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Abstract—The Steered Response Power - Phase Transform
(SRP-PHAT) algorithm has been shown to be one of the most ro-
bust sound source localization approaches operating in noisy and
reverberant environments. However, its practical implementation
is usually based on a costly fine grid-search procedure, making
the computational cost of the method a real issue. In this paper,
we introduce an effective strategy that extends the conventional
SRP-PHAT functional with the aim of considering the volume
surrounding the discrete locations of the spatial grid. As a
result, the modified functional performs a full exploration of the
sampled space rather than computing the SRP at discrete spatial
positions, increasing its robustness and allowing for a coarser
spatial grid. To this end, the Generalized Cross-Correlation
(GCC) function corresponding to each microphone pair must be
properly accumulated according to the defined microphone set-
up. Experiments carried out under different acoustic conditions
confirm the validity of the proposed approach.

Index Terms—sound source localization, SRP-PHAT, micro-
phone array.

I. I NTRODUCTION

SOUND source localization under high noise and reverber-
ation still remains a very challenging task. To this end,

microphone arrays are commonly employed in many sound
processing applications such as videoconferencing, hands-
free speech acquisition, digital hearing aids, video-gaming,
autonomous robots and remote surveillance. Algorithms for
sound source localization can be broadly divided into indirect
and direct approaches [1]. Indirect approaches usually follow
a two-step procedure: they first estimate theTime Difference
Of Arrival (TDOA) [2] between microphone pairs and, after-
wards, they estimate the source position based on the geometry
of the array and the estimated delays. On the other hand, direct
approaches perform TDOA estimation and source localization
in one single step by scanning a set of candidate source
locations and selecting the most likely position as an estimate
of the source location. In addition, information theoretic
approaches have also shown to be significantly powerful in
source localization tasks [3].

The Steered Response Power - Phase Transform(SRP-
PHAT) algorithm is a direct approach that has been shown to
be very robust under difficult acoustic conditions [4],[5],[6].
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The algorithm is commonly interpreted as a beamforming-
based approach that searches for the candidate source posi-
tion that maximizes the output of a steered delay-and-sum
beamformer. However, despite its robustness, computational
cost is a real issue because the SRP space to be searched has
many local extrema [7]. Very interesting modifications and
optimizations have already been proposed to deal with this
problem, such as those based on Stochastic Region Contraction
(SRC) [8] and coarse-to-fine region contraction [9], achieving
a reduction in computational cost of more than three orders
of magnitude.

In this paper, we propose a different strategy where, instead
of evaluating the SRP functional at discrete positions of a
spatial grid, it is accumulated over theGeneralized Cross
Correlation (GCC) lag space corresponding to the volume
surrounding each point of the grid. The GCC accumulation
limits are determined by the gradient of the inter-microphone
time delay function corresponding to each microphone pair,
thus, taking into account the spatial distribution of possible
TDOAs resulting from a given array geometry. The benefits
of following this approach are twofold. On the one hand, it
incorporates additional spatial knowledge at each point for
making a better final decision. On the other hand, the proposed
modification achieves the same performance as SRP-PHAT
with fewer functional evaluations, relaxing the computational
demand required for a practical application.

II. T HE SRP-PHAT ALGORITHM

Consider the output from microphonel, ml(t), in an
M microphone system. Then, the SRP at the spatial point
x = [x, y, z] for a time framen of lengthT is defined as

Pn(x) ≡
∫ (n+1)T

nT

∣∣∣∣∣
M∑
l=1

wlml (t− τ(x, l))

∣∣∣∣∣
2

dt, (1)

wherewl is a weight andτ(x, l) is the direct time of travel
from locationx to microphonel. DiBiase [7] showed that the
SRP can be computed by summing the GCCs for all possible
pairs of the set of microphones. The GCC for a microphone
pair (k, l) is computed as

Rmkml
(τ) =

∫ ∞

−∞
Φkl(ω)Mk(ω)M∗

l (ω)ejωτdω, (2)

where τ is the time lag,∗ denotes complex conjugation,
Ml(ω) is the Fourier transform of the microphone signal
ml(t), and Φkl(ω) is a combined weighting function in the



