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Universidad Politécnica de Valencia, E-46022, Valencia, Spain (carcarc2@upvnet.upv.es,

sancobo@dcom.upv.es, pabsopac@dcom.upv.es, vboria@dcom.upv.es).
2Aurora Software and Testing S.L., E-46022, Valencia, Spain (jordi.gil@aurorasat.es,

carlos.vicente@aurorasat.es).
3Departamento de Fı́sica Aplicada, Instituto de Ciencia de Materiales, Universidad de Valencia,

E-46100, Burjassot, Spain (benito.gimeno@uv.es).

Abstract

In this paper, the efficient full-wave analysis of passive devices composed of circular and arbitrarily-shaped

waveguides is considered. For this purpose, the well-known Boundary Integral - Resonant Mode Expansion (BI-

RME) method has been properly extended. Circular waveguides are used for the resonant mode expansion, whereas

the arbitrary contour is defined by any combination of straight, circular and elliptical segments, thus allowing the

exact representation of the most widely used geometries. The proposed algorithm extends previous implementations

of the BI-RME method based on circular waveguides by considering circular and elliptical arcs for defining arbitrary

geometries. Likewise, it allows the efficient analysis of passive devices based on circular waveguides with arbitrary

perturbations, thus providing more accurate results with less computational efforts than a rectangular waveguide based

BI-RME approach. The extended method has been successfully tested with several practical application examples,

having compared its performance with the BI-RME method based on rectangular waveguides.

I. INTRODUCTION

Nowadays, many waveguide components for satellite applications are based on cylindrical cavities. Examples of

such components include dual-mode filters, polarisers, sidewall-coupled cylindrical cavity filters, etc. (see [1]). The

high electrical response sensitivity found in some of these components, e.g. dual-mode filters, has encouraged the

development of full-wave electromagnetic analysis tools for its accurate and efficient modeling.

The analysis of complex waveguide components has been traditionally carried out by means of segmenting the

structure into simpler building blocks: waveguide sections, discontinuities and planar junctions, as described in

[2]. Instead of considering the structure as a whole, it is simpler and computationally more efficient to analyse

different types of blocks independently, and eventually combine them to obtain the component response. In order to
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characterize any waveguide section, it is essential to compute its modal chart. For the full-wave characterization of

planar junctions and discontinuities, the modal coupling coefficients of the involved waveguides are also required.

Consequently, full-wave modal analysis methods are generally focused on computing these two sets of parameters.

Over the last decades, a wide number of analysis techniques have been reported in the technical literature. On the

one hand, there are techniques based on the solution of an integral equation by the method of moments (MoM) [3]-

[4] which solve a non-linear eigenvalue problem of small size. On the other hand, there are techniques based on

discretization methods leading to large algebraic problems, such as Finite-Element (FE) [5] or Finite Difference Time

Domain (FD-TD) methods [6]. Recently, hybrid techniques have been proposed in order to mitigate the drawbacks

of both groups. Some methods that fall into this category are the mode-matching finite-element (MM/FE) method

[7], the boundary contour mode-matching (BCMM) method [8], and the combination of the mode-matching, finite-

element, method of moments and finite difference methods (MM/FE/MoM/FD) [9].

In this paper, a technique which combines the flexibility of discretization methods with the efficiency of modal

techniques is extended, the so called 2D Boundary Integral - Resonant Mode Expansion (BI-RME) method [10].

The first original publication of this technique [11] considered its application to the modal analysis of arbitrary-

contour waveguide structures by means of the combination of an integral equation with the modal expansion of a

two-dimensional resonant contour. After solving a linear matrix eigenvalue problem, the BI-RME method provides

the modal chart of the arbitrarily shaped waveguide structure. The linear character of the matrix problem offers

a great advantage over methods that solve integral equations through frequency-dependent eigenvalue problems,

which typically result in larger computational efforts. Moreover, the moderate size of the matrices involved in the

BI-RME method, reduces the amount of required memory resources, specially when compared with discretization

techniques. Furthermore, the use of the BI-RME method within optimization procedures offers great advantages

since, from one iteration to the next one of these processes, only the integrals that involve altered geometries need

to be recomputed.

After the first publication of the BI-RME method, the technique was revisited to additionally provide the coupling

coefficients between the arbitrarily shaped waveguide and the basic resonant contour [12]. For this purpose, the same

matrices involved in the solution of the eigenvalue problem were used, thus adding very little computational effort.

Further efforts were done in the direction of extending the original method in order to include circular and elliptical

arcs to describe the arbitrarily-shaped structure, since the original work [11] only considered straight segments.

In [13], these two kinds of segments were added for the BI-RME method formulated in terms of rectangular

waveguide modes. For such case, it was proved that the accuracy can be increased, specially when computing the

cut-off frequencies of the lower order modes of such arbitrary waveguides.

