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Abstract— In this letter, a method for the improved consid-
eration of propagation losses in metallic waveguide structures is
presented. The method relies on the perturbation of the boundary
conditions on the metallic walls of the waveguides. Following
this advanced technique, we are able to compute a complex
modal propagation constant, thus avoiding the drawbacks of the
classical power-loss method where losses associated to evanescent
modes were not taken into account. A Computer Aided Design
(CAD) software package based on such a modal analysis tool has
been applied to predict the propagation loss effects in a Ka-Band
rectangular waveguide filter.

Index Terms— Losses, Waveguide components, Dissipative fil-
ters, Complex propagation constant, Perturbation method.

I. INTRODUCTION

MOST of present and future wireless and/or space com-
munication systems are operating at higher frequencies,

such as microwave and millimeter-wave bands. At such higher
frequencies ohmic losses, though they can be reduced due to
silver- or gold-plating, are becoming more and more relevant
for the design of passive waveguide components, such as filters
and multiplexers used in satellite payloads. The finite values
for the material’s conductivity degrade the behavior of the
passive devices, increase the insertion loss levels and even alter
the frequency response. This means that, for design purposes,
the conventional approach of neglecting losses or considering
them as a small-effect phenomenon is no longer valid. As a
consequence, modern CAD tools are requesting the inclusion
of ohmic losses, due to imperfect conducting materials, for an
accurate full-wave response prediction of passive microwave
and millimeter-wave components [1]-[3].

Ohmic losses in microwave waveguides and cavities have
been under consideration in the technical literature during the
past decades. Propagation losses are often modelled using the

This work has been supported by Ministerio de Educación y Ciencia,
Spanish Government, under the Grant JC2009-0221 and the coordinated R&D
project TEC2010-21520-C04, and by University of Alicante under the project
GRE10-22.

S. Marini is with the Departamento de Fı́sica, Ingenierı́a de Sis-
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perturbative power-loss method [4]. A very early contribution
based on this method can be found in [5], where degenerated
modes in lossy waveguides and cavities are treated. In [6]
a complex power technique and mode-matching procedure
have been employed for the analysis of waveguide junctions
characterized by the Generalized Scattering Matrix (GSM).
More recently, the rigorous consideration of the losses due
to the transversal metallic wall of a junction between two
rectangular waveguides with different cross sections has been
included in [7] and [8].

In this letter, we present an enhanced method for the
computation of propagation losses in rectangular waveguide
structures, which can be easily integrated within CAD tools for
design purposes. This new method, based on the perturbation
of boundary conditions, allows to overcome all the drawbacks
of the classical power-loss method. It is valid assuming that
the metallic walls are good conductors (σ > 104 S/m), so
the cross-coupling between the modal powers of degener-
ated modes is negligible. In order to analyze realistic metal-
based passive structures, the theory developed has been easily
combined with the integral-equation analysis technique (IE)
described in [9]. Proceeding in this way, a CAD software
package based on such a modal analysis tool has been applied
to predict the propagation loss effects in rectangular waveguide
filters.

II. THEORY

From now and on, and with the aim of simplifying the
notation of this section, a zero subscript will be only used
to denote the electromagnetic fields for perfectly conducting
walls. Note that the time factor ejωt is considered and omitted
throughout this paper. To study the changes produced by a
finite conductivity, we have followed the technique proposed
in [10], [11], where only TM modes are treated in detail.
In this contribution, we also extend it to the TE case. The
formulation starts with the assumption that a small tangential
electric field does exist for a good conductor, which is given
by the Leontovich condition [10]

E ' Zs(n̂×H0‖) =
(1 + j)

σδ
(n̂×H0‖) (1)

where n̂ is the unit normal vector outward from the conductor,
Zs = (1+j)/(σδ) is the surface impedance, σ is the metallic
conductivity, δ =

√
2/(µcωσ) is the skin depth, µc being the

conductor magnetic permeability.
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For large conductivity values, the classical perturbative
power-loss method assumes an exponential amplitude atten-
uation only for the excited propagative modes [4], [10], thus
neglecting the ohmic losses related to the evanescent modes.
Moreover, this attenuation constant tends to infinity at the cut-
off modal frequency. All these drawbacks can be overcome
using the perturbation of boundary conditions technique [10],
[11], which is based on the calculation of a complex propaga-
tion wavenumber kz = β−jα. In this method both attenuation
and phase constants take finite and positive real values, even
at the modal cut-off frequency. In this way, losses associated
with the propagative and evanescent modes are rigorously
accounted for.

