (7) 

Condition (7) is well known in the literature of singular systems of differential equations, see [17], and 
involves the existence of some 0ρ ∈  so that matrix 1 0 1A Bρ+  is invertible. In this case, matrix 1 1A Bρ+  is 
invertible with the possible exception of at most a finite number of complex numbers ρ . In particular, we may 
assume that 0ρ ∈ . 

Using condition (7) we can introduce the following matrices 1A  and 1B  defined by  

( ) ( )1 1
1 1 0 1 1 1 1 0 1 1,     A A B A B A B Bρ ρ− −= + = +                              (8) 

which satisfy the condition 1 0 1A B Iρ+ =  , where matrix I  denotes, as usual, the identity matrix. Under 

hypothesis (6), is it easy to show that matrix ( )2 2 0 2 1B A B Bρ− +   is regular (see [18] for details) and we can  
introduce matrices 2A  and 2B  defined by  

( ) ( )1 1

2 2 2 0 2 1 2 2 2 2 0 2 1 2,     A B A B B A B B A B B Bρ ρ
− −

   = − + = − +   
                     (9) 

that satisfy the conditions ( )2 2 0 2 1 2 1 2 1,     B A B B I B A A B Iρ− + = − =       . 

Under the above assumptions, the homogeneous problem (1)-(4) was solved in [15] [16] in two different 
cases: 

(a) If we consider the following hypotheses: 

( ) { } ( ) { } ( ) ( )1 1 2 2 1 1 2 2exist  0 ,  ,  and  0 ,  such that 0mb B b B v B b I v B b I vσ σ∈ − ∈ ∈ − − = − =        (10) 

Then, if the vector valued function ( )f x  satisfies hypotheses  

[ ]( )
( ) ( ) ( )

( ) ( )

2

0 1 1

2 0 1 2
2

1

0,1

1 0 0 0

1
1 1 0

f

b f b f

b b b
f b f

b

ρ

ρ


∈ 
′− + = 
 − + ′− + =    



                             (11) 
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with the additional condition: 

( ) ( ) ( )

( ) ( )

1 1 2 2

1 1 2 2

Ker Ker ,    0 1

and

Ker Ker  is an invariant subspace with respect to matrix ,

f x B b I B b I x

B b I B b I A

∈ − − ≤ ≤

− −

 



 



           (12) 

where a subspace E  of m  is invariant by the matrix m mA ×∈  if ( )A E E⊂ , we can construct an exact 
series solution ( ),u x t  of homogeneous problem (1)-(4). This construction was made in Ref. [15]. 

(b) If we consider the following hypotheses: 

( ) ( ) { } 21 2 2 1 20 ,  ,  and we have 0 ,  so that 0mB a A w B w A a I wσ σ
 
 ∈ ∈ ∈ − = − =
 
 



          (13) 

Then, if the vector valued function ( )f x  satisfies the hypotheses  

[ ]( )
( )

( ) ( )

2

2

0,1

0 0
1 1 0

f

f
a f f

∈
= 
′+ = 



                                        (14) 

under the additional condition:  

( ) ( ) ( )

( ) ( )

1 2 2

1 2 2

Ker Ker ,     0 1

and

Ker Ker  is an invariant subspace respect to matrix ,

f x B A a I x

B A a I A

∈ ∩ − ≤ ≤

∩ −





                (15) 

then we can construct an exact series solution ( ),u x t  of homogeneous problem (1)-(4). This construction was 
made in Ref. [16].  

Observe that under the different hypotheses (a) and (b), the exact solution of problem (1)-(1) is given by the 
series  

( ) ( )( ) ( ) ( ) ( ) [ ]2

0 1 1, 1 0 e ,     0,1 ,    0n
n

n

At
nu x t b x b C X x C x tλ

λ
λ

α ρ λ−

∈

= − − + ∈ ≥∑


          (16) 

where, under hypothesis (a), the value of α  is given by  

( )( )

( )( )

2 0 1 2 0 1

1

2 0 1 2 0 1

1

1 1
1 if  1

1 1
0 if  1

b b b b
b

b b b b
b

ρ ρ

α
ρ ρ

 − + −
=

= 
− + − ≠

                         (17) 

and   is the set of eigenvalues ( )( )π, 1 πn n nλ ∈ + , where nλ  is the solution of the equation  

( ) ( )( )2 0 1 2 0 1 2
1 2

1

1 1
cot

b b b b
b b

b
ρ ρ

λ λ λ
− + −

= −                          (18) 

with an additional solution ( )0 0,πλ ∈  if  

( )( )2 0 1 2 0 1

1

1 1
1

b b b b
b

ρ ρ− + −
<                                 (19) 

and under hypothesis (b), the value of α  is given by  

2

2

1 if  1
0 if  1

a
a

α
− =

=  − ≠
                                  (20) 
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and   is the set of eigenvalues ( )( )π, 1 πn n nλ ∈ + , where nλ  is the solution of the equation  

( ) 2cot aλ λ = −                                        (21) 

with an additional solution ( )0 0,πλ ∈  if  

2 1a− <                                           (22) 

Under both hypotheses (a) and (b), the value of ( )
n

X xλ , ( )nC λ  and ( )0C  are given by  

( ) ( ) ( ) ( )( )0 1 11 sin cos
n n n nX x b x b xλ ρ λ λ λ= − −                          (23) 

( )
( ) ( ) ( )( ) ( )
( ) ( ) ( )( )

