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1 Introduction

One of the most important problems in numerical analysis is solving nonlinear
equations. In recent years, much attention have been given to develop a number
of iterative methods for solving the nonlinear equations, paying attention to
the effectiveness of the schemes, usually analyzed by means of the efficiency
index introduced by Ostrowski in [10]. This index is defined as I = p1/d, where
p is the order of convergence and d is the total number of functional evaluations
per step. In this sense, Kung and Traub conjectured in [8] that a multistep
method without memory performing n+1 functional evaluations per iteration
can have at most convergence order 2n, in which case it is said to be optimal.

Recently, different optimal iterative methods of order of convergence eight
have been published. For instance, optimal eighth order methods can be found
in [1,11,13,9,4,6,12], all of them with efficiency index 1.682. Some of them will
be used in the numerical and dynamical sections, in order to compare them
with the new schemes introduced in this paper. In particular, Liu and Wang
in [9] present a three-step iterative scheme whose expression is:

ym = xm − f(xm)
f ′(xm) ,

zm = ym − 4f(xm)−f(ym)
4f(xm)−9f(ym)

f(ym)
f ′(xm) ,

xm+1 = zm − f(zm)
f ′(xm)

[
8f(ym)

4f(xm)−11f(ym) +
(
1 + f(zm)

3f(ym)+β1f(zm)

)3

+ 4f(zm)
f(xm)+β2f(zm)

]
,

(1)

that will be denoted by LW. Moreover, Cordero et. al. designed in [6] the
optimal eighth-order method

ym = xm − f(xm)
f ′(xm) ,

zm = xm − f(xm)−f(ym)
f(xm)−2f(ym)

f(xm)
f ′(xm) ,

xm+1 = zm − f(zm)
f ′(xm)

f(ym)
f(ym)−3f(zm)

[
f(xm)−f(ym)
f(xm)−2f(ym) −

f(zm)
f(ym)

]2
,

(2)

based on Ostrowski’s fourth-order scheme, that will be denoted by CTV. Fi-
nally, Soleymani et. al. in [12] design the following scheme by using weight
functions:

ym = xm − f(xm)
f ′(xm) ,

zm = ym − 2f(xm)−f(ym)
2f(xm)−5f(ym)

f(ym)
f ′(xm) ,

xm+1 = zm − f(zm)
2f [zm,xm)]−f ′(xm)

[
1 +

(
f(zm)
f(xm)

)2

+ f(zm)
f(ym) +

(
f(zm)
f(ym)

)2

− 3
2

(
f(ym)
f(xm)

)3

− 2
(

f(ym)
f ′(xm)

)2

− f(zm)
f ′(xm)

]
,

(3)

denoted by SK.

Now, let us recall some basic concepts on complex dynamics (see [2] and [7],
for example). Given a rational function R : Ĉ → Ĉ, where Ĉ is the Riemann
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sphere, the orbit of a point z0 ∈ Ĉ is defined as:

z0, R (z0) , R
2 (z0) , ..., R

n (z0) , ...

We are interested in the study of the asymptotic behavior of the orbits de-
pending on the initial condition z0, that is, we are going to analyze the phase
plane of the map R defined by the different iterative methods.

To obtain these phase spaces, the first of all is to classify the starting points
from the asymptotic behavior of their orbits.

A z0 ∈ Ĉ is called a fixed point if it satisfies R (z0) = z0. A periodic point
z0 of period p > 1 is a point such that Rp (z0) = z0 and Rk (z0) ̸= z0, k < p.
A pre-periodic point is a point z0 that is not periodic but there exists a k > 0
such that Rk (z0) is periodic. A critical point z0 is a point where the derivative
of rational function vanishes, R′ (z0) = 0.

On the other hand, a fixed point z0 is called attractor if |R′(z0)| < 1, super-
attractor if |R′(z0)| = 0, repulsor if |R′(z0)| > 1 and parabolic if |R′(z0)| = 1.