Let us consider a waveguide with any arbitrary cross-section
which is homogeneously filled by a lossless medium with
constants µ and ε. We start considering the lossless TM
problem, described as follows

(∇2
t + k2

c0)Ez0 = 0 Ez0|∂S = 0 (2)

where kc0 = ω2
c0µε is the modal cut-off wavenumber. It is well

known that the transverse magnetic field can be expressed in
terms of the longitudinal electric field as shown next [10]:

Ht0 =
ωε

kz0
ẑ × (

−jkz0

k2
c0

∇tEz0) =
−jωε

k2
c0

[
l̂
∂Ez0

∂n
− n̂

∂Ez0

∂l

]

(3)
where k2

z0 = ω2µε − k2
c0, and l̂ is a unit tangential vector to

the conductor surface. Thus, for a finite but large conductivity
value, a non-zero axial electric field component appears, which
can be easily calculated combining (1) and (3), obtaining

Ez|∂S ' (1− j)
2

µc

µ
δ

(
ω

ωc0

)2
∂Ez0

∂n

∣∣∣∣
∂S

. (4)

So, the proposed technique for considering losses is described
by the following equivalent perturbed TM problem:

(∇2
t + k2

c )Ez = 0; Ez|∂S ' fTM
∂Ez0

∂n

∣∣∣∣
∂S

(5)

with fTM = (1−j)
2

µc

µ

(
ω

ωc0

)2

δ, and kc the complex cut-off
wavenumber.

In order to obtain the complex propagation wavenumber,
the Green theorem in two dimensions is employed [10]. Then,
considering that fTM is assumed to be a parameter with a
small value (fTM << 1 mm), it is possible to approximate
Ez by its unperturbed value Ez0, thus obtaining

k2
z − k2

z0 ' fTM

∮
∂S

∣∣∂Ez0
∂n

∣∣2 dl∫
s
|Ez0|2dS

(6)

where S is the cross-sectional surface and ∂S is the boundary
of the waveguide. Introducing the following parameter

ξTM =
fTM

2(1− j)kz0

∮
∂S

∣∣∂Ez0
∂n

∣∣2 dl∫
s
|Ez0|2dS

(7)

yields the new complex propagation wavenumber

kz = β− jα =
√

kz0(kz0 + 2ξn)− j2ξnkz0 n = TM,TE.
(8)

which is also valid for TE modes as will be shortly shown.

The TE modes for the lossless problem are obtained solving
the following eigenvalue problem

(∇2
t + k2

c0)Hz0 = 0;
∂Hz0

∂n

∣∣∣∣
∂S

= 0. (9)

For metallic walls with a large and finite conductivity value,
a non-zero electric tangential field appears on the surface (1),

E‖|∂S '
(

Zs
−jkz

k2
c0

∂Hz0

∂l

)∣∣∣∣
∂S

ẑ − ZsHz0|∂S l̂. (10)

Then, the normal component of the magnetic field associated
to the axial electric field can be calculated by means of the
Maxwell equations [10], obtaining

Hn|∂S ' j

µcω

∂

∂l

(
Zs
−jkz

k2
c0

∂Hz0

∂l

)∣∣∣∣
∂S

=
Zskz

µcωk2
c0

∂2Hz0

∂l2

∣∣∣∣
∂S

(11)
By defining fTE = −(1 − j) δ

2 , the corresponding perturbed
TE problem, equivalent to (9), is given by

(∇2
t + k2

c )Hz = 0
∂Hz

∂n

∣∣∣∣
∂S

' fTE

(
ω2µε

µc

µ
Hz0 − k2

z0

k2
c0

∂2Hz0

∂l2

)∣∣∣∣
∂S

(12)

The last step in the derivation is to use the Green theorem in
two dimensions to obtain the following parameter

ξTE =
−fTE

2(1− j)kz0

∮
∂S

(
ω2µεµc

µ |Hz0|2 − k2
z0

k2
c0

∂2Hz0
∂l2

)
dl

∫
s
|Hz0|2dS

=

δ

4kz0

∮
∂S

(
ω2µεµc

µ |Hz0|2 + k2
z0

k2
c0

∣∣∂Hz0
∂l

∣∣2
)

dl
∫

s
|Hz0|2dS

.