1
0 1 10

1 2
0 1 10

1 sin cos d

1 sin cos d

n n n
n

n n n

b x b x f x x
C

b x b x x

ρ λ λ λ
λ

ρ λ λ λ

− −
=

− −

∫
∫

                     (24) 

and  

( )
( )( ) ( )
( )( )

1
0 1 10

1 2
0 1 10

1 d
0

1 d

b x b f x x
C

b x b x

ρ

ρ

− −
=

− −

∫
∫

                               (25) 

taking 1 0b =  in Formulaes (23)-(25) if we consider hypothesis ( )b . 
The series solution of problem (1)-(4) given in (16) presents some computational difficulties: 
(a) The infiniteness of the series.  
(b) Eigenvalues nλ  are not exactly computable because Equation (18) (or Equation (21) under hypothesis 

( )b  holds) is not solvable in a closed form, although well known and efficient algorithms for approximation, 
see references [13] [19] [20].  

(c) Other problem is the calculation of the matrix exponential, which may present difficulties, see [21] [22] 
for example.  

For this reason we propose in this paper to solve the following problem:  

Given an admissible error 0ε >  and a bounded subdomain [ ] [ ] [ ]0 1 0 1, 0,1 ,D t t t t= × , 0 0t > . How do we 
construct an approximation that avoids the above-quoted difficulties and whose error with respect to the 
exact solution (16) is less than ε  uniformly in [ ]0 1,D t t ?  

This paper deals with the construction of analytic-numerical solutions of problem (1)-(4) in a subdomain 
[ ] [ ] [ ]0 1 0 1, 0,1 ,D t t t t= × , 0 0t > , with a priori error 0ε > . The work is organized as follows: in Section 2 we  

construct the approximate solution. In Section 3 we will introduce an algorithm and give an illustrative example. 
Throughout this paper we will assume the results and nomenclature given in [15] [16]. If ( )ijB b=  is a 

matrix in m m× , its 2-norm denoted by B  is defined by ([23], p. 56)  

2

0 2

sup
z

Bz
B

z≠
=  

where for a vector y  in m , 
2z  is the usual euclidean norm of y , and the 2-norm satisfies  

, ,
max maxij iji j i j

b B m b≤ ≤  

Let us introduce the notation  

( ) ( ) ( ){ }max Re ;C z z Cα σ= ∈                                  (26) 

and by ([23], p. 556) it follows that  

( )
1

0
e e

!

k k
m

B ttB

k

mB t

k
α

−

=

≤ ∑                                    (27) 
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2. The Proposed Approximation 
Let ( ) [ ] [ ] [ ]0 1 0 1, , 0,1 ,x t D t t t t∈ = × , 0 0t > , be and we take an admissible error 0ε > . Observe first that given 
(24), using Parseval’s identity for scalar Sturm-Liouville problems, see [24] and ([11], p. 223), one gets that  

( ) ( )12 2

0
d ,     n nC f x xλ λ≤ ∈∫   

Thus, we can take a positive constant 0M > , defined by  

( )1 2

0
dM f x x= ∫                                       (28) 

satisfying  

( ) 2
,     n nC Mλ λ≤ ∈                                   (29) 

Moreover, by (23), we have  

( ) ( ) ( ) ( )( ) 22 2 2 2
0 1 1 0 1 1 0 1 11 sin cos 1 2 1 .

n n n n n nX x b x b x b b b bλ ρ λ λ λ ρ λ ρ λ= − − ≤ − + + −  

If we define 0β >  by  

{ }2 2
0 1 1 0 1 1max 1 , , 1b b b bβ ρ ρ= − −                              (30) 

we have that  

( ) ( )
2 21 ,     

n n nX xλ β λ λ≤ + ∈                                (31) 

On the other hand, we know from (27) that  

( ) 22
2

1

0
e e

!
nn

k k k
m nA tA t

k

mA t

k
α λλ

λ−
−−

=

≤ ∑  

where, as 1nλ ≥ , 1n ≥ , we have for [ ]0 1,t t t∈ :  

( ) ( ) ( )( )2 2 22
0 0 0

2

12 12 2 24 4 2 4 4 2 4 4

0
e e e e

!
n n nn

k k
m

A t A t A tA t m m m
n n n n

k

mA t
L L

k
α λ α λ α λλ λ λ λ λ

−
− − −− − − −

=

 
 ≤ = = 
 
 

∑       (32) 

where  

1 1

0
0

!

k k
m

k

mA t
L

k

−

=

= >∑                                    (33) 

Observe that for a fixed 0m ≥  the numerical series ( ) 2
024 e n

n

A tm
n

α λ

λ
λ −

∈
∑


 is convergent, because using 

Lemma 1 of Ref. [15] if hypothesis (a) holds, or Lemma 2 of Ref. [16] if hypothesis (b) holds, one gets 
lim nn

λ
→∞

= ∞ , ( )1lim πn nn
λ λ+→∞

− = , and by application of D’Alembert’s criterion for series:  

( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 0 10 1 0 1

4 4
lim π21 1 2lim lim e lim e e 0n nn n n n n

m m
A tA t A tn n

n n n
n n

a n
a n

α λ λα λ λ α λ λλ
λ

++ + →∞
− +− − − −+ +

→∞ →∞ →∞

  + = ≤ = =   
  

 

then  

( ) 2
024lim e 0.nA tm

nn

α λλ −

→∞
=                                     (34) 