The basin of attraction of an attractor α is defined as the set of pre-images
of any order:

A (α) = {z0 ∈ Ĉ : Rn (z0)→α, n→∞}.

The set of points z ∈ Ĉ such that their families {Rn (z)}n∈N are normal
in some neighborhood U (z) , is the Fatou set, F (R) , that is, the Fatou set
is composed by the set of points whose orbits tend to an attractor (fixed
point, periodic orbit or infinity). Its complement in Ĉ is the Julia set, J (R) ;
therefore, the Julia set includes all repelling fixed points, periodic orbits and
their pre-images. That means that the basin of attraction of any fixed point
belongs to the Fatou set. On the contrary, the boundaries of the basins of
attraction belong to the Julia set.

In this paper we present an optimal family of iterative methods which are
free of second derivatives and are of eighth-order of convergence. The rest of
this paper is organized as follows. The proposed methods are described in
Section 2 and the convergence analysis is carried out to establish the order
of convergence. In Section 3, some numerical examples confirm the theoreti-
cal results and allow us to compare the proposed methods with other known
methods mentioned in the Introduction. Section 4 is devoted to the complex
dynamical analysis of the designed methods on quadratic and cubic polyno-
mials. In Section 5, we end this paper with some conclusions.

2 Development of the eighth-order family and convergence analysis

In this section, we derive a family of eighth-order methods using an approxima-
tion for the last derivative. Let us consider the family of fourth-order methods
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proposed by Chun in [3] ym = xm − f(xm)

f ′ (xm)
,

zm = ym − f3(xm)
f3(xm)−2f2(xm)f(ym)+2αf(xm)f2(ym)−2α2f3(ym)

f(ym)

f ′ (xm)
,

where α ∈ R.
If we compose this scheme with Newton’s method, it is known that the

resulting algorithm is of eighth-order of convergence, but it is not optimal, since
it uses two additional functional evaluations. In order to improve the efficiency,
we are going to approximate f ′(zm) trying to hold the order of convergence.
By using the Taylor expansion, f(zm) and f

′
(zm) can be approximated by

f(zm) ≈ f(ym) + f ′(ym)(zm − ym) +
1

2
f ′′(ym)(zm − ym)2, (4)

f ′(zm) ≈ f ′(ym) + f ′′(ym)(zm − ym). (5)

In order to avoid the computation of the second derivative, we can express
f ′′(ym) as follows

f ′′(ym) ≈ 2f [zm, xm, xm] =
2(f [zm, xm]− f ′(xm))

zm − xm
, (6)

where f [, ] denotes the divided difference of first order.
From (4), (5) and (6), we have

f ′(zm) ≈ f [zm, ym] + f [zm, xm, xm](zm − ym).

It can be proved that by using this approximation, the composed scheme only
reaches seventh-order of convergence, for any value of α. So, we propose to
use a weight function to attain the optimal order. We consider the following
three-step iteration scheme

ym = xm − f(xm)

f ′ (xm)
,

zm = ym − f3(xm)
f3(xm)−2f2(xm)f(ym)+2αf(xm)f2(ym)−2α2f3(ym)

f(ym)

f ′ (xm)
,

xm+1 = zm − Af(xm)+Bf(zm)
Cf(xm)+Df(zm)

f(zm)
f [zm,ym]+f [zm,xm,xm](zm−ym) ,

(7)

where A,B,C,D and α are parameters to be determined such that the iterative
method defined by (7) has the order of convergence eight.

