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We analyze the complexity of an expoDC algorithm by deducing the exis-
tence of solution for the recurrence inequation associated to this algorithm by
means of techniques of Denotational Semantics in the context of fuzzy quasi-
metric spaces. The fuzzy quasi-metrics provide an additional parameter ”t”
such that a suitable use of this ingredient gives rise to extra information on
the involved computational process. This analysis is done by means of a fuzzy
quasi-metric version of the Banach contraction principle on a space of partial
functions endowed by a suitable adaptation of the Baire quasi-metric.

1 Introduction

The complexity quasi-metric space (introduced by M. Schellekens in [16])
provides an efficient tool to show, in a systematized way, the existence (and
uniqueness) of solution for the recurrence equations or inequations typically
associated to several distinguished kinds of algorithms for which the execu-
tion time depends on one parameter [16, 11, 12, 2|, and then it is a suitable
model to analyze the complexity of such algorithms. In particular, this ap-
proach was generalized in [12] to the case of expoDC algorithm for which
the execution time depends on more than one parameter, which is carefully

*This research is supported by the Ministry of Economy and Competitiveness of Spain,
Grant MTM2012-37894-C02-01 and by Universitat Politecnica de Valencia, Grant PAID-
06-12-SP20120471.



discussed in [1, Section 7.7], where the following recurrence inequation for
this algorithm is obtained:

0, ifn=1,
(1) T(m,n) < ¢ T(m,n/2)+ L(mn/2,mn/2), if nis even,
T(m,n—1)+ L(m,(n—1)m), otherwise,

for all (m,n) € N x N (where N denotes the set of positive integer numbers).

According to [1, Section 7.7], L(m, n) denotes the time needed to multiply
two integers of sizes m and n, and T'(m, n) denotes the time spent multiplying
when computing a”, where m is the size of a, so the execution time of this
algorithm depends on two parameters.

Let L(1,1) = ¢ > 0. Then, it is constructed in [12] a new “complexity”
quasi-metric space (Co.c, do,), where

Coe={f:NxN —[0,00): f(m,1) =0, and f(m,n) > cfor n > 1},
and dy . is the bicomplete quasi-metric on Cy . given by

1
f(m,n)

The recurrence (1) induces, in a natural way, the functional ® defined on
CO,C by

doc(f,9) = il 2—™m 22_” max{(g(mlJ ) — ),0}

0, ifn=1,
(2) Of(m,n) =13 f(m,n/2)+ L(mn/2,mn/2), if nis even,
f(m,n—1)+ L(m,(n —1)m), otherwise.

Then, it is proved in [12] that ® is a contraction map on (Cy, dp.) with
contraction constant 3/4, and thus ® has a unique solution fy which is obvi-
ously a solution for 7.

Motivated by the usefulness of partial functions in Denotational Seman-
tics (see [13]) we here analyze the complexity of this expoDC algorithm by
deducing the existence of solutions for the recurrence inequation (1) by means
of techniques of Denotational Semantics based in proving that the functional
® above is a contraction map with contraction constant 1/2 on certain space
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of partial functions endowed by an appropriate bicomplete fuzzy quasi-metric
which provides an additional parameter ”t” such that a suitable use of this
ingredient may give rise to extra information on the involved computational
process, moreover our approach provides an improvement of the contraction
constant with respect to one obtained from the complexity space (Co., o).

2 Preliminaries

In this section we recall some pertinent concepts and well-known facts on
quasi-metric and fuzzy quasi-metric spaces.

Following the modern terminology, by a quasi-metric on a nonempty set
X we mean a nonnegative real valued function d on X x X such that for all
r,Y,2 € X :

(i) x =y if and only if d(z,y) = d(y,z) = 0;

(il) d(z,2) < d(z,y) + d(y, 2).

If d satisfies condition (i) above and

(i) d(z, z) < max{d(z,y), d(y, 2)}
then, d is called a non-Archimedean quasi-metric on X.

If d satisfies the conditions (i), (ii) and

(ii”) d(z, y) = d(y, x)
then, d is called a metric on X.

