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Abstract—Sound source separation has become a topic of
intensive research in the last years. The research effort has
been specially relevant for the underdetermined case, where
a considerable number of sparse methods working in the
time-frequency (T-F) domain have appeared. In this context,
although binary masking seems to be a preferred choice for
source demixing, the estimated masks differ substantially from
the ideal ones. This paper proposes a Maximum a Posteriori
(MAP) framework for binary mask estimation. To this end,
class-conditional source probabilities according to the observed
mixing parameters are modeled via ratios of dependent Cauchy
distributions while source priors are iteratively calculated from
the observed histograms. Moreover, spatially smoothed posteriors
in the T-F domain are proposed to avoid noisy estimates, showing
that the estimated masks are closer to the ideal ones in terms of
objective performance measures.

Index Terms—Blind Source Separation, Time-Frequency
Masking, Sparse Models.

I. I NTRODUCTION

T HE task of estimating and recovering independent source
signals from a set of mixtures in one or several obser-

vation channels is known asBlind Source Separation. In the
linear complete case, when as many observations as sources
are available,Independent Component Analysisapproaches
are usually applied [1]. These algorithms commonly assume
statistical independence and non-Gaussianity of the sources to
estimate a demixing matrix that makes it possible to recover
the source signals up to a permutation and scaling factor. When
there are more sources than observation channels, the problem
is underdetermined(or degenerate), and other properties such
as source sparsity are exploited. Sparsity and overcomplete
dictionaries have been discussed in the literature with the aim
of giving a solution to the underdetermined problem, using
MAP estimation [2] andl1-norm minimization [3]. When
dealing with speech and audio mixtures, it has been shown
that they are sparser in the time-frequency (T-F) domain than
in the time domain [4]. In fact, it has been shown that sources
are almost disjoint in this domain, i.e., there exists only one
source in a given T-F point. This assumption leads to thetime-
frequency maskingseparation approach [5]. Algorithms based
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on T-F masking have shown to provide significant results [6],
being the ideal binary mask a commonly used benchmark for
separation performance [7].

This paper proposes a MAP estimation framework for
T-F masking stereo separation. In this context, two novel
features are introduced to estimate the binary masks: a class-
conditional distribution model for the observed anechoic mix-
ing parameters and the use of spatially smoothed posteriors
in the T-F domain. A MAP decision rule is applied to obtain
the final separation masks, which are shown to provide results
that are closer to the ones obtained by means of ideal binary
masking.

The structure of the paper is as follows. Section II describes
the signal model and the anechoic mixing parameters used as
separation features. Section III proposes a statistical model for
the observed mixing parameters assuming a dominant source
condition. Section IV discusses binary mask estimation from a
Bayesian perspective, proposing the use of smoothed posteri-
ors for improved performance. Experiments and performance
evaluation are in Section V, while the final conclusions are
summarized in Section VI.

II. SIGNAL MODEL AND M IXING PARAMETERS

Consider two anechoic mixture signalsxm(t) given by

xm(t) =
N∑

n=1

amnsn(t− τmn), m = 1, 2, (1)

whereN is the number of sources,sn(t) are the time-domain
source signals,amn are scalar coefficients andτmn are the
source-to-sensor time delays. In matrix notation, the model
takes the well-known formx = A∗s, with x = [x1(t) x2(t)]T ,
s = [s1(t), . . . , sN (t)]T and Amn = amnδ(t − τmn). In
the Short-Time Fourier Transform(STFT) domain, the above
model can be rewritten as

Xm(k, l) =
N∑

n=1

amnSn(k, l)e−jωkτmn , m = 1, 2, (2)

wherek is the frequency bin index,l is the time-frame index,
ωk is the angular frequency corresponding to indexk and
Xm(k, l) and Sn(k, l) are the STFT versions ofxm(t) and
sn(t), respectively. If the sources are located in the far field,
plane-wave propagation can be assumed and inter-sensor time
delaysτn are related to theDirection-Of-Arrival (DOA) of the
sources as follows [8]

τn = τ2n − τ1n =
d

c
cos(θn), (3)
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where d is the inter-microphone distance,c is the speed of
sound andθn is the DOA angle of then-th source.