Taking into account that ( )21 1nλ+ >  and 0M > , 0β > , it follows that  
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( )2 22

1 1 1
1 n

M LM L ββ λ
< <

+
                               (35) 

and by (34) there is a positive integer 0n  so that  

( )

( )
2

024
02 2

1e ,     
1

nA tm
n

n

n n
M L

α λλ
β λ

− < ∀ ≥
+

                        (36) 

Using (29), (31), (32) and (36), if 0n n≥ , we have  

( ) ( ) ( ) ( ) ( ) ( )( )22 2
0

2 2 2 2 2 22 4 4 4e e 1 e nn n
n n

A tA t A t m
n n n n n nX x C X x C M L α λλ λ

λ λλ λ β λ λ λ λ−− − − −≤ = + ≤  

As eigenvalues ( )( )π, 1 πn n nλ ∈ + , then, for 1n >  it follows that  

4 4

1 1

n nλ
<                                       (37) 

Taking into account that 
4

4
1

1 π
90n n≥

=∑ , from (37) one gets that  

( ) ( ) ( ) ( )2 2

0 0

2

2
e en n

n n
n n

A t A t
n n

n n n n

X x C X x Cλ λ
λ λ

λ λ
λ λ− −

∈ ∈
≥ ≥

≤∑ ∑
 

                  (38) 

0

4

1

n n
n n
λ λ∈
≥

≤ ∑


 

0
4

1
n n n≥

≤ ∑  

04

4
1

π 1
90

n

n n=

= −∑                                       (39) 

We take the first positive integer 1n  so that  
1 4

1 04
1

1 π ,     
90 3

n

n
n n

n
ε

=

≥ − ≥∑                                         (40) 

We define the vector valued function ( )1, ,u x t n  as  

( ) ( )( ) ( ) ( ) ( ) ( ) [ ]2

1

1 0 1 1 0 1, , 1 0 e ,     , ,n
n

n

At
n

n n

u x t n b x b C X x C x t D t tλ
λ

λ
α ρ λ−

∈
≤

= − − + ∈∑


            (41) 

Using (38) one gets that  

( ) ( ) ( ) ( )2

1

1

2

2
1

4

4
1

4 4

, , , e

π 1                                
90
π π                                
90 90 3

                                ,
3

n
n

n

At
n

n n

n

n

u x t u x t n X x C

n

λ
λ

λ
λ

ε

ε

−

∈
≥

=

− ≤

≤ −

≤ − +

=

∑

∑
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thus  

( ) ( ) ( ) [ ]2
1 0 1, , , ,     , ,

3
u x t u x t n x t D t tε

− ≤ ∈                              (42) 

Remark 1. Note that to determine the positive integer 0n  we need to check condition (36), which requires  
knowledge the exact eigenvalues nλ . From Ref. [15] [16] it is well know that ( )( )π, 1 πn n nλ ∈ + , then  

( ) ( ) ( )2 2 2
0 042 24 e π en mA t A n tm

n nα λ α πλ − −<  

and by (35), we can replace condition (36) by take the first positive integer 0n  satisfying  

( ) ( ) 2 2
04 2

2

1π e .m A n tn
M L

α π

β
− <                                      (43) 

Approximation ( )1, ,u x t n  defined by (41) involves computation of the exact eigenvalues nλ , 1n n≤  
which is not easy in practice. Now we study the admissible tolerance when one considers approximate eigen- 
values nλ , 1n n≤  in expression (41), taking  

( ) ( )( ) ( ) 



( ) ( )2

1

1 0 1 1, , 1 0 e n

n

At
n

n n
u x t n b x b C X x Cλ

λα ρ λ−

≤

= − − + ∑                   (44) 

where  



( ) ( ) ( )  ( )( ) [ ]0 1 11 sin cos ,     0,1
n n n nX x b x b x xλ ρ λ λ λ= − − ∈                      (45) 

( )
( ) ( )  ( )( ) ( )

( ) ( )  ( )( )

1
0 1 10

21
0 1 10

1 sin cos d

1 sin cos d

n n n

n

n n n

b x b x f x x
C

b x b x x

ρ λ λ λ
λ

ρ λ λ λ

− −
=

− −

∫

∫
                     (46) 

with ( )0C  defined by (25). Note that  




( ) ( ) ( ) ( )
( ) ( ) ( )  ( ){ } ( )

( ) ( )  ( ) ( ) ( ) ( ){ } ( )
( ) ( ) ( ){ } ( ) ( )( )

2 2

2 2

2

2

0 1 1

0 1 1 0 1 1

0 1 1

e e

    e e 1 sin cos

        e 1 sin cos 1 sin cos

        e 1 sin cos .

n n
nn

n n

n

n

At At
n n

At At
n n n n

At
n n n n n n n

At
n n n n n

X x C X x C

b x b x C

b x b x b x b x C

b x b x C C

λ λ
λλ

λ λ

λ

λ

λ λ

ρ λ λ λ λ

ρ λ λ λ ρ λ λ λ λ

ρ λ λ λ λ λ

− −

− −

−

−

−

= − − −

+ − − − − +

+ − − −

     (47) 

It is easy to see that  

( ) ( )  ( ) 

0 1 1 0 1 11 sin cos 1 ,n n n nb x b x b bρ λ λ λ ρ λ− − ≤ − +                       (48) 