Theorem 1 Assume that function f : D ⊆ ℜ → ℜ is sufficiently differentiable
and f has a simple zero x∗ ∈ D. If the initial point x0 is sufficiently close to
x∗ ∈ D, then the methods defined by (7) converge to x∗ with eighth-order
under the conditions A = C ̸= 0, 2C−B+D = 0 and α = − 1

2 , and with error
equation

em+1 = c22c3
(
3c32 + 2c2c3 − c4

)
e8m +O(e9m).
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Proof: Let em = xm−x∗ be the error at the mth iteration and ck = 1
k!

f(k)(x∗)
f ′(x∗) ,

k = 2, 3, . . . . By using Taylor expansions, we have:

f(xm) = f ′(x∗)[em + c2e
2
m + c3e

3
m + c4e

4
m + c5e

5
m + c6e

6
m

+c7e
7
m + c8e

8
m] +O(e9m),

(8)

f ′(xm) = f ′(x∗)[1 + 2c2em + 3c3e
2
m + 4c4e

3
m + 5c5e

4
m + 6c6e

5
m

+7c7e
6
m + 8c8e

7
m + 9c9e

8
m] +O(e9m).

(9)

Now, from (8) and (9), we have

ym − x∗ = c2e
2
m + (2c3 − 2c22)e

3
m + (3c4 − 3c2c3 − 2(2c3 − 2c22)c2)e

4
m

+(4c5 − 10c2c4 − 6c23 + 20c3c
2
2 − 8c42)e

5
m (10)

+(−17c4c3 + 28c4c
2
2 − 13c2c5 + 33c2c

2
3 + 5c6 − 52c3c

3
2 + 16c52)e

6
m] +O(e7m),

From (10), we get

f(ym) = f ′(x∗)[c2e
2 + (2c3 − 2c22)e

3
m + (3c4 − 7c2c3 + 5c32)e

4
m

+(−6c23 + 24c3c
2
2 − 10c2c4 + 4c5 − 12c42)e

5
m (11)

+(−17c4c3 + 34c4c
2
2 − 13c2c5 + 5c6 + 37c2c

2
3 − 73c3c

3
2 + 28c52)e

6
m] +O(e7m).

Combining (8), (9), (10) and (11), we have

zm − x∗ =
(
(1 + 2α)c32 − c2c3

)
e4m

−2
((
2 + 6α+ α2

)
c42 − 2(2 + 3α)c22c3 + c23 + c2c4

)
e5m (12)

+
(
2
(
5 + 22α+ 7α2

)
c52 − 2

(
15 + 42α+ 8α2

)
c32c3

+6(2 + 3α)c22c4 − 7c3c4 + 3c2
(
(6 + 8α)c23 − c5

))
e6m +O(e7m).

From (12), we get

f(zm) = f ′(x∗)[
(
(1 + 2α)c32 − c2c3

)
e4m

−2(
((
2 + 6α+ α2

)
c42 − 2(2 + 3α)c22c3 + c23 + c2c4

)
e5m (13)

+
(
2
(
5 + 22α+ 7α2

)
c52 − 2

(
15 + 42α+ 8α2

)
c32c3

+6(2 + 3α)c22c4 − 7c3c4 + 3c2
(
(6 + 8α)c23 − c5

))
e6m] +O(e7m).

By using the Taylor expansions (8) and (13), we get

Af(xm) +Bf(zm)

Cf(xm) +Df(zm)
=

A

C
+

(BC −AD)c2
(
(1 + 2α)c22 − c3

)
e3m

C2

−
(BC −AD)

((
5 + 14α+ 2α2

)
c42 − 3(3 + 4α)c22c3 + 2c23 + 2c2c4

)
e4m

C2
+O(e5m).

Moreover, from (8), (9), (10), (11), (12) and (13) we obtain

f(zm)

f [zm, ym] + f [zm, xm, xm](zm − ym)
=

(
(1 + 2α)c32 − c2c3

)
e4m

−2
((
2 + 6a+ a2

)
C4

2 − 2(2 + 3a)C2
2C3 + C2

3 + C2C4

)
e5m

+
(
2
(
5 + 22α+ 7α2

)
c52 − 2

(
15 + 42α+ 8α2

)
c32c3

+6(2 + 3α)c22c4 − 7c3c4 + 3c2
(
(6 + 8α)c23 − c5

))
e6m +O(e7m),
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and, then the error equation is

em+1 = −
(A− C)c2

(
(1 + 2α)c22 − c3

)
e4m

C

+
2(A− C)

