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A class of optimal eighth-order derivative-free methods for solving the
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aInstituto de Matemática Multidisciplinar
Universitat Politècnica de València

Camino de Vera s/n, 46022 València, Spain

Abstract

A derivative-free optimal eighth-order family of iterative methods for solving nonlinear equations is constructed using
weight functions approach with divided first order differences. Its performance, along with several other derivative-
free methods, is studied on the specific problem of Danchick’s reformulation of Gauss’ method of preliminary orbit
determination. Numerical experiments show that such derivative-free, high-order methods offer significant advantages
over both, the classical and Danchick’s Newton approach.

Keywords: Nonlinear equation, iterative method, derivative-free scheme, order of convergence, basin of attraction,
efficiency index

1. Introduction

Many applied problems in different fields of science and technology require to find the solution of a nonlinear equa-
tion f(x) = 0, where f : I ⊂ R → R is a scalar function on an open interval I: in particular, the numerical solution of
nonlinear equations and systems are needed in the study of dynamical models of chemical reactors [1], or in radioactive
transfer [2]. Moreover, many of numerical applications use high precision in their computations; in [3], high-precision
calculations are used to solve interpolation problems in Astronomy; in [4] the authors describe the use of arbitrary preci-
sion computations to improve the results obtained in climate simulations; the results of these numerical experiments show
that the high order methods associated with a multiprecision arithmetic floating point are very useful, because it yields a
clear reduction in iterations.

The performance of an iterative method can be measured by the efficiency index introduced by Ostrowski in [5]. In
this sense, Kung and Traub conjectured in [6] that a multipoint method without memory performing n + 1 functional
evaluations per iteration has at most convergence order 2n. A method is called optimal when its order reaches this bound.
In [7] we can see an unified presentation of many multipoint iterative schemes designed during the last years.

Since Steffensen designed (see, for example [8]) his second-order method as a variant of Newton’s scheme without
derivatives, many optimal fourth-order methods have been proposed in order to improve the convergence properties of it
(see, for example [9, 10] and the references therein). More limited is the quantity of optimal eighth-order derivative-free
iterative methods, mainly designed by using divided differences of high order (see, for example, [10, 11, 12]). Moreover,
when only first-order divided differences are used, it is necessary to introduce several weight functions with one, two or
more variables, all of them quotients of function f evaluated in different steps of the process (see, for instance [13, 14, 15]
and the references therein).

By using weight functions procedure, with functions of one variable, and divided differences of order one, we derive
an Steffensen-type family of optimal eighth-order schemes. We would like to remark that we use a quotient of divided
differences as a variable of one of the weight function used in our process. In the numerical section we use some special
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cases of this family for solving the classical problem of preliminary orbit determination of artificial satellites, improving
the classical Gauss’s method and the iterative scheme designed by Danchick in [16], that removed several limitations of
the original methods.

The rest of the paper is organized as follow. In Section 2 we describe our family of iterative methods and prove
that, under some conditions of the weight functions, all of them have order of convergence eight, needing four functional
evaluations per iteration, that is, they are optimal schemes in the sense of Kung-Traub’s conjecture. Numerical results
given in Section 3 allow to compare the proposed methods with other ones, into the Danchick’s algorithm, for solving the
problem of the determination of artificial satellites. We also analyze the basins of attraction of the different methods used
in this work. Both studies confirm the theoretical results and show the high stability of the proposed schemes. We finish
the paper with some conclusions and the references used in it.