( ) ( ) ( )0 1 1 0 1 11 sin cos 1n n n nb x b x b bρ λ λ λ ρ λ− − ≤ − + ，                      (49) 

and 

( ) ( )  ( ) ( ) ( ) ( )

( )( ) 

0 1 1 0 1 1

0 1 1

1 sin cos 1 sin cos

1 1 .

n n n n n n

n n n

b x b x b x b x

b b

ρ λ λ λ ρ λ λ λ

ρ λ λ λ

− − − − +

≤ − + + −
                   (50) 

Replacing in (47) and taking norms, one gets  




( ) ( ) ( ) ( ) 

( ) ( )
( )( ) ( ) ( )

2 22 2

2

0 1 1

0 1 1

e e e e 1

                                                                       e 1 1

                                         

n n n n
nn

n

At At At At
n n n n

At
n n n n

X x C X x C b b C

b b C

λ λ λ λ
λλ

λ

λ λ ρ λ λ

ρ λ λ λ λ

− − − −

−

− ≤ − − +

+ − + + −

( ) ( ) ( )2

0 1 1                              e 1 .n At
n n nb b C Cλ ρ λ λ λ−+ − + −

    (51) 
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We define ( )I ρ  for 0ρ >  by  

( ) ( ) ( ) ( )( )1 2
0 1 10

1 sin cos dI b x b x xρ ρ ρ ρ ρ= − −∫                        (52) 

by applying the Cauchy-Schwarz inequality for integrals and (28), one gets:  

( ) ( )( )
1

1 1 2 2

0 0
d df x x f x x M≤ =∫ ∫  

We have  

( )
( ) ( ) ( )  ( ) ( )

( )
( ) ( )



( ) ( )



( )

1
0 1 10

1
0 1 10

10 1 1

0

0 1 1

1 1 sin cos d

1            1 d

1
            d

1
            .

n n n n
n

n
n

n

n

n

n

C b x b x f x x
I

b b f x x
I

b b
f x x

I

b b
M

I

λ ρ λ λ λ
λ

ρ λ
λ

ρ λ

λ

ρ λ

λ

≤ − −

≤ − +

− +
≤

− +
≤

∫

∫

∫
 

Taking 0γ >  satisfying  

( ) { }
1

min , , 1n nn n
I ρ ρ λ ρ λ γ

≤
= = ≥                                 (53) 

it follows that  
( ) ( )0 1 11 .n nC b b Mλ γ ρ λ≤ − +                                (54) 

Moreover, working component by component:  
( ) ( )n n ii

C Cλ λ−                                         (55) 



( ) ( )
( )

( ) ( )
( )

1 1

0 0
d d

nn i i

nn

X x f x x X x f x x

II
λλ

λλ
= −
∫ ∫  

( )


( ) ( ) ( ) ( ) ( )
( ) ( )

1 1

0 0
d d

nnn i n i

n n

I X x f x x I X x f x x

I I
λλλ λ

λ λ

−
=

∫ ∫  

( ) ( )( ) 

( ) ( ) ( ) ( )


( )( ) ( )
( ) ( )

1 1

0 0
d d

nn nn n i n i

n n

I I X x f x x I X x X x f x x

I I

λλ λλ λ λ

λ λ

− − −
=

∫ ∫
           (56) 

Applying the Cauchy-Schwarz inequality for integrals again:  



( ) ( ) ( )( ) 

( ) ( )( ) ( )( )
11 1 121 1 1 122 22 2 2

0 0 0 0
d d d d

n ni i i nX x f x x f x x X x x f x x Iλ λ λ ≤ = 
 ∫ ∫ ∫ ∫         (57) 

and  

( )


( )( ) ( )1

0
d

n n iX x X x f x xλ λ−∫                                  (58) 

( )( )  ( )1
0 1 1 0

1 1 dn n n ib b f x xρ λ λ λ≤ − + + − ∫  
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( )( )  ( )( )
1

1 2 2
0 1 1 0

1 1 dn n n ib b f x xρ λ λ λ≤ − + + − ∫                         (59) 

By (55) and taking into account (57) and (58):  

( ) ( )

( ) ( )
( ) ( )



( ) ( )( ( ) ( )


( )( ) ( ) )

( )( )
( )

( ) ( )
( )( )

( ) ( ) ( )( ))

1 1

0 0

1
1 2 2

0
0 1 11

2

1 d d

d
1 1 .

nn n

n n ii

n n i n i
n n

i n n

n n n
n

n

C C

I I X x f x x I X x X x f x x
I I

f x x I I
I I b b

I
I

λλ λ

λ λ

λ λ λ
λ λ

λ λ
λ λ ρ λ

λ
λ

−

≤ − + −


−

= + − − + +




∫ ∫

∫

     (60) 

Note that from the definition of ( )I ρ , (52), it follows that  

( ) ( ) ( )( ) ( )( ) 0 1 1 0 1 11 1 2 1n n n n n n nI I b b b bλ λ ρ λ ρ λ λ λ λ− ≤ − + + − + + −           (61) 

then, replacing in (60) one gets  

( ) ( )
( )( )
( ) ( )( ){

( )( ) ( )( ) ( )( ) 

1
1 2 2

0
0 1 1

1
2

0 1 1 0 1 1

d
1 1

                               1 1 2 1 .

i

n n nii
n

n n n n n n

f x x
C C b b

I

b b b b I

λ λ ρ λ
λ

ρ λ ρ λ λ λ λ λ
−

− ≤ − + +

+ − + + − + + −


∫
     (62) 