However, that work has proven to be inefficient for the analysis of devices based on circular waveguides. In such
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cases the rectangular-based implementation of the BI-RME method requires a large number of resonant modes

to compute the modal chart of the arbitrary waveguide with a high degree of accuracy. Likewise, the arbitrary

waveguides that typically compose these devices are usually connected to other circular waveguides. Therefore

the rectangular-based implementation does not take advantage of the efficient computation of coupling coefficients

provided by the BI-RME method [12]. These drawbacks can be avoided with the new BI-RME implementation

presented in this paper, which combines the use of a circular waveguide as the resonant contour with the possibility

of using circular and elliptical arcs (together with straight segments) for defining the arbitrary geometry. With this

implementation based on circular waveguides, many practical passive devices can be analysed and designed more

accurately and with less CPU time than using the rectangular-based algorithm.

II. THEORY

The basic structure under analysis (see Fig. 1) is an arbitrarily-shaped waveguide whose cross section Ω is defined

by the contour σ. In order to analyse this waveguide, it will be enclosed within a standard circular waveguide S0

and the original BI-RME formulation [11] will be applied.

t̂

n̂

l

ẑ
Ω

σ

S0

a

Fig. 1. Basic contour of the arbitrary waveguide enclosed within a basic circular contour.

A. Computation of the TM Modes

To compute the TM modes of an arbitrarily shaped waveguide by means of the BI-RME method, it is necessary

to compute two matrices, L′ and R
′ [11]. The matrix R

′ is related to the resonant-mode expansion of the basic

circular waveguide. The matrix L
′ involves the scalar Green’s function g for the cylindrical resonator. This paper

only deals with the L
′ matrix, since the computation of the R

′ matrix can be easily performed using standard

numerical integration methods. The elements of L′ can be expressed as follows
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L′
ij =

∫

σ

∫

σ
wi(l) g

(

s, s′
)

wj(l
′) dl dl′ (1)

where wi, wj are the basis and testing functions related to the implementation of the Method of Moments.

These functions are piece-wise parabolic splines defined in two or three segments of the arbitrary contour σ. In our

proposed enhanced algorithm, these segments can be straight, circular or elliptical arcs, and the basis functions are

expressed in terms of a suitable variable l defined on σ as follows:

w(l) = al2 + bl + c (2)

Furthermore, s and s
′ represent field and source vectors in the arbitrary contour σ, and g represents the scalar

Green’s function for two-dimensional resonators of circular cross section. Since g is singular when s = s
′, the

diagonal components of L
′ manifest a singular behaviour; in these cases the singularity has to be extracted from

the computation of the matrix and solved analytically. The non-diagonal components can be easily computed using

standard numerical integration techniques (e.g. the Gauss quadrature). According to [11], the expression of the

scalar Green’s function g for this structure is

g(r, φ, r′, φ′) =
1

2π
ln
(

r′Ri/aR
)

(3)

where

R =
(

r2 + r′
2
− 2rr′C

)1/2
(4)

Ri =
(

r2 + a4/r′
2
− 2ra2C/r′

)1/2
(5)

C = cos(φ− φ′) (6)

and a is the radius of the bounding circular contour.

It can be easily observed that the singular behaviour of g is of the type ln(R) when the field point s(r, φ)

approaches the source point s′(r′, φ′), since R represents the distance between these two sets of points. To isolate

the problematic behaviour of this term, it is necessary to split the Green’s function into a regular and a singular

term, dealing with each of them separately

g = greg + gsing =
1

4π
ln

(

r′Ri

a

)2

−

1

4π
ln
(

R2
)

(7)

where greg is regular since
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lim
r→r′

ln

(

r′Ri

a

)2

= ln

[

(

r′2 − a2
)2

a2

]

(8)

Following this division of g into a regular and a singular part, the double integral of (1) can be split accordingly.

On the one hand, the double integral involving greg can be solved numerically, as it is done with the rest of the

integrals that do not present a singular behaviour (such as the elements of matrix R
′). On the other hand, the

double integral involving gsing can be performed in two steps. Firstly, the line integral with respect to the primed

coordinates is solved analytically, due to its singular behaviour. For circular and elliptical arcs, this singular integral

can be computed analytically using a procedure totally equivalent to the one described in [13]. Then, the line

integral with respect to the non-primed coordinates is computed numerically, since it has now a regular form.