2. A new family of Steffensen-type methods with optimal order of convergence.

We design a three-step family of Steffensen-type methods, using weight functions technique. To develop it, we
compose Steffensen’s method with itself three times, but using different divided differences in each step. For reaching
the optimal order, we use in the second step a weight function whose variable is a quotient of two values of f and in the
third step a weight function whose variable is the quotient between two divided difference. The iterative expression of our
family is:

yk = xk −
f(xk)

f [zk, xk]
,

wk = yk −H(µ)
f(yk)

f [yk, zk]
, µ =

f(yk)

f(zk)

xk+1 = wk −G(η)
f(wk)

f [wk, yk]
, η =

f [wk, yk]

f [wk, zk]

(1)

where zk = xk + f(xk)3 , f [·, ·] denotes divided difference of first order and H(µ) and G(η) are real functions.
In this scheme, the election of the exponent of f(xk) in the expression of zk is key to obtain the order of convergence

eight. In fact, following the ideas shown in [17], if we take in (1) zk = xk + f(xk) or zk = xk + f(xk)2 the order eight
is not reached. On the other hand, the next result holds also if zk = xk + γf(xk)n, for n ≥ 3 and any value of parameter
γ, γ 6= 0.

Theorem 1. Let x∗ ∈ I be a simple zero of a sufficiently differentiable function f : I ⊆ R → R in a open interval
I . Let us consider x0 close enough to x∗ and H and G sufficiently differentiable real functions satisfying the following
conditions: H(0) = 0, H ′(0) = 1, G(1) = 1, G′(1) = 0, G′′(1) = 2 and G′′′(1) = −12. The iterative methods (1)
have optimal eighth-order of convergence, whose error equation is:

ek+1 =
1

2
C2((−6 +H2)C2

2 + 2C3)(f ′(x∗)3C2
2 − 4C4

2 + C2
3 − C2C4)e8k +O[e9k],

where ek = xk − x∗ and Ck = 1
k!
f(k)(x∗)
f ′(x∗) , k = 2, 3, ...

Proof: Expanding f(xk) in Taylor’s series around x = x∗ and taking into account that ek = xk − x∗ and f(x∗) = 0,

f(xk) = f ′(x∗)
[
ek + C2e

2
k + C3e

3
k + C4e

4
k + C5e

5
k

]
+O[e6k] (2)

and

zk − x∗ = ek + f ′(x∗)3
[
e3k + 3C2e

4
k +

(
3C2

2 + 3C3

)
e5k
]

+O[e6k]. (3)
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Therefore,

f(zk) = f ′(x∗)
[
ek + C2e

2
k + (f ′(x∗)3 + C3)e3k + (5f ′(x∗)3C2 + C4)e4k

+(9f ′(x∗)3C2
2 + 6f ′(x∗)3C3 + C5)e5k

]
+O[e6k]. (4)

Now, we get the Taylor’s expansion of f [zk, xk] =
f(zk)− f(xk)

zk − xk
, by replacing in it the equations (2), (3) and (4).

f [zk, xk] = f ′(x∗) + 2f ′(x∗)C2ek + 3f ′(x∗)C3e
2
k +

(
f ′(x∗)4C2 + 4f ′(x∗)C4

)
e3k

+
(
3f ′(x∗)4C2

2 + 3f ′(x∗)4C3 + 5f ′(x∗)C5

)
e4k

+ 3f ′(x∗)
(
f ′(x∗)3C3

2 + 4f ′(x∗)3C2C3 + 2
(
f ′(x∗)3C4 + C6

))
e5k +O[e6k].

Then, the second order of convergence of first step of our iterative process (1) is obtained

yk − x∗ = C2e
2
k +

(
−2C2

2 + 2C3

)
e3k +

(
4C3

2 + C2

(
f ′(x∗)3 − 7C3

)
+ 3C4

)
e4k

+
(
−8C4

2 + 3f ′(x∗)3C3 + 20C2
2C3 − 6C2

3 − 10C2C4 + 4C5

)
e5k +O[e6k].

So,

f(yk) = f ′(x∗)
[
C2e

2
k − 2

((
C2

2 − C3

))
e3k +

(
5C3

2 + C2

(
f ′(x∗)3 − 7C3

)
+ 3C4

)
e4k

+
(
−12C4

2 + 3f ′(x∗)3C3 + 24C2
2C3 − 6C2

3 − 10C2C4 + 4C5

)
e5k
]

+O[e6k].