We take  
{ }

1
max ,n nn n

λ λ
≤

Λ ≥                                      (63) 

then, if we define  

( )0 1 1 0 1 11 1 ,     2 1 2b b b bρ ρ= − + + Λ = − + Λ                         (64) 

from (54) we have that  

( )nC Mλ γ≤                                     (65) 

and from (62) and (53):  

( ) ( )
( )( )
( )

( )( ) 

( )( ) 



1
1 2 2 1
0 2

1 1
1 2 2 2
0

1
2

d

                           d

                           .

i

n n n n nii
n

i n n

n n

f x x
C C I

I

f x x

M

λ λ λ λ λ
λ

γ γ λ λ

γ γ λ λ

−  − ≤ + − 
  

  = + − 
  

  ≤ + − 
  

∫

∫

 

 

 

                 (66) 

Using the 2-norm properties, from (66) we have  

( ) ( ) ( )( ) 

1 1
1 2 2 2
0

dn n i n nC C f x xλ λ γ γ λ λ
  − ≤ + − 
  

∫                             (67) 

By other hand, we can write  
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222 22
e e e e

n n
n n n

AtAt At At I
λ λλ λ λ
 − − − −  

 
− = −  

 
 

where taking norm, applying (32) and (33) together the mean value theorem, under the hypothesis  1n nλ λ− < , 

one gets  

 



( ) ( ) 

( )


2 2
2 2 1

2 22 10

2
10

2

2
1 1

0

2
1

e e e e 1

                        e e 1
!

                        e 4 e .

n n
n n

n n

A tAtAt Atn

k
m A tt A

k

t At A
n n

m A t

k

L t A

λ λλλ λ

λ λα

α λ λ

 − −− −  

 − − − Λ  

=

Λ− Λ

 
− ≤ −  

 
 Λ   ≤ −   
  
 

≤ Λ −

∑



 

where  

( )2
1 1

0
0

!

k
m

k

m A t
L

k

−

=

Λ
= >∑                                      (68) 

Replacing in (51) we obtain  




( ) ( ) ( ) ( ) ( )


( )


22 2
10

2
0

2 2
1

2

e e e 4 e

                                                                            e

                                             

n n
nn

t At AAt At
n n n n

t A
n n

X x C X x C L t A M

L M

αλ λ
λλ

α

λ λ γ λ λ

γ λ λ

Λ− Λ− −

− Λ

− ≤ Λ −

+ −

 



( )




2
0

1
2                               e

                                                                   ,

t A
n n

n n

L M

S

α γ γ λ λ

λ λ

− Λ   + + − 
  

= −

  
         (69) 

where  

( ) ( )( )2
10 22

1e 1 4 e t At AS M L L L t Aαγ γ Λ− Λ= + + + Λ                       (70) 

Given 0ε >  and 1n , consider approximations nλ  of nλ  for 1n n≤  satisfiying  



1 1

min 1,
3n n n n n S
ελ λ

≤

  − <  
  

                                      (71) 

then  

( ) ( )




( ) ( ) ( ) ( )( )




( ) ( ) ( ) ( )



2 2

1

2 2

1

1

1 1, , , , e e

                                    e e

                                    

                              

n n
nn

n n
nn

At At
n n

n n

At At
n n

n n

n n
n n

u x t n u x t n X x C X x C

X x C X x C

S

λ λ
λλ

λ λ
λλ

λ λ

λ λ

λ λ

− −

≤

− −

≤

≤

− = −

≤ −

≤ −

∑

∑

∑



1
1

      
3

                                    ,
3

Sn
n S
ε

ε

<

=
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and therefore  

( ) ( ) ( ) [ ]2
1 1 0 1, , , , ,     , , .

3
u x t n u x t n x t D t tε

− ≤ ∈                           (72) 

Remark 2. From (61), and taking into account the definition of   and   given in (64), it follows that  

( ) ( ) 

n n n nI Iλ λ λ λ− ≤ −  

so that, if 

n nλ λ−  is enough small, it can take ( ) ( )n nI Iλ λ≈  in the computation of γ . 

Similarly, can be taken in practice  

{ }
11

max nn n
λ

≤ ≤
Λ ≥                                         (73) 

instead of the definition (63).  

Approximation ( )1, ,u x t n  need to compute the exact value of the matrix exponential 

2

e n Atλ− . However, the 

approximate calculation of the exponential matrix 

2

e n Atλ−  can be performed by methods such as those based on 
the Taylor series, [25] [26], based on Hermite matrix polynomials, [27], and other existing methods in the 
literature, see [22] [23] for example. Suppose we take the matrix ( )2

App e n Atλ−  as an approximation of matrix 



2

e n Atλ− , so that  

 ( ) [ ]
2 2

1 0 1 1e App e ,     , ,   0,   n nAt At
n nt t t t n nλ λ ε ε− −− ≤ ∈ > ≤                         (74) 

We define the approximation ( )1, ,x t n  by:  

( ) ( )( ) ( ) ( ) 

( ) ( )2

1

1 0 1 1, , 1 0 App e n

n

At
n

n n
x t n b x b C X x Cλ

λα ρ λ−

≤

= − − + ∑                    (75) 

and from (65), (64) and (45) one gets that  

( ) ( )  ( ) 

( ) ( )
 ( )

2 2

1

2 2

1

1

1 1

2

2
1

, , , , e App e

                                     e App e

.