B. Computation of the TE Modes

The accurate computation of TE modes depends on the capability to evaluate the matrices C and L, whose

elements are

Cij =

∫

σ

∫

σ
g(s, s′)

∂wi(l)

∂l

∂wj(l
′)

∂l′
dl dl′ (9)

Lij =

∫

σ

∫

σ
wi(l)wj(l

′) t̂(l) ·Gst
(

s, s′
)

· t̂(l′) dl dl′

(10)

where wn(l) and ∂wn(l)/∂l are, respectively, the basis functions and their derivatives, t̂ = trr̂+ tφφ̂̂φ̂φ is the vector

tangent to the contour σ, and Gst is the solenoidal dyadic Green’s function.

As it can be observed, equation (9) is very similar to (1), with the only difference being the presence of the

derivatives instead of the basis functions. Therefore, the procedure to solve the singularity inherent to the scalar

Green’s function in the C matrix is completely equivalent to the one previously described for the L
′ matrix of TM

modes, with the consideration that the derivatives of the basis functions are linear splines (i.e. a = 0 in (2)).

The computation of the L matrix requires to manage the solenoidal dyadic Green’s function, which can be

expressed as follows [11]

Gst
(

r, φ, r′, φ′
)

= Grr r̂r̂
′ +Gφr φ̂̂φ̂φr̂

′

+ Grφ r̂φ̂′̂φ′̂φ′ +Gφφ φ̂̂φ̂φφ̂′̂φ′̂φ′ (11)
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being

Grr=
1

8π

[

2C ln

(

r′Ri

aR

)

+

(

r2 + r′2
)

C − 2rr′

R2

+

(

r2 + r′2 + 4a2
)

C − 2rr′

(r′Ri/ a)2

−

(

1 +
a2

r2

)(

1 +
a2

r′2

)

·

·

(

LC −AS +
rr′

(r′Ri/ a)2

)]

(12a)

Gφr=
1

8π

[

−2S ln

(

r′Ri

aR

)

+

(

r2 − r′2
)

S

R2

+

(

r2 + r′2 − 2a2
)

S

(r′Ri/ a)2

+

(

1−
a2

r2

)(

1 +
a2

r′2

)

(LS +AC)

]

(12b)

Grφ =
1

8π

[

2S ln

(

r′Ri

aR

)

+

(

r2 − r′2
)

S

R2

−

(

r2 + r′2 − 2a2
)

S

(r′Ri/ a)2

−

(

1 +
a2

r2

)(

1−
a2

r′2

)

(LS +AC)

]

(12c)

Gφφ =
1

8π

[

2C ln

(

r′Ri

aR

)

−

(

r2 + r′2
)

C − 2rr′

R2

+

(

r2 + r′2 − 2a2
) (

rr′/a2 − C
)

(r′Ri/ a)2

−

rr′

a2
−

(

1−
a2

r2

)(

1−
a2

r′2

)

·

·

(

LC −AS +
rr′

a2

)]

(12d)

where R, Ri, C are defined in (4)-(6) and
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L = ln

(

r′Ri

a2

)

(13)

A = arctan

(

rr′S

a2 − rr′C

)

(14)

S = sin(φ− φ′) (15)

This dyadic Green’s function has a singular behaviour due to the term ln (r′Ri/aR) present in the four compo-

nents. Following a similar procedure to the one used with the TM modes, Gst can be split into a regular part and

a singular part, being the latter as shown next

G
sing
st =

1

8π

[

C ln(R2) r̂r̂′ − S ln(R2) φ̂̂φ̂φr̂′

+ S ln(R2) r̂φ̂′̂φ′̂φ′ + C ln(R2) φ̂̂φ̂φφ̂′̂φ′̂φ′
]

(16)

As it has been done for the TM modes, the double integral of (10) will be split into an inner line integral that

will be solved analytically, due to its singularities, and an outer line integral that will be solved numerically. The

singular integral to be solved analytically is

Lsing =

∫

σ
wj(l

′) t̂ ·G
sing
st · t̂

′dl′ (17)

where

t̂ ·G
sing
st · t̂

′ =
lnR2

8π
[C (trtr′ + tφtφ′)

+ S (−tφtr′ + trtφ′)] (18)

Given that

tr tr′ + tφ tφ′ =C (tx tx′ + ty ty′) + S (ty tx′ − tx ty′)

(19)

−tφ tr′ + tr tφ′ =S (tx tx′ + ty ty′)− C (ty tx′ − tx ty′)

(20)

it is immediate to rewrite the singular integral (17) as
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Lsing =

∫

σ
wj(l

′)
lnR2

8π

(

t̂ · t̂′
)

dl′ (21)

If the contour σ includes circular and/or elliptical arcs, the analytical computation of this singular integral can

be carried out using the technique explained in [13] for TE modes.