Now, we can express the variable µ =
f(yk)

f(zk)
, in terms of the error ek, as

µ = C2ek +
(
−3C2

2 + 2C3

)
e2k +

(
8C3

2 − 10C2C3 + 3C4

)
e3k

+
(
−20C4

2 + f ′(x∗)3C3 − 8C2
3 + C2

2

(
−2f ′(x∗)3 + 37C3

)
− 14C2C4 + 4C5

)
e4k

+ (48C5
2 + 2C3

2 (2f ′(x∗)3 − 59C3) + 51C2
2C4 + (3f ′(x∗)3 − 22C3)C4

+ C2(−9f ′(x∗)3C3 + 55C2
3 − 18C5) + 5C6)e5k +O[e6k].

Since µ −→ 0 when k −→∞, we expand the weight function H(µ) in Taylor’s series around zero.

H(µ) = H0 +H1C2ek +
1

2
(−6H1 +H2)C2

2 + 2H1C3)e2k

+ ((8H1 − 3H2 +
H3

6
)C3

2 + 2(−5H1 +H2)C2C3 + 3H1C4)e3k

+ (−1

2
(40H1 − 25H2 + 3H3)C4

2 + f ′(x∗)3H1C3 + (−8H1 + 2H2)C2
3

+ C2
2 (−2f ′(x∗)3H1 + (37H1 − 16H2 +H3)C3) + (−14H1 + 3H2)C2C4 + 4H1C5)e4k +O[e5k],

where H0 = H(0), H1 = H ′(0) and H2 = H ′′(0). So, the error expression of the second step of (1) is:

wk − x∗ = −(−1 +H0)C2e
2
k +

(
(−2 + 3H0 −H1)C2

2 − 2(−1 +H0)C3

)
e3k

+

(
(4− 7H0 + 6H1 −

H2

2
)C3

2 + C2(−f ′(x∗)3(−1 +H0)

+(−7 + 10H0 − 4H1)C3)− 3(−1 +H0)C4) e4k +O[e5k].

In order to achieve optimal fourth-order of convergence in the second step, we require H0 = 1 and H1 = 1. Then,

wk − x∗ =

(
−1

2
(−6 +H2)C3

2 − C2C3

)
e4k +O[e5k].
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By using the Taylor’s expansion of f(wk), f [wk, yk] and f [wk, zk] around x∗,

f(wk) = −1

2
(f ′(x∗)((−6 +H2)C3

2 + 2C2C3))e4k

+ f ′(x∗)

((
−18 +

9H2

2
− H3

6

)
C4

2 − 2C2
3

+C2
2 (f ′(x∗)3 + (20− 3H2)C3)− 2C2C4

)
e5k +O[e6k], (5)

f [wk, yk] = f ′(x∗) + f ′(x∗)C2
2e

2
k + 2f ′(x∗)C2(−C2

2 + C3)e3k

+
1

2
f ′(x∗)C2(−(−14 +H2)C3

2 + 2C2(f ′(x∗)3 − 7C3) + 6C4)e4k

+
1

6
f ′(x∗)C2((−156 + 27H2 −H3)C4

2 + 6C2
2 (f ′(x∗)3 − 3(−12 +H2)C3)

− 72C2C4 + 6(3f ′(x∗)3C3 − 4C2
3 + 4C5))e5k +O[e6k] (6)

and

f [wk, zk] = f ′(x∗) + f ′(x∗)C2ek + f ′(x∗)C3e
2
k + f ′(x∗)(f ′(x∗)3C2 + C4)e3k