A. Magnitude Ratio and DOA

Without loss of generality, the mixing process can be
described by the set of amplitude mixing coefficientsamn and
the inter-sensor time delaysτn resulting from the DOA of the
sources. To estimate these quantities, most algorithms analyze
channel differences in a sparse domain [5],[9],[8],[10],[11].
Since audio source signals do not significantly overlap in
the STFT domain (a property often referred to asW-Disjoint
Orthogonality), it can be assumed that the magnitude ratio
of observation points is close (ideally equal) to the ratio of
amplitude mixing coefficients:

R(k, l) = arctan
(
|X2(k, l)|
|X1(k, l)|

)
≈ arctan

(
a2ñ(k,l)

a1ñ(k,l)

)
, (4)

whereñ(k, l) is the index of the dominant source at T-F point
(k, l). Using the arctangent function is useful for mapping the
observed values to the range[0, π/2]. On the other hand, the
phase difference between mixture channels can be analyzed at
each T-F element to obtain

D(k, l) =
c

ωkd
6

(
X2(k, l)
X1(k, l)

)
≈ cos(θñ(k,l)), (5)

where 6 () denotes the phase of a complex number. Note that,
according to Eq.(3),D(k, l) is an estimate of the cosine of the
DOA of the dominant source at point(k, l). In the following,
the sources are assumed to have a unique pair of mixing
parameters (Rn, Dn) that characterizes their mixing process.

An exampleR-D histogram is depicted in Figure 1(a),
showing the joint distribution of the mixing parameters for a
mixture of 3 speech sources in a noise-free anechoic environ-
ment withd = 2 cm. The histogram is normalized to unit area
to resemble a probability density function (pdf). The mixing
parameters for each source are(R1, D1) = (1.04, 0.97),
(R2, D2) = (0.40,−0.14) and (R3, D3) = (0.32, 0.71). Note
that the peaks in the histogram correspond to the real mixing
parametersRn andDn, showing the presence of the different
sources. The closer a point (R(k, l), D(k, l)) is to any of
these peaks, the higher the chance of being dominated by
the corresponding source. The rest of this paper assumes that
the mixing parameters corresponding toA are estimated from
these peaks. In fact, recent studies have shown that, while
mixing matrix estimation for non-reverberant underdetermined
mixtures is a task that can be successfully accomplished, the
unmixing procedure is still the main challenge [7].

III. M ODELING OF M IXING PARAMETERS

Sparse signals are usually modeled by distributions having
sharp peaks at zero and flat tails. The Cauchy (or Lorentz)
distribution, C(x0, γ), describes properly magnitude sparsity
due to its peaky and heavy-tailed nature, accounting for rarely
appearing high values [12]. Its probability density function is
given by

f(x) =
1
π

[
γ

(x − x0)2 + γ2

]
, (6)

where x0 specifies the peak location of the distribution and
γ the half-width at half-maximum. To statistically model the
joint distribution of R and D, first, the STFT of the sources
Sn(k, l) are assumed to be independent complex random
processes as follows:

|Sn(k, l)| ∼ βn|C(0, 1)|, (7)
6 Sn(k, l) ∼ U(−π, π), (8)

where C(0, 1) denotes samples drawn from a normalized
Cauchy distribution centered at zero withγ = 1, while
U(−π, π) refers to a uniform distribution in the range[−π, π].
The parameterβn represents the relative contribution of the
n-th source . As a result, the source model, expressed bySn,
is written

Sn ∼ βn|C(0, 1)|ejU(−π,π), n = 1, . . . , N. (9)

The goal now is to obtain the distribution of the mixing
parameters for points where a given source in a mixture is
dominant. The mixture magnitude ratio, according to Eq.(4)
and assuming unit-norm mixing matrix columns, is given by

RAβ = arctan


∣∣∣∑N

n=1 sin(Rn)Sne−j((d/c)ω̌Dn)
∣∣∣∣∣∣∑N

n=1 cos(Rn)Sn

∣∣∣
 , (10)

where ω̌ ∈ ωk is a random frequency value. Similarly, the
observed DOAs are given by

DAβ =
c

2πω̌d
6

(∑N
n=1 sin(Rn)Sne−j((d/c)2πω̌Dn)∑N

n=1 cos(Rn)Sn

)
.