IEEE SIGNAL PROCESSING LETTERS, VOL. X, NO. X, XXXX XXXX 2

-5
-3

-1
1

3
5 -5

-3
-1

1
3

-15

-10

-5

0

5

10

15

 

 

 

 

-5 -4 -3 -2 -1 0 1 2 3 4 5
-5

-4

-3

-2

-1

0

1

2

3

4

5

x

T
im

e 
d
el

a
y
 -
 (

m
s)

Three-dimensional representation of 

(a) (b)

(m)

τkl (x,y)

5

y (m)
x (m)

y
(m

)

Gradient of τkl (x,y)

Fig. 1. Example of IMTDF. (a) Representation for the planez = 0 with
microphones located at[−2, 0, 0] and [2, 0, 0]. (b) Gradient.

frequency domain. The phase transform (PHAT) [10] has been
demonstrated to be a very effective GCC weighting for time
delay estimation in reverberant environments:

Φkl(ω) ≡ 1
|Mk(ω)M∗

l (ω)|
. (3)

Taking into account the symmetries involved in the compu-
tation of Eq.(1) and removing some fixed energy terms [7],
the part ofPn(x) that changes withx is isolated as

P ′
n(x) =

M∑
k=1

M∑
l=k+1

Rmkml
(τkl(x)) , (4)

where τkl(x) is the inter-microphone time-delay function
(IMTDF). This function is very important, since it represents
the theoretical direct path delay for the microphone pair(k, l)
resulting from a point source located atx. The IMTDF is
mathematically expressed as

τkl(x) =
‖x− xk‖ − ‖x− xl‖

c
, (5)

where c is the speed of sound, andxk and xl are the
microphone locations.

The SRP-PHAT algorithm consists in evaluating the func-
tional P ′

n(x) on a fine gridG with the aim of finding the
point-source locationxs that provides the maximum value:

xs = arg max
x∈G

P ′
n(x). (6)

III. T HE INTER-M ICROPHONETIME DELAY FUNCTION

As commented in the previous section, the IMTDF plays a
very important role in the source localization task. This func-
tion can be interpreted as the spatial distribution of possible
TDOAs resulting from a given microphone pair geometry.

The functionτkl(x) is continuous inx and changes rapidly
at points close to the line connecting both microphone loca-
tions. Therefore, a pair of microphones used as a time-delay
sensor is maximally sensible to changes produced over this
line [11]. An example function is depicted in Figure 1(a) for
the planez = 0, with xk = [−2, 0, 0] andxl = [2, 0, 0]. The
gradient of the function is shown in Figure 1(b).

It is useful here to remark that the equation|τkl(x)| = C,
with C being a positive real constant, defines a hyperboloid
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Fig. 2. Intersecting half-hyperboloids and localization approaches. (a)
Conventional SRP-PHAT. (b) Proposed.

in space with foci on the microphone locationsxk and xl.
Moreover, the set of continuous confocal half-hyperboloids
τkl(x) = C with C ∈ [−Cmax, Cmax], being Cmax =
(1/c)‖xk − xl‖, spans the whole three-dimensional space.

Theorem: Given a volumeV in space, the IMTDF for points
inside V , τkl(x ∈ V ), takes only values in the continuous
range[min (τkl(x ∈ ∂V )) ,max (τkl(x ∈ ∂V ))], where∂V is
the boundary surface that enclosesV .

Proof: Let us assume that a point insideV ,
x0 ∈ V , takes the maximum value in the volume, i.e.
τkl(x0) = max (τkl(x ∈ V )) = CmaxV

. Since there is a
half-hyperboloid that goes through each point of the space,
all the points besidesx0 satisfying τkl(x) = CmaxV

will
also take the maximum value. Therefore, all the points on
the surface resulting from the intersection of the volume and
the half-hyperboloid will take this maximum value, including
those pertaining to the boundary surface∂V . The existence
of the minimum in∂V is similarly deduced.

The above property is very useful to understand the ad-
vantages of the approach presented in this paper. Note that
the SRP-PHAT algorithm is based on accumulating the values
of the different GCCs at those time lags coinciding with
the theoretical inter-microphone time delays, which are only
computed at discrete points of a spatial grid. However, as
described before, it is possible to analyze a complete spatial
volume by scanning the time-delays contained in a range
defined by the maximum and minimum values on its boundary
surface. In the next section, we describe how this knowledge
can be included in the localization algorithm to increase its
robustness.