+
1

2
f ′(x∗)(−(−6 +H2)C4

2 + C2
2 (6f ′(x∗)3 − 2C3) + 2(2f ′(x∗)3C3 + C5))e4k

+
1

6
f ′(x∗)((−108 + 27H2 −H3)C5

2 + 18C2(3f ′(x∗)3 − C3)C3

+ 3C3
2 (8f ′(x∗)3 + (46− 7H2)C3)− 12C2

2C4 + 6(3f ′(x∗)3C4 + C6)e5k +O[e6k],

we get

η =
f [wk, yk]

f [wk, zk]
= 1− C2ek + (2C2

2 − C3)e2k + (−4C3
2 − C2(f ′(x∗)3 − 4C3)− C4)e3k

+ (8C4
2 − 2f ′(x∗)3C3 − 12C2

2C3 + C2
3 + 5C2C4 − C5)e4k

+

(
−1

2
(26 +H2)C5

2 −
1

2
C3

2 (4f ′(x∗)3 − (56 +H2)C3)− 17C2
2C4

+(−3f ′(x∗)3 + 2C3)C4 − 6C2(C2
3 − C5)− C6

)
e5k +O[e6k].

In the same way, we are going to obtain the Taylor’s expansion of G(η) around 1, since in this case η −→ 1 when
k −→∞. Denoting by G0 = G(1), G1 = G′(1), G2 = G′′(1) and G3 = G′′′(1), we have

G(η) = G0 −G1C2ek + (
1

2
(4G1 +G2)C2

2 −G1C3)e2k + (−1

6
(24G1

+ 12G2 +G3)C3
2 + C2(−f ′(x∗)3G1 + (4G1 +G2)C3)−G1C4)e3k

+ ((8G1 + 6G2 +G3)C4
2 − 2f ′(x∗)3G1C3 + (G1 +

G2

2
)C2

3

+
1

2
C2

2 (2f ′(x∗)3G2 − (24G1 + 12G2 +G3)C3) + (5G1 +G2)C2C4 −G1C5)e4k

+
1

2
(−(8(4G2 +G3) +G1(26 +H2))C5

2 + C3
2 (−f ′(x∗)3(4G1 + 4G2 +G3)

+ (8(6G2 +G3) +G1(56 +H2))C3)− (34G1 + 14G2 +G3)C2
2C4

+ (−6f ′(x∗)3G1 + 2(2G1 +G2)C3)C4 + C2(6f ′(x∗)3G2C3

− (12G1 + 10G2 +G3)C2
3 + 2(6G1 +G2)C5)− 2G1C6)e5k +O[e6k]. (7)
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Finally, replacing (5), (6) and (7) in the last step of (1), we obtain:

ek+1 =
1

2
(−1 +G0)C2((−6 +H2)C2

2 + 2C3)e4k

+ (−1

6
(108 + 3G1(−6 +H2)− 27H2 +G0(−108 + 27H2 −H3) +H3)C4

2

+ 2(−1 +G0)C2
3 + C2

2 (−f ′(x∗)3(−1 +G0)− (−20 +G1 +G0(20− 3H2)

+ 3H2)C3) + 2(−1 +G0)C2C4)e5k +O[e6k].

If we set G0 = 1, G1 = 0, G2 = 2 and G3 = −12 the error equation is:

ek+1 =
1

2
C2((−6 +H2)C2

2 + 2C3)(f ′(x∗)3C2
2 − 4C4

2 + C2
3 − C2C4)e8k +O[e9k],

which proves the order of convergence eight of this family. �
We would like to emphasize that, this new family of Steffensen-type methods have four functional evaluations per

iteration, so it is optimal in the sense of Kung-Traub’s conjecture.

3. Numerical results.

The classical method for preliminary orbit determination was obtained by Carl F. Gauss in 1801 for deducing the orbit
of the minor planet Ceres. This method starts from two position vectors, denoted by ~r1 and ~r2, of the satellite in its orbit
and the time instants in which they were obtained. Then, the procedure is based on the rate y between the triangle and the
ellipse sector defined by the two position vectors (see Figure 1a). The complete procedure to obtain Gauss’ equations can
be found in [18].