III. NUMERICAL RESULTS

In this section, the proposed implementation of the BI-RME method using a circular resonant contour is validated

with results from measurements and the technical literature. The first examples show the improvements related to

the proposed BI-RME implementation with regard to previous works, due to the introduction of new segments

(i.e. circular and elliptical ones), as well as due to the proper election of the resonant contour for the analysis of

circular-based devices. An elliptical waveguide has been first considered to illustrate how the introduction of the

new arcs increases the efficiency of the method. Likewise, the analysis of a triple-ridge waveguide and a cross-

shaped iris have been performed in order to demonstrate how the proper election of the resonant contour can also

affect significantly the performance of the algorithm. After integrating the proposed algorithm within a full-wave

analysis tool [14], the analysis and design of several complex devices in circular waveguide technology have been

carried out. Using this software, a circular waveguide polariser and a dual-mode filter with elliptical irises and

tuning elements have been analysed. Additionally, a dual-mode filter with cross-shaped irises and tuning elements

has been successfully designed. From this last design a prototype has been manufactured, providing a first-hand

set of data to test both the band-of-interest as well as the out-of-band simulated responses.

The results obtained with the circular-based implementation have proven to be highly accurate when compared

with available numerical or experimental data. This implementation has also shown a more efficient performance

than the rectangular-based implementation for the analysis of all the structures considered in this section. All the

CPU times in this section have been obtained using a standard PC with a 2.83 GHz Intel Core 2 Quad processor.

A. Elliptical Waveguide

The first example considers the analysis of an elliptical waveguide (major semi-axis a = 10 mm and eccentricity

e = 0.5). This example highlights the improvement, in terms of accuracy and speed, derived from the inclusion

of elliptical arcs to describe arbitrary contours in the presented BI-RME implementation, as opposed to previous

implementations that required discretizing the contour with only linear segments.

The contour has been described with both elliptical arcs and straight segments and the circular-based BI-RME

algorithm (resonant contour radius R = 11 mm) has been applied. The relative errors in the computation of the

cut-off wavelength of several modes for each discretization are shown in Table I, along with the CPU times. In
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TABLE I

RELATIVE ERROR IN THE CUT-OFF WAVELENGTH COMPUTATION OF THE MODES OF AN ELLIPTICAL WAVEGUIDE (a = 10 mm

AND e = 0.5) DESCRIBING THE STRUCTURE WITH ELLIPTICAL ARCS (4 ARCS) AND LINEAR SEGMENTS (8, 16, 32 AND 80

SEGMENTS). THE REFERENCE WAVELENGTH VALUES USED TO COMPUTE THE RELATIVE ERROR ARE TAKEN FROM [15].

Cut-off Wavelength Relative Error (%)

Elliptical Arcs Linear Segments

Mode 4 8 16 32 80

1 0.004 4.886 1.262 0.322 0.055

5 0.021 4.660 1.258 0.337 0.072

10 0.033 4.551 1.251 0.347 0.084

50 0.110 5.991 1.472 0.438 0.161

100 0.401 5.860 1.735 0.692 0.447

Time (s) 0.9 0.9 1.3 2.4 13.5

order to compute this relative error, the cut-off wavelengths computed in [15] using the classical calculation of the

parametric zeros of the modified Mathieu functions have been used as a reference.

Additionally, the coupling coefficients between certain modes of the elliptical waveguide and others of the circular

contour have been computed for all the examples. The relative error in the computation of these coupling coefficients

has been graphically shown in Fig. 2, where the reference values have been taken as those provided by the analysis

with elliptical arcs.

From the results included in Table I and Fig. 2, it is obvious that as the number of straight segments used to

describe the contour increases, so does the accuracy of the analysis but at the cost of increasing the simulation

time. However, the use of elliptical arcs provides the accuracy of a very fine linear-discretization analysis, but with

the speed of a coarse discretization one. Achieving high levels of accuracy in a fraction of the time is specially

important when optimizing sensitive devices, since the errors in the computation of both the cut-off wavelengths

and the coupling coefficients have a huge impact in the overall response of the device and can lead to longer

optimization cycles.

B. Multi-ridged Circular Waveguide

Next, the modal chart of a multi-ridge circular waveguide (Fig. 3a) is presented. This structure is especially

suitable to be analysed by the circular-based implementation. Thus, it serves the purpose of showing how the

proper election of the resonant contour has an impact on the accuracy of the algorithm. This example consists of

a circular waveguide of radius b = 20 mm with three equidistant metal insertions of angular thickness t = 20◦.

Sweeping the inner radius from a = 1 mm to 19 mm, a series of simulations have been performed using the
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Fig. 2. Relative error in the computation of the coupling coefficients between four pairs of elliptical and circular waveguide modes

for different number of linear segments to describe the elliptical contour. The reference values for the computation of the error have

been taken as the coupling coefficients provided by the analysis with elliptical arcs.

circular-based implementation (R = 20 mm) and the rectangular-based approach (l = 41 mm). The results of these

simulations can be seen in Fig. 3b, where the cut-off frequencies for the first two TE modes and the first TM mode

have been computed and successfully compared with [16] and the measurements of [17]. For low order modes,

as the ones considered in Fig. 3b, both the circular and the rectangular-based implementations achieve rapidly

convergent results. For instance, only 100 resonant modes have been used with both implementations, requiring

less than 0.65 s per simulation point with the rectangular-based code and 0.45 s with the circular-based one.

