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els va afectar a ells també.

Y a Pepe, porque mucho del tiempo dedicado a este trabajo era
tuyo.



Abstract
Our understanding of the biological mechanisms for most common

human diseases is far from complete. Even with well established genetic
landscapes, our capacity to make accurate phenotypical predictions or
determine personalized disease risk using genetics alone is not possible
for most diseases due to our lack of understanding of the mechanisms by
which genetic alterations cause disease. Several suggestions have been
proposed to explain this manifested lack of direct relation between gen-
otype and phenotype, including interactions with other molecules, pleio-
tropy and environmental perturbations. Due to their essential role in
carrying cellular functions, proteins and its interactions seem crucial to
translate genomic data to phenotypic states. In this thesis I present three
different and independent approaches to integrate human genomic data
with prior knowledge in terms of protein-protein interactions (PPIs). The
overall objective is, by making use of the interactome structure, to pro-
pose functional hypotheses that help to interpret the genetic variability
observed in different human phenotypes. First I developed a methodo-
logy to extract the network component associated to any gene list ranked
by any experimental parameter, as the one coming from case-control
genome-wide associations studies. Second I performed a systematic ana-
lysis of human variants in the context of the protein interactome. There
I study how the interactome structure can help us to explain the amount
of apparently deleterious variation observed in actual populations and,
therefore, give insight in its role in shaping the patterns of variability.
Results are compared against somatic mutation found in Leukemia pa-
tients. Finally, I structurally resolved the protein interactome and used
it to study how somatic mutations found in primary tumours distribute
across the interacting interfaces and identify those with a potential role
in driving oncogenesis. Although each chapter covers a different ques-
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tion, all of them demonstrate the potential of the interactome in helping
to interpret genomic variation observed under diverse research scenarios.



Resum
El nostre coneixement sobre els mecanismes biològics causants de

la majoria de malalties humanes comuns és encara pobre. Tot i que en
l’actualitat tenim mapes genètics d’alta resolució, la nostra capacitat per
a fer prediccions fenot́ıpiques certeres utilitzant únicament marcadors
genètics és encara molt baixa degut a que no entenem les bases mo-
leculars a traves de les quals les alteracions genètiques condicionen un
fenotip de malaltia. Entre les principals causes d’aquesta aparent falta
de relació directa entre genotip i fenotip estan la complexitat introdüıda
per les interacciones moleculars, els fenòmens de peleiotropia i la in-
fluencia dels factors externs. Degut al paper clau en dur a terme la
majoria de funcions cel·lulars, les protëınes i les seues interaccions han
adquirit una especial atenció en la traducció de les dades genot́ıpiques
en estats fenot́ıpics. Aquesta tesi presenta tres estartègies diferents per a
la integració de dades genòmiques humanes amb la xarxa d’interaccions
proteiques (interactoma). L’objectiu comú és, fent ús de l’estructura del
interactoma, proposar hipòtesis funcionals que ajuden a interpretar els
patrons de variabilitat genètica observats en diferents estats fenot́ıpics.
En primer lloc, es proposa una metodologia per a extraure el compon-
ent de l’interactoma associat als gens rellevants en una llista ranquejada
per qualsevol paràmetre experimental, com l’estad́ıstic derivat d’estudis
d’assocaició de genoma. En segon lloc, es descriu un anàlisi sistemàtic
de les variants genètiques observades en humans sans en el context del
interactoma. Aćı s’analitza com l’estructura del interactoma pot ajudar
a explicar l’aparent elevada quantitat de variants deletèries observades en
els últims estudis poblacionals de sequenciació de genomes. Els resultats
son comparats amb les mutacions somàtiques observades en pacients de
Leucèmia. Finalment, es presenta un estudi de les mutacions somàtiques
observades en tumors primaris de més de 20 tipus utilitzant una versió del
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interactoma més resolutiva, que inclou l’estructura tridimensional de les
protëınes. Encara que cada estudi presentat en la tesi planteja resoldre
qüestions diferents, tots ells demostren el potencial del interactoma de
protëınes en ajudar a interpretar la variació genòmica humana observada
en un context tant poblacional com de malaltia.



Resumen
Nuestro conocimiento acerca de los mecanismos biológicos causantes

de la mayoŕıa de enfermedades humanas comunes es pobre aún. Incluso
con mapas genéticos de alta resolución, nuestra capacidad para hacer
predicciones fenot́ıpicas certeras o determinar el riesgo de una persona
a padecer una enfermedad utilizando solamente marcadores genéticos es
muy baja. Entre las principales causas de esta aparente falta de relación
directa entre genotipo y fenotipo están las interacciones moleculares, los
fenómenos de pleiotroṕıa y la influencia de los factores externos. Debido
al papel esencial que ejercen en llevar a cabo las funciones celulares,
las protéınas y sus interacciones han adquirido una atención especial en
la traducción de los datos genot́ıpicos a estados fenot́ıpicos. En esta
tesis se presentan tres estrategias diferentes para la integración de datos
genómicos humanos con la red de interacciones proteicas (interactoma).
El objetivo común de todas ellas es, haciendo uso de la estructura del
interactoma, proponer hipótesis funcionales que ayuden a interpretar los
patrones de variabilidad observados en diferentes estados fenot́ıpicos hu-
manos. Primero, se propone una metodoloǵıa para extraer el componente
del interactoma asociado a los genes relevantes en una lista ranqueada
por cualquier parámetro experimental, como el estad́ıstico derivado de
los estudios de asociación genómicos. Es segundo lugar se describe un
análisis sistemático de las variantes genéticas observadas en humanos
sanos en el contexto del interactoma. En él se estudia cómo la estruc-
tura del interactoma puede ayudar en explicar la aparentemente elevada
cantidad de variantes delétereas observadas en los últimos estudios po-
blacionales de secuenciación de genomas. Los resultados son compara-
dos con las mutaciones somáticas observadas en pacientes de Leucemia.
Finalmente, se presenta un estudio de las mutaciones somáticas obser-
vadas en tumores primarios utilizando una versión del interactoma que
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incluye la estructura tridimensional de las protéınas. Aunque cada estu-
dio presentado en la tesis pretende resolver preguntas diferentes, todos
ellos demuestran el potencial del interactoma de protéınas en ayudar a in-
terpretar la variación genómica humana observada en un contexto tanto
evolutivo como de enfermedad.
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We need to remember that
whereas mathematics is the art
of the perfect and physics the
art of the optimal, biology,
because of evolution, is only
the art of the satisfactory.
Sydney Brenner





CHAPTER 1

Introduction





Introduction 3

1.1 Systems Biology: aim and definition

Every human, as all living individuals, store the information re-
quired for developing themselves in the sequence of its genome, in the
form of DNA packed into high-order chromatin. The genome encodes the
information to formulate the functional molecules (RNA and proteins),
which orchestrate all cellular processes that give rise to the living being.
While RNA is responsible of protein-template and gene expression reg-
ulatory roles, proteins are considered the main players of final biological
functions. These do not operate alone but are organized into complex
circuits in a way that most cellular functions are the outcome of an
intricate network of interactions perfectly coordinated. Through these
circuits, proteins crosstalk back to the genome to regulate, by means
of transcriptional regulators and epigenetic changes, which part of it is
expressed in a particular cell type at a specific moment. It is thus the
cooperativity between molecules what ultimately drives the development
and behavior of living organisms.

The complexity of the cell system is evidenced among the vast
amount of studies to identify the roots of most human diseases. These,
although successful in identifying genes behind rare Mendelian diseases,
have failed to uncover direct causalities for most complex pathologies.
Contrary to Mendelian diseases where highly penetrant alterations en-
able to establish direct associations with the causal gene, common patho-
logies arise from a more complex interplay between different molecular
perturbations. This yet undefined complexity is the reason why the mo-
lecular mechanisms underlying most complex diseases are still an un-
solved paradigm. Hence, approaches that adequately capture the ex-
quisite complexity of the cell are urgently needed to achieve accurate
descriptions of the mechanisms driving common diseases.

Recently, Systems Biology has been proposed as a new candidate
field to cope with biological complexity. Much controversy exists with
respect to the aims, scope and approaches of Systems Biology, and several
definitions of the field have been proposed. Here I take the definition



4 SYSTEMS BIOLOGY: AIM AND DEFINITION

proposed by De Backer et al. (2010), who escapes from the simplistic
dichotomy of ”reductionist molecular biology” versus ”holistic systems
biology”, and considers Systems Biology as a complementary new stage in
the development of Molecular Biology with common biological questions,
but formulating more complex, system-wide hypotheses and extending its
approaches with new system-wide (omics) experiments and mathematical
models. See De Backer et al. (2010) for a deeper review of the System
Biology definition and approaches.

The research described in this thesis is addressed under a Systems
Biology perspective, where genomic data is integrated with models that
reflect the complexity of the cells to interpret human genomic variation
observed under different phenotypic scenarios.
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1.2 Human protein interactome

1.2.1 Definition

Protein-protein interactions (PPIs) are physical contacts between
two or more proteins driven by biochemical events and/or electrostatic
forces. The protein interactome describes the full collection of PPIs that
can occur in a cell and offers us an unprecedented level of detail of all
the molecular circuits governing cell functions.

To consider a contact between two protein as PPI, this should
be direct and specific, not just a generic touch (Bahadur et al., 2004).
For example, every protein at one point is in contact with the ribosome
and most with the proteasome by means of generic interactions. Since
these physical contacts between proteins imply general but not specific
functions, these are excluded from the PPI definition.

PPIs can be classified as stable (also called permanent) or transi-
ent, and both types can be either strong or weak (Nooren and Thornton,
2003). Stable interactions have relatively long lifetime, and mostly occur
in proteins forming complexes (such as DNA damage repair complex).
On the contrary, transient interactions form and break down briefly by
means of combinations of non-covalent bonds such as hydrogen bonds,
ionic interactions, Van der Waals forces, or hydrophobic bonds. Fre-
quently, the conditions that enable transient physico-chemical contacts
are dependent on other biochemical changes, such as the interaction with
other proteins, the addition of functional groups (such as protein phos-
phorylation, acetylation, etc) or its localization in the cell (Perkins et al.,
2010). Thus, transient PPIs are expected to control most of cellular reg-
ulatory processes through signalling pathways.

1.2.2 PPIs identification

In humans, the interactome is predicted to range between 130,000
and 600,000 PPIs, although no more than 80,000 have been already ex-
perimentally observed (Mosca et al., 2013c). Experimental identification
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of PPIs is done either at large or small scale with two main technolo-
gies that produce different PPI data types. The most used techniques
in measuring direct physical interactions between protein pairs and com-
plex are, respectively, Yeast-two-hybrid (Y2H) (Ito et al., 2000, 2001)
and Tandem Affinity Purification coupled to Mass Spectrometry (TAP-
MS) (Bergg̊ard et al., 2007). An overview of experimental proteomic
techniques applied to measure PPIs can be found in Berggard et al.
(Bergg̊ard et al., 2007).

The quality of such data has been a controversial subject. Initial
studies comparing results from several PPI detection methods showed
little overlap between experiments, yet due to methodological bias to-
ward the identification of particular types of proteins or interactions
(e.g. Y2H system has troubles detecting proteins of greater abundance
and stability) or yet to troubles in reaching the saturation point, which
results in incomplete coverage (Von Mering et al., 2002). Additionally,
for some systems such as Y2H, the false positive rate accounted for al-
most a half of the total data generated in 2002 (Von Mering et al., 2002).
Despite widely questioned a decade ago, latest high-throughput PPIs
screenings showed an improved accuracy of the detection methods, re-
ducing the false positive rate and reproducibility problems (Lage, 2014;
Rolland et al., 2014). Methodological refinements together with quality
awareness-raising initiatives promoted by the collecting databases, with
the implementation of common standards in curation practices (Mosca
et al., 2013c; Orchard, 2014), have allowed reliable PPIs to be available
to the whole research community. But still, due to the diversity in nature
of PPIs, the transient character (Perkins et al., 2010), the conditionality
(Grossmann et al., 2015) and the lack of a unique technique able to detect
all of them, a combination of approaches is required to cover accurately
the whole interactome.
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1.2.3 Functional modules

There is a wide consensus on the fact that the biological functional-
ity of the cell arises from the cooperative behaviour of sets of molecules
and its interactions. This organization is captured in the human pro-
tein interactome which, as for other organisms, display a hierarchical
topology (Han et al., 2004; Rual et al., 2005). Proteins are usually ar-
ranged forming neighborhoods of proteins highly interconnected within
them but sparsely connected to the rest of the network. Such sets of
highly interconnected molecules define operational entities, identifiable
by network clustering algorithms, to which different elementary functions
can be attributed. This lead to the concept of modularity in biological
networks, applicable to the protein interactome, metabolic networks, sig-
nalling pathways and networks of gene-gene interactions (Ravasz et al.,
2002). Actually, the relationship between common functionality and in-
teraction has been successfully used to predict protein function (Sharan
et al., 2007).

Modular patterns also extend to genes related to similar human
pathologies. Gene products associated to a common disease also exhibit
an increased tendency to interact among them, co-express in the tissue
affected and display coherent functions according to GO annotations (Oti
and Brunner, 2007; Taylor et al., 2009; Aerts et al., 2006). For example,
genes associated to Ataxia were observed to occupy a common region
in the interactome and display a shorter distance between them than
random subsets and share common partners (Lim et al., 2006). This
proximity property of disease genes to locate closer each other is being
extensively used to prioritize new candidate disease genes in genomic-
scale studies (Oti et al., 2006; Köhler et al., 2008).

Important efforts are being made to identify disease-associated
modules. That is, network components whose perturbation are believe
to initiate disease phenotype in humans. Despite the extensive focus
on functional modules based on GO (or other unstructured labels) for
the biological interpretation of different types of genomic experiments
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(gene expression microarrays, large-scale genotyping), conceptualizing a
function simply as a label shared by a set of genes resulted in a poor de-
scription of the cellular complexity, since ignores gene relationships. PPIs
provide a more realistic representation of such relationships beyond cat-
egorical definitions (Minguez et al., 2009; Minguez and Dopazo, 2010).
The use of the interactome as a theoretical scaffold that relates proteins
among them allows depicting subnetworks of interacting proteins asso-
ciated to features in genomic experiments. The identified subnetworks
or modules can be considered a higher level, structured description of
functional modules operating in the cell (Ideker et al., 2002; Mitra et al.,
2013). Such subnetworks can serve as hypothesis building scaffolds that
guide researchers to zoom into the molecular mechanisms involved in
particular function or disease (Ideker and Lauffenburger, 2003; Mitra
et al., 2013). Consequently, much attention has been focused over the
last decade in methods aimed to interrogate the interactome with other
molecular profile to identify these subnetworks accomplishing specific
functions.

1.2.4 The interactome as a network

Taking all together, the PPIs can be modelled as an undirected
graph, where nodes represent proteins and edges the interactions. The
resulting network acquires a particular shape (topology), displaying a set
of global-scale properties (also called emergent properties) not observable
when studying the PPIs in isolation (Barabási and Albert, 1999; Goh
et al., 2002; Jeong et al., 2001; Barabási, 2009).

One of the key findings from topological studies is that biological
networks share patterns on its organization, being these patterns signi-
ficantly different from those observed in random network models (e.g.
Erdos Reny model). That is, all of them follow a common principle: the
great majority of the proteins have very few connections whereas few pro-
teins concentrate the great majority of connections (Barabási and Albert,
1999). The high-degree nodes are often called hubs, and are thought to
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carry relevant roles in their networks. This non-random distribution of
the connectives approximates a ”power-law” and states that the probab-
ility that a chosen protein has k PPIs approximates: P (k) ∼ k−γ , where
2 < γ < 3.

Another common feature observed in complex biological networks,
also observed in other non-biological real networks such as the World
Wide Web (WWW), is that the average distance between any two pro-
teins in the network is small so that any node can be reached through a
few edges (Giot et al., 2003). This property, called ’small-world effect’,
arises from the existence of highly centred proteins (proteins with high
relative betweenness centrality), which connect the whole network. The
direct consequence is that local perturbations in a central node could
reach every other node very quickly.

1.2.5 Functional and evolutionary implications of the in-
teractome topology

The fact that previously mentioned properties (modularity, hier-
archy, degree distribution and small-world) are observed among different
biological networks across different species suggest that there are evol-
utionary mechanisms constraining the maintenance of them. Although
the reasons and mechanisms are not yet fully understood, several hypo-
theses have been proposed to explain the biological consequences of this
acquired structure. Recent publications propose it is the consequence of
how these networks grow, by expanding through preferential-attachment
process where new nodes are linked to existing nodes with a probability
proportional to the number of connections of the later (Barabási and
Albert, 1999). Albeit this approach successfully explains degree distri-
butions in other real networks, the biological mechanism that support
the preferential attachment hypothesis in PPI networks is less evident.
Probabilistically, is less likely that a newly introduced protein incorpor-
ates the structural characteristics to specifically interact to a wide range
of proteins and become a hub. However, considering that new proteins
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are formed mostly by duplications and fusions of existing genes (Pastor-
Satorras et al., 2003), and not by de novo insertion of random sequences,
probabilistic models that ignore evolutionary forces shaping molecular
networks are far from provide a complete explanation.

The emergence of proteins with high connectivity and centrality
suggests that these may play a key role. From an evolutionary perspect-
ive, one can hypothesize that topology displayed by biological networks
have been selected in virtue of the advantages brought in terms of sta-
bility and robustness against random errors, such as genetic alterations,
environment perturbations or stochastic variation (Taylor, 2013). The-
oretical studies have demonstrated that biological networks are topolo-
gically robust against the removal of random nodes, but that the removal
of the most connected ones (simulating an attack) drastically alters the
network’s topology (Albert et al., 2000). This is in clear opposition to
the behaviour observed in random networks, where random errors and
attacks can not be distinguished (Albert et al., 2000). Since the likeli-
hood of removing a highly connected protein is significantly small due to
its low frequency, most interactions in the network, and thus its global
properties, would remain intact under random perturbations. Interest-
ingly, studies in several species observed that most of the genes that when
depleted decrease robustness, expressed as a proxy of cell survival, code
for proteins that are highly connected in the interactome (Jeong et al.,
2001; Hahn and Kern, 2005) and evolve more slowly than proteins with
low connectivity (Kim et al., 2007). Taking together, these results sug-
gest that genetic variation in these key proteins is constrained by natural
selection. Paradoxically, the robustness conferred by these proteins can
suppose a mechanism that facilitates genetic variation in the rest of the
genes (Levy and Siegal, 2008). Understanding how living systems deal
effectively with perturbations such as genetic variability and exploit it
to evolve remains a challenging goal for evolutionary systems biology.

From the point of view of disease, there is a vast amount of research
supporting a strong relationship between the topological role of a protein
in the interactome and its association to human diseases. First studies
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showed that the protein products of genes driving cancer tend to have
higher connectivity than non-cancer proteins (Wachi et al., 2005; Jonsson
and Bates, 2006). These authors proposed that altered genes in cancer
are key for the proliferation of the tumor cells and, therefore, display
the same topological properties that essential genes. In the same sense,
Goh et al. (2007) and Feldman et al. (2008) compared essential genes
to cancer and mendelian disease genes and found that topological values
for centrality and connectivity of the later tend to lie in between the
essential or tumorgenic genes and those not included in any previous class
(that is non-disease genes). Combining these results with the relationship
between centrality and essentiality, the general conclusion is that genes
driving disease are not randomly located in the network. Although at the
publication of the first evidences there was concern about the potential
bias in PPI networks towards the more studied genes (that is disease
genes), new studies in less biased interactomes reinforce initial tendency
(Rolland et al., 2014). Considering disease as the alteration of the overall
stability, these observations evidence the role of hub genes in safeguarding
phenotypic robustness.

1.2.6 Structural details

Despite the potential of PPI networks, in combination with other
molecular profiles, to identify sets of proteins associated to the phenotype
under study, it proved difficult to derive biological conclusions from the
discovered subnetworks. Although pointing at the underlying functional
modules, these subnetworks can only be seen as descriptive scaffolds
rather testable hypotheses (Ideker and Lauffenburger, 2003). The reason
behind is the lack of molecular details encoded in the interactome model.
That is, the interactome has been modelled abstractly (ie. an undirec-
ted graph), where proteins represent graph-theoretical nodes ignoring its
structural details and the stereochemistry of the interactions.

A protein physically interacts with its partner through a region on
its surface, called interface (Janin, 1995; Jones and Thornton, 1996). For
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most cases, proteins interact to each other at specific domains (ordered
regions) (Pawson and Nash, 2003). One example is the SH2 and SH3
domain containing proteins which binding require a phosphotyrosine
residue in the context of a peptide motif. However, there is increasing
evidence that intrinsically disordered regions also participate in func-
tional binding (Uversky et al., 2005). In both cases, the binding spe-
cificity for a pair of interacting interfaces is determined by the amino
acid residues in the neighborhood of the final 3D structure that each
partner acquires. This is specially important in studies integrating PPIs
with genomic data. Single nucleotide or short indel (insertion or dele-
tion) variants, can introduce changes in the amino acid sequence that
modify the physico-chemical properties of the protein and, consequently,
can affect the interacting ability and alter its function. As confirmed
experimentally, mutations altering different protein domains can not be
expected to cause identical effects on protein properties and functions
(Zhong et al., 2009; Wang et al., 2012). Under a scenario where the
biological functions are believed to raise from the network of molecular
interactions, interactions seem to be a more rational level of abstraction
than genes. In fact, only for humans, Uniprot database reports more
than 4000 missense mutations experimentally observed to affect the in-
teraction ability of the protein with its partner (Consortium, 2011).

The introduction of the molecular structure onto the biological
networks is still in its beginnings (Mosca et al., 2013a). The reasons
behind are the lack of structural data for most of the proteins and the lack
of a clear decision making process to asses the effect of a single amino acid
change on its structure and function. Additionally, integrating structural
information would add a new level of detail to consider when modelling
the interactome and would require a more complex approach to analyze
it (Ideker and Lauffenburger, 2003).