(11)
The use ofA andβ in the notation ofRAβ andDAβ denotes
its dependence on the estimated mixing parameters and the
selected parameter vectorβ = [β1, β2 . . . , βN ]T . Note that
bothRAβ andDAβ are simulated values obtained from the
Sn random data.

The magnitude ratio and DOA distributions for a dominant
source can be extracted from the above by taking the set of
points where its magnitude is dominant over the rest:

RAβ
n =

RAβ ∈ |Sn| >
∑
n′ 6=n

|Sn′ |

 , n = 1, . . . , N,

(12)

DAβ
n =

DAβ ∈ |Sn| >
∑
n′ 6=n

|Sn′ |

 , n = 1, . . . , N.

(13)
Since obtaining closed-form expressions for dominant

source distributions is very difficult, the use of Monte-Carlo
processing for their computation offers a practical solution.
The only free parameters of the model are theβn, which
are easily determined numerically by iteratively fitting the
distribution of the simulated data to the one of the real mixture
histogramΨ(R,D). To this end, the difference between peak
amplitudes in both histograms is minimized in the least squares
sense. Thus, we define an observed peak amplitude vector
b(β) = [b1, b2, . . . , bN ]T and a target peak amplitude vector
p = [p1, p2, . . . , pN ]T , with

bn = Ψ̂ (Rn, Dn) , n = 1, . . . , N, (14)



IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. X, NO. X. 3

-1.5
-1.0

-0.5
0.0

0.5
1.0

1.5

0
0.2

0.4
0.6

0.8
1.0

1.2
1.4

1.6

0

2

4

6

8

10

12

14

16

18

20

DR

Ψ
(R
,D

)

Ψ
(R
,D

)

(a)

-1.5
-1.0

-0.5
0.0

0.5
1.0

1.5

0
0.2

0.4
0.6

0.8
1.0

1.2
1.4

1.6

0

2

4

6

8

10

12

14

16

18

20

DR

Ψ
(R
,D

)

(b)

-1.5
-1.0

-0.5
0.0

0.5
1.0

1.5

0
0.2

0.4
0.6

0.8
1.0

1.2
1.4

1.6

0

0.5

1.0

1.5

2.0

2.5

DR

(c)

Fig. 1. R-D histograms for the example mixture. (a) Real histogram. (b) Histogram obtained by numerical processing using a Cauchy source model. (c)
Histogram using a Laplacian source model.

pn = Ψ(Rn, Dn) , n = 1, . . . , N, (15)

whereΨ̂(R,D) is the normalizedR-D histogram (unit area)
computed from theRAβ and DAβ synthetic data. The pa-
rameter vectorβ is iteratively updated until convergence as
follows (see Appendix):

β+ = β − η
(
b̄(β)− p̄

)
, (16)

where b̄(β) = b(β)
||b(β)|| and p̄ = p

||p|| are the generated and
target normalized peak amplitudes, respectively. Figure 1(b)
shows the histogram calculated by means of the proposed
model as a sum of the individual dominant source distribu-
tions. Note that it is very similar to the one of Figure 1(a), i.e.
the extracted from the real mixture.