The notion of a non-Archimedean metric is defined in the obvious manner.

A (non-Archimedean) quasi-metric space is a pair (X, d) such that X is
a nonempty set and d is a (non-Archimedean) quasi-metric on X.

Each quasi-metric d on X generates a Ty topology 75 on X which has
as a base the family of open balls {By(z,r) : = € X, r > 0}, where
By(z,r) ={y € X :d(x,y) <r} for all z € X and r > 0.

Given a (non-Archimedean) quasi-metric d on X, then the function d!
defined on X x X by d~!(z,y) = d(y, x), is also a (non-Archimedean) quasi-
metric on X, called the conjugate of d, and the function d® defined on X x X



by d*(z,y) = max{d(z,y),d ' (z,y)} is a (non-Archimedean) metric on X.

A quasi-metric space (X, d) is said to be bicomplete if (X, d*) is a com-
plete metric space. In this case, we say that d is a bicomplete quasi-metric
on X.

By a contraction map on a (quasi-)metric space (X, d) we mean a self-
map f on X such that d(fz, fy) < kd(x,y)for all z,y € X, where k is a
constant with 0 < k£ < 1. The number £ is called a contraction constant for f.

It is clear that if f is a contraction map on a quasi-metric space (X, d)
with contraction constant k, then f is a contraction map on the metric space
(X, d?) with contraction constant k.

According to [17], a binary operation * : [0,1] x [0,1] — [0, 1] is a con-
tinuous t-norm if * satisfies the following conditions: (i) * is associative and
commutative; (ii) * is continuous; (iii) a * 1 = a for every a € [0,1]; (iv)
a*b < c¢xd whenever a < ¢ and b < d, with a,b,¢,d € [0, 1].

Paradigmatic examples of continuous t-norm are Min, Prod, and T}, (the
Lukasiewicz t-norm).

In the following Min will be denoted by A, Prod by - and T}, by 7. Thus
we have a A b = min{a, b}, aProdb = a.b and a *;, b = max{a + b — 1,0} for
all a,b € [0,1]. The following relations hold:

A > - > xp. In fact, A > x for any continuous t-norm .

Definition 1 [5]. A KM-fuzzy quasi-metric on a (nonempty) set X is a
pair (M, %) such that % is a continuous t-norm and M is a fuzzy set in
X x X x [0,00) such that for all x,y,z € X :

(KM1) M(z,y,0) = 0;

(KM2) x =y if and only if M(x,y,t) = M(y,z,t) =1 for all t > 0;

(KM3) M(x,z,t+ 8) > M(xz,y,t) * M(y, z,s) for all t,s > 0;

(KM4) M(z,y,-) : [0,00) — [0, 1] is left continuous.

Definition 2 [5]. A KM-fuzzy quasi-metric space is a triple (X, M, *) such
that X is a (nonempty) set and (M, *) is a KM-fuzzy quasi-metric on X.



If (M, %) satisfies the symmetry axiom (i.e if for all z,y € X and t > 0,
M(x,y,t) = M(y,x,t)), then (M, %) is a fuzzy metric in the sense of Kramosil
and Michalek ([7]) and (X, M, x*) is a fuzzy metric space in the sense of
Kramosil and Michalek.

In the following, KM-fuzzy quasi-metrics and fuzzy metrics in the sense of
Kramosil and Michalek will be simply called fuzzy quasi-metrics and fuzzy
metrics respectively, and KM-fuzzy quasi-metric spaces and fuzzy metric
spaces in the sense of Kramosil and Michalek will be simply called fuzzy
quasi-metric spaces and fuzzy metric spaces, respectively.

If (M,x) is a fuzzy quasi-metric on X, then (M~ x) is also a fuzzy
quasi-metric on X, where M~ is the fuzzy set in X x X x [0,00) defined
by M~(z,y,t) = M(y,z,t). Moreover, if we denote by M’ the fuzzy set in
X x X x [0,00) given by M*(z,y,t) = min{M (x,y,t), M (x,y,t)}, then
(M?, %) is a fuzzy metric on X [5].