To our knowledge, only few studies reported the systematic in-
tegration of disease mutation data onto protein structures. Zhong et
al investigated how distinct molecular defects in proteins lead to dis-
tinct perturbations in the interactome and, ultimately, phenotypic con-
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sequences (Zhong et al., 2009). In its study, deletions and early stop gain
mutations are modelled as node loss, whereas nonsynonymous mutations
and small indels are modelled as edge specific perturbations. They ob-
served that a half of the human disease mutation affect specific edges
and that mutation in genes responsible for different diseases tend to be
located in distinct interacting interfaces. In another study, Wang et al
observed that missense mutations associated to human diseases were en-
riched on the interacting interfaces of proteins and that phenomenas like
gene pleiotropy or locus heterogeneity can be explained by their location
within its interfaces (Wang et al., 2012). Similar observations were de-
scribed recently in (Mosca et al., 2015). All these studies highlight how
structurally resolved interactomes can produce more detailed and useful
models. More importantly, the message derived is that mutations that
perturb distinct protein activities may be key in explaining heterogeneity
between individuals.
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1.3 Human genomics

1.3.1 Sequencing the human genome

Since the genetic theory of inheritance culminated with description
of the molecular structure of DNA more than 60 years ago (Watson et al.,
1953), the analysis of the genome sequence has centered most of the effort
in biological research. In the seventies, the development of two major
techniques, the enzymatic DNA sequencing method and the invention
of the polymerase chain reaction (PCR) (Mullis et al., 1992), supposed
an extraordinary revolution in human genetics and molecular diagnostic.
These techniques together with the improvement in computer capabilities
enabled the automation of DNA sequencing of small sequences, creating
the basis for studying genetic diseases, population ancestry and evolution
(Sanger et al., 1977; Hunkapiller et al., 1991; Swerdlow et al., 1990).

At the end of the eighties, the research focus moved from the gene
level to the genome level with the ambitious Human Genome Project
(HGP), which objective was, for the first time, to read the whole sequence
of a human genome (Adams et al., 1991). The HGP initiated officially
in 1990 and it took more than a decade until the publication of the first
sequence of the human genome in 2001 (Lander et al., 2001; Venter et al.,
2001). This draft represented the genomic road-map to guide geneticist
and marked a turning point for modern biomedical research, with the
birth of the genomic era. However, even with the tools available by that
time, the progress towards the characterization of the genetic variabil-
ity in large populations and its implication for human health was far
from being accessible. In the meanwhile, DNA microarrays where used
to screen relatively common polymorphisms among large cohorts, and
helped to identify polymorphic risk alleles (Hindorff et al., 2009). Nev-
ertheless, these only provide information for around one million genetic
variants, which restricts the scope for research and discoveries (Manolio
et al., 2009).

The scenario changed some years ago with the introduction of the
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Next-Generation Sequencing (NGS) technologies (Margulies et al., 2005;
Shendure et al., 2005; Bentley et al., 2008). Today, more than a decade
since the first genome sequence of a human being was published, sequen-
cing a human genome in feasible time at accessible costs has turned out
to be a reality (Schuster, 2008). This unprecedented capacity has led to
an explosion of collaborative projects to sequence the genomes of both
patients suffering genetic diseases and healthy humans. The objective is
to create a detailed catalogue of human genetic variation to help in the
diagnosis of genetic diseases and personalized therapy design.

1.3.2 Genotype to phenotype: the challenge of heterogen-
eity

The advances in genome sequencing technologies are fueled by the
basic need of understanding how genotypes embedded in the genome give
rise to phenotypes. However, the endeavour of making use of genomic
data to assist medical decisions has run into a wall. The publication
of the genomic landscape of human populations and cancer cohorts has
revealed a much larger amount of variability among individuals than ex-
pected. On the one hand, sequencing projects in human populations
(Consortium et al., 2010; Fu et al., 2013) have found a vast amount of
apparently deleterious variation in the genome of normal, healthy indi-
viduals (Xue et al., 2012; MacArthur et al., 2012). The question here
arises as to how do individuals with such divergent genomes handle this
perturbations to display stable healthy phenotypes (Waddington, 1942).
On the other hand, cancer sequencing projects (McLendon et al., 2008;
Hudson and Jennings, 2011; Weinstein et al., 2013) have revealed a stun-
ning heterogeneity between tumors, both between patients with the same
cancer type and within the same patient. The question in this second
scenario arises as to how do divergent genomes converge to tumour ini-
tiation and progression (Vogelstein et al., 2013). Both scenarios pose a
significant challenge to identify the genomic alterations that contribute
to disease phenotype and impedes progress towards personalized treat-
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ment. The following sections of the chapter describe these two problems
in more detail.

In general, the challenge faced here is how to extract knowledge
from the massive amount of genomic data we are accumulating. Since
transforming genome sequence information into a final living being re-
quires numberless cooperative actions mediated by its encoded molecules,
the process would necessarily need the contextualization of this data un-
der a model that fully integrates the structure, function and organiza-
tion (i.e. complexity) of the molecular interactions that give rise the cell
behaviour. However, even with a good map of the molecular circuits
describing the complex machinery of the cell, the absence of a theory
on how cooperative processes in cell emerge from the information coded
in the genome complicates the application of sequencing data to its full
potential (Brenner, 2010).

1.3.3 Deleterious variability in healthy populations

Deleterious variants are those expected to impact negatively the
reproductive fitness of its carrier by affecting severely the biochemical
function of protein-coding genes (Sunyaev et al., 2001). Due to its ex-
pected negative impact, deleterious variants are of tremendous interest
as they are the perfect candidates to contribute to human disease. Nev-
ertheless, population-scale sequencing studies (Consortium et al., 2010;
Fu et al., 2013) have reported an unanticipated large amount of these
variants in healthy individuals, contradicting this view. Although the
possibility that any of the used donors eventually become ill cannot be
dismissed, seem unlikely that they have suffered extensively from any
genetic disease (MacArthur and Tyler-Smith, 2010; Xue et al., 2012;
Nothnagel et al., 2011; MacArthur et al., 2012). This apparently deleter-
ious variation is not restricted to coding regions but also seems to occur
in other non-coding, regulatory elements, such as miRNAs (Carbonell
et al., 2012), transcription factor binding sites (TFBSs) (Spivakov et al.,
2012) and other genomic elements (Lappalainen et al., 2013).



Introduction 17

The origin of this apparent excess of damaging variants has been
attributed to the combination of a recent accelerated human population
growth with a weak purifying selection (Keinan and Clark, 2012; Ten-
nessen et al., 2012). Fu an colleges estimated that around the 85% of the
predicted deleterious variants arose in the last 5,000 to 10,000 years and
that the selection has not had enough time to clear them (Fu et al., 2013).
Thus, while those alleles with strong negative character are expected to
be filtered out from the population by natural selection, the selection
pressure over not as strong deleterious mutations can be weak, keep-
ing them at lower frequencies. As a consequence, human populations
have increased its genetic heterogeneity and the burden of Mendelian
disorders.

Conservative estimators quantify that there are no less than 250
loss-of-function (LoF) variants in coding genes per sequenced genome,
100 of them apparently related to human diseases, and around 30 in a
homozygous state (MacArthur and Tyler-Smith, 2010; Xue et al., 2012;
MacArthur et al., 2012). The presence of disease-associated mutations in
the genome of healthy individuals raises doubts about the true pathogen-
icity of these variants and has led to the reconsideration of its putative
causal effect. However, although some errors are expected in disease-
variant associations, specifically for rare diseases where the small popu-
lation size can lead to ambiguous assignments of causality, the presence
of such number of known disease alleles indicates that many of these vari-
ants coexists at low frequency in the human population without apparent
consequences (MacArthur et al., 2012). There is thus an urgent need to
decipher the mechanisms by which specific deleterious variants can have
a clear pathological effect under some conditions while in others seem
apparently innocuous. This fact poses a major challenge for clinical ge-
neticists in the identification of true disease-causing genetic mechanisms
and supposes a bottleneck in the translation of genome sequence data to
the clinics.

From an evolutionary point of view, this excess of functional vari-
ation evidences that individuals are able to maintain appropriate healthy
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phenotypes in the presence of such amount of theoretically perturbing
variants. The question is how this robustness is achieved. Different
reasons have already been proposed to account for the maintenance of
deleterious variants in human populations. These include severe recess-
ive disease alleles in homozygous state; variants implicated in late onset
phenotypes, that can not be efficiently screened by natural selection; re-
duced penetrance phenotypes which require additional genetic and/or
environmental factors for expression (Raj et al., 2010); gene redundancy,
where the effect of a mutation is compensated by another gene with sim-
ilar function (Hoffmann, 1991); and, finally, sequencing and annotation
errors (Xue et al., 2012; Nothnagel et al., 2011; MacArthur et al., 2012).

Despite the expected nonessentiality of most of the carrying genes,
these variants, in combination, may still have an effect on the pheno-
type of the carrier. A study in yeast including genome-wide sequence
and expression data concluded that robustness to random mutations is
not only due to gene redundancy but to epistatic interactions between
unrelated genes (Wagner, 2000). Examples supporting this mechanisms
can be found in large metabolic networks in yeast, where these can com-
pensate for complete loss of enzymatic reactions by exploiting alternative
pathways (Szathmary, 1993). Another example is the buffering mechan-
isms via the heat-shock proteins against genetic variation observed in
developmental processes in Drosophila (Queitsch et al., 2002). To what
extent molecular interactions can buffer deleterious variability needs to
be studied.

1.3.4 Genetic heterogeneity among cancer patients

Cancer is a heterogeneous collection of diseases sharing common
traits (Weinberg, 2007), being the most relevant the ability of the cancer
cells to proliferate and pass the disease phenotype to its descendants. In
the oncogenesis process, a cell evolves from normal to cancerous through
the accumulation of heritable alterations that shape the cell machinery
to achieve a series of attributes (i.e. convergent evolution) called the
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”Cancer Hallmarks” (Hanahan, 2000; Hanahan and Weinberg, 2011) by
means of successive rounds of clonal proliferation, genetic diversification
and clonal selection (Nowell, 1976; Stratton et al., 2009) (see Figure 1.1).
Governed by the biological imperative to survive and perpetuate, in a
way that resembles Darwinian evolution but on accelerated timescales,
cells carrying alterations that confer an advantage are positively selected.
Thus, most oncogenic alterations are somatic, acquired throughout life
by means of replication errors, damage in the DNA repair machinery
or even mutagen agents, such as UV-light or tobacco (Greenman et al.,
2007).

Figure 1.1: Evolutionary theory of oncogenesis. Image taken from Stratton
et al. (2009). Acquisition of somatic mutations through normal cell division from the
fertilized egg to a cancer cell. During the processes, several factors such as mutagens or
DNA repair defects may contribute to the mutational burden. Mutations are grouped
as passenger mutations, with minor or null contribution to cancer phenotype; driver
mutations, which favour clonal expansion; and/or chemotherapy resistance mutations.

The emergence of NGS technologies is allowing us to decode cancer
genomes at unprecedented resolution. The generated data is being col-
lected by projects like The Cancer Genome Atlas (TCGA) (McLendon
et al., 2008) and the International Cancer Genome Consortium (ICGC)
(Hudson and Jennings, 2011), which contain genomic information from
thousands of patients for more than 30 different tumor types. Under
the assumption that accurate descriptions of the genome sequence would



20 HUMAN GENOMICS

provide insights into the oncogenesis process, much effort is being done in
identifying every difference between normal and cancer genomes. How-
ever, the cancer genome scenario evidenced to be much more intricate
than expected. Studies from different cancer types agree in three major
points. First, only few genes are mutated at high frequency, revealing a
”long tail” distribution (Greenman et al., 2007) (see Figure 1.2). Even
in these genes mutated at high frequencies, the observed mutations are
usually different and the patient carrying them often display different
prognosis and treatment response. Secondly, high heterogeneity exists
among different patients and within them, being not two genomes equal,
even those from the same cancer type. Finally, common mutations are
found in patients with tumors located in distinct tissues, with different
histological patterns, which prove that identical alterations may trigger
similar phenotypes in different contexts (Gerlinger et al., 2012; Vogelstein
et al., 2013; Lawrence et al., 2013).

Figure 1.2: Prevalence of somatic alterations in human cancer genomes.
Image taken from Greenman et al. (2007). X axis represents Mb of DNA whereas Y
axis the number of somatic alterations (single base substitutions, insertions/deletions
and complex mutations) in 210 individual human cancers.

The cause of this complex landscape is that tumor cells harbor a
great amount of genetic alterations compared to normal cells, mostly due
to genome instability or deficiencies on the DNA repair machinery (Lothe
et al., 1993; Fishel et al., 1993). As a consequence, a large number of
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relatively random alterations are generated (Zheng et al., 2014). Thus,
most of the alterations are believed to confer no relevant advantage to tu-
mors (called passenger alterations) whereas only alterations in few genes
would contribute to the oncogenic phenotype (called driver alterations)
(Greenman et al., 2007). The identification of these driver alterations
is one of the most anxious objectives in oncology research (Weinstein
et al., 2013; Vogelstein et al., 2013) since it can guide the diagnosis of
new patients but, more importantly, point at new targets for therapeutic
intervention.

Classically, methods aimed to identify cancer drivers using genomic
data have focused on looking for genes which mutation frequencies are
higher than expected, considering the overall mutation rate (Greenman
et al., 2007). However, approaches based on the overall frequency, al-
though accurate in identifying highly mutated genes such as TP53, fail in
identifying less frequent causal mutations. To overcome this bias, several
methods have been proposed. Most of them apply a gene-centric per-
spective in a way that the mutation rate of a gene is considered independ-
ent one from another gene, so that highly mutated genes such as TP53
do not mask the signal from the others. In this sense, proposed meth-
ods analyze whether a mutated gene displays properties similar to those
displayed by known driver genes such as function, tissue expression and
evolutionary and network properties (D’Antonio and Ciccarelli, 2013).
Others focus on the mutation pattern along the gene sequence, such as
the preferential accumulation of functional mutations rather than neutral
(Gonzalez-Perez and Lopez-Bigas, 2012) or the mutation clusterization
in hotspots (Gonzalez-Perez and Lopez-Bigas, 2012), in phosphorylation
sites (Reimand and Bader, 2013) or protein domains (Porta-Pardo and
Godzik, 2014). See Gonzalez-Perez et al., 20013 for a deep review.

While much effort is being done in identifying driver genes, the
functional interpretation of its genetic alterations in a systematic way is
still in its beginning. Specifically, the relevance of the protein interact-
ing interfaces in tumorigenesis, although key in mediating cell signalling,
is still poorly understood. Recently, Espinosa et al. (2014) performed
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a comprehensive characterization of COSMIC mutations with the aim
of identifying common protein structural properties that help to predict
new driver mutations. Among other properties, they found a signific-
ant amount of missense mutations in bound-forming residues at protein
binding interfaces. Their observations suggest that mutations altering
PPIs may be a mechanism for signalling aberrations in cancer.

An important advantage of gene-centric approaches is that they
can introduce prior functional knowledge and, ultimately, find a poten-
tial mechanistic implication for the somatic mutations. For example,
they can identify specific mutated phosphorylation sites within genes
that perturb signaling networks by altering protein modifications (Re-
imand and Bader, 2013), which in turn adds an additional source of
evidence. Moreover, these methods allow to study a gene as a multifunc-
tional factory, a more realistic assumption as different protein sites are
responsible for different functions. It may be the case when an oncogenic
signal can be only initiated if a specific functional site of the protein is
altered, but not other sites. As observed for Mendelian diseases (Wang
et al., 2012), considering the different structural and functional sites of
the multifaceted genes may help to understand why patients that, al-
though share common driver genes, display high variability in prognosis
and therapy response (Andreyev et al., 2001; Pao et al., 2005; Alamo
et al., 2014). Research in this direction is essential to improve personal-
ized cancer treatment.
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1.4 Thesis outline

Linking genomic variation to phenotypes is one of the most anxious
objectives in Systems Biology. Due to its role in accomplishing cellular
functions, proteins and its interactions provide an excellent model re-
flecting cellular complexity. This thesis presents different approaches to
integrate human genomic data with the molecular circuits defined by
PPIs. The overall objective is, by making use of the interactome, to
propose functional hypotheses that help to interpret the genetic variabil-
ity observed in different human phenotypes. The research is distributed
into three chapters. Although each one covers a different question, all of
them demonstrate the potential of the interactome in helping to interpret
the genomic variation observed under diverse research scenarios. Each
chapter starts by giving a short overview of the problem under study
and defines the questions that remain open, followed by a definition of
the individual objectives to achieve. Next, it gives a detailed description
of the data and methods used. Finally, all the results are exposed and
discussed.

The second chapter comes up with the demand for methodolo-
gies for the functional profiling of genome-scale experiments introducing
PPIs data. In the past, methods for functional have genomics been de-
veloped to analyze simple, unstructured module definitions, such as GO,
to account for the common functionality of a group of genes. Despite the
success of methods based on GO modules, conceptualizing a function
simply as a label shared by a set of genes results in a poor description
of the cellular complexity. PPIs provide a useful and extensively used
representation of such relationships. The use of the interactome as a the-
oretical scaffold that relates proteins among them may allow to depict
subnetworks of interacting proteins associated to features in genomic ex-
periments. These subnetworks provide a zoom in map of the implicated
cell circuits that serves as a source for future hypotheses. Here, I pro-
pose a general methodology for the identification of interactome modules
hidden in sorted lists derived from high-throughput experiments, such
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as a ranking of candidate genes from Genome Wide Association Studies
(GWAS) or Differentially Expressed Genes (DEGs) from transcriptomics
analysis. First, a framework to collect and assemble protein interactomes
is defined, with special emphasis in the quality of PPIs. Next, a research
is conducted to identify a parameter that help us to identify patterns of
cooperativity, in terms of PPIs, in a list of genes. Following, we propose
an algorithm to identify relevant subnetworks in a ranked list of genes.
Finally, the method is applied to a real case, a GWAS study in Bipolar
Disorder.

With the decrease in the economic and time costs of sequencing an
human genome, different research initiatives are focusing in sequencing
large amount of human genomes from both healthy donors and disease
patients. Opposite to previous technologies such as DNA microarrays,
sequencing technologies discovered a variation in the genome that is or-
ders of magnitude greater than the one facet previously. Among this
variation, an unexpectedly high number of apparently deleterious vari-
ants have been discovered in healthy human populations, which suggests
that observing the occurrence of a deleterious variant is a necessary, al-
though not sufficient, condition for it to have a pathological effect. This
fact poses a major challenge for clinical geneticists in the hunting for of
true disease-causing mutations in personalized medicine. Hence, there
is an urgent need for methodologies to guide in the selection of causal
or susceptibility genetic alterations. We claim that a prior step would
necessarily face first with the challenge of deciphering why deleterious
mutations can have a pathological effect in some individuals but cause
not such obvious effect in other carriers. Taking the interactome as a
model that reflects a certain degree of complexity of the cell physiology,
the third chapter investigates its role in enabling deleterious mutation
burden in human populations to be compatible with normal condition.
The hypothesis stated here is that the actual interactome topology could
be buffering the impact of deleterious variants, thus permitting what
seems to be a high mutation load. To test to which extent this hy-
pothesis is compatible with the observed genetic variability in human
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populations, I perform a systematic study of deleterious variants from
1,330 exomes of healthy humans. First, a study of the global topological
properties of proteins concentrating deleterious variants is shown, with
special emphasis to those associated to cancer and Mendelian diseases.
Next, interactome integrity of each individual is assessed, followed with
a functional an structural study to characterize the roots of the integrity
maintenance. Finally, the results are compared to somatic variants from
42 Chronic Myeloid Leukemia (CLL) patients.

The third chapter gives us some hints about how drivers can dis-
regulate signalling circuits by affecting key proteins in the network. The
fourth chapter is motivated by the poor knowledge on how mutations
affecting to PPIs are related to cancer occurrence and progression. The
research presented here goes a step beyond and describes the analysis
of somatic mutations from 5920 cancer patients of 33 different cancer
types in the context of the three-dimensional (3D) structurally resolved
interactome. This new high resolution version of the interactome has the
advantage that it can provide testable mechanistic hypothesis instead
of abstract graph entities. As a first step, the systematic distribution
of missense mutations among interacting interfaces is studied. Next, a
protein centric-approach is used to predict PPI interfaces with statist-
ically unexpected mutation rates. Through an example, the presented
study demonstrates that mutations in different interacting sites of the
same gene significantly correlate with different clinical outcome, thus
providing a mechanistic explanation for patient heterogeneity.

Finally, the manuscript closes with a summarized discussion of the
results and an enumeration of the general conclusions achieved.
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A methodology for
functional profiling using

protein-protein interactions
data
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2.1 Overview and objectives

As described in the introduction, there is extended consensus on
the modular organization of the cellular functions embedded in the mo-
lecular interaction networks (Ravasz et al., 2002; Han et al., 2004; Rual
et al., 2005). This modular property acquires particular importance in
the cases when the molecular mechanisms underlying a disease are un-
known. Here, we can use the results of a high-throughput experiment,
describing a particular condition, to query the interactome scaffold to
identify subnetworks enriched in the most relevant molecules from the
experiment. These subnetworks can serve as hypotheses building scaf-
folds that lead future research (Ideker and Lauffenburger, 2003; Mitra
et al., 2013). Contrary to the methods using Gene Ontology (GO) or
other discrete categories, biological networks do not pre-define functional
modules, instead they help to build it. The advantage is, therefore, its
potential to discover new functional modules instead of being limited to
the known ones.

Numerous approaches have been proposed to query the interactome
with other genome-wide data to seek biological modules (Ideker et al.,
2002; Ideker and Lauffenburger, 2003; Mitra et al., 2013). Most of these
methods have been designed to deal specifically with gene expression
data and use a scoring function based on the values of differential expres-
sion (node-based methods) or co-expression (edge-based methods). Such
scoring functions are applied together with different search strategies
to identify the subnetwork with the highest score compatible with the
observed gene expression. However, the complexity of the interactome
generates an enormous search space, which makes of the labour of find-
ing subnetworks a NP-hard problem, as requires infeasible run-times.
Other simpler methods rely on the pre-selection of gene sets with im-
posed thresholds, which constitutes a drawback since these threshold are
often arbitrary and may affect the final biological conclusions (Minguez
et al., 2009). A complete revision of the state of the art of the existing
methods can be found in Mitra et al. (2013).
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In this chapter, I propose a new approach to identify functional
interactome modules applicable to any kind of genome-wide experiment
that avoids the necessity of pre-selecting genes with arbitrary thresholds.
Specifically, here I focus on developing an heuristic methodology for sub-
network enrichment analysis using the protein interactome. The chapter
work-flow is structured according three main objectives:

1. To build a network by collecting and curating all experimentally-
derived PPIs.

2. To develop of a methodology for identifying subnetworks associated
to high-throughput experiments. This step would require:

(a) To identify a parameter that help to identify a subnetwork
enrichment.