((
2 + 6α+ α2

)
c42 − 2(2 + 3α)c22c3 + c23 + c2c4

)
e5m

C

− (A− C)

C

[
2
(
5 + 22α+ 7α2

)
c52 − 2

(
15 + 42α+ 8α2

)
c32c3

+6(2 + 3α)c22c4 − 7c3c4 + 3c2
(
(6 + 8α)c23 − c5

)]
e6m +O(e7m),

which shows that the convergence order of any method of the family (7) is at
lest seven if A = C ̸= 0, and the error equation is

em+1 = −
c22

(
(1 + 2α)c22 − c3

) (
(1 + 2α)(B −D)c22 + (−B + 2C +D)c3

)
C

e7m

+
c2
C

(
(1 + 2α)

((
9 + 26α+ 4α2

)
B + C + 2αC −

(
9 + 26α+ 4α2

)
D
)
C6

2

+
(
−2

(
13 + 42α+ 26α2

)
B +

(
11 + 30α+ 4α2

)
C + 2

(
13 + 42α+ 26α2

)
D
)
c42c3

+((21 + 32α)B − 8(3 + 4α)C − (21 + 32α)D)c22c
2
3

+4(−B + 2C +D)c33 + (1 + 2α)(4B − 3C − 4D)c32c4

+(−4B + 7C + 4D)c2c3c4) e
8
m +O(e9m).

Finally, if α = − 1
2 and −B + 2C +D = 0, then the error equation is

em+1 = c22c3
(
3c32 + 2c2c3 − c4

)
e8m +O(e9m),

and the proof is completed. ⊓⊔
Therefore, the methods of the new family are optimal in the sense of Kung-

Traub’s conjecture, so they have efficiency indices 8
1
4 = 1.682, as well as other

eighth-order schemes described in [1,11,13,9,4,6,12].

In what follows, we give some concrete iterative methods of (7), that we
are going to use in the following section.
FA1. If A = C = 1, D = 1, B = 3,

ym = xm − f(xm)

f ′ (xm)
,

zm = ym − f3(xm)

f3(xm)−2f2(xm)f(ym)−f(xm)f2(ym)− 1
2 f

3(ym)

f(ym)

f ′ (xm)
,

xm+1 = zm − f(xm)+3f(zm)
f(xm)+f(zm)

f(zm)
f [zm,ym]+f [zm,xm,xm](zm−ym) .

FA2. If A = C = 1, D = −1, B = 1,
ym = xm − f(xm)

f ′ (xm)
,

zm = ym − f3(xm)

f3(xm)−2f2(xm)f(ym)−f(xm)f2(ym)− 1
2 f

3(ym)

f(ym)

f ′ (xm)
,

xm+1 = zm − f(xm)+f(zm)
f(xm)−f(zm)

f(zm)
f [zm,ym]+f [zm,xm,xm](zm−ym) .
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FA3. If A = C = 1, D = −3, B = −1,
ym = xm − f(xm)

f ′ (xm)
,

zm = ym − f3(xm)

f3(xm)−2f2(xm)f(ym)−f(xm)f2(ym)− 1
2 f

3(ym)

f(ym)

f ′ (xm)
,

xm+1 = zm − f(xm)−f(zm)
f(xm)−3f(zm)

f(zm)
f [zm,ym]+f [zm,xm,xm](zm−ym) .