n n

n

n n

At At
n

n n

At At

n n

n
n n

u x t n x t n X x C

M

M t

λ λ
λ

λ λ

λ

γ

γ ε

− −

≤

− −

≤

≤

 − ≤ − 
 

≤ −

≤

∑

∑

∑

 





 

We take  

{ }
11

max nn n
ε

≤ ≤
=                                         (76) 

and suppose we make the approximation accurate enough satisfying condition  

2
1 13n t M

ε
γ

<


                                     (77) 

Thus, if   satisfies (77) it follows that  

( ) ( ) 2
1 1, , , , ,

3
u x t n x t n ε

− ≤                                   (78) 

and from (42), (72) and (78):  
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2 2
1 1 1 1 1 1

2 2 2
1 1 1 1 1

, , , , , , , , , , , , , ,

                                  , , , , , , , , , , ,

                                  
3 3 3

            

u x t x t n u x t u x t n u x t n u x t n u x t n x t n

u x t u x t n u x t n u x t n u x t n x t n

ε ε ε

− = − + − + −

≤ − + − + −

≤ + +

 

 

 



                      .ε=

 

Summarizing, the following results has been established:  
Theorem 1. We consider problem (1)-(4) satisfying hypotheses (5), (6) and (7). Let 0ε > , 
[ ] [ ] [ ]0 1 0 1, 0,1 ,D t t t t= × . Suppose that the hypothesis (a) is verified, this ensures that there is an exact solution 

( ),u x t  of problem (1)-(4), see Ref. [15]. Let α , ( )Aα , M , β  and L  be the constant defined by (17), 
(26), (28), (30) and (68) respectively. Let 0n  and 1n  be positive integers satisfying conditions (43) and (40). 

Let nλ  be the 1n -first approximate roots of the equation (18), each one in the interval ( )( )π, 1 πn n + , 1n n≤ , 

and let 0λ  be the approximation of the additional solution ( )0 0,πλ ∈  to be consider if condition (19) holds.  
Let 0γ >  be satisfying (53) and let Λ ,  ,   and L  be the positive constants defined by (63), (64) and 
(68) respectively. Suppose that the approximations nλ  satisfy (71), where S  is the constant defined by (70).  

Suppose that the approximations ( )2

App e n Atλ−  of matrices 

2

e n Atλ− , for 1n n≤  satisfy that the approximation 

error is less than  , where   is a positive constant which satisfies (77). Consider the functions 


( )
n

X xλ , 

1n n≤  defined by (45) and vectors ( )nC λ , 1n n≤ , defined by (46), joint the vector ( )0C  defined by (24) if 

0α ≠ . Then, the vector valued function ( )1, ,x t n  defined by (75) satisfies 

( ) ( ) ( ) [ ]2
1 0 1, , , ,     , ,u x t x t n x t D t tε− ≤ ∈  

Theorem 2. We consider problem (1)-(4) satisfying hypotheses (5), (6) and (7). Let 0ε > , and we consider 
the subdomain [ ] [ ] [ ]0 1 0 1, 0,1 ,D t t t t= × . Suppose that the hypothesis (b) is verified, this ensures that there is an 
exact solution ( ),u x t  of problem (1)-(4), see Ref. [16]. Let α , ( )Aα , M  and L  be the constant  
defined by (20), (26), (28) and (68) respectively. Let 0n  and 1n  be positive integers satisfying conditions (43) 
and (40). Take 1β =  and 1 0b = . Let nλ  be the 1n -first approximate roots of the equation (21), each one in  

the interval ( )( )π, 1 πn n + , 1n n≤ , and let 0λ  be the approximation of the additional solution ( )0 0,πλ ∈  to 

be consider if condition (22) holds. Let 0γ >  be satisfying (53) and let Λ ,  ,   and L  be the positive 
constants defined by (63), (64) and (68) respectively. Suppose that the approximations nλ  satisfy (71), where 

S  is the constant defined by (70). Suppose that the approximations ( )2

App e n Atλ−  of matrices 

2

e n Atλ− , for 

1n n≤  satisfy that the approximation error is less than  , where   is a positive constant which satisfies 

(77). Consider the functions 


( )
n

X xλ , 1n n≤  defined by (45) and vectors ( )nC λ , 1n n≤ , defined by (46), 

joint the vector ( )0C  defined by (24) if 0α ≠ . Then, the vector valued function ( )1, ,x t n  defined by (75) 
satisfies 

( ) ( ) ( ) [ ]2
1 0 1, , , ,     , ,u x t x t n x t D t tε− ≤ ∈  

3. Algorithm 1, Algorithm 2 and Example 
We can give the following algorithms, according to the hypothesis (a) or (b) is satisfied, to construct the 
approximation ( )1, ,x t n . 
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Algorithm 1. Construction of the analytic-numerical solution of problem (1)-(4) under hypotheses (a) in the subdomain                
[ ] [ ] [ ]0 1 0 1, 0,1 ,D t t t t= × , 0 0t > , with a priori error bound 0ε > .                                                         

1: Compute the constant 0ρ  satisfying (7). 

2: Determine 1b  and 2b  satisfying (10). Compute constant α  defined by (17). 

3: Compute constants A , ( )Aα , M , β , L  defined by (26), (28), (30) and (68) respectively. 

4: Determine the first positive integer 0n  which satisfies (43). 

5: Determine the first positive integer 1n  which satisfies (40). 