(b) To establish a framework for the identification of subnetwork
enrichment in a list of genes ranked according its relevance in
a high-throughput experiment.

3. Application of the method to extract and characterize disease-
associated subnetwork from:

(a) GWAS in Bipolar disorder.

(b) Differential expression analysis in Fanconi anemia.
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2.2 Materials and methods

2.2.1 Construction of protein interactomes

There are several primary repositories for protein-protein interac-
tions determined experimentally, which differ in the data collection pro-
tocols, scope, accuracy and annotation quality criteria (Ooi et al., 2010).
For this purpose, we generated two different interactomes: one including
all the physical protein-protein interactions, and a high-quality inter-
actome based on those interactions detected with, at least, two different
techniques (Von Mering et al., 2002).

First, PPIs datasets were downloaded from three main sources:
MINT (Ceol et al., 2010), IntAct (Aranda et al., 2010) and BioGRID
(Stark et al., 2011) downloaded on April 2011. These databases provide
the data in the PS-MI format (Hermjakob et al., 2004; Samuel et al.,
2007) which contains the minimum information required for reporting a
molecular interaction experiment (MIMIx) (Orchard et al., 2007). The
terminology included in these file follows a controlled vocabulary organ-
ized in the Molecular Interactions (MI) ontology, fact that makes the
different resources to be comparable and integrable in a straightforward
way.

Next, a common protocol was applied to build both interactomes.
First, only PPIs between proteins in the UniProt Swiss-Prot were selected
(Consortium, 2011). Secondly, self-interaction were discarded. Finally,
PPIs which interaction type implies a ”physically association” (MI:0407)
were retained. Additionally, to build the high-confidence interactome,
we applied an strict filter to remove potential artefactual interactions by
picking only those interactions detected with two different experimental
methods. To avoid taking PPIs determined through similar experiments
(e.g. ”two hybrid array” and ”two hybrid pooling approach”), MI onto-
logy terms under the ”experimental interaction detection method” cat-
egory were mapped to the six top terms (Minguez et al., 2009).

Finally, species-specific interactomes were build for Arabidopsis
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thaliana, Drosophila melanogaster, Escherichia coli (strain K12), Homo
sapiens, Mus musculus and Saccharomyces cerevisiae .

2.2.2 Modelling the interactome as a network

As mentioned in the introduction, taking all the PPIs together,
these can be modelled as an undirected graph, where nodes represent
proteins and each physical interaction between them defines an undirec-
ted edge (edges that do not have an assigned direction).

The resulting network acquires a particular shape, called topology.
Some topological properties can help to understand the biological role of
the elements in the network (Yeger-Lotem et al., 2004). Graph theory
has established the basis for studying these proprieties (Luscombe et al.,
2004). Although there are several topological parameters that may used
to describe a network, here there is a selection of the parameters that
provide a biological meaning:

• Connection degree (k), may be the more intuitive parameter,
refers to the number of edges (PPIs) of a protein.

• Shortest path is a measure of the centrality between two nodes
and is defined as the minimum number of edges needed to be tra-
versed in a network to get from one node to another.

• Betweenness centrality Cb(ν) is a measure of the relevance of a
protein within the network. Is defined as the fraction of shortest
paths between protein pairs s and t that pass through the protein
of interest ν. It is calculated as:

Cb(ν) =
∑

s 6=ν 6=t∈V

σst(ν)
σst

(2.1)

where σst(ν) denotes the number of shortest paths which pass
through a node and σst the total number of shortest paths in the
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graph. Relative betweenness centrality C ′b(ν) is calculated as:

C ′b(ν) = 2 × Cb(ν)
n2 − (3n− 2) (2.2)

where n is the total number of proteins in the graph. Normalizing
by dividing by the maximum betweenness centrality establishes
comparability between graphs of different sizes.

• Closeness centrality Cc(ν) Another measure of centrality. Rep-
resents the distance from a given node (ν) to the remaining nodes
and accounts for how close is (ν) from any other node. It is defined
by the inverse of the average length of the shortest paths from (ν)
to all the other nodes in the graph:

Cc(ν) = n− 1∑
s 6=ν∈V σsν

(2.3)

• Clustering Coefficient H(ν) measures the degree to which the
direct neighbours of a node ν tend to be connected between them
as well. It is calculated as:

H(ν) = 2en
nν(nν − 1) (2.4)

being en the number of edges among the proteins connected to the
protein ν, and nν the number of neighbours of protein ν.

Network properties studied along this thesis were calculated using
igraph library in R 2.12.3.

2.2.3 Identification of candidate functional subnetworks

Given a list of genes of biological relevance, we define its corres-
ponding interactome module as the subnetwork formed by the shortest
paths that connect the genes from the list. This subnetwork is called
the Minimal Connected Network (MCN). However, obtaining the MCN
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associated to the genes relevant in a high-throughput experiment is not
enough to consider this as a module of action. Instead, an evaluation of
the candidate MCN is needed to determine whether there is an enrich-
ment in terms of PPIs. Our assumption is that a list of genes represent-
ing a functional module should form a MCN which properties differ from
the random expectation. Thus, we can evaluate the candidate MCN by
assessing how different is from MCNs obtained with lists of randomly
selected genes.

MCNs can be characterized by the local topological properties
that each node acquires in the network (node-level parameters) or by
global properties related to the whole network (network-level paramet-
ers). Among the node level parameters, there is the connection degree,
relative betweenness and clustering coefficient, all of them described at
the section 2.2.2. Among the network-level parameters we can quantify
the total number of nodes, number of connections and number of com-
ponents (i.e. a set of proteins connected among them and separated from
the rest). Furthermore, we can also combine the global network features
and test the average number of nodes or connections per component.

False Discovery rate (FDR) and power

With the purpose of finding a network property that helps us to
characterize a real functional module in the interactome, different para-
meters were evaluated in terms of power or sensibility (true-positives
rate) and false discovery rate or specificity (false-positive rate). Power is
defined as the probability of declaring a MCN as significantly different
from a random subnetwork when it has been obtained from a list of ac-
tual functionally-related proteins. On the other hand, the false-positive
rate is defined as the probability of declaring a MCN as significant when
it is obtained from lists of randomly selected proteins.

The different nature of parameters requires a distinct strategy of
network evaluation:

• Testing node-level parameters. The comparison of two net-
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works through their node-level parameters can be seen as checking
if the two samples of measurements (e.g. the connectivity degree
values taken by the proteins in a real MCN against those taken
by the proteins in a random MCN) are different or not. Non-
parametric tests as the two sample Wilcoxon test, Kolmogorov–Smirnov
test and the common area under both distributions (Mart́ınez-
Camblor et al., 2008) were studied. The use of non-parametric
tests is more appropriate as the normality of parameter values for
the interactome proteins can not be assumed.

• Testing global network parameters. Global network paramet-
ers are described with a single value (e.g. number of components
in a real MCN against the number of components in a random
MCN) and are, consequently, easier to interpret but more difficult
to compare in terms of statistic significance since no null distribu-
tion models are easily available for all measured parameters. Thus,
given a distribution of values generated from random networks, a
statistical p-value can be estimated as the corresponding percent-
ile of the parameter value over that null distribution built with
random MCN.

False discovery and power rate tests were performed using the S.
cerevisiae interactome. S. cerevisiae PPIs seem to be reached the best
coverage and is likely to be the most comprehensive description of a
species-specific interactome in eukaryote.

Generation of real MCNs (functional modules)

Functional network modules described in the literature in (Roguev
et al., 2008; Han et al., 2004; Shachar et al., 2008) were used as bona fide
real subnetworks. Also KEGG pathways (Kanehisa et al., 2011) and GO
terms (Ashburner et al., 2000), which are known to be rich in network
component (Minguez et al., 2011; Minguez and Dopazo, 2010). Specific-
ally, GO-defined modules among levels 6 and 12 were selected to avoid
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either general or highly specific GO terms. Since we may work among
a range of input list sizes, lists containing 20, 50 and 100 proteins were
collected from all these sources. A total of 156 modules were analyzed.

Generation of random MCNs

In order to approximate the false discovery rate that the combina-
tion of a parameter with a particular test can produce, it was necessary
to build up a collection of MCN from lists of randomly chosen proteins.
To cover the broad extend of possible conditions, we generated random
list containing 20, 50 and 100 genes, for both the curated and the non-
curated interactome. To obtain a distribution of values for any of each
conditions, 2000 random samples were generated. The values derived
from the random MCN can be used as a pre-calculated confidence inter-
val when a MCN found in a new dataset is tested.

2.2.4 Algorithm for subnetwork enrichment analysis in a
ranked list

Here we aim to define an approach to query the interactome with
genome-wide data to identify biological modules. Instead of taking a sub-
selection of the genes based on a fixed threshold, the algorithm proposed
starts with the complete list of gene identifiers involved in a genomic
experiment, ranked according the relevance to the conditions studied
(eg. differential expression statistical score when comparing two con-
ditions). The ranking parameter is, therefore, used as a guide to scan
for subnetwork enrichment through the entire ranked list of molecules.
This strategy, similar to the GSEA strategy, avoids the imposition of a
gene-based threshold to pre-select a limited number of genes for further
network enrichment analysis. In contrast, the algorithm seeks for sets
of genes connected among them and coordinately associated to high (or
low) values of the ranking parameter. Since we look for a subnetwork
property, there is no need in pre-selecting a fixed number of nodes based
on arbitrary thresholds.
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The algorithm proposed starts with a ranked list S = (g1, ..., gn) of
n molecules. The ranked list S is subdivided into a sequence of additive
partitions Sk = (g1, ..., gk; k ≤ n) of size k. The proteins corresponding
to any of the partitions are mapped onto the interactome scaffold and
the MCN is extracted. For the identification of the MCN, the shortest
paths among all the pairs of nodes in the list are calculated using Dijkstra
algorithm (Dijkstra, 1959). Then, the parameter of interest (zk, defined
as the average nodes per component of the MCN) is calculated for each
MCN. Finally, we seek for the most relevant partition (the sub-list Sbest)
as follows:

1. First, ordering the parameter of interest zk according to the ranked
list, all relative maxima are identified. The partitions selected Smaxk

represent partitions incorporating a new protein capable of con-
necting to the proteins in the previous partitions.

2. Next, the score Lk is computed as Lk = (zk − 1)/(k − 1) for all
the selected partitions Smaxk . The score can be seen as a balance
between the increase in connected nodes and the distance to the
top of the ranked list (k = 1). We choose the partition Sbest and
index kbest corresponding to the highest Lk score computed in b)
form the Smaxk chosen in (a).

3. Finally, an empirical p-value is calculated as the proportion of ran-
dom sub-lists of kbest molecules (which corrects the size effect) with
an average of nodes per component greater than zkbest.

When the MCN is build for each partition, only proteins contained
in the partition are considered (that is, direct PPIs). However, we can
also consider another scenario in which proteins not included in the par-
tition are used to connect proteins contained in the partition (called
external intermediates).

Additionally, the algorithm considers the option of incorporating
seed genes, that is genes from which the MCN should be build. These
seeds may represent genes that are of interest because they have already
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been associated to the condition under study. In this case, the seed list
Sseed = (g1, ..., gm) of m molecules is forced to be part of the whole list,
SK , defined as SK = Sseed + Sk. The selection procedure is the same
than described above but keeping always the Sseed molecules within the
list.

All statistical tests were performed using R software environment.
The final algorithm was introduced in Babelomics (Medina et al., 2010),
a web platform for the analysis of omics data with advanced functional
profiling.

2.2.5 GWAS analysis in bipolar disorder

Anonymous genotype data from bipolar disorder patients was down-
loaded from the WTCCC (Burton et al., 2007). A total of 2000 Caucasian
patients and 1500 controls, both from United Kingdom genotyped on the
Affymetrix 500K mapping array were analysed. Basic association test
from Plink toolset was used to perform the GWAS (Purcell et al., 2007),
which compares allele frequencies between cases and control. The associ-
ation study generated a list of SNPs ranked by the p-value, an indicator
of the strength of the association. Next, SNPs mapping within or in the
neighborhood of genes were retained. Finally, the list was filtered so that
the SNP with the smallest p-value from each gene was retained. Thus,
we obtain a list of genes ranked according the p-value of the most asso-
ciated SNP. This SNP to gene mapping is identical to the performed by
similar functional-based approaches such as PBA (Medina et al., 2009;
Wang et al., 2010). This ranked list is used to illustrate the performance
of the algorithm presented in the previous section.
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2.3 Results and discussion

2.3.1 Collection and curation of protein interactomes

PPIs sources comparison

The first step of this thesis was to integrate and curate the three
main PPIs sources (IntAct, MINT and BioGRID). With this purpose,
PPIs datasets were downloaded and curated as described in section 2.2.1.
First, proteins from different sources were referred to the corresponding
uniprot identifier and, therefore, they were comparable. Tables 2.1 and
2.2 show the overlap among proteins and PPIs described in the databases.
Intact showed the best overlap. Either the protein and the PPI overlap
between databases was not high enough, which ratify that a methodology
to combine different PPI sources as developed here is indispensable to
achieve a proper coverage.

IntAct MINT BioGRID
IntAct 51,112
MINT 81,51 % 30,890

BioGRID 73,84% 59,29% 31,720

Table 2.1: Overlap among proteins described in databases. Overlap in inter-
actor proteins (as of January 2011) enlisted in the respective databases IntAct (Aranda
et al., 2010), MINT (Ceol et al., 2010) and BioGRID (Stark et al., 2011). Each column
shows the overlap as a percentage of the total protein number of the database. The
diagonal shows the absolute number of proteins in each database.

IntAct MINT BioGRID
IntAct 205,686
MINT 65,12% 87,901

BioGRID 40,95% 59,98% 128,779

Table 2.2: Overlap among PPIs described in databases. Overlap in PPIs (as
of January 2011) enlisted in the respective databases IntAct (Aranda et al., 2010),
MINT (Ceol et al., 2010) and BioGRID (Stark et al., 2011). Each column shows the
overlap as a percentage of the total PPIs number of the database. The diagonal shows
the absolute number of PPIs in each database.



40 RESULTS AND DISCUSSION

PPIs curation process

Figure 2.1 describes the number of non-redundant proteins and
PPIs obtained after each step of the curation process (Figure 2.1). A
total of 693,079 interactions were downloaded, and 537,682 (77.6%) of
them were confirmed to be physical interactions between proteins. The
rest of interactions were removed when a Uniprot identifier for one of
the interactors was not found (0.35% of interactors) or when a physical
interaction was not experimentally proved (22.1% of interactions). In
the verified physical PPI dataset, 302830 (56.3%) were predicted to be of
high-confidence. The large number of PPIs that could not be considered
as high-confidence PPIs by the ”two different detection methods” criteria
(Von Mering et al., 2002) evidences the need for an additional quality
assessment.

Protein interactomes per species

As a result of the curation process, two scaffold interactomes were
generated for each species: a ”curated protein interactome” containing
high-confidence physical PPIs detected with two different techniques, and
a ”non-curated protein interactome” containing all physical interactions.
The following figure summarizes the number of non-redundant proteins
and PPIs obtained per species (Figure 2.2):

The species with larger amount of PPIs were S cerevisiae and H
sapiens, which reached almost 90,000 interactions. Focusing further in
PPIs detected by at least two different experimental methods, S cerevisiae
displayed the largest set whereas the human interactome decreased to the
same size than D melanogaster. Thus, the proportion of PPIs detected
with two different techniques among all PPIs ranges from 26.2% in hu-
mans to 37% in yeast and 55.9% in fruit fly.

The PPIs coverage per species (the number of known PPIs among
the number of expected PPIs) can be evaluated by comparing with es-
timators of the veritable interactome size. While empirical studies es-
timate over 30,000 PPIs in S cerevisiae (Von Mering et al., 2002), the
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Figure 2.1: Number of non-redundant proteins and PPIs at the differ-
ent points of the curation process. Bars represent the absolute number of non-
redundant proteins and PPIs (first chart and second chart respectively) per curation
process step.

estimated size of the human interactome ranges between 200,000 and
375,000 interactions PPIs (Bork et al., 2004; Ramani et al., 2005). Then,
assuming that PPIs not detected with two different techniques are false-
positives, the coverage for S cerevisiae interactome is 107%. Moreover,
since the expected false-positive rate rages from 12% to 50% (Ito et al.,
2001; Mrowka et al., 2001; Venkatesan et al., 2008) and the percentage
of PPIs detected with only one technique is about 63% in S cerevisiae,
it is possible to hypothesize that the non-curated interactome may con-
tain true PPIs and, consequently, the S cerevisiae it would be greater
than expected. Due to the high coverage, S cerevisiae interactome may
be considered suitable for testing methodologies working with a PPIs
scaffold.
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Figure 2.2: Number of non-redundant proteins and PPIs per species. Bars
represent the absolute number of non-redundant proteins and PPIs (first chart and
second chart respectively) per species and curation depth. Arabidopsis thaliana (Ath),
Drosophila melanogaster (Dme), Escherichia coli (strain K12) (Eco), Homo sapiens
(Hsa), Mus musculus (Mmu) and Saccharomyces cerevisiae (Sce) .

With respect to the human interactome, used in future analyses of
this thesis, the coverage of the high-confidence PPIs elucidated among
the estimated size (200,000-375,000 PPIs) is around 6-10%. Considering
all the retrieved PPIs, the coverage grows to more than 22-40%. This
observation indicates that much more experimental work is needed to
achieve the expected number of PPIs.

2.3.2 Study of the network parameters characteristic of
real functional subnetworks

Once the protein interactome (the working scaffold) has been defined
and characterized, it is possible to move to the second part of this chapter:
to develop a methodology for identifying an enrichment subnetwork in
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high-throughput data. The first concern is to study how real functional
interactome modules differ from random ones and find out a network
parameter reporting this difference. The performance of the different
network parameters was tested in the S cerevisiae interactome since is
expected to be the most complete.

For this study, we have collected real functional subnetworks that
were used as a test set on which the efficiency of common local and global
network parameters was assessed in terms of power and false-positive
rates. The collected real functional modules include KEGG pathways,
subnetworks described in the literature and some GO modules. Proteins
from these real modules were extracted into lists that cover different list
sizes (20, 50 and 100 nodes). Each list was mapped onto the interactome
and the corresponding MCN was extracted. MCN derived from real
subnetworks with a clear function were compared to MCN generated from
random lists of the same size. Thus, for a given number of genes N , an
empirical simulated distribution can be derived by repeatedly selecting
N genes randomly from the genome, then looking for the MCN that
connects them and measuring the parameter of interest. Repeating this
procedure 2000 times allows deriving the distribution sought.

As described in Materials and Methods section 2.2.1, we have stud-
ied two scenarios:

• (i) Subnetworks found within sets of proteins with direct connec-
tions among them

• (ii) Subnetworks found within sets of proteins with either direct
connections or connected through one intermediate protein not
present in the set.

The second scenario (ii) represents a common situation in large-
scale genomic analysis. In many proteomic analyses, some of the proteins
present in the sample are simply not detected because of the sensitivity
of the technique. In the case of transcriptomic experiments, it is quite
common that the noise affecting to individual probes representative of



44 RESULTS AND DISCUSSION

the genes (and the corresponding gene products) makes some of them
present different values of the statistic. In an ideal situation, a group
of proteins that co-express and conform, for example, a complex should
appear together in a differential expression experiment and should eas-
ily be detected by a conventional test that look for network enrichment.
In a real situation, it is quite common that as a consequence of noise
or experimental errors some proteins of the subnetwork are missing in
the experiment (in spite of being actually involved in the network struc-
ture). It can also happen that some proteins (key in the definition of
the network) do not change their expression across the compared condi-
tions, thus a differential expression experiment did not report them in
the result. Thus, looking for networks within a set of proteins, allow-
ing for some connections provided by proteins not in the set, increases
enormously the sensitivity of the network detection method and makes
it more robust against noise. It also allows overcoming some intrinsic
limitations of experimental designs based on differential expression, such
as the difficulty of detecting networks in which some of the nodes do not
differentially express across the conditions compared.

As stated in subsection 2.2.2, there are several parameters and stat-
istical tests that we can use to perform subnetwork comparisons. Some
of them are defined at the node level while others are global network
features. The following sections show the power and false-positive rate
observed for each network parameter and comparison method under dif-
ferent list sizes and MCN inference approaches (allowing or not external
intermediates).

Node level parameters performance

In the node-level parameters test, the objective is to identify which
combination of parameter (connection degree, betweenness and cluster-
ing coefficient), test (two sample Wilcoxon test, Kolmogorov–Smirnov
test or check the common area under the distribution) and sampling
method (choosing randomly one node from each random MCN, calcu-
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lating the mean or applying a bootstrap procedure) displays the best
performance in distinguishing between real and random MCNs. Figures
2.3 and 2.4 represent, respectively, the false-positive rate and the dis-
crimination power for each tested combination.

As shown in Figure 2.3, when comparing node level parameters
in MCN without intermediate nodes, the false-positive rate taking the
mean reference were not suitable. Also, bootstrap sampling procedure
was not sufficient for clustering coefficient parameter and common area
test analyses. Random reference seemed to be the most satisfactory
for both false and true positive rate performances. Regarding the test,
Kolmogorov-Smirnov two sample test provided the best balance between
the discrimination power and the false-positive rate for all parameters.

With respect to the performance in MCN allowing an intermedi-
ate node (see Figure 2.4), there was a marked increase in false-positive
rate, with the exception of the bootstrap sampling method, which gives
a marked decrease in the discrimination power. Then, no tested combin-
ation is appropriated when intermediate nodes are allowed in the MCN.

Results are in accordance with the high diversity in subnetworks
shapes. Subnetworks representing a signalling pathway are expected to
be little connected and exhibit an elongated shape whereas subnetworks
representing protein complexes are dense connected and display a ball
shape (Johnson and Hummer, 2011). Since betweenness, clustering coef-
ficient and connection degree are highly shape dependent, they seem not
suitable for MCNs discrimination.



Figure 2.3: Comparative analysis of the discriminatory power of node-
level parameters with not intermediates. The X axis accounts for the MCN size
whereas Y axis for the false discovery rate (FDR) and true-positive rate (power). Ar-
rangement of charts in rows and columns correspond to topological parameter (con:
Connection degree; bet: Betweenness; clu: Clustering coefficient) and test (Wx: Wil-
coxon two sample test, ks: Kolmogorov-Smirnov two sample test; ac: Common area
test). Colour correspond to the reference taken for comparison.