A. Suitability of the Model

Source sparsity in the T-F domain has been discussed in
many works. Statistical models for source distributions in
sparse domains are usually based on super-Gaussian distri-
butions, such as the Laplacian distribution [13]. In fact, it has
been reported that the Laplacian distribution is able to model
speech both in the time domain and in the STFT domain [14].
Moreover, due to the peaky nature of the magnitude ratio dis-
tribution, Laplacian mixture models have also been employed
in underdetermined blind source separation problems [15].
However, while the Laplacian distribution might be suitable
to model STFT coefficients under some circumstances [16],
the proposed Cauchy-based model for STFT coefficients has
been shown to provide better accuracy in ourR-D modeling
task. Both source models have been compared by means of a
χ2 test to evaluate their capability to generate synthetic data
fitting real R-D distributions. The value of the test statistic is
given by

χ2 =

∑
R

∑
D

(nR,D −Np∆R∆DΨ(R,D))2

Np∆R∆DΨ(R,D)
, (17)

whereNp is the total number of T-F points in the mixture,
nR,D is the number of generated sample points withD and

R falling into a given interval of the histogram and∆R and
∆D are the lengths of a histogram bin in theR and D
axis, respectively. The smaller theχ2 value, the better the
fit. The test was performed over the anechoic test signals
used in Section V, resulting in a mean value ofχ2 = 4.8e4

for the proposed model andχ2 = 1.81e5 for the Laplacian
model. TheR-D distribution obtained for the example mixture
using a Laplacian model is shown in Figure 1(c). Note that
the proposed model (b) is significantly closer to the real
distribution.

IV. SEPARATION MASK ESTIMATION

The statistical model described in the previous section
allows to compute a class-conditional probability measure for
the mixing parametersR,D given a dominant source. The
likelihoods are therefore given by

p(R,D|sn) = Ψ̂n(R,D)., n = 1, . . . , N, (18)

where Ψ̂n(R,D) are the normalized histograms computed
from the model dataRA

n , DA
n . The factorsβn are considered

priors for each source obtained from the whole observation
time:

P (sn) = βn, n = 1, . . . , N, (19)

properly scaled so that
∑N

n=1 βn = 1. Then, the posterior
probability according to Bayes’ theorem is given by

P (sn|R,D) =
p(R,D|sn)P (sn)

p(R,D)
, n = 1, . . . , N, (20)

with p(R,D) =
∑N

n=1 p(R,D|sn)P (sn). A first estimation
of the separation masks could be obtained by applying the
following MAP decision rule:

Mn(k, l) =

1 if n = arg max
n′

p(R,D|sn′)P (sn′)

0 elsewhere
∀(k, l).

(21)
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Fig. 2. Binary masks for one of the three sources of the example mixture. Reliable elements are indicated by white T-F units and unreliable T-F units are
marked in black. (a) Ideal binary mask. (b) Improved mask obtained with smoothed posteriors. (c) Noisy mask obtained without smoothing.

A. Smoothed Time-Frequency Posteriors

It is well-known that ideal binary masks show clusters of
points corresponding to those areas where the energy of a
given source is higher than the total interfering energy. Due
to the nature of speech and audio sources, these clusters
usually appear distributed around speech partials and other
high-energy components. Therefore, if a given T-F point of a
separation mask is active, it is likely that surrounding points
are also active. Similarly, zero points corresponding to silences
or low-energy areas may be surrounded also by other inactive
points. This property is exploited in this section by using
smoothed T-F posteriors as follows. Let us introduce in our
decision the evidence of observing the probability that T-F
points pertaining to a surrounding neighborhoodΩk,l do also
belong to the same source:

P (sn|R,D,Ωk,l) =
p(R,D, Ωk,l|sn)P (sn)

p(R,D, Ωk,l)
. (22)

Obviously, computing the new likelihoodp(R,Ωk,l|sn) for all
possible neighborhoods is not very practical, even if condi-
tional independence is assumed. However, it seems reasonable
to think that the belief given by the posterior will change
accordingly to the support of surrounding points due to their
existing correlation. Thus, a convolution operation is proposed
to model this influence:

P (sn|R,D,Ωk,l) = P (sn|R,D) ∗W (k, l), (23)

where W (k, l) is a two-dimensional smoothing impulse re-
sponse, implemented by a properly normalized smoothing
matrix (kernel). Smoothed posteriors have been widely em-
ployed in image processing for pixel classification [17],[18].
We propose the use of a Gaussian filter, which gives more
importance to the central point but smoothly incorporates
information from the surrounding points. Then, the suggested
impulse response as a function of timet (in ms) and frequency
f (in Hz) is expressed as