(13)
Finally, the TE complex propagation wavenumber can be
obtained using again the expression (8).

III. RESULTS

We proceed to study the accuracy and efficiency of the
proposed analysis technique through several examples. Note
that in all the presented figures we indicate with method 1
the results obtained by the classical power-loss method, and
with method 2 the results obtained by the proposed enhanced
technique. First of all, we have performed the modal analysis
of a WR-28 rectangular waveguide (a = 7.112 mm and
b = 3.556 mm) with a metal conductivity of σ = 5.8·107 S/m.
Fig. 1(a) shows in a semi-logarithmic scale the attenuation
constant of the first four waveguide modes as a function
of the frequency computed using method 1, method 2 and
the commercial software HFSS1. It should be remarked that
method 2 does not fail at the cut-off frequency in contrast with
the classical power-loss method. In Fig. 1(b) we also present
the modal phase constant for the same modes computed
with method 2 and HFSS results. A very good agreement
between our simulations and HFSS data has been obtained
for conductivity values greater than σ > 104 S/m.

As a second example, we consider a simple WR-28 cavity
structure coupled to input/output WR-28 waveguides by two

1http://www.ansoft.com/products/hf/hfss12/
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Fig. 1. Attenuation (a) and phase constants (b) for the first four WR-28
rectangular modes computed with method 1 (dashed lines only in (a)), method
2 (solid lines) and HFSS software (dashdot lines).
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Fig. 2. Scattering parameters of a simple cavity structure coupled to
input/output WR-28 waveguides by two irises. Length of WR-28 waveguide
cavity is 12 mm, irises dimensions are: a = 4.9 mm, b = 2.845 mm and
l = 2 mm.

centered irises: we have assumed a low finite conductivity
value of σ = 105 S/m. In Fig. 2 the simulated reflection
and transmission coefficients of this coupled resonator are
compared with the numerical data provided also by HFSS (a
maximum value of 0.001 for the S-parameter variation has
been used as a convergence criterion). It can be clearly noticed
that, due to the low finite conductivity value considered in
this case, the change in the propagation constant results in a
phase shift (see magnitude of S11), generating a variation of
the resonance frequency of the structure. This last shift is not
predicted by the classical method 1.

Finally, making use of our enhanced CAD software package
we have designed an inductive 4-pole rectangular filter in
standard WR-28 rectangular waveguides (σ = 3.54 · 107 S/m)
operating at 40 GHz with a passband of 0.2%. The complete
reflection and transmission response of this inductive 4-pole
filter is shown in Fig. 3. It can be observed that the deviation
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Fig. 3. Magnitude of the scattering parameters of a 4-pole inductive
rectangular filter in standard WR-28 waveguide. Coupling irises dimensions:
a1 = 2.207 mm, a2 = 1.164 mm, a3 = 1.105 mm, and length d = 1 mm.
Cavity lengths: l1 = 4.072 mm, l2 = 4.286 mm.

between the response obtained with the proposed method and
method 1 is around 12 MHz, i. e., 3% of the filter response
bandwidth which can be critical for narrow-band applications.

IV. CONCLUSIONS

In this letter, an improved method for the computation of
propagation losses in metallic waveguide structures is pre-
sented. Following this technique, the propagation loss effects
on the waveguide contour are accurately predicted using a
perturbation method. With this approach the drawbacks of the
power-loss method can be overcome, and losses associated
with evanescent modes can be taken into account, too. Fur-
thermore, the proposed enhanced method is able to predict a
phase shift of the electrical filter response, which can not be
predicted by the classical power-loss method.
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