Figure 2.4: Comparative analysis of the discriminatory power of node-
level parameters considering an intermediate. The X axis accounts for the
MCN size whereas Y axis for the false discovery rate (FDR) and true-positive rate
(power). Arrangement of charts in rows and columns correspond to topological
parameter (con: Connection degree; bet: Betweenness; clu: Clustering coefficient)
and test (Wx: Wilcoxon two sample test, ks: Kolmogorov-Smirnov two sample test;
ac: Common area test). Colour correspond to the reference taken for comparison.
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Global network parameters performance

In the evaluation of global network features evaluation we dealt
with only one number (e.g. number of components in the subnetwork
under study) and not a vector of values (distribution of topological values
acquired by the proteins in the network under study). The concern was to
determine whether the global number of connections, nodes, components
and average number of nodes or connections per component was greater
than random. It is possible to estimate a p-value simply by accounting
for the frequency of such feature in the reference set.

Figure 2.5 shows that the most sensitive among the global network
parameters is the average number of nodes per component. This feature
also demonstrates to be robust to the inclusion of intermediate nodes.
Thus, the average number of nodes per component was selected to define
a subnetwork enrichment. Biologically, the best performance of the av-
erage number of nodes per component proves that the only constraint
in real subnetworks is that subnetwork members should aggregate to a
connected component, independently of the subnetwork shape and edge
density.

2.3.3 NetworkMiner: a tool for subnetwork enrichment
analysis in a ranked list

Defined the parameter discriminating between real and random
MCNs, it is possible to introduce a method to search for subnetwork
enrichment in high throughput data. High-throughput experiments end
with a list of molecules ranked according its corresponding measurement.
In principle, the ranking values are supposed to be derived from a ge-
nomic experiment and must have, consequently, a biological meaning.
For example, it can be the value of a t-test statistics derived from a
differential expression experiment, thus accounting for the higher level
of expression in one of the conditions compared; it can also be a p-
value in a GWAS, thus accounting for the association strength of each
of the genes with a disease, etc. Obviously, this methodology is not
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Figure 2.5: Comparative analysis of the discriminatory power of different
network-level parameters. The x-axis accounts for the MCN size. Arrangement of
charts in rows and columns corresponds to intermediate node inclusion and false/true-
positive rates (FDR: false-positive rate; power: true-positive rate). Color corresponds
to the feature tested. Image taken from (Garcia-Alonso et al., 2012).

restricted to genotyping or differential gene expression and other rank-
ing values representing the results of other types of experiments are
also possible. Then, the interpretation must be done accordingly to
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the biological property that this particular ranking value is represent-
ing. This ranking parameter, which is informative of the molecule rel-
evance for the phenotype under study, is used as a guide to scan for
subnetwork enrichment through the entire list. This ensures us to avoid
a threshold imposition which may affect the final biological conclusions
of the analyses. The full algorithm is described in the 2.2.4 section at
the Materials and Methods part. The algorithm was introduced in Ba-
belomics, a web platform for the analysis of omics data (Figure) and it
is fully documented in https://github.com/babelomics/babelomics/
wiki/Gene-Set-Network-Enrichment-(Network-Miner).

https://github.com/babelomics/babelomics/wiki/Gene-Set-Network-Enrichment-(Network-Miner)
https://github.com/babelomics/babelomics/wiki/Gene-Set-Network-Enrichment-(Network-Miner)


A methodology for functional profiling using protein-protein interactions data 51

Figure 2.6: Snapshot of Network-Miner tool in Babelomics. Documentation on how to
use the tool can be found in the following url https://github.com/babelomics/babelomics/
wiki/Gene-Set-Network-Enrichment-(Network-Miner).

https://github.com/babelomics/babelomics/wiki/Gene-Set-Network-Enrichment-(Network-Miner)
https://github.com/babelomics/babelomics/wiki/Gene-Set-Network-Enrichment-(Network-Miner)
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2.3.4 Applications

GWAS analysis in Bipolar disorder

To illustrate the the potential of the method, we applied it to
GWAS data from a bipolar disorder study (Burton et al., 2007). A total
of 2000 Caucasian UK patients of bipolar disorders and 1500 controls
genotyped on the Affymetrix 500K mapping array were studied. After
performing a GWAS analysis, we obtained a list of genes ranked by the
smallest p-value among its SNPs. This list is used by NetworkMiner,
which looks for the significant subnetworks associated to the lowest p-
value of the association test, i.e. subnetworks associated to the bipolar
disorder. The network analysis was performed allowing an intermediate
node in the MCN. Since several genes have already been associated to
bipolar disorder, we included these as seed genes for the NetworkMiner
algorithm.

Figure 2.7 shows the MCN significantly associated to bipolar dis-
order (P ≤ 0.05). This MCN contains two separated components, which
includes 10 genes highly associated to the disease and 11 additional genes
connected to them. Three of the genes already known to be associated
to the disease, FXYD6 (Choudhury et al., 2007), INO1 (Shamir et al.,
2007) and (Willmroth et al., 2007), belong to the network found. The
network is enriched in genes belonging to bipolar disorder related GO
biological processes: learning, cognition, nervous system development
(P = 0.0364) and, nerve growth factor receptor signaling pathway, this
last one marginally significant (P = 0.0561).

This example is the typical case where clear genetic associations
are not found mainly because its heritability depends on multiple genes of
small effect size (Plomin et al., 2009). None of these small effect genes will
obtain a significant value in a gene-based test, but all of them will have
simultaneously a low p-value and consequently will be closer to the top
side of the ranked list. If these genes are part of an interacting network,
then network analysis methodologies will discover them as collectively
associated to the disease through their connections.
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Figure 2.7: Subnetwork found among the genes most associated to bipolar
disorder in a GWAS. Average nodes per component (A) and score (B) as a function
of the sublist size. Significant subnetwork (C). Selected sublist is labelled with a red
dot in the plots. Subcellular location of the genes is displayed by the cell layout used
by the NetworkMiner software, based on GO cellular component.
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3.1 Overview and objectives

Deleterious genetic mutations are those predicted to affect gene
function and decrease the fitness of the carrier. Contrary to expecta-
tions, genome sequencing studies of healthy human populations revealed
a high prevalence of these type of mutations, with a relevant number in
a homozygous state. This amount of deleterious variants poses a major
challenge for personalised medicine: to distinguish between true disease-
causing variants from the large background of deleterious variants (but
no pathogenic) present in healthy human genomes (Xue et al., 2012).
Mechanistic understanding of why deleterious mutations in some genes
can have a pathological effect but cause not obvious ill effect when affect
other genes remains still elusive, which supposes a major bottleneck for
the application of genome sequence data in the clinical praxis.

Several mechanisms have been proposed to explain such tolerance
to deleterious variants: these can have a recessive effect that requires the
mutation to be homozygous to produce a disease phenotype; the disease
condition might have a reduced penetrance in a way that requires addi-
tional factors for its expression; or the symptoms appear in older ages
(later onset phenotypes) and gene redundancy (Xue et al., 2012; Noth-
nagel et al., 2011; MacArthur et al., 2012). Although valid to explain
part of the buffering, fail in providing an explanation to why different
individuals carrying the same deleterious mutation may display very dif-
ferent phenotypes. This evidences that there are additional potential
sources that can confer phenotypic robustness to the carries. Here we
hypothesise that the way the system is organized may provide an addi-
tional buffering mechanism of internal perturbations.

The concept of robustness in biology is gaining much attention
(Masel and Siegal, 2009). Most studies about the role of biological net-
works in phenotypic robustness have focused on networks of genetic (that
is epistatic) interactions (Wagner, 2000). Less attention has received
the network of protein-protein interactions (PPIs). Theoretical studies
showed how the actual topology could provide a mechanisms to buffer
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random loss of its nodes (simulating random perturbation), but it was
very sensitive to the removal of highly connected and central proteins
(simulating an attack) (Albert et al., 2000). However our knowledge on
the possible contribution of the protein interactome in buffering disad-
vantageous mutations has not been studied yet at the population scale.

In this chapter we aim to decipher the role of the interactome in en-
abling deleterious mutation load in human populations to be compatible
with normal condition. Given the potential role of biological networks in
assuring the robustness of cell systems against mutations, our hypothesis
is that the actual interactome topology could be buffering the impact of
deleterious variants, thus permitting what seems to be a high mutation
load. In order to check the extent to which this hypothesis is compat-
ible with recent observations on human variability, I accomplished the
following objectives:

1. Analysis of the coding sequences (exomes) of 1,330 healthy in-
dividuals together with 41 individuals with chronic lymphocytic
leukaemia to extract either germline and somatic variants with a
potential impact in the protein coding genes.

2. Description of the deleterious variability found in the newly se-
quenced Spanish population.

3. Identification of potentially deleterious variants among individuals
and its validation.

4. Population-based analysis of the global topological properties of
the interactome proteins carrying potentially deleterious variants.

5. Characterization of the changes on the interactome structure of
each individual caused by homozygous deleterious variants and
quantification of the differences between real and simulated popu-
lations.

6. Study of the distribution of deleterious variants among the modular
structure and functions of the interactome.
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7. Comparison between the distribution of germline and somatic vari-
ants among the modular structure and functions of the interactome.
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3.2 Materials and methods

3.2.1 Human healthy individuals exome sequencing data

The Spanish population (MGP)

Exome sequence data from 252 human individuals was retrieved
from the Medical Genome Project (http://www.medicalgenomeproject.
com). These individuals are healthy humans, with the absence of current
known disease or genetic condition in the family history. However, dis-
eases appearing at older ages cannot be completely ruled out. Since the
samples were sequenced in the context of the Medical Genome Project,
this population was called MGP. Samples were obtained in accordance
with the approved protocols of the respective institutional review boards
for the protection of human subjects. The study conformed to the tenets
of the declaration of Helsinki. Data was retrieved in VCF format, which
contained all the variants found in the population, without any quality
filter.

The 1000 Genomes Project populations (1KGP)

Together with the MGP population, 13 other human populations
we used in this study. These include: Asian populations CHB Han
Chinese in Beijing, China (97 donors), CHS Han Chinese South (100
donors) and JPT Japanese in Tokyo, Japan (89 donors); American popu-
lations MXL Mexican Ancestry in Los Angeles, CA (66 donors), PUR Pu-
erto Rican in Puerto Rico (55 donors) and CLM Colombian in Medellin,
Colombia (60 donors); African populations YRI Yoruba in Ibadan, Ni-
geria (88 donors), LWK Luhya in Webuye, Kenya (97 donors) and ASW
African Ancestry in Southwest USA (61 donors); and European popula-
tions TSI from Tuscany in Italia (98 donors), FIN Finnish from Finland
(93 donors), GBR British from England and Scotland (89 donors), CEU
which are Utah residents (CEPH collection) with Northern and Western
European ancestry (85 donors).

http://www.medicalgenomeproject.com
http://www.medicalgenomeproject.com
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The exome sequences of the human populations described above
were downloaded from the 1000 Genomes Project (Siva, 2008) web page
(http://www.1000genomes.org/) in multi-sample VCF format (Febru-
ary 2012 release), containing high quality variants. The total number of
individuals studied in all the populations is of 1078.

3.2.2 Cancer donors

Paired samples of Chronic Lymphocytic Leukemia (CLL)

41 paired tumor and normal exome samples of Chronic Lympho-
cytic Leukemia patients not mutated for IGHV (Quesada et al., 2012)
were considered for this analysis. The exome data was downloaded from
the EGA repository (ID: EGAD00001000044) in fasta format and pro-
cessed as specified in the following section.

3.2.3 Analysis of exome sequencing data

Figure 3.1: Framework for variant discovery and genotyping from NGS data. *Step
only applicable to paired tumor and normal samples

http://www.1000genomes.org/
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From sequences to variant calls

For each dataset, the retrieved data was at different steps of the
WES analysis framework. CLL data were raw sequences in fastq format,
MGP were unfiltered variants in VFC format and 1KGP were filtered
variants in VCF format too. Figure describes the pipeline used to pro-
cess the samples and the step at which each dataset was integrated.
In brief, sequence reads were aligned to the reference human genome
build GRCh37 (hg19) by using the Burrows-Wheeler Alignment tool (Li
and Durbin, 2009). Reads correctly mapped were further filtered with
SAMtools (Li et al., 2009), which was also used for sorting and index-
ing mapping files. Only high quality sequence reads mapping to the
reference human genome in unique locations were used for variant call-
ing. The Genome Analysis Toolkit (GATK) (McKenna et al., 2010)
was used to realign the reads around known indels and for base quality
score recalibration. Identification of single nucleotide variants and in-
dels was performed using GATK. The SNV calls were re-examined and
standard hard filtering parameters were applied to remove possible ar-
tifacts(DePristo et al., 2011) considering: total read depth, the number
of individuals with coverage at the site, the fraction of variant reads in
each heterozygote, the ratio of forward and reverse strand reads for reads
carrying reference and variant alleles, and the average position of variant
alleles along a read. The somatic variant calling was carried out with the
specialized software Mutect (Cibulskis et al., 2013).

Variant functional annotation

Once defined the variants for all the individuals mentioned above,
its functional consequence was assessed with VARIANT software (Med-
ina et al., 2012) and selected those affecting either the protein sequence
or the mRNA transcription/translation.
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3.2.4 Selection of variants with functional impact

Deleterious variants in healthy individuals

A key step is to identify those variants that have an effect on the
molecular function of the gene products. First, as highly frequent vari-
ants are not expected to be damaging variants, we removed those variants
with a frequency higher than 90% in the population (the reference al-
lele is observed at a low frequency in that population). Variants located
in intronic, upstream, downstream or intergenic regions, as well as vari-
ants with synonymous or unknown functional consequence were filtered
out. Only nonsynonymous, stop loss, stop gain and splicing disrupting
variants were considered.

Should be noted here that we are seeking for deleterious but no
pathological variants. The definitions of deleterious and pathological
variants proposed by MacArthur et al. (2014) were taken here. Deleteri-
ous variants are those that reduce the reproductive fitness of carriers, and
would be targeret by purifying natural selection. In contrast, pathogenic
mutations contribute mechanistically to disease.

There are several methods to compute the deleteriousness of a vari-
ant. Since there is no unique method that outperforms the rest, the
criteria followed here combines complementary methods to achieve more
reliable predictions (Thusberg et al., 2011). Specifically, the putative
impact and deleteriousness of these variants was computed as a combin-
ation of: SIFT (Kumar et al., 2009), Polyphen (Adzhubei et al., 2010)
damage scores and phastCons (Siepel et al., 2005) conservation score.
Since the conservation score is the only parameter applicable to any
type of position, we have used it as a primary filter. Thus stop loss, stop
gain and splicing disrupting variants with phastCons conservation score
higher than 200 are selected as deleterious. In the case of nonsynonym-
ous variants, a SIFT score lower than 0.05 or a Polyphen score higher
than 0.95 are also required to consider them as deleterious.
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Computational validation of deleterious variants

To asses the reliability of the predictions, we performed an in silico
structural analysis of the impact of the predicted mutations in the pro-
teins. Only proteins structurally solved in the PDB (Bernstein et al.,
1978) were used here for validation. Protein sequences were downloaded
from UniProt database (Consortium, 2011) and were used to build three-
dimensional models using the RaptorX program (Källberg et al., 2012).
The program performs a template-based protein structure modelling,
applying single- and multiple-template threading methods. The three-
dimensional model was used to predict the effect that single point muta-
tions has over the stability of protein, using the SDM software (Worth
et al., 2011). SDM calculates a stability score that accounts for the free
energy difference between the wild-type protein and the corresponding
mutated protein.

Additionally, we used some sequence-based features, such as changes
in the charge and the polarity of the protein to further assess the severity
of the impact produced by the change. Changes in charge and polarity
were defined exclusively on the basis of the type of residue substitu-
tion. Changes in polarity and charge were based uniquely on the residue
changed. Polarity changes were measured in a hydrophobicity scale of 0
(LIFWCMVY), 1 (PATGS) or 2 (HQRKNED) (Mirkovic et al., 2004).
Changes in the total protein charge were estimated on the basis of the
charges of the residues: positive (RK), negative(ED) or non-charged (LI-
FWCMVYPATGSHQN).

Finally, we included SNAP predictions (Bromberg and Rost, 2007),
since it was observed to reach the best sensitivity compared to other
methods (Thusberg et al., 2011). Either SDM and SNAP were not ap-
plied systematically but only for validation purpose due to it is not op-
timized for high-throughput analyses.
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3.2.5 Construction of a global human protein interaction
network

Protein binding interactions

Section 2.2.1 already introduced the sources of PPIs used and the
curation approach applied to build high confidence PPIs. The achieved
interactome was modelled as described in the section 2.2.2. In the same
sense, all network topological parameters used in this chapter follow the
definition proposed in section 2.2.2. Network properties studied along
this thesis were calculated using igraph library in R 2.15.1.

Determining the tissue specificity of human protein interactions

To determine which protein interactions can occur in a particular
cell or tissue type of the human body, we used global gene expression
data (Lukk et al., 2010). Our assumption is that if two proteins are
not expressed in a tissue then the interaction cannot occur and, there-
fore, is removed from the tissue-specific interactome. Human gene ex-
pression data was downloaded from the online resource Gene Expres-
sion Atlas (http://www.ebi.ac.uk/gxa/array/U133A). The experiment
contains consistently normalized human gene expression data matrix of
5372 samples integrated from 206 public experiments of a HG-U133A
array platform gathered from ArrayExpress and GEO websites. Lukk
et al. (2010) annotated these samples by adding biological variables (like
cell line, disease state, organism part, developmental stage) that are not
present in the original publication. By using this annotation, we selected
the samples classified as ”normal” for the ”4 meta group” variable. Thus,
a total of 1065 experiments representing 76 normal tissues where used in
this analysis.

The following criteria was used to define if a gene is considered as
present or absent in a tissue:

• Probe Calling at Sample Level: The MAS5 Detection Calling method
from the affy R package was used to analyse the expression data.
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The MAS5 Detection Calling method is based on the Wilcoxon
signed rank-based gene expression presence/absence detection al-
gorithm and identifies whether a particular transcript is present or
absent.

• Transcript Calling at Sample Level: Probes mapping different tran-
scripts were removed. A transcript was considered present in a
sample if more than 50% of the mapping probes were present.

• Transcript Calling at Tissue Level: Human and mouse samples
were assigned to a tissue by Lukk et al. (2010). Tissues with less
than 2 samples were removed. A transcript was considered present
in a tissue if it is expressed in at least one sample of the tissue.

3.2.6 Deciphering the effect of the deleterious variants on
the interactome

Robustness of the interactome structure to homozygous dele-
terious variants of healthy individuals

The objective is to quantify the global damage that the deleter-
ious variants cause on the interactome. To achieve this, individual in-
teractomes were built by removing those nodes affected by homozygous
deleterious variants from the network and the impact that such subtrac-
tion of nodes has on the interactome structure was studied. In particular,
the impact over the interactome is assessed by measuring the following
network properties: i) separation into isolated components, via the total
number of components or the size of the giant component; ii) Connectiv-
ity loss: via the total number of remaining edges and iii) Increase of
path lengths, by measuring the network diameter (largest shortest path)
or the average path length.

Next, the extent of the damage produced by the deleterious vari-
ants on the interactomes of real individuals was studied. To evaluate
so, the network properties of real individual interactomes against simu-
lated interactomes was compared. Simulated individuals were built by
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removing the same number of affected nodes selected randomly. In these
simulated interactomes, the probability of a protein being affected is
identical for any protein in the network. Such simulated interactomes
represent the expectation of random damage on the interactome for a
given number of affected proteins. We performed these comparisons at
population level. Thus, for each population, 1000 interactomes with a
number of affected proteins randomly sampled among the values ob-
served in the population are generated. The average values of network
properties of real and simulated interactomes are compared by means
of a non-parametric Mann-Whitney test. We conducted another simula-
tion in which proteins were removed not randomly as before but rather
with a probability proportional to the observed mutation frequencies in
the 1KGP population. In this scenario, the resulting simulated indi-
viduals will have deleterious variants only in proteins that are affected
in normal individuals, but in random combinations that not necessarily
exist in real healthy individuals. The comparison of the observed values
of interactome network properties in real individuals with respect to the
corresponding distribution of values obtained from the simulated popula-
tion of interactomes will confirm whether the variants carried by normal
population occur in the less damaging positions among all the possible
locations or not.

Distribution of deleterious variants among the modular struc-
ture of the interactome

Here the interactome was divided into communities or modules by
using the Walktrap algorithm (Pons and Latapy, 2006). This algorithm
finds densely connected neighbourhoods, also called network communit-
ies or modules, within a graph via random walks under the assump-
tion that short random walks are ”trapped” within highly interconnec-
ted network regions. A second community detection algorithm, called
Infomap (Rosvall and Bergstrom, 2008), was used to validate the res-
ults. Both algorithms were carried out using the freely available igraph R
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package (http://cran.r-project.org/web/packages/igraph/), keep-
ing the authors default parameters. In our study, we used only those
communities composed of at least 5 proteins.

Once defined the interactome communities, we studied the distri-
bution of the proteins containing deleterious variants. Here, for every
individual, we calculated the proportion of affected proteins per mod-
ule. To determine how the observed distributions deviate from to the
random expectations we carried out a permutation test in which the af-
fected proteins are distributed randomly across the interactome. Again,
the probability of a protein being affected in the permutations is the
same for any protein in the interactome. Then, empirical random dis-
tributions of affected proteins are obtained for each module separately
by running 1000 simulations for each individual. We define the value of
relative damage for each module as the percentile of the empirical ran-
dom distribution corresponding to the observed proportion of affected
proteins in the module. Relative damage values are rescaled between 0
(no proteins affected at all in this module) to 1 (the maximum number
possible of proteins affected in this module).