The preliminary orbit is determined by considering only the gravitational forces of two bodies. This yields to a planar
motion, described by a conic. Let us set a two-dimensional coordinate system (see Figure 1b), where the X axis points
to the perigee of the orbit, the closest point of the conical orbit to the focus and center of the system, the Earth. In this
figure the true anomaly ν and the eccentric anomaly E can be observed. In order to place this orbit in the celestial sphere
and determine completely the position of a body in the orbit, some elements (called orbital or keplerian elements) must
be determined. These orbital elements are:

• Ω, (right ascension of the ascending node): defined as the equatorial angle between the Vernal point γ and the
ascending node N ; it orients the orbit in the equatorial plane.

• ω, (argument of the perigee): defined as the angle of the orbital plane, centered at the focus, between the ascending
node N and the perigee of the orbit; it orients the orbit in its plane.

• i, (inclination): dihedral angle between the equatorial and the orbital planes.

• a, (semi-major axis): which sets the size of the orbit.

• e, (eccentricity): which gives the shape of the ellipse.

• T0, (perigee epoch): time for the passing of the object over the perigee, to determine a reference origin in time. It
can be denoted by a exact date, in Julian Days, or by the amount of time ago the object was over the perigee.

The equations that we have used are known as the First and Second Gauss’ equations:

y2 =
m

l + x
, y2(y − 1) = mX.

Also, by combining them, the unified equation of Gauss is obtained as:

y = 1 +X(l + x),
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Figure 1: Some aspects of the orbital plane

where
l = r1+r2

4
√
r2r1 cos(

ν2 − ν1
2

)

− 1
2 , m = µτ2[

2
√
r2r1 cos(

ν2 − ν1
2

)

]3 ,

x = 1
2

[
1− cos

(
E2−E1

2

)]
, X = E2−E1−sin(E2−E1)

sin3

E2 − E1

2

 ,

ν2 − ν1 is the difference between true anomalies, directly obtained from the observations and E2 − E1 is the difference
between eccentric anomalies, which will be calculated in the process.

The original Gauss’ scheme has a restriction when the angle formed by the two position vectors is greater than π/4,
since in this case the areas of the triangle and the ellipse sector are not similar. For this reason, Danchick in [16] modified
Gauss’ method solving separately by means of Newton’s method the Gaussian equations, depending on the value of the
true anomalies. As a consequence, he got to determinate preliminary orbits with a range of the difference of true anomalies
until π radians and also removed the two other limitation of the classical method: slow convergence and sensitivity to
initial guess. In order to improve Danchick’s method regarding order of convergence, number of iterations and exact
error, we will replace in this procedure Newton’s scheme by other high-order methods. Then, we hold the advantages
of Danchick’s reformulation in terms of initial estimations and range of the true anomalies, improving the velocity of
convergence and the precision of the results.

The procedures that we will use to compare the original and the proposed schemes, whose results can be seen in the
following tables, are:

• FPoint is the classical Fixed Point method that was originally used by Gauss (see [18]).

• The original method used by Roy Danchick ([16]),

xk+1 = xk −
f(xk)

f ′(xk)
. (8)

• DS is the classical Steffensen’s method (see [19]). In it, the derivative of Newton’s scheme is replaced by a divided
difference of first order f [zk, xk] with zk = xk + f(xk),

xk+1 = xk −
f2(xk)

f(zk)− f(xk)
. (9)
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• DSR is the derivative-free method obtained by Steffensen’s scheme using zk = xk − f(xk),

xk+1 = xk −
f2(xk)

f(xk)− f(zk)
. (10)

• DT is the classical Traub’s method

yk = xk −
f(xk)

f ′(xk)
, (11)

xk+1 = yk −
f(yk)

f ′(xk)
.

• DTS is the derivative-free version of Traub’s method (it can be easily proved that it has third-order of convergence)

yk = xk −
f2(xk)

f(zk)− f(xk)
, zk = xk + f(xk) (12)

xk+1 = yk −
f(xk)f(yk)

f(zk)− f(xk)
.