6: Determine approaches nλ  of the 1n -first roots of Equation (18) each one in the interval ( )( )π, 1 πk k + , 1k n≤ , joint the approximation of the 

additional solution ( )0 0,πλ ∈  if condition (19) holds. 

7: Compute ( )I ρ  for 

nρ λ= , 1n n≤  and determine 0γ >  satisfying (53). 

8: Compute Λ ,  ,   and L  defined by (63), (64) and (68) respectively. 

9: Compute S  defined by (70) 

10: Check that approximations nλ  satisfy (71). Otherwise return to step 6 and calculate approximations nλ  more precisely. 

11: Compute   satisfying (77). 

12: Compute approximations ( )2

App e n Atλ−  of matrices 

2

e n Atλ− , for 1n n≤  so that the error in each one approach is less than  . 

13: Compute functions 


( )
n

X x
λ

, 1n n≤ , defined by (45). 

14: Compute vectors ( )nC λ , 1n n≤ , defined by (46). If 0α ≠ , compute ( )0C  defined by (24). 

15: Compute the approximation ( )1, ,x t n  defined by (75).   

 
Algorithm 2. Construction of the analytic-numerical solution of problem (1)-(4) under hypotheses (b) in the subdomain                
[ ] [ ] [ ]0 1 0 1, 0,1 ,D t t t t= × , 0 0t > , with a priori error bound 0ε > .                                                        

1: Compute the constant 0ρ  satisfying (7).  

2: Determine 2a  satisfying (13). Compute constant α  defined by (20). Take 1 0b =  and 1β = . 

3: Compute constants A , ( )Aα , M , L  defined by (26), (28) and (68) respectively. 

4: Determine the first positive integer 0n  which satisfies (43). 

5: Determine the first positive integer 1n  which satisfies (40). 

6: Determine approaches nλ  of the 1n -first roots of Equation (21) each one in the interval ( )( )π, 1 πk k + , 1k n≤ , joint the approximation of the 

additional solution ( )0 0,πλ ∈  if condition (22) holds. 

Continue with the step 7 of Algorithm 1  

 
Example 1. We will construct an approximate solution in the subdomain [ ] [ ] [ ]0,1 0,1 0.1,1D = × , with a 

priori error bound 210ε −= , of the homogeneous parabolic problem with homogeneous conditions (1)-(4), 
where the matrix 4 4A ×∈  is chosen  

2 0 0 1
1 2 1 2
1 0 2 1

0 0 0 1

A

− 
 − =
 −
 
 

                                         (79) 

and the 4 4×  matrices { },  ,  1, 2i iA B i∈ , are  
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1 2

1 2

0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0

,     ,     
0 0 1 0 0 0 0 1
0 0 0 1 0 0 0 0

1 0 0 0 1 0 0 0
0 1 0 0 1 0 0 0

,     
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

A A

B B

   
   
   = =
   
   
   
   
   
   = =
   
   
   

                         (80) 

Also, the vectorial valued function ( )f x  will be defined as  

( )
2

0
1

0
0

x
f x

 
 − =
 
 
 

                                            (81) 

This is precisely the example 1 of Ref. [15] whose exact solution is given by:  

( )
( ) ( ) ( )

( )

2π 2 1
2

33
0

0π32 1 e cos 2 1 12,
0π 2 1
0

n tn

n

n x
u x t

n

− +

≥

   − +    
    = −

  +
  

  

∑                   (82) 

We will follow algorithm 1 step by step: 
1. Hypothesis (a) holds with 4m = . Note that although 1A  is singular, taking 0 1ρ = ∈ , the matrix pencil  

1 0 1 4 4A B Iρ ×+ =                                  (83) 

is regular. Therefore, we take 0 1ρ = . 
2. Performing calculations similar to those made in Ref. [15], one gets that 1 1b = , 2 0b =  and 0α = . 
3. It is easy to calculate 3.67571A = , ( ) { }1,2Aσ = , thus ( ) 2Aα = . Similarly 8 15M = , 1β =  and 

101.589L = . 
4. Note that  

2

1 0.00018168.
M Lβ

=  

Then, by (43):  

( ) ( )

( ) ( )

2 2

2 2

0.4 3 π16
2

0.4 4 π16 10
2

13 3π e 1.43749 ,

14 4π e 1.428708 10 ,

n
M L

n
M L

β

β

−

− −

= ⇒ = >

= ⇒ = × <
 

then we take 0 4n = . 
5. We have  

4 24

4
1

4 25

4
1

1 π 104 0.000237971,
90 3

1 π 105 0.00136203,
90 3

k

k

n
k

n
k

−

=

−

=

 
= ⇒ − + = − 

 
 

= ⇒ − + = 
 

∑

∑
 

then we can take 1 05 4n n= > = . 
6. We need to determinate the 1n -first roots of equation  
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( )cot 0λ λ =  

We can solve exactly this equation, 
π π
2n nλ = + , 1, ,5n =  , with an additional solution ] [0 0,πλ ∈ , be- 

cause  

( )( )2 0 1 2 0 1

1

1 1
0 1

b b b b
b

ρ ρ− + −
= <  

and then 0
π
2

λ = . 