Functional profiling of interactome modules

To identify the biological processes affected or protected across
communities, GO enrichment test of the clusters found was carried out
using the FatiGO (Al-Shahrour et al., 2004) algorithm, as implemented
in the Babelomics platform (Medina et al., 2010).

http://cran.r-project.org/web/packages/igraph/
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3.3 Results and discussion

3.3.1 Variability in human healthy populations

Variability distribution in the Spanish population

Table 3.1 summarizes the variability in the exonic regions of the
newly sequenced Spanish population. Almost one third of the variants
found were private of the Spanish population, not described in dbSNP
(Sherry et al., 2001), 1KGP (Consortium et al., 2010) or NHLBI Exome
Sequencing Project (Fu et al., 2013). This proportion of discovery is
similar to what previous observations in other sequencing projects (Fu
et al., 2013). The average number of variants per individual in the coding
regions of the genome analysed was about 19,000. The results document
the presence of a considerable amount of potentially deleterious variation
in the Spanish population. As observed in other large-scale genomic
projects (Xue et al., 2012; MacArthur et al., 2012), there is an average
of 1200 potentially deleterious variants per individual, of which 352 are
strongly predicted as deleterious.

Figure 3.2 depicts the extent of the variability captured by the
analysed Spanish population. The total number of new variants present
only in Spanish population grows linearly with the number of analysed
individuals and seems to be far from reaching a plateau. However, when

SNV type Total Avg. Avg.* Total (local) Avg. (local) Avg.* (local)
All 171406 18880.1 6906 63343 836.7 59.4

Singletons 54214 202 59.4 54214 202 59.4
Nonsynonymous 97589 9193.7 3335.5 40564 538.6 41

Synonymous 73011 9734 3596.5 21857 287.2 18
Stopgain 1852 95.8 22 1060 15.9 0.4
Stoploss 178 29.4 12 71 0.6 0.1
Splicing 4217 417.2 154.8 1842 25.1 2

Potentially deleterious 32736 1163.8 211.2 17314 141.8 3.3
Deleterious 12639 352.6 51.4 7136 51 0.3

Table 3.1: Variants summary in MGP population. Table describes the amount
of total and the average per individual variants observed in MGP population classified
according types. *: homozygous variants; local: MGP-specific variants (not appearing
in other populations).
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new variants are decomposed into rare variants (singletons) and poly-
morphic variants (those shared by several individuals) it is apparent that
the main contribution to the private Spanish variability comes from rare
variants, while polymorphic variants reached a plateau soon. Therefore,
most of the polymorphisms within coding regions unique to the Spanish
population have been discovered in this work and seem to be restricted
to about 10,000 positions. Moreover, around one third of the variants
found in the Spanish population are homozygous. This proportion de-
creases to a level of 7% if only Spanish-specific variants are considered.
The pattern of distribution of homozygous and heterozygotes is coherent
with a scenario in which most of the variants are in Hardy-Weinberg
equilibrium (Stern, 1943). At low allelic frequencies of the alternative
allele, heterozygotes are prevalent, while the situation is the opposite at
high allelic frequencies, where many alternative alleles have been fixed
in the population.

In summary, MGP population displays an excess of low-frequency
nonsynonymous coding variants, most of them as heterozygotes, which
agree with the observations from other populations (Coventry et al., 2010;
Keinan and Clark, 2012; Li et al., 2010; Nelson et al., 2012; Tennessen
et al., 2012; Marth et al., 2011; Casals et al., 2013).

Variants in proteins of the interactome among different popu-
lations

Figure 3.3 shows the average number of variants per individual in
the proteins that define the interactome used in this study. As has been
previously described for the complete set of human proteins in several re-
ports of genomic variability, African populations show higher variability
(over 8000 variants) than the rest of the populations (about 6500 vari-
ants), including the CLL genomes (Figure 3.3A). The average number
of potentially deleterious variants (Figure 3.3B) follows a similar pat-
tern to the total number of variants. African populations undergo more
mutational load than the rest of the populations. The same pattern
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Figure 3.2: Accumulative number of new variants contributed by individu-
als. The red line represents the total variants, the green line represents the number
of already known variants, the blue line represents the number of new variants (not
present in 1KGP and dbSNP). New variants are decomposed into polymorphic (present
in more than one individual of the MGP population) represented by the blue dashed
line, and rare variants (present in only one MGP individual), represented by the dotted
line.

is observed for the number of proteins affected by deleterious variants
heterozygous state (Figure 3.3C). As expected, the Spanish population
sequenced here presented a level of variation similar to that observed in
non-African populations. However, this pattern is inverted when pro-
teins with deleterious variants homozygous are analysed (Figure 3.3D).
This observation is compatible with the history of the populations, with
an older African population which has accumulated more variability but
has filtered out deleterious variants homozygous whereas the rest of the
populations underwent a relatively recent bottleneck which is reflected in
a lower level of variability and a higher level of homozygosity (Lohmueller
et al., 2008). This genetic fingerprint is still observable in the proteins
which make up the interactome.
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Figure 3.3: Summary of variants found in the proteins which configure the
human interactome in all the populations analyzed. (A) Number of variants
found; (B) Number of potentially deleterious variants; (C) Number of proteins carrying
at least one deleterious variant in one of their alleles (mutation load); (D) Number
of proteins carrying deleterious variants in both alleles (homozygous mutation load).
Image adapted from (Garcia-Alonso et al., 2014).
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In silico validation of the deleterious variants

Among potentially deleterious variants, we consider those with a
clear deleterious effect, such as stop loss, stop gain and splicing dis-
rupting conserved variants. In addition any conserved nonsynonymous
variant with a SIFT score lower than 0.05 or a Polyphen score higher
than 0.95 was considered deleterious, as recommended in the original
publications (Kumar et al., 2009; Ramensky et al., 2002). Since the ap-
plication of both scores sometimes results in contradictory predictions
(Hicks et al., 2011) an in silico study was performed on a subset of 20
randomly chosen variants (8 predicted to be tolerant, 5 somatic predicted
as damaging from CLL and 7 predicted as damaging from non-disease
populations). Table 3.2 shows the relationship between the predictions
derived from SIFT and Polyphen and the structural features calculated
for the subset of selected variants. In general, a good agreement between
predicted deleterious effect and unfavourable changes in the sequence and
structure properties can be observed. Figure 3.4 depicts an example of
this agreement.
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Figure 3.4: Molecular model of the human RP2 (a) and LXN (b) proteins
and detailed view of the altered amino acids (Arg251Gly and Arg48Lys,
respectively). A) The amino acid change Arg251Gly in the RP2 protein was pre-
dicted as deleterious according to SIFT and PolyPhen thresholds. The original residue
(Arg251) of α-helix forms a hydrogen bond with the Ser219 and Ile220, however the
new residue is highly destabilizing. Specifically, the new residue (Gly) is uncharged,
more hydrophobic and smaller than the original, which causes that the positive charge
will be lost and the amino acid will not be in the correct position, hampering the es-
tablishment of the original hydrogen bond. B) The amino acid change Arg48Lys in
the LXN protein was classified as tolerant according to the criteria used. The new
amino acid, whose substitution was predicted as tolerant by SIFT and Polyphen, does
not cause a significant change in protein stability, maintaining the same charge and
polarity as the wild-type residue. Image taken from (Garcia-Alonso et al., 2014).
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3.3.2 Topological role of proteins carrying deleterious vari-
ants

We analysed the occurrence of deleterious mutations in proteins
with different network properties in the interactome. Figure 3.5 shows
the number of interactions corresponding to the proteins affected by a
deleterious variant either in both alleles (homozygous) or in only one
allele (heterozygous) or not affected by any deleterious variant, in at
least one individual. It also shows the number of interactions observed
in proteins with deleterious somatic mutations in CLL, proteins corres-
ponding to monogenic diseases and the subset of somatic mutations in
CLL corresponding to cancer driver genes (Vogelstein et al., 2013). The
number of interactions in proteins with both alleles affected by a de-
leterious variant in healthy individuals was significantly lower than the
number of interactions observed either in proteins with only one allele
affected (FDR-adjusted Mann-Whitney U test P = 5.44 x 10−4) or in
unaffected proteins (P = 5.22 x 10−5). Proteins carrying only one al-
lele affected by a deleterious variant showed a slightly lower number of
interactions than unaffected proteins, although the difference is not sig-
nificant in this case, probably because they have no pathogenic effect in
either case.



Figure 3.5: Connection degree, betweenness and closeness centrality of
proteins affected by deleterious variants. (a): From left to right: Number of
interactions in proteins affected by deleterious variants in both alleles (homozygous),
in only one allele (heterozygous), not affected by any deleterious variant, proteins
affected (homozygous or heterozygous) in a pathological condition (somatic variants
in CLL), proteins affected by monogenic diseases and the subset of somatic variants
in CLL which occur in cancer driver proteins (Vogelstein et al., 2013). (b): Signific-
ance of the comparisons tested by the rank sum (Mann-Whitney U test) with FDR
multiple testing adjustments. (c): Betweenness in the same groups of proteins as in
a. (d): Significance of the comparisons tested as in b. (e): Closeness centrality in
the same groups of proteins as in a. (f): Significance of the comparisons tested as in
b. Image adapted from (Garcia-Alonso et al., 2014).
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In a scenario of mutational disease represented by all the CLL pro-
teins carrying somatic mutations (driver and passenger variants), the
number of interactions in affected proteins was significantly higher than
in healthy homozygous (P = 1.49 x 10−5) and the healthy heterozygote
(P = 0.00169) scenarios, as expected. The proteins affected by mono-
genic diseases displayed a significantly higher number of connections than
the CLL proteins carrying somatic mutations (P = 0.0265) (and obvi-
ously more than the deleterious homozygous and heterozygous and unaf-
fected proteins in healthy individuals, see Figure 3.5b). However, if only
cancer driver proteins carrying somatic deleterious mutations in CLL are
considered, the number of connections was significantly higher than any
other subset of proteins analysed, including monogenic disease proteins
(see Figure 3.5b). The analysis studying the relationship between the
same sets of genes and other properties such as betweenness (Figure 3.5c
and d) and closeness centrality (Figure 3.5e and f) was repeated, obtain-
ing a similar trend. The results demonstrate a clear relationship between
the degree of pathogenicity of the scenario and the connectivity of the
proteins affected.

Figure 3.6 depicts how the number of connections, the closeness
centrality and the betweenness present a weak, but significant negat-
ive correlation (Spearman’s rank correlation coefficient ρ = −0.0661,
P = 1.34 x 10−7, ρ = −0.0536, P = 1.93 x 10−5 and ρ = −0.0534,
P = 2.05 x 10−5, respectively) with the frequency of occurrence of dele-
terious variants in the population (both homozygous and heterozygous).
This trend, although negative as well, is not significant in the case of
homozygous, probably due to the lower sample size. On the contrary, in
the pathological condition represented by CLL, the network properties
number of connections (ρ = 0.152, P = 0.0116), betweenness (ρ = 0, 118,
P = 0.051) and closeness centrality (ρ = 0.128, P = 0.0335) are posit-
ively correlated with the recurrence of the mutation across patients.
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Figure 3.6: Mean connectivity (a), betweenness (b) and closeness centrality
(c) for proteins undergoing deleterious variants. The blue line represent dele-
terious variants in both alleles (homozygous), and the green line deleterious variants
in at least one allele (homozygous+heterozygous), grouped according to the number of
individuals in normal populations (1KGP genomes and Spanish populations) in which
they were observed. The red line represents CLL somatic heterozygous deleterious
variants observed in growing number of individuals (within the sample of patients).
The plots include 1SD bars. Image adapted from (Garcia-Alonso et al., 2014).
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Figure 3.7: Boxplots displaying the trends of proteins under positive selec-
tion (with a ratio of nonsynonymous (dN) to synonymous (dS) mutations
greater than 1), neutral selection (with dN/dS approximately equal to 1)
and negative selection (dN/dS¡1), obtained as in (Serra et al., 2011), with respect
to different network properties: A) Number of interactions and B) Closeness central-
ity. The significance level of the mean differences is given as the Mann Whitney U
rank sum P value. C) Density plots for the Log dN/dS values using the normalmixEM
procedure, from the R ”mixtools” package, with default parameters. Image taken from
(Garcia-Alonso et al., 2014).
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From the point of view of disease, a high degree of connectivity
between proteins mutated in the same disease state has been reported
(Wachi et al., 2005; Jonsson and Bates, 2006; Goh et al., 2007; Feldman
et al., 2008). First studies showed that the protein products of genes
driving cancer tend to have higher degree than non-cancer proteins (Wa-
chi et al., 2005; Jonsson and Bates, 2006), suggesting that altered genes
in cancer are key for the proliferation of the tumor cells and, therefore,
display the same topological properties that essential genes. More global
studies (Goh et al., 2007; Feldman et al., 2008) compared essential genes,
to cancer and monogenic diseases and found that topological values for
centrality and connectivity of the later tend to lie in between the essential
or tumorgenic genes and those not included in any previous class (that is
non-disease genes). The general conclusion is that genes driving disease
are not randomly located in the network.

Previous evolutionary studies documented a preferential occur-
rence of adaptive events at the periphery of the human protein inter-
action network (Fraser et al., 2002; Kim et al., 2007). It was confirmed
that the distribution of selective pressures, measured as the ratio of non-
synonymous to synonymous variants, across the network properties used
here (number of interactions, betweenness and closeness centrality) was
consistent with what was previously observed: proteins under positive se-
lection tend to be placed in the periphery of the network while proteins
under negative selection tend to be in the internal regions (see Figure
3.7).

3.3.3 Robustness of the interactome structure to homo-
zygous deleterious variants of healthy individuals

The effect that the specific combination of deleterious variants car-
ried by any healthy individual has on the interactome was studied. Since
variants which produce a loss of function were considered, the recessive
(and most plausible) scenario was tested. This was achieved by remov-
ing proteins from the interactome when they were affected by deleterious
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variants in both alleles (homozygous for the alternative allele). Then, the
impact that this subtraction had over the interactome structure was cal-
culated (see Material and Methods, subsection “Selection of deleterious
variants” for details). This impact is inferred by measuring the changes in
several global network properties such as the number of connections, the
average length of shortest paths and the number of components. These
parameters account for the interconnectedness and integrity of the inter-
actome (Albert et al., 2000). The values obtained for these parameters in
the 1KGP and MGP populations correspond to interactomes of healthy
individuals.

In order to understand the basis of the robustness of the inter-
actome against the deleterious variants carried by normal individuals
the normal interactomes were compared with simulated interactomes in
which the same number of damaged proteins was randomly removed (see
Methods). The comparison between the real and simulated interactomes
resulted in significant differences between them in the network paramet-
ers measured. Real normal populations (1KGP, Spanish population and
CLL germinal line) always have more connections than simulated in-
dividuals (compare real populations bar to simulated populations with
uniform probability bar in Figure 3.8a). Moreover, these connections
preserved in real individuals are organized in a way which maintains a
significantly lower average length of shortest paths (same comparison in
Figure 3.8b), a distinctive feature of biological networks, and avoids dis-
connection from the giant component (same comparison in Figure 3.8c).
In other words, real individuals have significantly more structured and
less affected interactomes than simulated individuals for the same num-
ber of removed (damaged) proteins. The results were highly significant
for the 1KGP population and still significant but with higher p-values
for the MPG and CLL populations, due to the smaller sample sizes (see
Figure 3.8).



Figure 3.8: Impact of potentially deleterious variants on the interactome of
real and simulated individuals. Comparison of the interactome damage between real
and random individuals after removing proteins containing homozygous deleterious variants.
The comparison was performed using 1KGP populations (green box), Spanish population
MPG1 (blue box) and the germinal variants of the CLL patients (yellow box) and contrasting
their distributions with the corresponding simulated distribution (grey boxes). Two different
scenarios are simulated: Simulated populations with uniform probability and simulated pop-
ulations with observed frequencies. The effects on the global network topology were defined
by: (a) the number of connections in the remaining interactome, (b) the average length of
the shortest paths and (c) the total number of isolated components. Visual illustration of
the network components lost after removing nodes corresponding to damaged proteins in
(d) a real individual from 1KGP (HG01083 of the PUR population) and (e) a simulated
individual with the same number of damaged proteins. Image taken from (Garcia-Alonso
et al., 2014).
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This simulation demonstrates that healthy individuals carry dele-
terious variants in a specific set of proteins whose deletion minimizes the
impact on the interactome structure. However, it is not clear whether this
low impact is due to the actual individual proteins observed in the popu-
lation or whether it occurs because proteins with deleterious variants are
only tolerated in specific combinations which minimize the damage to
the interactome structure. To address this question another simulation
was conducted in which deleterious mutations were assigned to proteins
according to their observed mutation frequencies in healthy individuals
(1KGP and MGP populations). Unlike the previous simulation, the sim-
ulated individuals only carried deleterious variants in proteins which are
affected in normal individuals, but in random combinations which do not
necessarily exist in real healthy individuals.

Although not as remarkable as in the previous simulation, the dif-
ference between real and simulated values was also significant. Again,
real normal populations had significantly more connections than simu-
lated individuals (compare real populations bar to simulated populations
with observed frequencies bar in Figure 3.8a), connections which result
in a network with shorter shortest paths between components (see how
average lengths of shortest pathways change across real and simulated
populations in Figure 3.8b) and have a tendency to display fewer isolated
components (same comparison in Figure 3.8c). The p-values were higher,
and in some cases non-significant (number of components for MGP and
CLL germinal populations, probably due to their small sizes), as the
effect of removing the acceptable combination of damaged proteins is
not as strong as the effect of removing random proteins. The results
obtained as a whole suggest that only a limited number of variants in
specific combinations are tolerated by the interactome for compatibility
with a healthy condition.

An example visually illustrates the type of connections lost in the
simulation with random occurrences of deleterious variants when com-
pared to the type of connections lost in the case of observed deleterious
variations. Figure 3.8d depicts an example of sub-networks disconnected
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from the interactome of a normal individual from the 1KGP, because
both alleles of the gene coding the connecting protein had deleterious
variants. Figure 3.8e shows an example taken from a simulated indi-
vidual. It is clear that while interactomes of real individuals are slightly
trimmed off by the deleterious variants they carry, the interactomes of
simulated individuals undergo more serious damage having larger discon-
nected portions.
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3.3.4 Robustness validation in tissue-specific interactomes

As commented before, the interactome used here represents the col-
lection of almost all high-quality PPIs that are known in human. However
it is quite unlikely that all these proteins are present at the same time,
and therefore the interaction can occur. Concerned by this fact, we built
more realistic interactomes. Specifically, we used tissue-specific gene ex-
pression arrays obtained from normal samples to compute the likelihood
of a transcript to be expressed in that tissue. Using the gene expres-
sion as a proxy of the protein to be expressed, we built tissue-specific
interactomes by removing all the proteins, and so the corresponding in-
teractions, that are likely not expressed. With this new versions of the
interactomes, we repeated the analysis described in the previous sec-
tion. Figures 3.9 and 3.10 represent the p-values from the comparison
between real population and simulated populations with uniform prob-
ability and with observed frequencies, respectively. In both figures, rows
represent the tissue-specific interactomes whereas the columns the net-
work parameters evaluated: average shortest paths, number of proteins
that remain in the giant component, number of isolated components and
number of edges. As a control for the simulation, the total number of
nodes remaining in the networks is also shown in the figures, showing
no difference between real and simulated populations. From the figures
we can observe that the results obtained in the previous section hold
with the tissue-specific interactomes, although the strength of the differ-
ences is smaller for the comparison between real populations to simulated
populations with prior probabilities.



Figure 3.9: Heatmap of the impact of deleterious variants in tissues compared
to simulated populations with uniform probability. Rows represent the interactomes
from different tissues whereas that columns the network parameters evaluated. The color
code represents the strength of the p-value from the comparison.



Figure 3.10: Heatmap of the impact of deleterious variants in tissues compared
to simulated populations with observed frequencies. Rows represent the interactomes
from different tissues whereas that columns the network parameters evaluated. The color
code represents the strength of the p-value from the comparison.
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3.3.5 Distribution of deleterious variants among the in-
teractome modules

In order to understand the reasons why such specific combina-
tions of deleterious variants cause both minimal disruption to the inter-
actome and have no associated pathological effects, their location within
the network of protein interactions was studied. Firstly a summarized
representation of the interactome was derived by detecting neighbour-
hoods of densely connected sub-graphs which define communities, or
modules of highly interacting proteins (Pons and Latapy, 2005; Ros-
vall and Bergstrom, 2008). These modules can be considered functional
entities which enable the biological interpretation of the results. Then,
the distribution of genes carrying alleles affected by deleterious variants
across the modules was studied in individuals from the Spanish popula-
tion and the 1KGP populations. The pattern of distribution of affected
modules across populations is defined by conventional hierarchical clus-
tering using the Euclidean distances between them. The clustering ob-
tained was quite coherent with the geographical origins and history of
the analysed populations (Figure 3.11). The Spanish population is loc-
ated close to the rest of the European populations as well as to Latin
Americans populations, with whom they share common ancestors. The
deleterious germinal variants found in CLL patients are located close
to the Spanish population, probably because it is mainly composed of
Spanish CLL patients. On the contrary, the distribution of mutations of
somatic deleterious mutations of CLL (Figure 3.11) follows a pattern in-
verse to the rest of the normal populations. This anomalous distribution
clusters this sample outside of any human population.

The same clustering methodology was applied to group the mod-
ules. The analysis resulted in the definition of five main clusters. The two
clusters at the bottom are composed of highly affected modules, enriched
in proteins with deleterious variants. The central cluster is composed of
protected modules, with a lower proportion of proteins with deleterious
variants than expected by chance. And the two upper clusters correspond
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to an intermediate situation.
The distribution of cell functionalities across the modules is depic-

ted in Figure 3.11. The cluster containing protected (and often central)
modules is enriched in GO terms related to essential cellular functions,
such as gene expression, translation, protein targeting, and chromatin or-
ganization. Conversely, the most external clusters contain cell function-
alities acquired later in evolution, mainly related to signalling immune
response and cell communication (central and part of the upper clusters
in Figure 3.11).