• The same idea, but using zk = xk − f(xk), yields DTSR

yk = xk −
f2(xk)

f(zk)− f(xk)
, zk = xk − f(xk) (13)

xk+1 = yk −
f(xk)f(yk)

f(xk)− f(zk)
.

• MO is one of the methods of our new family of Steffensen-type schemes (1), where the used weight functions are:

H(µ) = 1 + µ,

G(η) = 1/4 + (−3/4 + η)2 − 2(−1 + η)3 + η.

In Tables 1 to 5 we will see other pieces of information that will help us to compare the methods, as the number of
iterations iter and the Approximated Computational Order of Convergence ρ given by (see [20]):

p ≈ ρ =
ln(|xk+1 − xk|/|xk − xk−1|)

ln(|xk − xk−1|/|xk−1 − xk−2|)
.

From ρ we obtain what we call the approximated index of efficiency denoted by Ĩ = ρ1/d and we also use the approxi-
mated computational index calculated as Ĩc = ρ1/op, where d is the number of functional evaluations and op is number of
products and quotients realized per step. Finally, errorparameter is the exact error of each orbital element.

These numerical results have been obtained with Wolfram Mathematica software, using Variable Precision Arithmetic
with 1000 digits and the stopping criterium |xk+1−xk| < 10−100. To check these methods, we will calculate the reference
orbits that appear in [18]. As a common piece of information of these orbits, we have the next parameters: k = 0.0743654
(e.r.)

3
2 /min, µ = 1 (e.m.) and ae = 1 (e.r.), where ae is the distance between the mass center and the focus of the ellipse

where the Earth is situated; e.r. is a unit of distance relative to the equatorial radius of the Earth, 1e.r ≈ 6373.0024km
and e.m. is a unit relative to the center of masses of the Earth. Also we must comment that J.D. is equal to Julian Days
and T is the time of pass through the perigee.

• Reference Orbit I
Position vectors

~r1 ≈ [2.460809287053385, 2.040522906364322, 0.143819057688152],

~r2 ≈ [1.988041555748197, 2.503333545052242, 0.314553506052512].

7



Orbital parameters

a = 4.0 e.r. i = 15◦ ∆t = 0.01044412 J.D.
e = 0.2 Ω = 30◦

T = January 1, 1964 0hr, 0min, 0seg ω = 10◦

FPoint Danchick DS DSR DT DTS DTSR MO
iter 53 5 5 5 4 4 3 3

ρ 0.9999 2.0000 2.0000 1.9999 3.0000 3.0000 2.9999 8.0010

Ĩ 0.9987 1.3945 1.3812 1.4673 1.6969 1.4531 1.5424 1.7313

Ĩc 0.9974 1.9459 1.3812 1.4673 2.2420 1.4531 1.5424 1.1575

errora 3.6805e-104 5.7675e-125 1.7318e-115 1.0414e-183 1.5440e-145 4.8431e-200 4.3307e-130 4.8431e-200

errore 5.7528e-104 6.6345e-125 1.9922e-115 1.1980e-183 1.7761e-145 8.8035e-201 4.9817e-130 8.8035e-201

errori 2.2349e-102 2.4417e-123 7.3317e-114 4.4089e-182 6.5365e-144 3.9324e-200 1.8334e-128 3.9324e-200

errorω 7.9614e-102 8.6981e-123 2.6118e-113 1.5706e-181 2.3285e-143 1.4009e-199 6.5313e-128 1.4009e-199

errorΩ 0 0 0 0 0 0 0 0

T ime 0.0038418 0.0594093 0.1227397 0.1313144 0.0522505 0.1112143 0.0821334 0.0029408

Table 1: Results of Reference Orbit I, |ν2 − ν1| = 12.2319◦, initial estimation y0 = 1

In the first orbit, the difference of true anomalies is about 12 degrees, thus the initial approximation can be y0 = 1
since this value of true anomalies is below forty-five degrees (this is, the areas of the sector-triangle are similar). For this
reason, Fixed Point gives us the solution but needs a high number of iterations. DTSR and MO reach the solution in only
three iterations but MO is more accurate, using the least computational time.