In summary, 0
π
2

λ = , 1
3π
2

λ = , 2
5π
2

λ = , 3
7π
2

λ = , 4
9π
2

λ = , 5
11π

2
λ = . We take the approximate values 

(50 exact decimal)  








0

1

2

3

1.5707963267948966192313216916397514420985846996876,

4.7123889803846898576939650749192543262957540990627,

7.8539816339744830961566084581987572104929234984378,

10.99557428756427633461925184147

λ

λ

λ

λ

=

=

=

=




4

5

8260094690092897813,

14.137166941154069573081895224757762978887262297188,

17.278759594743862811544538608037265863084431696563.

λ

λ

=

=

 

7. We calculate ( )I ρ  for 

nρ λ= :  

( )
( )
( )
( )

0

1

2

3

1.2337005501361698273543113749845188919142124259051,

11.103304951225528446188802374860670027227911833146,

30.842513753404245683857784374612972297855310647627,

60.4513269566723215403612573

I

I

I

I

λ

λ

λ

λ

=

=

=

=

( )
( )

4

5

74241425703796408869350,

99.929744561029756015699221373746030245051206498313,

149.27776656647654910987167637312678592161970353452.

I

I

λ

λ

=

=

 

the smallest of them is ( )0I λ , as 

01 0.810569λ ≈ , we take 0.82γ = . 

8. We have that 

517.3 λΛ = > , 18.3= , 34.6=  and 91.77759 10L = × . 

9. We have that 431.56631 10S = × . 
10. To be applicable the algorithm 1, the approximations nλ  may satisfy:  



46

1

min 1, 7.37211 10
3n n n S
ελ λ −  − < = × 

  
 

As the roots were calculated with 50 decimal accurate, we accept these approximations of the roots. 
11. We have to take   satisfying (77). In our case  

2
1 1

0.0000472137.
3n t M

ε
γ

< =


 

12. We have to compute approximations ( )2
App e n Atλ−  of matrices 

2
e n Atλ− , for 0,1, 2,3, 4,5n =  with a maxi- 

mum error  . In this case, using minimal theorem ([28], p. 571), we can determine the exact value of eAs  
given by:  
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( )
( ) ( )

2 2

2 2 2 2 2

2 2 2

e 0 0 e 1 e

1 1e 2 e e e 2 2e 2e 2 2
e 0 e e

0 0 0 e

s s s

s s s s s
As

s s s

s

s s s s s

s s

− −

− − − −

− − −

−

 − +
 
 
− + − − + + + =
 

− 
 
 

                (84) 

then, we can obtain ( )2

App e n Atλ−  for 0,1, 2,3, 4,5n =  replacing in (84). 

13. Functions 


( )
n

X xλ , 0,1, , 4n =  , defined by (45) are given by:  



( ) ( )


( ) ( )


( ) ( )


( )

0

1

2

3

1.5707963267948966192cos 1.5707963267948966192 ,

4.7123889803846898577cos 4.7123889803846898577 ,

7.8539816339744830962cos 7.8539816339744830962 ,

10.995574287564276335cos 10.99557428

X x x

X x x

X x x

X x

λ

λ

λ

λ

= −

= −

= −

= − ( )



( ) ( )


( ) ( )
4

5

7564276335 ,

14.137166941154069573cos 14.137166941154069573 ,

17.278759594743862812cos 17.278759594743862812 .

x

X x x

X x x
λ

λ

= −

= −

 

14. Vectors ( )nC λ , 1, ,5n =  , defined by (46) are given by:  

( )

( )

( )

( )

0

1

2

3

0
0.65702286429979745210577812909559642508

,
0
0

0
0.0081113933864172524951330633221678570997

,
0
0

0
0.00105123658287967592336924500655295428012

,
0
0

0
0.000273

C

C

C

C

λ

λ

λ

λ

 
 
 =
 
 
 
 
 − =
 
 
 
 
 
 =
 
 
 

= −

( )

( )

4

5

6455078299864440257301662205732716 ,
0

0
0.0001001406590915710184584328805205908284

,
0
0

0
0.00004487554567992606052221693389082688512

.
0
0

C

C

λ

λ

 
 
 
 
 
 
 
 =
 
 
 
 
 − =
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We don’t compute ( )0C  defined by (25) because 0α = . 
15. Compute ( )1, ,x t n  defined by (75), obtaining:  

( ) ( )
0

,
, ,5

0
0

x t
x t

 
 
 =
 
 
 


  

where  

( ) ( ) ( )
( ) ( )

4.93480220 44.4132198

123.370055 241.805308

, 1.03204910e cos 1.57079633 0.0382240408e cos 4.71238898

                0.00825639281e cos 7.85398163 0.00300888951e cos 10.9955743

                0.

t t

t t

x t x x

x x

− −

− −

= − +

− +

−



( ) ( )399.718978 597.11106600141570522e cos 14.1371669 0.000775393765e cos 17.2787596 .t tx x− −+

 

and our approximation satisfies  

( ) ( ) ( ) [ ]2 2, , ,5 < 10 ,     , 0.1,1u x t x t x y D−− ∈  

As an example, consider the point ( ) ( ) [ ], 0.27,0.9 0.1,1x t D= ∈ . We have the approximation  

( )

0
0.0110808

0.27,0.9,5
0
0

 
 − =
 
 
 

  

It is easy to check that, from (82), one gets  

( ) ( ) 180.27,0.9 0.27,0.9,5 10u −− <  

4. Conclusion 
In this paper, a method to construct an analytic-numerical solution for homogeneous parabolic coupled systems 
with homogeneous boundary conditions of the type (1)-(4) has been presented. An algorithm with an illustrative 
example is given.  
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