IV. PROPOSEDAPPROACH

Let us begin the description of the proposed approach
by analyzing a simple case where we want to estimate the
location xs of a sound source inside an anechoic space. In
this simple case, the GCCs corresponding to each microphone
pair are delta functions centered at the corresponding inter-
microphone time-delays:Rmkml

(τ) = δ(τ − τkl(xs)). For
example and without loss of generality, let us assume a set-
up with M = 3 microphones, as depicted in Figure 2(a).
Then, the source position would be that of the intersec-
tion of the three half-hyperboloidsτkl(x) = τkl(xs), with
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(k, l) ∈ {(1, 2), (1, 3), (2, 3)}. Consider now that, to localize
the source, a spatial grid with resolutionr = 1 m is used as
shown in Figure 2(a). Unfortunately, the intersection does not
match any of the sampled positions, leading to an error in the
localization task. Obviously, this problem would have been
easier to solve with a two step localization approach, but the
above example shows the limitations imposed by the selected
spatial sampling in SRP-PHAT, even in optimal acoustic
conditions. This is not the case of the approach followed to
localize the source in Figure 2(b) where, using the same spatial
grid, the GCCs have been integrated for each sampled position
in a range that covers their volume of influence. A darker gray
color indicates a greater accumulated value and, therefore, the
darkest area is being correctly identified as the one containing
the true sound source location. This new modified functional
is expressed as follows

P ′′
n (x) =

M∑
k=1

M∑
l=k+1

Lkl2(x)∑
τ=Lkl1(x)

Rmkml
(τ). (7)

The problem is to determine correctly the limitsLkl1(x) and
Lkl2(x), which depend on the specific IMTDF resulting from
each microphone pair. The computation of these limits is
explained in the next subsection.

A. Computation of Accumulation Limits

As explained in Section III, the IMTDF inside a volume can
only take values in the range defined by its boundary surface.
Therefore, for each point of the grid, the problem of finding
the GCC accumulation limits of its volume of influence can
be simplified to finding the maximum and minimum values
on the boundary. To this end, it becomes useful to study the
direction of the greatest rate of increase at each grid point,
which is given by the gradient

∇τkl(x) = [∇xτkl(x),∇yτkl(x),∇zτkl(x)] , (8)

where each component of the gradient vector can be calculated
with

∇γτkl(x) =
∂τkl(x)

∂γ
=

1
c

(
γ − γk

‖x− xk‖
− γ − γl

‖x− xl‖

)
, (9)
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Fig. 3. Volume of influence of a point in a rectangular grid.

where γ denotes eitherx,y or z. The accumulation limits
for a symmetric volume surrounding a point of the grid can
be calculated by taking the product of the magnitude of the
gradient and the distanced that exists from the point to the
boundary following the gradient’s direction:

Lkl1(x) = τkl(x)− ‖∇τkl(x)‖ · d, (10)

Lkl2(x) = τkl(x) + ‖∇τkl(x)‖ · d, (11)

Figure 3 depicts the geometry for a rectangular grid with
spatial resolutionr. For this cubic geometry, the distanced
can be expressed as

d =
r

2
min

(
1

| sin θ cos φ|
,

1
| sin θ sinφ|

,
1

| cos θ|

)
, (12)

where

θ = cos−1

(
∇zτkl(x)
‖∇τkl(x)‖

)
, (13)

φ = atan2(∇yτkl(x),∇xτkl(x)), (14)

being atan2(y, x) the quadrant-resolving arctangent function.

B. Computational Cost

Let L be the DFT length of a frame andQ = M(M −1)/2
the number of microphone pairs. The computational cost of
SRP-PHAT is given by [5]:

SRP-PHATcost ≈ [6.125Q2 + 3.75Q]L log2 L

+15LQ(1.5Q− 1) + (45Q2 − 30Q)ν′, (15)

where ν′ is the average number of functional evaluations
required to find the maximum of the SRP space. Since the
cost added by the modified functional is negligible and the
frequency-domain processing of our approach remains the
same as the conventional SRP-PHAT algorithm, the above
formula is valid for both approaches. Moreover, since the
accumulation limits can be pre-computed before running the
localization algorithm, the associated processing does not
involve additional computation effort. However, as it will be
shown in the next subsection, the advantage of the proposed
method relies on the reduced number of required functional
evaluationsν′ for detecting the true source location, which
results in an improved computational efficiency.