However, typical analysis of complex passive devices require the use of higher order modes (usually up to

100 modes) for a proper characterization of the structure. In those cases, the performance of the circular-based

implementation excels that of the rectangular-based approach, since the structure is based on a circular waveguide.

To show this, we have analysed the multi-ridge waveguide setting the inner radius to a = 16 mm and studied the

convergence of both implementations through the computation of the 100-th mode cut-off frequency. The results

of this study are summarized in Table II, where the superior performance of the circular-based implementation

over the rectangular one can be observed. In approximately 0.8 s the circular-based algorithm computes the cut-off

frequency of this mode with a relative error smaller than 0.1%, while the rectangular-based takes 5.9 s to achieve a

similar level of accuracy. The main reason for this important improvement is that the number of segmented portions

(red portions in Fig. 3a) is smaller since the majority of the segments are coincident with the outer circular contour,

and do no need to be segmented by the circular-based implementation. With a smaller number of portions the size
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Fig. 3. a): Dimensions of the multi-ridged circular waveguide as well as the circular and square contours used by the BI-RME

method. Red lines indicate those segments that have to be considered for the application of the BI-RME method in each case.

b): Cut-off frequency for the first two TE modes and the first TM mode of the multi-ridge circular waveguide for different insertion

depths (a). Simulations are compared with [16] and measurements of [17].

of the eigenvalue problem decreases, so the time devoted to its construction and solution is drastically reduced.

C. Cross-shaped Iris

In the previous example, it has been demonstrated how the election of the resonant contour has an effect on

the accuracy and efficiency of the modal chart calculation. Now, it is shown how this election also affects the

computation of coupling coefficients, another key factor when analysing the electromagnetic response of complex

devices. For such study, a structure consisting on a cross-shaped iris connected to a circular waveguide is considered,

as seen in Fig. 4a. On the one hand, this structure has been analysed with the circular-based algorithm, using the

connected circular waveguide (radius R = 12 mm) as the resonant contour. This analysis has automatically provided

the desired coupling integrals. On the other hand, the structure has been analysed using the rectangular-based

algorithm, which computes the coupling coefficients as follows:

I△© =
Nr
∑

n=1

< e
©
i , e

e

n >< e
△
j , e

e

n > (22)

where e
©
i are the modal vectors of the circular waveguide connected to the iris, e

e

i are the modal vectors of the

rectangular box and e
△
j are the modal vectors of the cross-shaped iris. Note that the first inner product in (22) is
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TABLE II

CUT-OFF FREQUENCY OF THE 100TH MODE OF THE TRIPLE-RIDGED CIRCULAR WAVEGUIDE (b = 20 mm, a = 16 mm, t = 20
◦)

COMPUTED WITH THE CIRCULAR AND RECTANGULAR-BASED IMPLEMENTATIONS FOR DIFFERENT NUMBER OF RESONANT

MODES. THE EXACT CUT-OFF FREQUENCY FOR THE COMPUTATION OF THE RELATIVE ERROR IS TAKEN AS fc = 34.8788 GHz.

THE CPU TIME REQUIRED FOR EACH ANALYSIS IS INCLUDED.

# Resonant Circular-based Rectangular-based

Modes fc [GHz] Error (%) Time (s) fc [GHz] Error (%) Time (s)

300 34.9050 0.075 0.8 35.0293 0.431 2.2

400 34.8913 0.036 0.9 34.9630 0.241 2.9

500 34.8873 0.024 1.2 34.9363 0.165 3.2

600 34.8861 0.021 1.5 34.9186 0.114 4

700 34.8848 0.017 2 34.9096 0.088 4.9

800 34.8839 0.015 2.3 34.9043 0.073 5.9

900 34.8823 0.010 2.7 34.9003 0.062 6.6

1000 34.8815 0.008 3.2 34.8971 0.052 8

analytical, whereas the second one is provided by BI-RME.

Figure 4 depicts the relative error in the computation of coupling integrals between two sets of modes using the

rectangular-based implementation. In all cases the exact value for the coupling integrals is taken as the convergent

value provided by the circular-based implementation. In Fig. 4b the coupling integral between the first mode of the

cross-shaped waveguide and the first mode of the circular waveguide is shown, for different values of Nr. In Fig. 4c,

the coupling coefficient between a high-order mode (35th) of the cross-shaped waveguide and a high-order mode

(257th) of the circular waveguide is depicted. The criteria for choosing these particular combinations of modes has

been that a significant coupling (I△© > 0.1) between them should exist.