Figure 3.11: Heatmap of interactome modules defined by the Walktrap cluster-
ing algorithm (rows) and the 1KGP, the Spanish MGP and germinal and somatic
CLL patients populations (columns). The color code represents the relative damage of
the module, which accounts for the deviation in the proportion of affected proteins in the
module from the random expectation distribution. The color code represents the relative
damage value, which ranges between 0 (blue: no proteins affected at all in this quartile) to
1 (red: the maximum possible number of proteins affected in this quartile). On the right
of the figure the main GO terms significantly enriched in any of the five main row clusters
defined by conventional hierarchical clustering using the Euclidean distances are displayed.
Image taken from (Garcia-Alonso et al., 2014).
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3.3.6 Comparison of germinal to somatic cancer-specific
mutations

Finally, we focused on comparing the distribution of deleterious
variants in genes across the different communities in both the germinal
line (which would represent a normal genome) and somatic mutations in
the cancer samples (corresponding to a pathological condition) of CLL
patients. The germinal line of CLL patients presents a pattern of dis-
tribution of variants indistinguishable from normal individuals (Figure
3.11). Modules located at the periphery of the interactome are con-
siderably enriched in affected proteins in healthy individuals, while the
opposite tendency is observed in internal modules (as portrayed in Figure
3.12A). The extent of this trend is confirmed by the significant negative
correlation (Spearman correlation test P ≤ 0.001) of a measure which
accounts for the centrality of a module in the interactome (closeness cent-
rality) with the normalized proportion of affected proteins with respect to
the random expectation (relative damage of the module) (Figure 3.12B).
However, the pattern of somatic mutations in CLL is completely different
to any other population and is actually inverted to the pattern observed
in normal individuals. Figure 3.12C documents the inverse trend of dis-
tribution of mutations when represented on the interactome of modules.
As opposed to the case of normal populations, deleterious somatic muta-
tions in CLL are over-represented in internal modules of the interactome
(Figure 3.12D). The significance of this trend is confirmed by the sig-
nificant positive correlation (Spearman correlation, P ≤ 0.01) existent
between a measure of the module centrality within the interactome (close-
ness centrality) and the proportion of affected proteins with respect to
the random expectation (relative damage of the module) (Figure 3.12D).
The opposite trends observed both in normal populations and in so-
matic mutations of CLL patients have been confirmed using different
interactomes and different algorithms for defining modules within them
(See Table 3.3).



Figure 3.12: Relationship between proteins carrying deleterious variants and the
module centrality. a) Distribution of proteins with deleterious variants in human popula-
tions and the germinal line of the CLL patients across the interactome of modules (defined
by the Walktrap clustering algorithm). Two modules are connected if there is at least one
interaction between one of their proteins. The numbers in the nodes are module identifiers.
The size of the node is proportional to the number of proteins which it contains. (b) Module
closeness centrality as a function of the relative damage of the module. (c) Distribution of
proteins with somatic deleterious variants in CLL exomes across the interactome of modules.
(d) Module closeness centrality as a function of the relative damage of the module for the
somatic CLL exomes. The color code represents the relative damage value, which ranges
between 0 (blue: no proteins affected at all in this quartile) to 1 (red: the maximum possible
number of proteins affected in this quartile). Image taken from (Garcia-Alonso et al., 2014).
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In order to check whether this observation was reflecting the cent-
rality of individual proteins or whether it was accounting for the central-
ity of the modules, the data was reanalysed using as a grouping variable
only the centrality of each protein within the network. Here, the inter-
actome was divided into 4 regions according to the closeness centrality
distribution quartiles and then, the distribution of damaged proteins
among the four regions was calculated for each individual. The result
obtained was the same: the peripheral regions of the interactome accu-
mulated more proteins affected by deleterious mutations than expected
by chance, whereas the internal region displayed a remarkable reduction
(P = 3.96 x 10−6 Mann-Whitney U test) in affected proteins (See Figure
3.13). Thus, the burden of deleterious variability observed in a protein
seems to be related to the centrality of the protein.

Sample Interactome Detection algorithm Rho P-value
1KGP, MGP and germinal CLL Curated Walktrap −0.292 ≤ 0.001
1KGP, MGP and germinal CLL Curated Infomap −0.159 ≤ 0.001
1KGP, MGP and germinal CLL Non-Curated Walktrap −0.13 0.28
1KGP, MGP and germinal CLL Non-Curated Infomap −0.11 ≤ 0.01
1KGP, MGP and germinal CLL STRING Walktrap −0.186 ≤ 0.01
1KGP, MGP and germinal CLL STRING Infomap −0.205 ≤ 0.01

Somatic variants CLL Curated Walktrap 0.192 ≤ 0.01
Somatic variants CLL Curated Infomap 0.176 ≤ 0.001
Somatic variants CLL Non-Curated Walktrap 0.321 ≤ 0.01
Somatic variants CLL Non-Curated Infomap 0.211 ≤ 0.01
Somatic variants CLL STRING Walktrap 0.28 ≤ 0.001
Somatic variants CLL STRING Infomap 0.322 ≤ 0.001

Table 3.3: Validation of the relationship between the module centrality and
damage. Different network module detection algorithms (Infomap and Walktrap)
and three protein interactomes were used. Table adapted from (Garcia-Alonso et al.,
2014).



Figure 3.13: Relationship between the distribution of the deleterious variants
and the interactome centrality in normal populations and CLL patients. A)
Distribution of proteins with deleterious variants in healthy human populations and the
germinal-line CLL exomes across the interactome. B) The corresponding boxplots repres-
enting the distribution of relative damage in each individual in any of the quartiles. C)
Distribution of proteins with deleterious variants in the somatic CLL exomes, representative
of a pathological condition, across the interactome. D) Boxplots representing the distribu-
tion of relative damage of each individual in any of the quartiles for the somatic CLL exomes.
The interactome was divided into four sectors of proteins according its closeness centrality
(from 1, peripheral to 4, central). The color code represents the relative damage value, as in
Figure 3.12. Image taken from (Garcia-Alonso et al., 2014).
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Summarizing, our results strongly suggest that the pathogenic role
of deleterious mutations is highly correlated with the impact on the inter-
actome integrity caused by the combined apparently deleterious variants
of the affected proteins, which is also related to the location of such
proteins within the interactome. That is, affected proteins in healthy
individuals are concentrated in peripheral modules, avoiding internal
modules. However, the most important factor which sheds light on the
mechanisms by which the interactome can bear a large number of pro-
teins with deleterious mutations is related to the way in which affected
proteins are specifically combined in healthy individuals. Affected pro-
teins in healthy individuals tend to occur in combinations which preserve
short path lengths. When the same proteins occur in random combin-
ations, the length of the shortest paths significantly increases. Thus,
the structural constraints imposed by the preservation of shortest paths
may contribute to the relative higher tolerance for deleterious mutations
observed in the periphery of the interactome. In the periphery, combin-
ations of affected proteins that preserve shortest path lengths are easier
to find than in internal regions of the interactome. This property could
only be observed by means of an individualized analysis of the healthy
subjects.



CHAPTER 4

Deciphering mutational
oncogenic signatures on

structurally resolved
protein interacting

interfaces

Part of the work presented in this chapter was published as preprint in:

Garcia-Alonso, L. and Dopazo, J. (2015). Mutational oncogenic signatures on

structurally resolved protein interacting interfaces. bioRxiv, page 016204
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4.1 Overview and objectives

Aberrant protein activities caused by mutations altering PPIs have
been associated to cancer initiation and progression. A well known ex-
ample is the Y42C mutation in BRCA2 that inhibits its interaction with
the protein A, essential for DNA repair, replication and recombination,
leading to the accumulation of DNA damage (Wong et al., 2003). From a
more global point of view, studies applying a network centric perspective
in cancer (Goh et al., 2007; Feldman et al., 2008), in agreement with our
previous observation that somatic mutations from CLL patients tend
to fall in central modules of the interactome, suggest that the impair-
ment of protein interactions at the core of the interactome can be a
common mechanism in tumor evolution. In fact, the products of can-
cer driver genes participate in a greater number of interactions (network
hubs) (Jonsson and Bates, 2006) and are more likely to influence a lar-
ger number of biological processes (pleiotropy) (Yu et al., 2008). These
observations, although pointing at global properties of genes involved in
cancer, can only be seen as descriptive rather than propose testable hy-
potheses. The reason behind is the lack of molecular details in the way
the interactome is modeled (ie. an undirected graph), where proteins rep-
resent graph-theoretical nodes ignoring its structural details. However,
not all the mutations from the same protein have the same consequence
but its impact depends on the stereochemical nature of the change and,
ultimately, on its location within the carrier protein, which evidences the
importance of integrating the structural properties in approaches aimed
to decipher the effect of cancer mutations in protein coding genes.

We hypothesize that somatic mutations are more likely to con-
fer a functional change and, therefore, to be selected if they alter a
molecular interaction, specially if they occur in proteins that govern
essential biological processes. This thesis continues with investigating
the role of the protein interacting interfaces in the tumorgenic process
through a systematic analyses of somatic mutations affecting structurally
resolved protein-protein interaction interfaces. The specific objectives in
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this chapter are:

1. To collect somatic point mutations from cancer patients form the
TCGA and ICGC repositories and annotate the consequences of
the change at protein level.

2. To reconstruct the three-dimensional (3D) structure of the PPIs
form the human interactome.

3. To study the distribution of the cancer missense mutations (amino
acid–changing) among the structural region types of the inter-
actome proteins.

4. To identify protein interacting interfaces accumulating unexpected
amounts of somatic variants.

5. To characterize the clinical implications of the cancer mutations in
the enriched interacting interfaces.

6. To describe the topological properties of the enriched interacting
interfaces in the context of the protein interactome.

7. To build a molecular map enclosing the mutational oncogenic sig-
natures found on the structurally resolved protein interactome.
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4.2 Materials and methods

4.2.1 TCGA and ICGC cancer datasets

Two main data sources were used to retrieve somatic mutations
from different cancers: ICGC (release 15.1) and TCGA (curated data-
set available at Synapse ref. syn1729383, (Kandoth et al., 2013)). The
reason why we decided to use syn1729383 instead of processed data
downloded directly from TCGA data portal is that Kandoth and colleges
made an effort to standardize mutation data from the different cancer
types. Briefly, they reprocessed the data 1) to eliminate known, recur-
rent false positives and germline single nucleotide polymorphisms (SNP)
present in the dbSNP database; 2) to eliminate low quality calls; and
3) to transfer all variant coordinates to GRCh37 and reannotate them
using the Gencode human transcript annotation imported from Ensembl
release 69 (for more details of the standardization process, see Synapse
documentation https://www.synapse.org/#!Synapse:syn1729383).

When merging data from ICGC and TCGA, several consideration
should be taken. The following list enumerates them and describes how
we solved each point:

1. Sample type. Not all the samples are primary tumors but there
are also cell lines, tissue from metastases and peripheral blood.
Here, only samples from primary tumors are selected.

2. TCGA sample redundancy. TCGA uses different barcodes for
the same sample (see barcode info), if they were sequenced sev-
eral times or by several pipelines. To avoid treating their variants
as observed recurrence across patients, we relabelled the samples
by removing the vial letter (reducing the sample IDs to the form
”TCGA-XX-XXXX-XX”), so that we only have one sample ID per
sample, and merged its calls.

3. Donor redundancy. ICGC has collected some cancers from TCGA,
so they will be redundant when we merge both datasets. To avoid

https://www.synapse.org/#!Synapse:syn1729383
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duplicity, we merged the data from the same donor if the sample
identifier matches.

4. Donor with different samples. To avoid treating their variants
as observed recurrence across patients, donors with more than one
sample are removed.

5. Different annotation pipelines. Mutations have been processed
and annotated using different pipelines and data sources, which
may influence the consequences assigned to each one. In order to
make the data comparable, we retrieved only genome coordinates
and the reference and alternative alleles and reannotated them us-
ing VARIANT software (see next section).

6. Merged COADREAD. As TCGA pancancer tumor-types COAD
(Colon) and READ (Rectum) are treated as the same tumor type
”COADREAD” (Colorectal), we did the same with the ICGC tu-
mours COAD-US and READ-US.

Moreover, apart from the previous steps, we discarded those donors
with no exonic somatic variants in any protein of the interactome. We
discarded also the THCA-SA cancer type from ICGC due to the abnor-
mal amount of natural germinal variants in the processed file (germinal
variants extracted from the 1KGP and Spanish MGP individuals). Fi-
nally, donors for which the number of mutations deviate by three times
the standard deviation were excluded.

4.2.2 Analysis of exome sequencing data

Variant functional annotation

As commented in the previous section, we merged the processed
datasets from the ICGC and TCGA/Synapse and extracted the genome
coordinates and the reference and alternative alleles generating a bed file.
Next, each variant was mapped to the corresponding transcript/protein
and the functional consequence was computed by VARIANT (Medina
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Figure 4.1: Framework for variant discovery and genotyping from NGS
data. Data extracted from TCGA and ICGC are processed variant calls included at
the 4th step of our pipeline (Functional annotation of variant calls).

et al., 2012) software. Only point mutations were selected for further
analysis.

Detection of mutations under positive selection among cancer
patients

OncodriveFM (Gonzalez-Perez and Lopez-Bigas, 2012) and On-
codriveCLUST (Tamborero et al., 2013a) were used to search for vari-
ants under positive selection across the cohort of tumor samples (pan-can
analysis). OncodriveFM identifies genes with a bias towards accumula-
tion of mutations with high functional impact whereas OncodriveCLUST
searches for genes with significantly clustered mutations among the gene
sequence. OncodriveFM and OncodriveCLUST were run on the merged
mutation dataset. (Gonzalez-Perez et al., 2013).
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4.2.3 Construction of the structurally resolved human pro-
tein interactome

Defining the interacting interfaces of each PPI

The protein interactome used in the previous chapter (section 2.2.1
for more details) was resolved structurally by predicting the protein in-
teraction interfaces of each PPI. For this purpose, folloging the homology
modeling approach proposed by Wang and colleges (Wang et al., 2012),
co-crystal structures are used as a gold-standard evidence to resolve the
structural details of PPIs. For each protein in the interactome, protein
domain definition proposed in Pfam and the protein sequence-Pfam map-
pings were retrieved Pfam database (Finn et al., 2013). Next, pairs of
interacting Pfams that were observed to physically interact in at least
one high-resolution three-dimensional co-crystal structure in the Protein
Data Bank (Bernstein et al., 1978) were collected from 3did (Mosca et al.,
2013b) (release of February 2014) and iPfam (Mosca et al., 2013b) (re-
lease of September 2013). Finally, each PPI was interrogated to contain
a Pfam-Pfam interaction data. When two proteins were shown exper-
imentally to interact and also contain interacting Pfam domains, the
Pfam domains were predicted to be responsible for the interaction and
were consider them as the interaction interfaces.

Prediction of ordered/disordered protein sequences

Protein ordered and disordered sequence regions were estimated
with the DISOPRED-V2 software using default parameters (Ward et al.,
2004). The input protein sequences (fasta files) were downloaded from
the UniProt database. Evolutionary constraint PhasCons of positions
falling in ordered and disordered regions was compared with the non-
parametric Wilcoxon test.
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4.2.4 Statistical analysis of the mutations distribution among
protein region types

The distribution of the pancancer missense mutations with respect
to protein regions was evaluated with a permutation test by comparing
the observed mutation count (number of mutations across all donors) in
ordered protein sequences, interacting Pfam domains and non-interacting
Pfam domains, to a null distribution estimated using a permutation ap-
proach. Specifically, the permutation consisted of randomly reassigning
mutations to protein sequence positions using all proteins from the struc-
turally resolved interactome, so that the total number of mutations in the
interactome is always the same as in the observed case. The p-value is
calculated as the frequency of the observed value in the null distribution.

4.2.5 Identification of significantly mutated protein inter-
acting interfaces

Identification of PPI interfaces enriched in somatic mutations was
assessed PPIprotein-centric approach. Specifically, statistical signific-
ance of mutations in each PPI interface was estimated with one tailed
binomial test using overall protein mutation ratio as background. Here,
given the observed number of missense mutations on the a given inter-
acting domain (X) out of the total number of missense mutations in the
protein (N) and the ratio of residues from the protein occupying the
domain (R), a one-tailed binomial model was used to compute the prob-
ability of observing equal to or greater than X mutations in the domain
when the null hypothesis is true (mutations distribute equally inside and
outside the interacting domain). We consider that FDR P-values ≤ 0.05
indicate that the ratio of observed mutations in the interacting domain is
significantly greater than the ratio of mutation along the ordered protein
sequence. Interfaces with less than 5 mutations were discarded.

In order to avoid selecting hyper-mutated sequence regions (Liu
et al., 2013), we performed a second test over the synonymous muta-
tions, which are rather not expected to have a functional implication at
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the protein level. Interacting interfaces enriched in synonymous muta-
tions where discarded from our predictions since we cannot distinguish
whether such bins are just a consequence of hyper-mutation phenomena
or, instead, are accumulated due to the conferred selective advantage.

Finally, GOLGA4, RYR2, RYR1 and KRT2 were also excluded
from the list as they have been proposed as likely false positives from the
methods identifying drivers.

4.2.6 Survival analysis

Survival data was downloaded from TCGA and ICGC data portals.
Estimation of overall survival for each patient group was calculated using
the Kaplan-Meier method implemented in the survival package in R. This
method uses the clinical variables donor age at last followup, donor age
at diagnosis and donor vital status to quantify the proportion of patients
still surviving after a given period of time after its diagnosis. The survival
comparison was analyzed using the log-rank test.

4.2.7 Identification of the Minimal Connected 3D Net-
work mutated in cancer

The interaction network between predicted interaction protein in-
terfaces was created using the SNOW method (Minguez et al., 2009).
SNOW detects the largest Minimal Connected Network (MCN) linking
all the input proteins and tests if network interconnectivity is signific-
antly greater than the corresponding random expectations. To construct
the interaction network, we used the structurally resolved interactome
allowing the incorporation of one external connecting protein. SNOW
algorithm was rewritten so that we add only external proteins to parti-
cipate in the MCN if they directly interact with, at least, two enriched
interfaces. An empirical distribution of the random expectation of the
average number of nodes per component parameter for a network of N
components was obtained by repeatedly sampling random sets of N pro-
tein interfaces from the complete interactome. Then, the real value of the
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parameter from the MCN between the interfaces of interest is obtained
and contrasted with respect to their corresponding random expectations.
Finally, the network was visualized using the CellMaps web visualization
tool http://cellmaps.babelomics.org/.

http://cellmaps.babelomics.org/
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4.3 Results and discussion

4.3.1 Cancer donors

After merging the somatic exonic data using the criteria described
in the section 4.2.1 and filtering donors with no somatic variants in the
proteins of the interactome, we collected a total of 5920 cancer donors
from 33 different cancer types (Table 4.1). Figure 4.2 shows the number
of donors per cancer type and the project source, being the BRCA the
cancer with more donors analyzed. Figure 4.3 shows that pediatric and
liquid tumours contain far fewer mutations whereas melanomas and lung
tumors harbor the highest frequencies. Mutational rates are consistent
with previous observations (Vogelstein et al., 2013; Kandoth et al., 2013).

Source Number of donors Number of cancer types
TCGA 1807 17
ICGC 1764 20

Shared 2349 9
Total 5920 33

Table 4.1: Total number of donors and cancer types retrieved from TCGA
and ICGC.

4.3.2 Construction of a three dimensional structurally re-
solved protein interactome

One of the key starting points of this chapter was to resolve the
three dimensional structure of the PPIs from the interactome. We fol-
lowed the homology modeling approach proposed by Wang and colleges
(Wang et al., 2012). Specifically, we considered all binary interactions
from our curated interactome (see section 2.2.1 for more details) that
contain a Pfam domain pair interacting in at least one co-crystal struc-
ture in the PDB and, therefore, the specific interactor interfaces of each
participant are known. That is, we use co-crystal structures as a gold-
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Figure 4.2: Number of donors per cancer type and source. Each bar repres-
ents the total count and the color the source from where the donor was obtained.

Figure 4.3: Distribution of mutation frequencies for each tumour type.

standard proof that these interactions do occur. The obtained 3D inter-
actome consisted of a total of 7580 unique interacting domains in 13160
PPI between 4996 proteins. This new version of the interactome provides
a high-resolution and accurate description of the molecular interactions
and is a valuable resource for interpreting the massive amount of genomic
data generated from thousands of patients.
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4.3.3 Relevance of the protein interacting interfaces in
cancer

With the data in hand, this chapter continues with exploring the
distribution of the somatic mutation among the protein interacting Pfams.
In general, Pfam domains have strong overlap with ordered regions.
Since the disordered/unstructured regions of proteins are less restric-
ted spatially and, without some exceptions, evolve more rapidly than
ordered/structured regions (Brown et al., 2002), we expect that more
somatic mutations would occur in these regions. This unequal evolution-
ary constraint, observable in the proteins of the interactome (P ≤ 0.001,
Wilcoxon test, Figure 4.4 A), can bias the results in such a way that
the enrichment of mutations in the interacting Pfam domains would be
underestimated. To overcome this bias, we calculated the probability
estimate of each residue in the sequence being disordered and splitted
the protein sequence in ordered/disordered regions (Figure 4.4 B).

We retrieved total of 176316 missense somatic mutations mapping
4846 proteins in the interactome. 69563 (39.29%) of these mutations
were located within the interacting Pfam interfaces, 16822 (9.5%) in
other Pfam domains, 41949 (23.69%) in other ordered regions and 48732
(27.52%) in disordered regions (Figure 4.4 C). These mutations were
tested for patterns of positive selection using both oncoDriveFM and on-
coDriveCLUST methods, obtaining a total of 22543 variants under pos-
itive selection in the tumorigenic process: 10270 (45.56%) in interacting
Pfams, 2134 (9.47%) in other Pfams, 4607 (20.44%) in other ordered
regions and 5532 (24.54%) in disordered regions (Figure 4.4 D).

Next, we aimed to investigate whether cancer somatic mutations
were differently distributed among the distinct protein regions. First, we
studied the preferential location of missense mutations for either ordered
or disordered regions by comparing the observed number of mutations
in the ordered regions for all interactome proteins to the expected dis-
tribution, obtained by permuting the variants among the whole protein
sequences (Figure 4.5 A). Results show an enrichment for the somatic
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Figure 4.4: Mapping of cancer missense mutations in the structurally re-
solved protein interfaces. A Evolutionary constraint distribution for somatic mis-
sense mutations in ordered (light grey) and disordered (dark grey) protein sequences.
Significance p-value for the comparison is displayed on the top corner (Wilcoxon test).
B Classification of cancer missense mutations according its location in the structurally
resolved proteins of the interactome. C and D proportions of, respectively, all and
positively selected (PS) cancer missense mutations among interacting Pfam domains,
non-interacting Pfam domains, other ordered and disordered protein sequences.

mutations in ordered regions (P ≤ 0.001, Permutation test). Second, we
focused on studying if there was a tendency for the cancer mutations to
be located in the interacting domains. Here we also detect a significant
overrepresentation of cancer mutations (P ≤ 0.001, Permutation test),
compared against the random expectations given the mutation frequency
among ordered regions (Figure 4.5 B). When splitting the mutations ac-
cording whether they were predicted to be under positive selection, we
observe the same patter for both group of mutations (P ≤ 0.001 both,
Permutation test). Finally, focusing on the non-interacting domains (Fig-
ure 4.5 C), all somatic mutations are significantly underrepresented in
the non-interacting domains (P ≤ 0.001, Permutation test) whereas no
significance was found for mutations under positive selection (P = 0.16,
Permutation test).