Given a fuzzy quasi-metric space (X, M, *) we define the open ball By, (x,r,t),
forx € X, 0 <r < 1, and t > 0, as the set By(z,rt) = {y € X :
M(x,y,t) > 1 —r}. Obviously, x € By (z,r,t).

Foreachz € X,0<r; <7y <land0 < t; <ty, we have By (z,7r1,t1) C
By(z,79,t2). Consequently, we may define a topology 73y on X as

v = {AC X : 2 € Athere are r € (0,1),¢ > 0, with By (z,r,t) C A}

Moreover, for each € X the collection of open balls { By (z,1/n,1/n) :
n = 2,3...}, is a local base at x with respect to 7. It is clear, that for any
fuzzy quasi-metric space (X, M, *), Tps is a Ty topology.

The topology 7j; is called the topology generated by the fuzzy quasi-
metric space (X, M, ). It is clear that each open ball By (x,r,t) is an open
set for the topology 7y;.

A sequence {z,}, in a fuzzy (quasi-)metric space (X, M, x) converges to
a point x € X with respect to 7y if and only if lim,, M(z, x,,t) = 1, for all
t>0.



By using the notion of a fuzzy metric space in the sense of Kramosil
and Michalek [7], Grabiec proved in [4] a fuzzy version of the celebrated
Banach fixed point theorem. To this end, Grabiec introduced the follow-
ing notions: A sequence {x,}, in a fuzzy metric space (X, M, ) is called
G-Cauchy if for each € € (0,1),p € N, t > 0 there exists ng € N such that
M (2, Xpip,t) > 1—¢ forall n > ng. A fuzzy metric space (X, M, ) is called
G-complete provided that every G-Cauchy sequence in X is convergent. In
this case, (M, *) is called a G-complete fuzzy metric on X.

George and Veeramani presented in [3] an example which shows that
Grabiec s notion of completeness is very strong; indeed, the fuzzy metric in-
duced by the Euclidean metric is not complete in the sense of Grabiec. Due
to this fact, they modified the definitions of Cauchy sequence and complete-
ness due to Grabiec as follows: A sequence {z,}, in a fuzzy metric space
(X, M, %) is called a Cauchy sequence if for each ¢ € (0,1), ¢ > 0 there exists
ng € N such that M(x,,x,,t) > 1 — ¢ for all n,m > ng. A fuzzy metric
space (X, M, x) is called complete provided that every Cauchy sequence in
X is convergent. In this case, (M, x) is called a complete fuzzy metric on
X. Nevertheless the notion of G-completeness is very interesting in the case
of non-Archimedean fuzzy metric spaces because (see [10, Theorem 3]) each
complete non-Archimedean fuzzy metric space is G-complete.

In [10], Romaguera, Sapena and Tirado generalized Grabiec “s theorem to
the fuzzy quasi-metric setting. To this end they gave the following notions:
A sequence {x,}, in a fuzzy quasi-metric space (X, M, ) is called G-Cauchy
if {x,}, is a G-Cauchy sequence in (X, M’ x). A fuzzy quasi-metric space
(X, M, %) is called G-bicomplete if (X, M? x) is a G-complete fuzzy metric
space. In this case, (M, %) is called a G-bicomplete fuzzy quasi-metric on
X. So the notions of Cauchy sequence and bicomplete fuzzy quasi-metric
space can be given in a natural way as follows: A sequence {x,}, in a fuzzy
quasi-metric space (X, M, ) is called Cauchy if {z,}, is a Cauchy sequence
in (X, M’ %). A fuzzy quasi-metric space (X, M, ) is called bicomplete if
(X, M, %) is a complete fuzzy metric space. In this case, (M, x) is called a
bicomplete fuzzy quasi-metric on X.

Therefore, the classical Banach contraction principle can be generalized
to the fuzzy quasi-metric setting as follows (see for instance [20]).



Theorem 1 [20]. Let (X, M,x*) be a G-bicomplete fuzzy quasi-metric space.
If fis a self-map on X such that there is k € (0,1) satisfying

for all x,y € X and t > 0, then f has a unique fized point.