The main conclusion that can be drawn from both graphs is that the rectangular-based implementation, even

though it provides accurate results when low-order modes are involved, lacks some accuracy when dealing with

higher order ones. The reason for this loss in accuracy is that high-order modes have complex field patterns, which

are represented in a less accurately way by a series of rectangular waveguide modes. Meanwhile, the circular-based

implementation does not need to represent these arbitrary modes by any series, but instead defines them by the

modal current density computed by the BI-RME method. Therefore, the computation of the coupling coefficients

of these high-order modes has the same accuracy level as the corresponding modal chart computation.

Considering high-order modes is important when complex structures are studied, specially when the arbitrary

waveguide is used as an iris. In such cases, the circular-based implementation offers an important advantage over

the rectangular-based algorithm when some of the interconnections involve arbitrary and circular waveguides.

Finally, it is worth noting the oscillatory behaviour of the coupling integrals with the different number of
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Fig. 4. a): Cross-shaped iris of dimensions L1 = 17.3 mm, L2 = 15.3 mm, t = 2 mm connected to a circular waveguide of

radius R = 12 mm. Dashed lines represent the contour of dimensions w = 15.4 mm, d = 17.4 mm used for the application of the

rectangular-based algorithm.

b): Relative error in the computation of coupling integrals between the first cross-shaped mode and the first circular waveguide mode

using the rectangular-based implementation. The exact value to compute the error is taken as the one provided by the circular-based

implementation.

c): Relative error in the computation of coupling integrals between the 35th cross-shaped mode and the 257th circular waveguide

mode using the rectangular-based implementation.

rectangular modes, which may produce inaccurate results if a proper convergence study is not previously carried

out.
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D. Circular Waveguide Polariser

After comparing the performance of the circular-based and rectangular-based implementations of the BI-RME

method with certain waveguide structures, the analysis of complete components based on circular waveguides has

been considered. As a first example, a circular waveguide polariser has been analysed both using the circular-based

and the rectangular-based implementations. This component is based on a series of multi-ridged circular waveguides,

as can be seen in Fig. 5a, hence the response is expected to be computed more accurately with the circular-based

implementation.

In Fig. 5b, the response obtained by both implementations is shown and compared with the measured response

of a prototype included in [18]. For the vertical polarization, where the magnitude of the response has higher

values, both implementations provide accurate results, coincident with the measurements. However, the circular-

based implementation obtains more accurate results than the rectangular-based code for the horizontal polarization,

judging by the measured response.

Once the accuracy of both implementations is compared, we proceed to compare its efficiency. In order to obtain

the depicted convergent response, 600 resonant modes of the circular contour and 4000 of the rectangular contour

have been used. This important reduction in the number of resonant modes, combined with the reduction from 404

to 48 in the number of segments considered by the BI-RME method, justifies the notable difference in computation

time: the circular-based implementation takes 40 s to properly solve the structure for 100 frequency points while

the rectangular-based algorithm takes 169 s to obtain a response that is less accurate.

E. Analysis of a Dual-Mode Filter with Elliptical Irises and Tuning Elements

Another example that has been considered is the full-wave analysis of the dual-mode filter designed in [19].

Its geometry, which can be seen in Fig. 6, is composed of two sections of circular waveguide perturbed by three

triangular metallic insertions, which provide intra-cavity couplings and frequency adjustment, and connected through

elliptic irises which provide inter-cavity and input/output couplings.

The analysis of this structure with the circular-based implementation has been compared in Fig. 7 with the simu-

lated responses provided by both the rectangular-based algorithm and measurements of the manufactured prototype

presented in [19]. The results show that the circular-based algorithm is more accurate for this particular structure,

heavily based on circular waveguide technology. Measurements are highly coincident with the response obtained by

the circular-based algorithm, which properly simulates the measured bandwidth. The slight disagreements between

the measured and simulated responses from [19] (i.e. the rectangular-based algorithm) can be explained by the

high sensitivity level of this device, meaning that any error in the computation of the modal charts and coupling

coefficients has an important effect in the accuracy of the overall response.
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Fig. 5. a): Magnitude of the reflection coefficient (S11) of the circular waveguide polariser presented in [18] for vertical and

horizontal polarizations. Simulated results with the circular-based (solid lines) and rectangular-based implementations (dashed lines)

are compared with measured results (dots and crosses) extracted from the aforementioned article.

b): Magnitude of the reflection coefficient (S11) of the circular waveguide polariser presented in [18] for vertical and horizontal

polarizations. Simulated results with the circular-based (solid lines) and rectangular-based implementations (dashed lines) are compared

with measured results (dots and crosses) extracted from the aforementioned article.