Focusing on the interacting interfaces, we classify them accord-
ing whether they occur in proteins that occupy the periphery of the
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Figure 4.5: Distribution of cancer missense mutations among the struc-
turally resolved protein region types. The bars represent the total number of
missense mutations observed (dark color) and expected (light color) in ordered protein
sequences (A), interacting Pfam domains (B), non-interacting Pfam domains (C) and
other ordered regions (D). P-values are shown on top of bars (Permutation test). For
the study of the mutation frequency in the ordered protein sequences (A), the distri-
bution of the expected values was obtained by permuting mutations across the whole
protein sequence (considering both ordered and disordered regions). For the study
of the mutation frequency in the PPI interfaces, non-interacting domains and other
ordered regions (B, C and D), the distribution of the expected values was obtained
by permuting mutations across the ordered protein sequence. Expected error bars
represent standard errors of the non-paramvalue from permutations. All: all missense
mutations; PS: mutations under positive selection in pancancer dataset according on-
coDriveFM and oncoDriveCLUST methods.

interactome (defined as the proteins that fall in the first quartile of the
distribution for the closeness centrality parameter, Q1), in proteins with
an intermediate centrality (in the second and third quartiles, Q2-Q3) or
central proteins (in the fourth quartile, Q4) and repeated the same test
performed inf Figure 4.5-B for each protein group. The results display a
more precise and opposite signal between the mutations under positive
selection and the rest of mutations (Figure 4.6). The mutations under
positive selection significantly concentrate in the interacting interfaces
of the central proteins (P ≤ 0.001, Permutation test), confirming that
the impairment of the central binding interactions is a positively selec-
ted network hallmark in cancer development. In contrast, the rest of
the mutations display a tendency toward the network periphery, behav-
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ing similarly to the distribution of the germinal variants from healthy
individuals.

Figure 4.6: Distribution of missense mutations among structurally resolved
PPI interfaces according to the network centrality. The bars represent the
total number of missense mutations observed (dark color) and expected (light color)
in PPI interfaces for proteins located in the periphery of the interactome (defined as
the proteins that fall in the first quartile of the distribution of the closeness centrality
parameter, Q1), in intermediate regions (in the second and third quartiles, Q2-Q3) or
occupying central positions (in the fourth quartile, Q4). P-values are shown on top
of bars (Permutation test). The distribution of the expected values was obtained by
permuting mutations across the ordered sequences of the interactome proteins. Ex-
pected error bars represent standard errors of the mean value from permutations. All:
all missense mutations; PS: mutations under positive selection in pancancer dataset
according oncoDriveFM and oncoDriveCLUST methods.

4.3.4 Identifying significantly mutated protein interacting
interfaces

Motivated by the enrichment of cancer mutations in the binding
interfaces of the interactome and its potential functional implications
for cancer development, we aimed to search for proteins with a bias in
their mutation rates towards its interacting interfaces and, therefore, are
likely to contribute to tumor evolution. An expected effect of oncogenic
mutations in protein binding interfaces is an alteration in the interaction
with its partners. Thus, focusing on each specific interacting domain, we
performed a protein-centric mutation enrichment analysis with one tailed
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binomial test (see section 4.2.5). We consider that FDR P-values ≤ 0.05
indicate that the ratio of observed mutations in the interacting domain is
significantly greater than the ratio of mutation along the ordered protein
sequence. Interfaces with less than 5 mutations were discarded.

As the mutation rates are not homogeneous across the genome (Liu
et al., 2013) and our results could be biased towards hyper-mutated se-
quence regions, we performed a second test over the synonymous muta-
tions, which are not expected to have a functional implication at the
protein level. We assume that those interacting interfaces that are also
enriched in synonymous mutations follow the baseline distribution of so-
matic mutations and were discarded since we cannot be attribute a direct
functional implication.

Systematic analysis of the somatic mutations from each cancer type
reveals 83 (FDR P ≤ 0.05) proteins concentrating its somatic mutations
on the interacting interfaces (Figure 4.7). Further analysis across the
merged pan-cancer dataset leads to the identification of 161 additional
proteins (Figure 4.8), which sums up a total of 252 significantly enriched
interacting interfaces in 248 proteins. These predicted interfaces encode
potential molecular mechanism for a total of 4308 missense mutations.



Figure 4.7: Proteins with significantly mutated interacting interfaces per
cancer type. Barplot shows the number of missense mutations for each enriched
Pfam-protein colored based on the cancer type. Proteins are ordered according to
the decreasing frequency of mutations in the interacting interface. ∗: Cancer Driver
list proposed by Vogelstein et al. (2013).



Figure 4.8: Significantly mutated protein interacting interfaces in pancan-
cer analysis. Barplot shows the number of missense mutations for each enriched
Pfam-protein colored based on the cancer type. Proteins are ordered according to the
decreasing frequency of mutations in the interacting interface. o: driver genes iden-
tified in oncoDriveFM and oncoDriveCLUST pancancer analysis. ∗: Cancer Driver
list proposed by Vogelstein et al. (2013).
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Most known cancer genes accumulate mutations on the inter-
acting interfaces

Among the identified proteins, 32 (13%) are in the Cancer Driver
list proposed by Vogelstein et al. (2013) (P = 4.25 x 10−18, Fisher’s exact
test; genes labelled with * in Figure 4.8). Also, over 38.80% of the muta-
tions in the identified interacting interfaces are considered under positive
selection as defined by the pancancer analysis using oncoDriveFM and
oncoDriveCLUST predictors (P ≤ 0.001, Fisher’s exact test), whereas
the rest 61.19% of mutations would imply new mechanisms.

Functional profiling of the enriched proteins using FatiGO tool
(Al-Shahrour et al., 2004) from Babelomics (Medina et al., 2010) reveals
an overrepresentation (compared to the whole interactome members) of
processes and pathways that are hallmarks of cancer (Hanahan, 2000;
Hanahan and Weinberg, 2011), such as regulation of gene expression,
regulation of the cell cycle and apoptosis, chromatin modification, pro-
tein processing, tyrosine kinase signalling pathways and KEGG pathways
in cancer (FDR P ≤ 0.05, Fisher’s exact test). This observation demon-
strates that the presented strategy is useful to propose new candidate
drivers.

Focusing on the individual predicted interfaces, for example, our
results highlight the pleckstrin homology (PH) kinase domain in AKT1
(Figure 4.9 A), a member of the AKT protein, which links several key pro-
cesses including metabolism, proliferation, cell survival, growth and an-
giogenesis. PH domain-kinase domain interactions are necessary in main-
taining AKT in an inactive state through autoinhibitory interactions and
mutations in the PH-kinase interface constitutively active AKT, which
aberrant activity leads to cellular transformation (Parikh et al., 2012).
These AKT1 mutants are not effectively inhibited by allosteric AKT
(which are being investigated in preclinical and clinical testing) high-
lighting the AKT1 mutational status has important implications for the
choice of treatment in the clinic (Calleja et al., 2009; Wu et al., 2010).

Another example is the meprin and traf homology (MATH) do-
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main in SPOP protein (Figure 4.9 B), an ubiquitin ligase that promotes
the ubiquitin-mediated degradation of the proteins binding to its sub-
strate recognition domain. SPOP substrates are proteins implicated in
transcriptional regulation of genes involved in essential cellular functions.
Some examples among its substrates are NCOA2 and NCOA3, master
activators of several transcription factors such as AR, a well known can-
cer driver gene (Li et al., 2011). Loss of function SPOP mutations at
the MATH domain hampers the interaction with its substrates, another
mechanism by which activation may occur in human cancers by reverting
the attenuation of AR transcriptional activity (Geng et al., 2013).



Figure 4.9: Examples of proteins with an enriched interacting domain. From top
to bottom: (2) mutation density among ordered protein sequence, (2) total mutation counts
for the predicted PPI interface (black) and other protein regions (gray); and (3) location of
Pfam domains among the protein sequence. The predicted PPI interface is colored in red.
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Novel candidate genes accumulating mutations on the interact-
ing interfaces

Our test highlights novel candidates such as SHH and DHH, mem-
bers of the Hedgehog (Hh) pathway, or MYF5 and HOXC13, both tran-
scription factors (Figure 4.9 C-F). SHH and DHH proteins are of special
interest since they are critical regulators for tissue differentiation and, in
adulthood, are involved in the maintenance of homeostasis. Aberrant Hh
pathway activity has been implicated in a broad variety of tumors and
has been hypothesised to play an important role in the formation and
maintenance of cancer stem cells (CSCs). Although it has become clear
that aberrant activity of Hh pathway either by point mutations of the
downstream proteins (PTCH1, SMO or SUFU) or ligand over-expression
leads oncogenic signalling (Ruch and Kim, 2013), to our knowledge, few
mutations affecting directly the sequence of the SHH and DHH have been
proposed as a tumorigenic mechanism (Oro et al., 1997). The cause may
be the relatively low frequency of its mutations when each cancer type is
studied separately. This highlights that integrated pan-cancer approach
can be crucial in the detection of new cancer mechanisms. Particularly,
the altered domain is responsible for the HH signal and directly binds
to HHIP, which regulates Hh signalling negatively (Chuang and McMa-
hon, 1999). Therefore we propose that the impairment of the binding of
SHH and DHH with its inhibitor could be a hypothetical mechanism for
cancer, although further studies should be conducted to corroborate its
implications.

Approach comparison

Opposite to the conventional methods based on mutation frequency
that search for highly recurrently mutated genes, our strategy studies
each gene separately. As observed in other ”gene-centric” (Gonzalez-
Perez and Lopez-Bigas, 2012; Tamborero et al., 2013a; Reimand and
Bader, 2013), our approach is able to detect individual interacting inter-
faces whose mutational rate is low but unexpected given the protein-wide
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number of mutations. In fact, our results include products from the long
tail of genes with low frequency mutations (ex. SHH and DHH, members
of the Hedgehog (Hh) pathway, or MYF5 and HOXC13, both transcrip-
tion factors). After this approach was designed and applied to the cancer
data, we learned about the publication of a similar study by Porta-Pardo
and Godzik (2014) called e-Driver. As the approach we propose here, e-
Driver studies the accumulation of cancer mutations on pre-defined gene
functional regions using one tailed binomial tests, which supports the
use of this test for such objective. However, they do not correct for the
accumulation of synonymous variants.

Yet, our approach has a major limitation: it requires structural
information on PPIs, which is not available from more than a half of
the known interactome. Moreover, since the method specifically search
for deviations from even distribution, genes for which mutations are ho-
mogeneously distributed across the sequence, such as tumor suppressors,
cannot be detected. Also, genes that accumulate mutations in other
functional regions but not their interfaces will not be detected. Thus,
our method is complementary to other methods and the capture of all
the players in oncogenesis would require the combination of the different
strategies (Tamborero et al., 2013b).

4.3.5 Topological properties of enriched interfaces

Our work would be incomplete without an analysis of the topolo-
gical properties of the affected interfaces. The basic questions to assess
are: Do the affected interfaces have a preference to occupy central po-
sitions? Do they involve more interactions than the non-affected inter-
faces? Are they more likely to interact with one another, or are they
spread around the interactome? To address these questions, we mapped
the enriched domains onto our structurally resolved protein interactome
and examined its topological properties. As expected, 33.66% of the pro-
teins with predicted PPI interfaces are located in central positions (Q4,
P = 0.0138, Fisher’s exact test). Next, interested in deciphering if the
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predicted interfaces were concentrating more interactions, we observed
that enriched interfaces participate in more interactions than the inter-
faces of non-enriched proteins (P = 0.0333, Wilcoxon test). Interestingly,
no difference was found compared to non-enriched interacting interfaces
of the same predicted proteins (P = 0.479, Wilcoxon test), which sug-
gests that the hub role of cancer genes seems a property relative to the
whole protein more than to the enriched interface (Figure 4.10 B).

Biological processes involved in oncogenesis converge in common
regulators that modulate crosstalk between them (Bustin, 1998). To
study whether this property is reproduced in our predicted interfaces,
we look for predicted interfaces that interact directly and observed a
total of 37 interactions in which both interfaces in the PPI are enriched
in mutations. To evaluate if the predicted interfaces have a higher tend-
ency to interact with one another, we permuted 1000 times the interactor
labels of the network while preserving the total connectivity of each pro-
tein. Results show that in only 0.3% of the random cases we obtain a
value equal or greater than the observed (P = 0.003, Permutation test,
Figure 4.10 C). This analysis was repeated using the non-enriched inter-
faces of the same predicted proteins and observed 25 direct interactions,
and no significant difference from the random expectation was detected
(P = 0.73, Permutation test, Figure 4.10 D).
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Figure 4.10: Topological properties of affected interfaces. (A) Proportion of
proteins with enriched interfaces in each centrality quartile. (B) Interaction degree
comparison between enriched interfaces, non-enriched interfaces in the same predicted
proteins and interfaces in non-predicted proteins. (C) Expected distribution and
observed value (dashed red line) for the number of direct partners between the enriched
interfaces. (D) Expected distribution and observed value (dashed blue line) for the
number of direct partners between the non-enriched interfaces in the same predicted
proteins. (E) Graph model of the structurally resolved protein interactome. (F)
Average length distribution of the shortest paths within enriched interfaces (red) and
non-enriched interfaces from the same proteins.
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Motivated by these results, we remodeled the interactome into an
undirected graph by an alternative approach in which nodes represent
protein interfaces (instead o the whole protein) and edges the interac-
tions either between or within proteins (Figure 4.10 E). This new version
of the interactome incorporates a new level of complexity that discrimin-
ates between different edges from the same protein when interact through
different interfaces. In order to study the crosstalk between enriched and
non-enriched PPI interfaces, all occurring in the predicted proteins, we
computed the distances within each set of interfaces by means of the
average length of the shortest path. We found that the distribution
of shortest network distances is skewed towards shorter paths for the
enriched interfaces, which can be a consequence of this preferential in-
teraction affinity of the enriched interfaces to interact with each other as
compared with non-enriched (Figure 4.10 F). The relevance of this ob-
servation is that it points out at the function-centric organization of the
interactome, where different proteins can cause similar clinical disorders
when they affect regions regulating common functions.

4.3.6 The 3D cancer interactome: new insights into the
cancer hallmarks

To extract a rationale map of the proteins with driver interact-
ing interfaces, we calculated the MCN allowing one intermediate using
the SNOW tool (Minguez et al., 2009). The identified subnetwork in-
volves 535 interactions between 293 proteins (153 are external interme-
diates added to connect the network, and 15 of them are known-driver
genes) (Figure 4.11). As commented before, the subnetwork contains
39 direct interactions between predicted interfaces of 37 proteins (MCN,
P = 0.019, SNOW Permutation test), that is, interactions in which both
PPI interfaces are enriched in somatic mutations (bold edges in Figure
4.11 B). Over the 56.12% of the donors have at least one somatic muta-
tion in the interfaces of the MCN PPIs.

Several well-known cancer processes and pathways are embedded in
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the predicted subnetwork, such as the PIK3-AKT, the ErbB, Jak-STAT,
AKT/mTOR signalling pathway, PTEN dependent cell cycle arrest and
apoptosis, the DNA-dependent binding transcriptional regulators, etc,
which validates our approach. Again, when performing a functional en-
richment over both affected proteins and direct partners, we observe an
overrepresentation (compared to the whole interactome members) of pro-
cesses and pathways that are hallmarks of cancer, such as transcription
factors, chromatin modificators, phosphorylation processes, regulators of
cell development and death, and even proteins implicated in the vascular
development and angiogenesis (FDR P ≤ 0.05, Fisher’s exact test).

However, this subnetwork provides also novel hypotheses for reg-
ulation of transcription processes potentially involved in tumor progres-
sion. One example is the network component formed by the members
of basic helix-loop-helix (bHLH) family: ID3, MAX, MGA, TFAP4,
TCF12, TCF3, MYF5 (Figure 4.12 A). All these proteins are mem-
bers of a well-known group of transcriptional regulators of genes in-
volved in the regulation of gene expression and cell fate. They form
homo/heterodimers by the non-covalent interaction between the bHLH
domains, which is required for an efficient DNA binding. Interestingly,
three recent exome sequencing studies of Burkitt’s lymphoma patients
provided convincing support for the idea that ID genes may function as
tumor-suppressors. Concretely, mutations affecting TCF3 or its negat-
ive regulator ID3 are found in the 70% of sporadic Burkitt’s lymphoma,
blocking the interaction between TCF3 and ID3 breaking the negative
regulatory loop created by ID3 (Figure 4.12 B) (Schmitz et al., 2012;
Richter et al., 2012). Moreover, other studies have described a crosstalk
between the HH and WNT/β-catenin pathways, which cooperate indu-
cing expression of some bHLH proteins in cancer (Javelaud et al., 2011).
In this sense, HH signal activates bHLH family expression during de-
velopment and inappropriate activation of bHLH signaling in individual
cells may contribute to tumor initiation, as observed for Rhabdomyosar-
coma (Gerber et al., 2006).

As for the HH pathway members, much of the previous work has
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focused on studying the gene expression patterns of the bHLH family in
cancer but, to our knowledge, mutations in the subnetwork formed by
the bHLH TFs have not been directly implicated yet. As described be-
fore, only few works have found an association between ID3, TCF12 and
TCF3 proteins and tumor initiation. Our results suggest that mutations
in this network component may cause aberrant expression of genes in-
volved in proliferation/cell fate determination by affecting binding events
between these TFs and, thus, contribute to the progression of the malig-
nant phenotype (Figure 4.12 B).



Figure 4.11: 3D subnetwork of enriched interacting domains. (A) MCN
between the enriched interfaces allowing one intermediate. (B) MCN between the
enriched interfaces without intermediates (only direct interactions). (C) Main GO
Biological Processes enriched in the MCN.
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Figure 4.12: Cancer mutations in interacting domains in bHLH family of
TFs. Cancer mutations in interacting domains in bHLH family of TFs. (A)
Interacting interfaces of bHLH enriched in cancer mutations. Dark grey nodes indicate
proteins carrying the enriched interfaces. Dark grey edges indicate interactions where
both interfaces are enriched (B) Mutations from TCF3 and ID3 on the 3D structure
of bHLH domain predicted to impact the dimer interacting interface (Model extracted
from PDB ref. 2LFH)

.
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4.3.7 Clinical relevance of mutations affecting interacting
interfaces: survival implications

To explore the prognosis significance of the oncogenic candidate
interacting interfaces, we downloaded survival clinical data from Breast
Cancer (BRCA) patients. Breast cancer is the most commonly diagnosed
cancer among women in Europe, causing 131,200 deaths in 2012 (Ferlay
et al., 2013). Our aim at this step is to study the role of the mutations
located on the interacting interfaces with the tumor evolution. Our hy-
pothesis is that if hampering an interaction is a relevant mechanism
for the tumor progression, then patients for which driver mutations are
located at a specific interface (and mutations that considerably change
the overall protein structure) would display a similar disease evolution.
Thus, for each significant interacting interface in our analysis, we split
the patients into two groups: one containing mutations in the interacting
interface and the other with mutations in the same protein but outside
the interacting interface.

Results show that mutations in the PI3Ka domain (exon 9) of
PIK3CA were strongly associated with increased survival compared to
the rest of mutations (Figure 4.13 A). However, a bibliography research
reveals that the prognostic value of PIK3CA mutations at different re-
gions in breast cancer remains controversial. Whereas some studies have
reported that the presence of H1047R (PI3-PI4 kinase, exon 20) muta-
tion was strongly associated with the absence of lymph node metastasis
and better prognosis (Barbareschi et al., 2007; Kalinsky et al., 2009), our
results and three other studies report that exon 9 mutations are associ-
ated with increased survival in breast cancer (Lai et al., 2008; Mangone
et al., 2012; Arsenic et al., 2014) and lung adenocarcinoma (Zhang et al.,
2013). Splitting patients into fourth groups (with mutations in the pre-
dicted PPI interface, H1047R high frequent mutation, mutations in the
rest of PIK3CA and no mutations in PIK3CA) also reveals a difference
in survival between donors (Figure 4.13 B-C), being the patients with
mutation in the predicted interacting interface those with better pro-
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gnosis. The difference is maintain when the information of the direct
interactors is included, although due to the low recurrence of the latest,
an independent validation of the mutations in PI3KR1 and PI3KR3 can
not be assessed (Figure 4.13 D). These mutations were previously invest-
igated in Glioblastoma in primary studies from the TCGA, where it was
proposed that mutations on the PIK3a domain might prevent inhibitory
contact with PI3KR1 and PI3KR3, causing constitutive PI3K activity
(McLendon et al., 2008) (Figure 4.13 E). Recently, Hao et al. (2014) ob-
served that PI3Ka mutant proteins, but not H1047R mutant proteins,
interact with IRS1 and that the disruption of the interaction between
PIK3a domain mutant and IRS1 inhibits tumor cell proliferation. Ad-
ditional studies on larger and more homogeneous series of patients are
necessary to verify the real significance of the association and the mech-
anisms behind. Nevertheless, results evidence that mutations in different
PIK3CA regions may play different roles in tumor evolution.



Figure 4.13: Survival analysis on PIK3CA mutations in BRCA patients.
(A) Kaplan-Meier survival plots for patient with mutations inside (red) or outside
(blue) the PIK3CA interacting domain. (B) Kaplan-Meier survival plots for patient
with mutations inside the PIK3CA interacting domain (red), H1047 mutation (light
blue), other PIK3CA mutations (dark blue) or wild type PIK3CA (gray). (C)
Location of mutations among PIK3CA sequence domains (D) Kaplan-Meier survival
plots for patient with mutations inside (red) or outside (blue) the PIK3CA-PIK3R1
interacting domains (E) Mutations location in the 3D structure of the interaction
between PIK3CA (domains in orange and light blue) and PIK3R1 (domains in green
and dark blue). Model extracted from PDB ref. 4JPS

.
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Taken all together, our results suggest that qualitative changes in
protein interactions could explain heterogeneity between cancer patients
better than considering isolated genes, ignoring the structural details
that mediate its communication with other molecules.