The notion of a non-Archimedean fuzzy metric space was introduced by
Sapena [15]. A natural generalization of this concept to the quasi-metric
setting can be found in [10] as follows: A fuzzy quasi-metric space (X, M, %)
such that M(x,y,t) > min{M(z, z,t), M(z,y,t)} for all z,y,z,€ X, t > 0,
is called a non-Archimedean fuzzy quasi-metric space, and (M, %) is called a
non-Archimedean fuzzy quasi-metric.

3 A fuzzy quasi-metric on a space of partial
functions

In this section we construct our general framework based on a space of par-
tial functions endowed by a fuzzy quasi-metric type Baire and analyze its
completeness. We also obtain a version of Theorem 1 that we shall apply in
the next section to deduce the complexity of expoDC algorithm.

In the sequel, given a nonempty alphabet ¥, we shall denote by X*° the
domain of (finite and infinite) words over ¥, and by ¢(z) we denote the length
of the word z. The common prefix of x and y is denoted by x My, and if z is
a prefix of y we write z C y.

The so-called Baire quasi-metric (see, for instance, [14]) is the quasi-
metric d- on X given by dc(z,y) = 0 if 2 C y, and dc(x,y) = 274w
otherwise.

Note that (dr)® is the Baire metric on 3°°.

Following [13], put N, = {{1,..,n} : n € N}UN, and P = {f :
N x B — [0,00), Be N_}.

For each f € P and each m € N, we define f(m) : B — [0,00) as
f(m)(n) = f(m,n) for all n € B and P,,, = {f(m), f € P}.
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If B is finite then f(m) is a partial function.

Note also that f(m) can be considered as an element of ¥*° when ¥ =
0, 00).

Moreover ¢(f(1)) = £(f(m)) for all I,m € N, and ¢(f(m)) = oo if and
only if B = N.

Now we construct, for each m € N the function M,, on P,, X P, given
in the following way:

My (frn> gm) = 1 if fi is a prefix of gy,
M (frns Gm) = 1 —de(fr(n), gm(n)) = 1 —27FmN9m) if £ is not a
prefix of gy,.

We can extend M,, on P x P in the following way:

Mm(f: g) = Mm(fm» gm)

Now, we define M : P x P x [0,00) — [0, 1] as it follows:

M(f,9,0) = 0,
M(f,g,t) = inf My(f,g)m e N

for all f,g € P and t > 0. Then, we have the following theorem:
Theorem 2. (P, M, N\) is a non-Archimedean fuzzy quasi-metric space.

Proof. It is obvious that M is a fuzzy set on P x P x [0, 00) which satisfies
the following conditions for all f, g € P:

M(f,9,0) =0,
M(f,g,t) = M(g, f,t) =1 for all ¢t > 0 if and only if f =g,
M(f,g,-) is left continuous.

Let us see that for all f,g,h € P,t > 0:
M(f? g7 t) Z min {M<f7 h7 t)’ M(h7 g7 t)}.

Indeed, we have:



M(f.g,t) = Inf Mn(f,g.) = inf (Mun(f. h) A M (B, 9))
= inf My (f, h) A inf My (h, g) = min {M(f, h,t), M(h,g,t)}

so (P, M, A) is a non-Archimedean fuzzy quasi-metric space.

In [13] the following bicomplete quasi-metric is defined on P :

dp(f,g) = sup dc(f(m), g(m)),

meN

It is easy to see that M(f,g,t) = 1 —dp(f,g) it t € (0,1], so (see [21,
Remark 3.9] and [10, Proposition 1]) the topologies 75; and 74, are the same,
hence (P, M, A\) is a bicomplete fuzzy quasi-metric space. Because each bi-
complete non-Archimedean fuzzy quasi-metric space is G-bicomplete ([10,
Lemma 1]) we deduce that (P, M, A) is G-bicomplete.

From Theorem 1 and [21, Remark 3.9] we have:

Theorem 3. Let (X, M, x) be a G-bicomplete fuzzy quasi-metric space. If
f is a self-mapping on X such that there is k € (0,1) satisfying

M(fz, fy,t) >1—k+ kM(z,y,t)

for all x,y € X and t € (0,¢), with € > 0, then f has a unique fized point.