As far as the computational efficiency of the presented algorithm is concerned, it is clear that the performance of

the circular-based implementation is unparalleled by the rectangular-based one. To achieve the convergent results

depicted in Fig. 7, the circular-based implementation took just 60 s to compute 100 frequency points while the

rectangular-based one took twice as much time, a total of 140 s. Along with the increase of resonant modes and

number of segments that the rectangular-based code required, an important increase in the number of accessible

modes, basis functions and kernel terms was also necessary to solve the complete structure.
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Fig. 6. Physical structure of the dual-mode filter consisting of triangular insets and elliptical irises. The insets, located at 0
◦

(horizontal), 45◦ and 90
◦ (vertical), have the following dimensions: 4.1 mm× 1.88 mm, 3.61 mm× 1.88 mm, 3.61 mm× 1.88 mm,

respectively, and 2 mm thick. The dimensions of the input and output elliptical irises are: major axis 12.78 mm, minor axis 4 mm

and 1.66 mm thick. The inter-cavity elliptical iris has a major axis of 8.7 mm, minor axis of 4 mm and 1.79 mm thick. The circular

waveguides, of radius 12 mm, are 7.34 mm long each.
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Fig. 7. Magnitude of the reflection (S11) and transmission (S21) coefficients of the dual-mode filter consisting of triangular insets and

elliptical irises. Solid lines denote the authors’ results, dashed lines denote the simulated response presented in [19] (i.e. rectangular-

based implementation), and the circles and crosses correspond to the prototype measured data.

F. Design of a Dual-Mode Filter with Cross-Shaped Irises and Tuning Elements

The last example deals with the design of a complex passive device in circular waveguide technology. The

structure under consideration is the four-pole dual-mode filter depicted in Fig. 8, along with its dimensions. It is

based on two circular waveguides coupled through a cross-shaped iris and includes two sets of tuning elements, a

classical structure widely used in satellite communications [20]. After designing the device, a prototype of this dual-

mode filter has been manufactured with real rectangular insets to validate the analysis tool presented in this article.
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Figure 9 depicts the response of this manufactured prototype compared with the simulated response obtained with the

circular-based and the rectangular-based BI-RME implementations. The response simulated with the circular-based

code is almost identical to the measured one, confirming the accuracy of this tool when dealing with these complex

devices. Regarding the rectangular-based response, a small frequency shift of approximately 7 MHz is observed.

Additionally, the out-of-band response of the filter up to 20 GHz is successfully compared with measurements.

Fig. 8. Physical structure of the designed dual-mode filter in a circular waveguide of radius 13.3 mm. The first cavity is 54.4366 mm

long, and the second is 54.4436 mm long. The dimensions of the coupling structures are as follows: Input and output rectangular

irises (10.6441 mm× 2 mm) of length 1 mm. First triple-inset coupling section (thickness 2 mm) has its insets (2 mm wide) located

at angles 0
◦ (horizontal), 90

◦ (vertical) and 315
◦. The penetration depths of these insets are 2.8956 mm, 1 mm and 1.9345 mm,

respectively. Cross iris of thickness 1 mm with vertical and horizontal arms of 7.688 mm and 4.407 mm, respectively, and 1 mm

wide. Second triple-inset coupling section of thickness 2 mm with 2 mm wide insets located at angles 0
◦, 45◦ and 90

◦ of depths

2.9023 mm, 2.0364 mm and 1 mm, respectively.

As far as the computational efficiency of the analysis is concerned, the circular-based algorithm takes advantage

of a more accurate characterization of the tuning sections, as well as a faster characterization of the different planar

junctions to achieve convergent results in a shorter amount of time. While the rectangular-based implementation

takes 100 s to compute 100 frequency points, the circular-based implementation takes just 43 s, a considerable

reduction of the computation time just by using the appropriate resonant contour.

IV. CONCLUSIONS

In this paper, an important enhancement of previous implementations of the BI-RME method has been presented.

This new implementation is intended to analyse passive devices based on circular and arbitrarily-shaped waveguides

in a more accurate and efficient way. It combines a circular contour as resonant structure with the inclusion of

straight, circular and elliptical arcs for defining the perturbed geometry. Compared with previous implementations

of the same method based on rectangular waveguides, this implementation takes advantage of a lower number of

resonant modes for the accurate modelling of the arbitrary sections, as well as the efficient computation of coupling

coefficients between circular and arbitrary-shaped waveguides. Therefore, the analysis of devices based on circular
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Fig. 9. In-band and out-of-band response of the designed dual-mode filter. Measurements of a manufactured prototype are compared

with the simulation of the circular-based implementation.

and arbitrary waveguides is highly improved by the use of the proposed implementation, as it has been shown

through some examples. The accuracy of this new implementation has also been successfully verified using several

examples of practical interest, comparing the simulated responses with data taken from technical literature and

experimental measurements. Furthermore, a dual-mode filter prototype has been designed and manufactured for

this purpose. In all the examples, the performance of the new implementation has been optimum, especially when

compared with the previous rectangular-based implementation.