CHAPTER 5

Summarizing discussion
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The so-called post-genomic era has brought a technical revolution
in biological science that supposed an unprecedented ability to generate
genetic data. Still, the challenge faced by both pre- and post-genomic
is the same: to bridge the link between genotype and phenotype. Since
transforming genome information into a final organisms requires number-
less cooperative actions mediated by its encoded molecules, sequencing
the genome and describing the extracted data represents only the be-
ginning (Brenner, 2000). The road-map to readily asses how changes in
the genome sequence impact phenotype necessarily needs the contextu-
alization of this data under a model that fully integrates the structure,
function and organization (i.e. complexity) of the molecular interactions
that give rise to the cell physiology. Due to their essential role in car-
rying cellular functions, proteins and its interactions provide a level of
abstraction that fits these needs. Protein interactome reflects a high
degree of this cellular complexity and represents an intermediate layer
between genotype and phenotype. Following this reasoning, this thesis
proposes the interactome as a theoretical scaffold for the interpretation
of genomic data.

Along the manuscript, different approaches to integrate human ge-
nomic data with PPIs are described. The overall objective is, by making
use of the interactome, to propose functional hypotheses that guide the
interpretation of genomic variability under different phenotype condi-
tions. Although each one covers a different question, all of them demon-
strate the potential of the interactome in helping to interpret the genomic
variation observed under diverse research scenarios.
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5.1 Assembling the human protein interactome

Systematic collection of PPIs for global studies requires a strict
protocol that ensures the identification of confident PPIs. Due to the its
diversity in nature of and the lack of a unique technique to detect all
PPI types, to cover accurately the whole interactome requires to turn
to a combination of approaches. Here, PPIs were retrieved from three
different databases that collect data derived from a wide range of ex-
perimental studies and make it easily accessible and integrable through
standard formats. Following the advice derived from Von Mering et al.
(2002) to reduce the false positives PPIs, only those determined by at
least two methods were used. The two methods criteria is a strict filter
that decreases the PPIs coverage but, since some experimental detection
methods have been quantified to sweep along 50% of false positives, we
took this criteria in favour of accuracy.

Despite carefully curated, the use of prior knowledge always en-
tails a risk of obtaining results biased towards well-studied biological
processes (Das and Yu, 2012). Thus, the information related to under-
studied proteins could be underestimated in comparison with that of the
well-studied proteins. It might be argued that this effect could, for ex-
ample, enhance the differences in network parameters between disease
genes and other classes. Concerned by this fact, databases integrat-
ing large-scale screenings were specifically selected as sources of PPIs,
avoiding knowledge-based sources. Due to its large-scale nature, these
screenings are expected to suffer less from this bias towards well-studied
proteins.
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5.2 NetworkMiner: searching for gene altera-
tions that collectively, though PPIs subnet-
works, associate with physiological states

Once assembled the protein interactome, the next step of this thesis
focused in developing a method . The development of the method re-
quired an exhaustive analysis to identify the combination of parameter
and test that best distinguishes between a PPI subnetwork carrying a
coherent function from a random one. The results point to the aver-
age number of nodes per component of the MCN as the most sensitive
parameter to discover real networks and distinguish them from random
networks. The biological meaning of this parameter displaying the best
discriminative power proves that the only constraint in functional PPIs
subnetworks is that its nodes aggregate to a connected component, inde-
pendently of the subnetwork shape (i.e. cascade-like in signalling path-
ways or hairball-like for protein complexes).

The final tool, called NetworkMiner, searches for genes at the top
of the ranked list that would, collectively, contribute to the ranking ex-
perimental parameter. Thus, the approach looks for patterns of cooper-
ativity, which is expected to be the behaviour displayed by genes asso-
ciated to complex diseases. Although the method is used to identify the
interactome module associated to those genes carrying SNPs with high
discriminative power between Bipolar Disorder patients and controls, the
input list of genes can be ranked by any criterion. Consequently, it is ap-
plicable to a large variety of experimental or theoretical scenarios. This is
the main difference with respect to previously published methods, which
focus only on gene expression (Ideker et al., 2002; Sohler et al., 2004).

In a similar way to the GSEA methods (Subramanian et al., 2005),
NetworkMiner avoids pre-selecting genes with arbitrary cut-off. In con-
trast, this is defined according the tendency of the top genes to form
significantly connected modules. With this tool, we extend the vari-
ety of tools for functional profiling of genomics data introducing PPIs.
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Contrary to methods using functional labels such as GO terms, PPIs
do not pre-define functional modules, instead they help to define it
from experimental data, thus offering a great potential to discover new
functional modules instead of being limited to the known ones. Net-
workMiner is freely available at the Babelomics web platform (http:
//babelomics.bioinfo.cipf.es/), and is integrated with other meth-
odologies such as FatiGO and SNOW, providing all together a powerful
framework for the functional profiling of genomic data.

http://babelomics.bioinfo.cipf.es/
http://babelomics.bioinfo.cipf.es/
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5.3 The interactome as a buffer of deleterious
variability

In the past years, vast amounts of data are being generated with
the purpose of identifying the mechanistic roots for most human dis-
eases. The observation of a non-negligible amount deleterious variants
in healthy individuals, among which there are a few with pathological
associated effects, is challenging the search for disease-causing variants.
The second chapter of the thesis is motivated by the need to character-
ize the load of genomic variation in human populations and propose a
rationale for their tolerance. The endeavour requires first to understand
how humans deal with such amount of deleterious variation and, within
this, how pathological variants can contribute to a disease phenotype in
some individuals but apparently be innocuous in others. In this part
of the thesis we propose that the cell system organization may provide
an additional buffering mechanism of internal perturbations. This idea
is not new and has been long studied in other organisms (Albert et al.,
2000; Hahn and Kern, 2005).

Taking advantage of the availability of a wealth of genomes of
healthy individuals, the exome variants of more than 1330 healthy hu-
mans were analysed in the context of the protein interactome. Our results
provide a rationale for the tolerance to potentially deleterious variants
based on protein network topology. First, the individualized observations
made in healthy subjects and CLL patients, completed with the analysis
of proteins mutated diseases, strongly suggest that the pathogenic role
of deleterious mutations is highly correlated with the impact on the in-
teractome integrity caused by the combined deleterious of the affected
proteins, which is also related to the location of such proteins within the
interactome. In this senses, affected proteins in healthy individuals are
concentrated in peripheral modules, avoiding internal modules. However,
the most important factor which sheds light on the mechanisms by which
the interactome can bear a large number of proteins with deleterious
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mutations is related to the way in which affected proteins are specifically
combined in healthy individuals. Affected proteins in healthy individu-
als tend to occur in combinations which preserve short path lengths.
When the same proteins occur in random combinations, the length of
the shortest paths significantly increases. The same results are observed
in tissue-specific interactomes. Thus, the structural constraints imposed
by the preservation of interconnectivity, and therefore central proteins,
seem to restrict genetic deleterious variation to the periphery of the inter-
actome. This is an expected finding since at the periphery, combinations
of affected proteins that preserve shortest path lengths are easier to find
than in internal regions of the interactome. Since periphery is in closer
contact with the environment (proteins from this regions are enriched
in plasma membrane and extracellular proteins), the interactome shape
may have evolve to enlarge its ability to adapt under changing condi-
tions. Consequently, the system remains robust to perturbations but at
the same time, allocates variability and allows evolutionary diversifica-
tion with low immediate impact in the system organization (Levy and
Siegal, 2008). Hence, evolutionary results evidence that proteins under
positive selection tend to be placed at the periphery of the interactome,
whereas proteins under negative selection tend to have a central location
in the interactome (Kim et al., 2007).

The patterns observed in human populations were compared to
those displayed by somatic variants found in CLL primary tumour. In-
terestingly, somatic variability form cancer patients showed a distribu-
tion completely opposite to germline variants. Whereas germline vari-
ation reflects evolutionary variability and constraints during population
evolution, recurrent somatic variants in cancer patients reflect tumour
evolution. Cancer driver genes affect to very fundamental processes,
such as cell division, control of gene expression or DNA repair, which
leads these genes to display properties similar to essential ones (Wachi
et al., 2005; Jonsson and Bates, 2006). This result agrees previous ob-
servation made in studies comparing network properties of disease genes
(Goh et al., 2007; Feldman et al., 2008). It may be interpreted that, to
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allow a tumour to evolve, advantageous mutations with high immediate
impact in the signalling circuits are needed so that the cell can acquire
notable selective advantages (Nowell, 1976; Stratton et al., 2009). Since
high impactability seems a property restricted to the core of the network,
this may explain the opposite accumulation tendency between germline
and somatic variation.

Taken all the results together, the general conclusion of this chapter
is that the deleterious character of a variant obviously depends on the
damage it causes to the protein, but ultimately, it is a system’s property
that critically depends on the specific combination of affected proteins
and its relative location within the interactome.
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5.4 Oncogenic signatures on PPI interfaces

Motivated by the fact that cancer associated genes tend to occupy
central roles in protein networks, the last chapter focuses on studying
somatic variability distribution among PPIs. For this purpose, we struc-
turally solved the interactome in order to identify the specific protein
regions responsible for the interactions (interfaces). This new version of
the interactome is more resolutive and allows to study proteins as mul-
tifunctional factories instead of monolithic graph entities (Zhong et al.,
2009; Wang et al., 2012). First, the exploration of the distribution of mis-
sense mutations among the different regions of the interactors showed a
clear pattern: these tend to concentrate in ordered regions of the pro-
teins and, within these, they have a clear preference for the interfaces.
Moreover, when the centrality of the protein is considered, we observed
a clear tendency of the somatic mutations to occupy central positions.
Finally, when mutations are divided into two groups, one including the
mutations under positive selection and other the rest, we observe a more
specific and opposite pattern between them. Mutations under positive
selection concentrate in central regions and avoid the periphery, evid-
encing that the impairment of the central interactions is a positively
selected network hallmark in cancer development. In contrast, the rest
of the mutations display a tendency toward the network periphery, be-
having similarly to the distribution of the germinal deleterious variants
from control individuals, as defined in the previous chapter.

Also we propose a new approach to identify interfaces whose muta-
tion may be advantageous for cancer development. The approach fol-
lows the philosophy of other gene-centric approaches and does not only
focuses on the frequency of its mutations but in the way they are distrib-
uted along the protein (Gonzalez-Perez and Lopez-Bigas, 2012; Reimand
and Bader, 2013; Porta-Pardo and Godzik, 2014). By studying the PPI
interfaces, the approach identified more than 250 interacting interfaces
candidate to drive cancer. Several sources of evidence support the poten-
tial role of the identified mutations: first, they accumulate in a specific
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region instead of being homogeneously distributed among the protein;
second, these regions are conserved domains, which functions have been
evolutionary maintained; and third, these regions mediate PPIs, which
are crucial in mediating the transmission of the biological signals. Thus,
these interacting interfaces can be seen as mechanistic hypotheses candid-
ates to explain the molecular basis behind the genetic-cancer associations
for most of the known cancer genes. This fact is the most significant dif-
ference from frequency-based methods, which does not propose direct
functional insight into the identified genes.

The power of the approach is evidenced by the ability of detecting
low frequency mutations, which direct role in oncogenesis is sustained by
independent published studies. Examples of these mutations are those
falling in the HH domain of SHH and DHH (Oro et al., 1997) and in the
bHLH domain of the bHLH family of transcription factors (Schmitz et al.,
2012; Richter et al., 2012). Moreover, the approach identified interacting
interfaces which mutational state relates to patients prognosis, being
able to explain survival differences in patients of the same tumor type
and with the same mutated gene (Lai et al., 2008; Mangone et al., 2012;
Arsenic et al., 2014).

Briefly, the research presented here offers a novel approach for in-
terpreting cancer genomes and provides a new source for hypotheses for
most cancer driver genes. The results evidence that consider genes as
multifunctional effectors instead of homogeneous black boxes can shed
light on both clinical and genetic heterogeneity. In a scenario where
is becoming evident the heterogeneity between cancer patients and the
complexity of predicting prognosis outcome, zooming into the molecular
consequences of genomic variants and contextualizing them in the net-
work of molecular interactions would constitute a step forward towards
personalized medicine. Due to the structural information on PPIs is still
limited, a major caveat of the method, we expect our results to represent
only the tip of the iceberg.
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5.5 Future directions

5.5.1 The interactome model

As stated before, the use of prior knowledge has a major limitation:
to bias the results towards well studied processes. To overcome the lack
of coverage of PPIs is an urgently needed task. In this sense, at least
two challenges should be addressed to go beyond this bottleneck. The
first one should focus in improving the quality assessment and curation
process of PPIs. Recent approaches are considering additional sources of
evidence that the number of supporting detection methods, such as or-
thology, interacting conserved domains, co-expression and common func-
tionality, etc (Schaefer et al., 2012), which are expected to reach a better
balance between accuracy and coverage. The second task should rein-
force the efforts in the experimental determination of PPIs. During the
writing of this manuscript, Rolland et al. (2014) published a new PPIs
screening that resulted in an interactome about 30% larger, more homo-
geneous and less biased than the one available from small-scale studies.
Global study of disease genes revealed significant connectivity for can-
cer gene products, providing unbiased evidence that supports the results
obtained in this thesis. Both, systematic PPIs screenings and improve-
ments in the curation processes will soon provide a high quality impartial
interactome. Although newest unbiased interactome topologies seem to
agree with former ones, the analysis presented here should be repeated
to asses the robustness of the observations as the interactome reaches
more coverage.

There are other limitation intrinsic to the cellular model used that
should be mentioned. First, although PPIs represent to some extent the
cellular complexity, there are many other molecular layers that mediate
the conversion of the genetic information into final phenotypic states.
Examples are protein-DNA and protein-RNA interactions in chromatin
remodelling and the regulation of the gene-expression, or protein-small
molecules in metabolism regulation. Second, this work, as for the major-
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ity of publications on protein networks, has studied the interactome as
a single static entity, merging all known PPIs. However, cells are highly
dynamic systems that continuously integrate and respond to molecular
and environmental perturbations (Altelaar et al., 2013). In this sense,
some approaches integrate static interactomes with dynamic changes in
gene expression to infer case specific networks (Ideker and Lauffenburger,
2003; Taylor et al., 2009; Holme and Saramäki, 2012). Third, we should
keep in mind that although two proteins with the ability to interact are
expressed in the cell at the same time, this does not imply that the inter-
action is going to occur. For some PPIs, the physico-chemical contacts
are conditional and depend on additional biochemical changes, such as
post-translational modifications, interaction with other molecules or loc-
ation (Perkins et al., 2010; Grossmann et al., 2015). Finally, annotating
each interaction with its direction and sign would enable to take into
account the directionality of the regulation and make the results more
mechanistic. However, the more complex the cell model is, the closer to
reality the results are, but the more difficult the modeling task becomes
(Ideker and Lauffenburger, 2003). Since detailed data and modeling ap-
proaches are limited, we are obligated to choose the correct balance that
best helps to test our hypotheses.

5.5.2 Modelling mutation consequences

Another issue that needs to be improved is the annotation of the
functional implications of the mutations at the molecular level. Whereas
the effects of deletions, insertions, and stop gain/loss are self-evident,
consequences of single missense variants are rather more difficult to pre-
dict. Important efforts are being made to develop predictors of muta-
tion deleteriousness, damage and/or functional impact, such as the SIFT
and PolyPhen tools used in this thesis (Thusberg et al., 2011). Most of
these tools rely on general properties, such as the sequence conservation,
structural features and amino acid attributes (Riera et al., 2014). All
these properties are combined into global scores (Kumar et al., 2009;
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Adzhubei et al., 2010; Bromberg and Rost, 2007). Although extremely
useful in assessing potential functional impact for the prioritization of
disease mutation candidates, these do not provide insight about the spe-
cific molecular effect. Different mutations can have very different effects
in the protein functions, such as affect the catalytic site, lead to structural
instability or aggregation, alter binding of ligands, reconfigure regulatory
regions, affect protein post-translational modifications, cellular localiza-
tion or being neutral. In addition to protein effects, variants can also
modify mRNA stability, processing or translational regulation or even
the affinity of the transcription factors to DNA targets (Thusberg and
Vihinen, 2009). Functionally, this implies that different mutation in the
same gene may have different molecular consequences.

In a recent study, Powis and colleagues observed that cell cycle sig-
naling differs between the different forms of mutant KRAS (Ihle et al.,
2012). This heterogeneous behavior of KRAS mutations evidences that
personalized medicine needs to take into account the specific mutations
expressed by the tumor. To date, the majority of methods to study spe-
cific mechanisms focus on the changes in protein stability after mutations
(Schymkowitz et al., 2005; Worth et al., 2011), whereas the methods to
predict other specific effects in a systematic way are limited. To our
knowledge, there only are available Mechismo, which proposes a frame-
work to detect changes in interaction affinities between PPIs, protein-
DNA and other chemical interactors (Betts et al., 2014); and MIMP,
which predicts mutations that specifically alter kinase-binding sites in
proteins (Wagih et al., 2015).

Deciphering the implications of the mutations in the molecule func-
tion will have a great impact in the drug development. For example, a
mutation predicted as damaging can lead to a constitutive activation
whereas another damaging in the same protein may abolish an inter-
face required to transfer the molecular information to a partner. In each
scenario, the mode of action required for a drug to revert the alteration
would be different. It is likely that in the near future more initiatives
such as these mentioned will arise. Analysis of genetic variability un-
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der these frameworks is going to provide a more explanatory insight into
its pathogenic implications and will likely be key in the future use of
genomic data for personalized treatments.





CHAPTER 6

General conclusions





General conclusions 151

In this thesis, I proposed to integrate the interactome, as prior
knowledge of the cell system, in the analysis of genomic data to better
understand the functional implications of genetic variability in protein-
coding genes in either human health and disease. This final chapter
enumerates the conclusions extracted form the exposed results:

1. The diverse nature of the protein-protein interactions (PPIs) and
the different biochemical basis of the detection methods requires
the integration of different sources of PPIs through a strict cura-
tion pipeline to achieve a model of the human interactome compre-
hensive and accurate.

2. Proteins involved in common biological processes tend to form in-
teractome modules, being the aggregation in common network com-
ponents a distinctive property between functionally related and
unrelated protein sets. This property can be explored in network
enrichment analysis of high-throughput data to identify the sub-
network relevant for the condition under study. The proposed tool,
NetworkMiner, makes use of this property and represents a simple
but powerful approach able to find the PPI subnetwork compon-
ent associated to extreme values of a list of genes ranked by any
experimental criterion.

3. Proteins affected by deleterious variants in healthy individuals are
concentrated in peripheral modules (carrying functions related to
the cell periphery), avoiding internal modules (dedicated to essen-
tial functions), and are found in combinations that preserve prop-
erties related to the interactome integrity. From an evolutionary
perspective, proteins under positive selection tend to be placed at
the periphery of the interactome, whereas proteins under negative
selection tend to have a central location in the interactome. Taken
together, the actual interactome structure may have a role in main-
taining deleterious variability in human populations by allocating
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and, therefore, allowing genetic variation while sustaining healthy
phenotypes and conferring evolutionary robustness to genetic per-
turbations.

4. Deleterious variants found in healthy individuals concentrate in
proteins which display opposite topological properties to the pro-
teins affected by common human disease, being this difference lar-
ger when considering cancer driver gene products. Thus, the dele-
terious character of a variant seems not only to rely on the damage
it causes to the protein, but ultimately, it is a system’s property
that depends on its impact on the overall system organization.

5. Several global trends confirm the role of protein binding sites in
cancer: somatic variants are more frequent in binding interfaces
than in other ordered regions and tend to affect highly connected
and central proteins. A significant number of well-known cancer
driver genes concentrate its mutations at the interacting interfaces,
suggesting that the altercation of these interfaces can be a mechan-
ism of action for these mutations. As shown through an example,
mutation location within the same protein can influence patient
outcome such as survival. Thus, perturbation caused by cancer
mutations in protein interactions may have a crucial role in the
course of the disease and be an important factor in explaining the
heterogeneity between cancer patients.

6. Globally, the thesis offers novel approaches for interpreting human
genomes by zooming into the consequences of genomic variants and
contextualizing them within a model of the cell.
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López, J., and Antiñolo, G. (2015). 267 spanish exome sequences
reveal specific distribution patterns of disease-related variants and
highlight the importance of local variant frequencies. Molecular
biology and evolution, (Under Revision)

• Porta-Pardo*, E., Garcia-Alonso*, L., Hrabe, T., Dopazo, J., and
Godzik, A. (2015). A pan-cancer catalogue of cancer driver protein
interaction interfaces. PLOS computational biology, (Accepted for
publication)

• Garcia-Alonso, L. and Dopazo, J. (2015). Mutational oncogenic
signatures on structurally resolved protein interacting interfaces.
bioRxiv, page 016204

• Minguez, P., Letunic, I., Parca, L., Garcia-Alonso, L., Dopazo, J.,
Huerta-Cepas, J., and Bork, P. (2014). Ptmcode v2: a resource for
functional associations of post-translational modifications within
and between proteins. Nucleic acids research, page gku1081
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Vela-Boza, A., Santoyo-López, J., Antiñolo, G., and Dopazo, J.
(2014). The role of the interactome in the maintenance of deleter-
ious variability in human populations. Molecular systems biology,



156

10(9)
This article has been highlighted in Nature Reviews Ge-
netics (Burgess, 2014).

• Fernández, R. M., Bleda, M., Luzón-Toro, B., Garcia-Alonso, L.,
Arnold, S., Sribudiani, Y., Besmond, C., Lantieri, F., Doan, B.,
Ceccherini, I., et al. (2013). Pathways systematically associated to
hirschsprung’s disease. Orphanet journal of rare diseases, 8(1):187

• Garcia-Alonso, L., Alonso, R., Vidal, E., Amadoz, A., de Maŕıa,
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Lothe, R. A., Peltomäki, P., Meling, G. I., Aaltonen, L. A., Nyström-
Lahti, M., Pylkkänen, L., Heimdal, K., Andersen, T. I., Møller, P.,
Rognum, T. O., et al. (1993). Genomic instability in colorectal cancer:
relationship to clinicopathological variables and family history. Cancer
Research, 53(24):5849–5852. 20
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