W (f, t) =
1

2πσfσt
e
−
(

f2

2σ2
f

+ t2

2σ2
t

)
, (24)

whereσ2
f andσ2

t are the variances of the Gaussian filter that
control the area of influenceΩk,l in the frequency and time
dimensions, respectively. Note that in in the above definition,
the variablesk and l have been replaced fort andf in order
to make the selected filter independent of the STFT analysis
parameters. Additionally, a T-F invariant smoothing kernel
has been proposed for the sake of simplicity. However, it is
worth to note that ideal binary masks have more horizontal
structure in low frequencies and more vertical structure in
high frequencies. Although frequency dependent kernels might
benefit the mask estimation task, the study of different kernel
alternatives is out of the scope of this paper and will be
addressed in a future work.

The final separation masks are obtained by applying the
MAP decision rule over the smoothed posteriors:

Mn(k, l) =

1 if n = arg max
n′

P (sn′ |R,D,Ωk,l)

0 elsewhere
∀(k, l).

(25)
The estimated sources are recovered by applying the es-

timated mask to the mixture channels and transforming the
signals back to the time-domain with the inverse STFT oper-
ator. Figure 2(a)-(c) compares visually an ideal binary mask
corresponding to one of the sources of the example mixture
with the ones obtained with Eq.(25) and Eq.(21). In the
next section, we evaluate the separation performance of the
proposed method in terms of objective performance measures.

V. EXPERIMENTS AND EVALUATION

In this section, a performance evaluation is presented in
terms of the well-known objective performance measuresSig-
nal to Distortion Ratio(SDR),source Image Spatial distortion
Ratio (ISR), Source to Interference Ratio(SIR) andSource to
Artifacts Ratio(SAR) [19].

The proposed method was evaluated and compared to
other separation approaches using underdetermined mixtures
of N = 3 andN = 4 sources. The source signals were male
and female speech fragments (fs = 16 kHz) provided with the
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TABLE I
AVERAGE PERFORMANCE INANECHOIC SCENARIO

N = 3 sources N = 4 sources
Prop Prop w/s DUET S-DUET Duong IBM Prop Prop w/s DUET S-DUET Duong IBM

SDR 7.23 5.12 4.55 4.36 6.11 10.64 SDR 4.79 3.62 2.96 2.77 3.25 9.22
SIR 17.34 17.32 11.47 14.44 10.32 21.58 SIR 12.87 12.79 8.26 11.72 4.82 19.55
SAR 7.46 5.29 5.10 4.65 9.43 11.07 SAR 4.76 3.31 3.18 2.36 6.73 9.61
ISR 14.22 10.23 8.44 9.78 11.35 20.08 ISR 10.45 7.44 6.35 6.21 6.81 17.63

TABLE II
AVERAGE PERFORMANCE INREVERBERANT SCENARIO (T60 = 250 ms)

N = 3 sources N = 4 sources
Prop Prop w/s DUET S-DUET Duong IBM Prop Prop w/s DUET S-DUET Duong IBM

SDR 3.61 3.56 3.26 3.46 4.40 10.76 SDR 2.12 2.04 1.94 1.96 2.44 9.29
SIR 6.87 6.69 5.11 6.46 5.00 20.33 SIR 4.00 3.88 3.52 4.32 1.61 19.45
SAR 5.50 5.15 5.10 4.72 7.78 11.01 SAR 3.19 3.36 3.62 2.47 6.02 9.73
ISR 9.36 8.74 8.15 7.97 10.05 19.84 ISR 7.11 6.43 6.65 5.22 5.95 17.47

‘Dev2’ dataset of theSignal Separation Evaluation Campaign
(SiSEC) [7]. To evaluate the influence of room reflections, two
simulated scenarios were considered: an anechoic environment
and a box-shaped room (5× 4× 3 m) with reverberation time
T60 = 250 ms. The inter-microphone distance wasd = 0.2
cm to avoid possible spatial aliasing effects. The sources
were randomly positioned at different directions to generate
a total of 50 test mixtures in the anechoic scenario and 50
test mixtures in the reverberant one. STFTs were computed
using Hamming windows of 1024 samples length and 75%
overlap. The proposed method was applied using a Gaussian
smoothing filter with variancesσ2

t = 25 ms andσ2
f = 23 Hz,

implemented by a3× 3 kernel matrix.