V. EXPERIMENTS

Different experiments with real and synthetic recordings
were conducted to compare the performances of the con-
ventional SRP-PHAT algorithm, the SRC algorithm and our
proposed method. First, theRoomsimMatlab package [12] was
used to simulate an array of 6 microphones placed on the walls
of a shoe-box-shaped room with dimensions 4 m× 6 m× 2 m
(Fig. 4(a)). The simulations were repeated with two different
reverberation times (T60 = 0.2 s and T60 = 0.7 s), considering
30 random source locations and different Signal-to-Noise Ra-
tio (SNR) conditions. The resultant recordings were processed
with 3 different spatial grid resolutions in the case of SRP-
PHAT and the proposed method (r1 = 0.01 m, r2 = 0.1 m and
r3 = 0.5 m). Note that the number of functional evaluations
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Fig. 4. Results with simulations. (a) set-up. (b)r = 0.01 m. (c) r = 0.1 m. (d) r = 0.5 m. (e) Functional evaluations.

ν′ depends on the selected value ofr, havingν′1 = 480×105,
ν′2 = 480 × 102 and ν′3 = 384. The implementation of SRC
was the one made available by Brown University’s LEMS at
http://www.lems.brown.edu/array/download.html, using 3000
initial random points. The processing was carried out using
a sampling rate of 44.1 kHz, with time windows of 4096
samples of length and 50% overlap. The simulated sources
were male and female speech signals of length 5 s with no
pauses. The averaged results in terms ofRoot Mean Squared
Error (RMSE) are shown in Figure 4(b-d). Since SRC does
not depend on the grid size, the SRC curves are the same in
all these graphs. As expected, all the tested systems perform
considerably better in the case of low reverberation and high
SNR. For the finest grid, it can be clearly observed that the
performance of SRP-PHAT and the proposed method is almost
the same. However, for coarser grids, our proposed method
is only slightly degraded, while the performance of SRP-
PHAT becomes substantially worse, specially for low SNRs
and high reverberation. SRC has similar performance to SRP-
PHAT with r = 0.01 m. Therefore, our proposed approach
performs robustly with higher grid sizes, which results in a
great computational saving in terms of functional evaluations,
as depicted in Figure 4(e).

On the other hand, a real set-up quite similar to the
simulated one was considered to study the performance of the
method in a real scenario. Six omnidirectional microphones
were placed at the 4 corners and at the middle of the longest
walls of a videoconferencing room with dimensions 5.7 m
× 6.7 m× 2.1 m and 12 seats. The measured reverberation
time wasT60 = 0.28 s. The processing was the same as with
the synthetic recordings, using continuous speech fragments
obtained from the 12 seat locations. The results are shown
in Table I and confirm that our proposed method performs
robustly using a very coarse grid. Although similar accuracy
to SRC is obtained, the number of functional evaluations is
significantly reduced.

VI. CONCLUSION

This paper presented a robust approach to sound source
localization based on a modified version of the well-known
SRP-PHAT algorithm. The proposed functional is based on
the accumulation of GCC values in a range that covers the
volume surrounding each point of the defined spatial grid.
The GCC accumulation limits are determined by the gradient
of the inter-microphone time delay function corresponding to
each microphone pair, thus, taking into account the spatial
distribution of possible TDOAs resulting from a given array
geometry. Our results showed that the proposed approach

TABLE I
RMSE FOR THE REAL-DATA EXPERIMENT.

r 0.01 0.1 0.5
ν′ 802 · 105 802 · 102 641

SRP-PHAT RMSE = 0.29 RMSE = 0.74 RMSE = 1.82
Proposed RMSE = 0.21 RMSE = 0.29 RMSE = 0.31

SRC RMSE = 0.34 (ν′ = 58307)

provides similar performance to the conventional SRP-PHAT
algorithm in difficult environments with a reduction of five
orders of magnitude in the required number of functional
evaluations, with further computational saving than SRC. This
reduction has been shown to be sufficient for the development
of real-time source localization applications.
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