V. ACKNOWLEDGMENTS

This work was supported by Ministerio de Ciencia e Innovación, Spanish Government, under Research Project

TEC2010-21520-C04-01.

REFERENCES

[1] Cameron RJ, Kudsia CM, Mansour RR. Microwave Filters for Communication Systems. Hoboken, NJ: John Wiley & Sons;

2007.

[2] Boria VE, Gimeno B. Waveguide Filters for Satellites. IEEE Microwave Magazine. 2007 October;8(5):60–70.

[3] Schroeder WL, Guglielmi M. A contour-based approach to the multimode network representation of waveguide transitions.

IEEE Trans Microwave Theory Tech. 1998 April;46(4):411–419.

[4] Omar AS, Schunemann KF. Application of the generalized spectral-domain technique to the analysis of rectangular waveguides

with rectangular and circular metal inserts. IEEE Trans Microwave Theory Tech. 1991 June;39(6):944–952.

[5] Silvester PP, Pelosi G. Finite Elements for Wave Electromagnetics. New York: IEEE Press; 1994.



19

[6] Taflove A. Computational Electromagnetics: The Finite-Difference Time-Domain Method. Norwood, MA: Artech House; 1995.

[7] Montejo-Garai JR, Zapata J. Full-wave design and realization of multicoupled dual-mode circular waveguide filters. IEEE Trans

Microwave Theory Tech. 1995 June;43(6):1290–129.

[8] MacPhie RH, Wu KL. A full-wave modal analysis of arbitrarily shaped waveguide discontinuities using the finite plane-wave

series expansion. IEEE Trans Microwave Theory Tech. 1999 February;47(2):232–237.

[9] Arndt F, Brandt J, Catina V, Ritter J, Rullhusen I, Dauelsberg J, et al. Fast CAD and optimization of waveguide components and

aperture antennas by hybrid MM/FE/MoM/FD methods State-of-the-art and recent advances. IEEE Trans Microwave Theory

Tech. 2004 January;52(1):292–305.

[10] Conciauro G, Guglielmi M, Sorrentino R. Advanced Modal Analysis - CAD Techniques for Waveguide Components and Filters.

Chichester, England: John Wiley & Sons; 2000.

[11] Conciauro G, Bressan M, Zuffada C. Waveguide modes via an integral equation leading to a linear matrix eigenvalue problem.

IEEE Trans Microwave Theory Tech. 1984 November;32(11):1495–1504.

[12] Arcioni P. Fast evaluation of modal coupling coefficients of waveguide step discontinuities. IEEE Microwave Guided Wave

Lett. 1996 June;6(6):232–234.

[13] Cogollos S, Marini S, Boria VE, Soto P, Vidal A, Esteban H, et al. Efficient Modal Analysis of Arbitrarily Shaped Waveguides

Composed of Linear, Circular, and Elliptical Arcs Using the BI-RME Method. IEEE Trans Microwave Theory Tech. 2003

December;51(12):2378–2390.

[14] FEST3D 6 6 0; 2011. Aurora Software and Testing, S.L. on behalf of ESA/ESTEC, Valencia, Spain, www.fest3d.com.

[15] Zhang SJ, Shen YC. Eigenmode sequence for an elliptical waveguide with arbitrary ellipticity. IEEE Trans Microwave Theory

Tech. 1995 January;43(1):227–230.

[16] Balaji U, Vahldieck R. Radial mode matching analysis of ridged circular waveguides. Microwave Theory and Techniques, IEEE

Transactions on. 1996 July;44(7):1183 –1186.

[17] Dillon BM, Gibson AAP. Triple-ridged circular waveguides. J of Electronzag Waves Applicat. 1995 January;9(1-2):145–156.

[18] Montejo-Garai JR, Zapata J. Full-wave design of dual-band double-septum circular waveguide polarizers. Microwave Opt

Technol Lett. 1999 January;20(2):99–103.

[19] Taroncher M, Vidal A, Boria VE, Marini S, Cogollos S, Gil J, et al. CAD of complex passive devices composed of arbitrarily

shaped waveguides using Nyström and BI-RME methods. IEEE Trans Microwave Theory Tech. 2005 June;53(6):2153–2163.

[20] Kudsia C, Cameron R, Tang WC. Innovations in Microwave Filters and Multiplexing Networks for Communications Satellite

Systems. IEEE Trans Microwave Theory Tech. 1992 June;40(6):1133–1149.