• Reference Orbit II
Position vectors

~r1 ≈ [0.411362066797608,−1.662499999999999, 0.822724133595216],

~r2 ≈ [0.977567529772089,−1.644280060976665,−0.04236299091611].

Orbital parameters

a = 2.0 e.r. i = 60◦ ∆t = 0.01316924 J.D.
e = 0.05 Ω = 120◦

T = December 23, 1963 0hr, 0min, 0seg ω = 150◦

Looking at Table 2, the difference of true anomalies is greater than in the previous one, but we can use the same
initial approximation since the difference of true anomalies is below forty-five degrees. Now, the number of iterations in
Fixed Point is the highest, that is, the originally Gauss’ method loses performance with increasing the difference of true
anomalies. As we can see DT, DTS, DTSR and MO reach the orbital parameters with the same error but MO needs only
three iterations and continue having the least computational time.

• Reference Orbit III
Position vectors

~r1 ≈ [−2.578226630220951, 2.136491364121168, 0.590044146022302],

~r2 ≈ [3.4985306433286335,−2.946150606082265, 0.231098880639301].
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FPoint Danchick DS DSR DT DTS DTSR MO
iter 100 6 6 6 5 4 4 3

ρ 0.99999 2.0000 2.0000 1.9999 3.0000 3.0000 2.9999 8.0126

Ĩ 0.9990 1.3876 1.3667 1.4419 1.4886 1.4215 1.4945 1.7179

Ĩc 0.9980 1.9289 1.3667 1.4419 1.8174 1.4215 1.4945 1.1552

errora 7.6194e-103 3.6639e-137 8.4958e-116 2.4566e-200 7.1500e-202 7.1508e-202 7.1508e-202 7.1508e-202

errore 6.6292e-102 2.2202e-136 5.1481e-115 1.4425e-199 2.7300e-202 2.7300e-202 2.7325e-202 2.7325e-202

errori 1.0392e-101 3.3928e-136 7.8671e-115 2.1984e-199 1.0162e-201 1.0162e-201 1.0163e-201 1.0163e-201

errorω 9.6868e-100 3.1625e-134 7.3332e-113 2.0492e-197 9.4730e-200 9.4730e-200 9.4732e-200 9.4732e-200

errorΩ 0 0 0 0 0 0 0 0

T ime 0.0050993 0.0698852 0.1527216 0.1644351 0.0675880 0.1066893 0.1141550 0.0030695

Table 2: Results of Reference Orbit II, |ν2 − ν1| = 31.4649◦, initial estimation y0 = 1

Orbital parameters

a = 4.0 e.r. i = 88◦ ∆t = 0.21227310 J.D.
e = 0.15 Ω =140 ◦

T = January 30, 1964 0hr, 0min, 0seg ω = 10◦

FPoint Danchick DS DSR DT DTS DTSR MO
iter – – – – – – – 4

ρ – – – – – – – 8.0235

Ĩ – – – – – – – 1.5210

Ĩc – – – – – – – 1.1133

errora – – – – – – – 1.7358e-202

errore – – – – – – – 3.6984e-202

errori – – – – – – – 1.2487e-202

errorω – – – – – – – 8.0140e-200

errorΩ – – – – – – – 2.4857e-251

T ime – – – – – – – 0.00114858

Table 3: Results of Reference Orbit III, |ν2 − ν1| = 59.0148◦, initial estimation y0 = 0.4

To determine this orbit is more complicate than the previous cases, since the difference of true anomalies is above
forty-five degrees, for this reason fixed point scheme can not reach the solution. In Table 3, we can see that MO method
is the only one able to give the solution in spite of we are using a very good initial estimation. Because of this problem of
convergence, we decided to represent the dynamical planes of these derivative-free methods to conclude if our methods
reach the solution and which points are good initial estimations. From Figures 2a to 3b, we deduce that y0 = 0.46 is a
good initial approximation for all the methods, since this value is in the basin of attraction of all them. These dynamical
planes show the wideness of the regions of good starting points for a particular bound of the error. If this bound is
modified, these areas of convergence change in a proportional way.