The following systems were compared: the proposed ap-
proach (Prop), the proposed approach without using smoothed
posteriors (Prop w/s), the DUET algorithm [5] (DUET), the
smoothed DUET algorithm using a plus sign-shaped median
filter [11] (S-DUET), the algorithm for reverberant mixtures
by Duong et al. [20] (Duong) and ideal binary masking (IBM).
The ideal binary mask was computed by comparing the target
source signal and the interfering source images as in [7].

Results for the anechoic and reverberant environments are
shown in Table I and Table II, respectively. It can be ob-
served that, in the anechoic environment, the proposed method
outperforms all the other systems, providing results that are
closer to the ones obtained by ideal binary masking. Moreover,
the usefulness of the model is here demonstrated in terms
of separation performance, since the results obtained by our
method without smoothing are still better than the ones of
DUET and S-DUET. In the case of reverberant mixtures, the
proposed method still provides better results than DUET and
S-DUET but only outperforms Duong’s algorithm in terms of
SIR and ISR. This fact highlights the importance of having
a suitable model for a specific application scenario since, as
opposed to Duong’s algorithm, the proposed method does not
take into account room reverberation effects. Nevertheless,
note that, as the number of sources increases, our proposed
method and Duong’s tend to be comparable as shown by
the results withN = 4. Despite the proposed method has
been shown to be the most effective in anechoic scenarios,

further work would be needed to make it more robust to room
reflections.

VI. CONCLUSION

This paper presented a T-F masking separation method
developed from a MAP perspective. Two main novel features
were introduced with respect to other T-F masking approaches.
First, a likelihood model for the observed mixing parameters
under a source dominance assumption was described. To this
end, ratios of complex dependent Cauchy distributions were
computed and statistically characterized by means of Monte-
Carlo processing. Second, smoothed posteriors in the MAP de-
cision were proposed to model the influence of neighboring T-
F points, reducing the amount of noisy points in the estimated
masks. The proposed method was shown to outperform other
separation approaches in anechoic and reverberant environ-
ments, providing average results closer to the ones provided by
the ideal binary masking benchmark. However, further work
is needed to adapt the model to a reverberant case to make it
more robust against room reflections.

APPENDIX

The optimum parameter vectorβ is found by iteratively
minimizing the difference between the distributions of the
real measured data and the synthetically generated data. To
this end, we search for the best fit in the least squares
sense by considering only the relative amplitude of the peaks
(normalized to unit power) in both histograms. The solution
is found by minimizing the function

F (β) =
∥∥b̄(β)− p̄

∥∥2
, (26)

where b̄(β) = b(β)
||b(β)|| and p̄ = p

||p|| are the generated and
observed normalized peak amplitudes, respectively. Next, we
assume a simplified linear model̄b(β) = Dβ, where the
amplitude of a peak̄bn only depends on its corresponding
βn parameter:

b̄1

b̄2

...
b̄N

 =


d11 0 · · · 0
0 d22 · · · 0
...

...
... 0

0 0 · · · dNN




β1

β2

...
βN

 . (27)
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Thus, considering the above diagonal matrix, the gradient
of F (β) can be expressed as

∇F (β) = 2D
(
b̄(β)− p̄

)
. (28)

Moreover, we can further assume that all the peaks have the
same linear dependence with its associated parameter(D =
αI), leading to the next simplified gradient expression

∇F (β) = 2α
(
b̄(β)− p̄

)
. (29)

Finally, the optimizedβ parameters can be iteratively found
by following a gradient descent approach:

β+ = β − γ∇F (β) = β − η
(
b̄(β)− p̄

)
, (30)

whereγ > 0 is a small number controlling the step size. The
constant factorη = 2γα can be experimentally adjusted. In
this paper, we assumedη = 1.
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