4 Application to the complexity analysis of
expoDC algorithm

We shall prove that the recurrence inequation associated to this ezpoDC' al-
gorithm gives rise to a contraction map on (P, M, A) in the sense of Theorem

3, so the contraction map has a unique fixed point, and then the complexity
of the algorithm is represented via this element.

Example. Let ® : P — P be the extension to P of the functional as-
sociated to the recurrence inequation of the complexity analysis of expoDC
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algorithm. Next we show that ® is a contraction (in the sense of Theorem
3) on the G-bicomplete non-Archimedean fuzzy quasi-metric space (P, M, N),
with contraction constant 1/2.

To this end, we first note that, by construction, given m € N, we have

UD(fm)) = U fm)+1 forall f,, € P (in particular, ((®(f,,)) = oo whenever

Furthermore, it 1s clear that

fn B gm = @(fn) E @(gm),

and consequently
(fi M gm) T (fin) M 2(gm)
for all fu, gm € Pp,. Hence

UP(frn) T (gm)) 2 UP(fin M gim)) = L(frn T Gm) + 1
for all fr, gm € Pm.

For each m € N we have:

M (B, Bg) = Mp(®fr, Bgp) = 1 — 27HEmMPam)

> 1 — 27 U®UmNgm)) > 1 _ o= (U(fmMgm)+1)
= 11— }2_é(fmﬂ9m)

2

11

for all f,g € P.

So, we have:

M(®f, &g, t) = ggﬂM (®f, @g)>1nf(1—;—|— M, (f,9))

1 1
= 1——+=-M(f gt
2+2 <f7g7 )

for all t € (0,e), with 0 < € < 1, and for all f,g € P. Hence ® is a
contraction on the G-bicomplete non-Archimedean fuzzy quasi-metric space
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(P, M, N), with contraction constant 1/2, and the conditions of Theorem 3
are satisfied, therefore ® has a unique fixed point fy.

Now we claim that fo represents the complexity of this algorithm. Indeed,
by construction if g satisfies this inequation then ®g satisfies this inequation
too, so we have

g< g < PPg < ... <Dy
SO
g < lim ®"g = fo
1.e
g < fo.

Finally we shall deduce the known fact that fo € O(m?n?) [1, Section 7.7].

Indeed, since L(m,n) € O(mn) and L(1,1) = ¢, ([1]) it follows that there
erist K > ¢ and ng > 1 such that L(m,n) < Kmn for all m,n > ng. Now
define a function h € P by h(m,1) = 0, and h(m,n) = Knim*n* whenever
n > 1. An easy computation, taking into account that L is monotone increas-
ing, shows that ®h < h. Since ® is also monotone increasing we obtain that
®"h < h, for alln € N, so fo =1lim, oo ®"h < h and fo < h. We conclude
that fo € O(m?n?).

5 Conclusions

We introduce a new way to analyze the complexity of expoDC algorithm by
means of fixed point techniques on a space of partial functions endowed by
a fuzzy quasi-metric type Baire. The fact of working with partial functions
yields a more visual application of these techniques, moreover this framework
provides a suitable model to indicate if the ”information” contained in an
element f is also contained in other g from a determinate input. Indeed, if
fyg € Pand f,, C g, for all m > mg then there exists tq € (mg— 1, mg] such
that M(f,g,t) = 1 for all t > to. Reciprocally if we compute the fuzzy quasi-
metric in (f,g,t), t € (mg — 1, mp] and obtain that M(f,g,t) = 1, it follows
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that f,, € g¢,, for all m > mg, so from the input mg the ”information”
contained in f is also contained in g. Note that others models based on
quasi-metrics are not able to detect this situation. (See for instance [12]).
In our future research, we will intend to apply this approach to analyze
the complexity of algorithms whose execution time depends on more than
two parameters or algorithms defined as a finite systems of procedures and
to establish new fixed point theorems for contraction maps induced by this
class of algorithms in the context of fuzzy quasi-metric spaces.
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