3 Numerical results

We present some examples to illustrate the efficiency of the proposed methods
comparing them with the eighth-order methods described in the introduction,
specifically, we compare our methods with LW scheme (expression (1)) with
β1 = β2 = 1, CTV method defined in (2) and SK method showed in (3). The
test functions used are:

– f1(x) = sin2(x)− x2 + 1;x∗ ≈ 1.4044916482153;
– f2(x) = sin(x)− x

2 ;x
∗ ≈ 1.8954942670339;

– f3(x) = cos(x)− x;x∗ ≈ 0.73908513321516;

– f4(x) = 10xe−x2 − 1;x∗ ≈ 1.6796306104285;
– f5(x) = x2 − ex − 3x+ 2;x∗ ≈ 0.2575302854398608;

f1, x0 = 1 LW CTV SK FA1 FA2 FA3
|f(xn)| 2.0e-299 1.5e-189 1.2e-299 1.5e-189 2.3e-185 9.5e-181

|xn+1 − xn| 2.8e-180 2.6e-24 4.2e-107 3.01e-24 1.0e-23 3.8e-23
iter 4 3 4 3 3 3
ρ 8.000 8.338 7.977 8.567 8.610 8.661

f2, x0 = 2 LW CTV SK FA1 FA2 FA3
|f(xn)| 3.0e-300 3.0e-300 3.0e-300 3.0e-300 3.0e-300 3.0e-300

|xn+1 − xn| 4.8e-73 4.5e-75 8.6e-91 7.3e-82 7.4e-82 7.4e-82
iter 3 3 3 3 3 3
ρ 7.976 7.973 7.913 7.984 7.984 7.984

f3, x0 = 1 LW CTV SK FA1 FA2 FA3
|f(xn)| 1.0e-300 1.0e-300 1.0e-300 1.0e-300 1.0e-300 1.0e-300

|xn+1 − xn| 9.3e-67 2.4e-67 3.5e-66 2.7e-83 1.5e-83 8.0e-84
iter 3 3 3 3 3 3
ρ 7.956 7.967 7.957 7.894 7.892 7.888

f4, x0 = 1 LW CTV SK FA1 FA2 FA3
|f(xn)| 5.0e-300 5.0e-300 2.1e-209 3.6e-233 2.9e-231 1.3e-229

|xn+1 − xn| 5.6e-174 5.1e-68 8.2e-27 9.3e-30 1.6e-29 2.6e-29
iter 4 4 3 3 3 3
ρ 8.000 8.017 7.530 7.547 7.552 7.557

f5, x0 = 2 LW CTV SK FA1 FA2 FA3
|f(xn)| 0 0 1.0e-299 1.0e-299 0 0

|xn+1 − xn| 3.5e-94 2.4e-126 1.2e-67 3.7e-86 3.6e-125 9.5e-158
iter 4 4 4 4 4 4
ρ 7.967 8.002 7.881 8.010 8.002 7.999

Table 1: Comparison of various iterative methods.
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For each method and each test function we show in Table 1 the value
of function in the last iteration, the distance between the two last itera-
tions, computed with 300 significant digits, the number of iterations such that
|xn+1 − xn| ≤ 10−180 or f(xn+1) ≤ 10−180 and the computational order of
convergence ρ, approximated using the formula (see [5])

ρ ≈ ln(|xm+1 − xm|/|xm − xm−1|)
ln(|xm − xm−1|/|xm−1 − xm−2|)

.

All computations were done by using MAPLE.

4 Dynamical analysis

In this section, we study the dynamics of fixed point operators when they
are applied on quadratic and cubic polynomials. As we will observe in the
following, the dynamics of the proposed methods is very rich, several periodic
orbits appear with infinite pre-images, Julia set is connected and the connected
components of Fatou set are also infinite.

In our calculations, we usually consider the region [−2, 2] × [−2, 2] of the
complex plane, with 400×400 points and we apply the corresponding iterative
method starting in every x0 in this area. If the sequence generated by iterative
method reaches a zero x∗ of the polynomial with a tolerance |xk − x∗| < 10−2

and a maximum of 40 iterations, we decide that x0 is in the basin of attraction
of these zero and we paint this point in a color previously selected for this root.
In the same basin of attraction, the number of iterations needed to achieve the
solution is showed in darker or brighter colors (the less iterations, the brighter
color). Black color denotes lack of convergence to any of the roots (with the
maximum of iterations established) or convergence to the infinity.