In Table 4 we can see that, in spite of using the good initial guess y0 = 0.46, the only method able to give us a
solution (with the same tolerance as in Orbits I and II) is MO, giving the solution with a small error, being the number
of iterations and the computational time specially low. However, by the information obtained from the dynamical planes,
all the methods should converge with this initial estimation. Then, we decided to relax the requirements on the methods
to ensure that they converge, that is, to use a higher tolerance tol = 10−10 and Variable Precision Arithmetics with 250
digits. Under these conditions we can compare all the methods, as we can see in Table 5.
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Figure 2: Dynamical planes of MO, DS and DSR respectively
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Figure 3: Dynamical planes of DTS and DTSR respectively

FPoint Danchick DS DSR DT DTS DTSR MO
iter – – – – – – – 4

ρ – – – – – – – 8.0010

Ĩ – – – – – – – 1.5528

Ĩc – – – – – – – 1.1221

errora – – – – – – – 1.7358e-202

errore – – – – – – – 3.6984e-202

errori – – – – – – – 1.2487e-202

errorω – – – – – – – 8.0140e-200

errorΩ – – – – – – – 2.4857e-251

T ime – – – – – – – 0.00121789

Table 4: Results of Reference Orbit III, tol = 10−100, |ν2 − ν1| = 59.0148◦, initial estimation y0 = 0.46

DT and DTS need only two iterations to give us the solutions. However, if we look at the error of the orbital parameters
we can see that MO gives us the least error in the shortest computational time, with only one more iteration.
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FPoint Danchick DS DSR DT DTS DTSR MO
iter – 3 7 5 2 2 4 3

ρ – 1.9964 2.0068 2.0182 2.0974 2.0974 2.9721 8.0010

Ĩ – 1.2536 1.1929 1.2801 0.9136 1.2251 1.4884 1.5528

Ĩc – 1.5969 1.1929 1.1977 1.4482 0.9136 1.2251 1.1088

errora – 5.5124e-10 1.7154e-12 1.1879e-09 3.2784e-10 3.2784e-10 1.3312e-14 1.7359e-202

errore – 1.7082e-10 5.3064e-13 3.6812e-10 1.0160e-10 1.0160e-10 2.2672e-15 3.6985e-202

errori – 1.6482e-11 5.1001e-14 3.5518e-11 9.8032e-12 9.8032e-12 1.7243e-16 1.2488e-202

errorω – 1.0577e-08 3.2730e-11 2.2793e-08 6.2911e-09 6.2911e-09 1.1065e-13 8.0140e-200

errorΩ – 2.4800e-251 2.4800e-251 2.4800e-251 2.4800e-251 2.4800e-251 2.4800e-251 2.4800e-251

T ime – 0.002872 0.018754 0.010852 0.001832 0.014793 0.007634 0.000931

Table 5: Results of Reference Orbit III, tol = 10−10,|ν2 − ν1| = 59.0148◦, initial estimation y0 = 0.46

4. Conclusions

In this paper, we have designed a family of Steffensen-type methods of optimal eighth-order by using weight functions
procedure. We have also used the Danchick-Gauss’ method for preliminary orbit determination and we have improved it
by replacing Newton’s method by the proposed ones, holding both the amplitude of the range of the true anomalies and the
sensitivity to the initial guess. Indeed, we reduce considerably the number of iterations and the error in the calculations.
Moreover, from the dynamical planes it can be inferred that the modified eighth-order method is much more stable than
the original from Danchick which used Newton’s scheme.
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