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1. Introduction

The hyperbolic sine of a matrix is defined by sinh (Ay) =
(
eAy − e−Ay

)
/2,

A ∈ Cr×r. In general, functions of a matrix are used in many areas of science
and engineering. In particular, matrix exponential eA and matrix functions
sine and cosine have been those that have received the most attention, not
only for its computational difficulties but also for its importance in solving
differential systems of first and second order, see for example [1, 2].
To approximate the hyperbolic sine of a matrix we need to compute approx-
imations of the matrix exponential eA and compute its inverse, e−A, which
may be costly numerical and computationally. A possible alternative is to use

sinh(A) = i cos

(
A− iπ

2
I

)
, sinh(A) = −i cosh

(
−A− iπ

2
I

)
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and approximate the cosine or the hyperbolic cosine of a matrix, but this
approach has the disadvantage, however, to require complex arithmetic even
though the matrix A is real – usually in applications– which contributes sub-
stantially to the computational overhead.

In this work we propose a method to evaluate sinh(A) avoiding com-
plex arithmetic whenever possible. The proposed method use Hermite matrix
polynomial expansions of sinh(A) in order to perform a very accurate and
competitive method for computing them.
This work is organized as follows. Section 2 summarizes previous results of
Hermite matrix polynomials and includes a new Hermite series expansion of
the matrix hyperbolic sine with the respectively error bounds. An illustrative
example is given in section 3.
Throughout this paper, [x] denotes the integer part of x. The matrices Ir
and θr×r in Cr×r denote the matrix identity and the null matrix of order r,
respectively. For a matrix C ∈ Cr×r, we denote by ∥C∥ its 2-norm defined in
[3, p. 56] by

∥C∥ = sup
x̸=0

∥Cx∥2
∥x∥2

, (1)

where for a vector y in Cr, ∥y∥2 denotes the usual euclidean norm.

2. Hermite matrix polynomial series expansions of hyperbolic ma-
trix sine. Error bound.

For the sake of clarity in the presentation of the following results, we recall
some properties of Hermite matrix polynomials which have been established
in [4] and [5]. From (3.4) of [5] the n−th Hermite matrix polynomial is defined
by

Hn

(
x,

1

2
A2

)
= n!

[n
2
]∑

k=0

(−1)k (xA)n−2k

k!(n− 2k)!
,

for an arbitrary matrix A in Cr×r. Taking into account the three-term recur-
rence relationship (3.12) of [5, p. 26], it follows that

Hn

(
x, 12A

2
)
= xAHn−1

(
x, 12A

2
)
− 2(n− 1)Hn−2

(
x, 12A

2
)

, n ≥ 1

H−1(x,
1
2A

2) = θr×r , H0(x,
1
2A

2) = Ir

 ,

(2)
and from its generating function in (3.1) and (3.2) [5, p. 24] one gets

extA−t2I =
∑
n≥0

1

n!
Hn

(
x,

1

2
A2

)
tn, |t| < ∞, (3)
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where x, t ∈ C. Then, after taking y = tx and λ = 1/t in (3) it follows that

eAy = e
1
λ2

∑
n≥0

1

λnn!
Hn

(
λy,

1

2
A2

)
, λ ∈ C, y ∈ C, A ∈ Cr×r . (4)

Next, we wish to determine the series expansion in terms of Hermite ma-
trix polynomials for the matrix hyperbolic sine sinh (Ay). Given an arbitrary
matrix A ∈ Cr×r, using (4) in combination with [5, p. 25], it follows that
Hn (−x,A) = (−1)nHn (x,A). Thus, one obtains the following, required ex-
pression:

sinh (Ay) = e
1
λ2

∑
n≥0

H2n+1

(
yλ, 12A

2
)

λ2n+1(2n+ 1)!
. (5)

Denoting by SHN (A, λ) the Nth partial sum of series (5) for y = 1, one gets

SHN (λ,A) = e
1
λ2

N∑
n=0

H2n+1

(
λ, 12A

2
)

λ2n+1(2n+ 1)!
≈ sinh (A), λ ∈ C, A ∈ Cr×r. (6)

It is easy to show the following bound for Hermite matrix polynomials based
on ||A2|| ̸= 0, see [6], using the Taylor series for the hyperbolic sine:∥∥∥∥H2n+1

(
x,

1

2
A2

)∥∥∥∥ ≤ (2n+ 1)!e ∥A∥
∥A2∥

1
2

sinh
(
|x|

∥∥A2
∥∥ 1

2

)
, ∀x ∈ R , n ≥ 0. (7)

Therefore, using (6) and bound (7), it follows that:

∥∥sinh (A)− SHN (λ,A2)
∥∥ ≤ e

1
λ2

+1 ∥A∥
∥A2∥

1
2

sinh
(
|λ|

∥∥A2
∥∥ 1

2

)
(λ2 − 1)λ2N+1

. (8)

If λ > 1, given a priori error ε > 0 and taking the first positive integer N so
that

N >

log

 e
1
λ2

+1∥A∥ sinh
(
|λ|∥A2∥

1
2

)
ε∥A2∥

1
2 (λ2−1)


2 log (λ)

− 1 (9)

one gets ∥∥sinh (A)− SHN (λ,A2)
∥∥ ≤ ε.
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3. An example.

Let A be a non-diagonalizable matrix defined by A =


1 0 0 1 0
1 0 0 1 0
1 −1 1 2 0
1 0 0 1 0
0 1 1 0 1

.
Using the minimal theorem [7, p. 571] the exact value of the hyperbolic ma-
trix sine is

sinh (A)

=


1.81343020392 0 0 1.81343020392 0
1.81343020392 0 0 1.81343020392 0
2.45165921420 −1.17520119364 1.17520119364 3.62686040785 0
1.81343020392 0 0 1.81343020392 0
1.54680758967 0.80732175247 1.54308063482 1.91468703084 1.17520119364

 .

It is easy to check that ∥A∥ ≈ 3.42347,
∥∥A2

∥∥ 1
2 ≈ 2.83667. Choosing λ = 10

and ε = 10−5, the estimate (9) requires to take N = 7:

SH7(10, A)

≈


1.81343020383 0 0 1.81343020383 0
1.81343020383 0 0 1.81343020383 0
2.45165921402 −1.17520119364 1.17520119364 3.62686040767 0
1.81343020383 0 0 1.81343020383 0
1.54680758940 0.80732175247 1.54308063482 1.91468703057 1.17520119364

 ,

with an error

∥sinh (A)− SH7(10, A)∥ = 5.06825× 10−10.

Note that the number of terms required to obtain a predetermined accuracy
tends to be smaller than the one provided by (9). For instance, taking N = 5
and the same λ = 10 one finds

∥sinh (A)− SH5(10, A)∥ = 2.52331× 10−6.

The specific choice of parameter λ can still be further refined. Thus, for N = 6
and λ = 6.21566, one gets

∥sinh (A) − SH6(6.21566, A)∥ = 1.33576× 10−8 .
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