When we apply the fixed point operator of the new methods (see Figures
1a to 1e for FA1, FA2 and FA3, respectively) on the second-degree polynomial
p(z) = z2 − 1, a rational function is obtained, with polynomials of degree 30
and 29 in the numerator and denominator, respectively. Analyzing the fixed
points, we found that the roots of p(z) are, obviously, superattractive and
there exist other 28 repulsive strange fixed points. That is, all strange fixed
points are on the Julia set.

Observing Figure 1, we note that the method FA2 never fails, meanwhile
two periodic orbits of period 2 appear in the dynamical plane of FA1 (the orbits
are {0.98185i,−0.9308i} and {−0.98185i, 0.9308i}) and also of FA3 (the first
orbit is {0.4496i,−0.5037i} and the second {−0.4496i, 0.5037i}). In case of
double roots, all the dynamical planes are the same as in Newton’s case, as
can be seen in Figure 1f.

The dynamical planes of the new methods for cubic polynomials are showed
in Figure 2. We observe that the dynamical behavior of the three schemes is
similar. We found again that the roots of the polynomial are the only superat-
tractive fixed points. If we are near the origin (see Figure 2a), the connected
components of the basin of attraction containing the roots seem to expand
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(a) Orbit 1 in FA1 on z2 − 1
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(b) Orbit 2 in FA1 on z2 − 1
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(c) Orbit 1 in FA3 on z2 − 1
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(d) Orbit 2 in FA3 on z2 − 1
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(e) FA2 on z2 − 1
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(f) New methods on z2

Fig. 1: Dynamical planes of the new methods on quadratic polynomials

filling all the plane. However, we can see in Figures 2b to 2d that the structure
around the origin is infinitely replicated. Indeed, the black regions between
the copies contain three periodic orbits of period 4 in each new method. Two
of them are on the diagonals of the plane (conjugated between them) and the
third one is on the real axis. The orbits of FA1 are:

{−6.1829− 10.7092i, 4.5609 + 7.8997i,−5.1414− 8.9052i, 3.4898 + 6.0445i}
{−6.1829 + 10.7092i, 4.5609− 7.8997i,−5.1414 + 8.9052i, 3.4898− 6.0445i}
{−9.1218, 10.2828,−6.9795, 12.3659}

In Figure 3 we can see two of these periodic orbits.
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(a) Detail of FA1 on z3 − 1

IRe{z}

IIm
{z

}

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6

(b) FA1 on z3 − 1
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(c) FA2 on z3 − 1
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(d) FA3 on z3 − 1

Fig. 2: Dynamical planes of the new methods on cubic polynomials

z=4.5609+i7.8997
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(a) Diagonal orbit

z=12.3659+i−5.3043e−013
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(b) Horizontal orbit

Fig. 3: Some orbits of period 4 of FA1

Finally, we can compare the results obtained for the presented methods
with the same schemes that have been used in numerical tests. All the methods
have a good behavior on quadratic polynomials, but in case of cubic ones, the
differences between them are clear. It can be observed (see Figure 4) that CTV
is the most stable method on quadratic and cubic polynomials, meanwhile LW
scheme shows a similar behavior than the methods proposed in this paper.
However, SK procedure has big regions of convergence to the infinity (in black
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in Figures 4e and 4f) in quadratic and cubic polynomials. In this case, no
periodic orbits appear but starting points in these black regions lead to infinity
after few iterations.
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(a) LW scheme on z2 − 1
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(b) LW scheme on z3 − 1
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(c) CTV scheme on z2 − 1
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(d) CTV scheme on z3 − 1
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(e) SK scheme on z2 − 1
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(f) SK scheme on z3 − 1

Fig. 4: Dynamical planes of known methods on polynomials

5 Conclusions

We have designed and studied a family of optimal iterative method (in the
sense of Kung-Traub’s conjecture) of eighth-order. We have tested some ele-
ments of the family and compared them with other known schemes. Finally,
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a dynamical analysis of the particular methods has been made on quadratic
and cubic polynomials, showing the dynamical richness of the family.
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