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Abstract

A new technique to obtain derivative-free methods with optimal order of
convergence in the sense of the Kung-Traub conjecture for solving nonlinear
smooth equations is described. The procedure uses Steffensen-like methods
and Padé approximants. Some numerical examples are provided to show the
good performance of the new methods.
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1. Introduction

A variety of problems in different fields of science and technology re-
quire to find the solution of a nonlinear equation. Iterative methods for
approximating solutions are the most used technique. The efficiency index,
introduced by Ostrowski in [1], establishes the effectiveness of the iterative
method. In this sense, Kung and Traub conjectured in [2] that a method is
optimal if it reaches an order of convergence p = 2n−1, where n is the number
of functional evaluations per step.
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Newton’s method is optimal for n = 2, but it uses the derivative, which
can be a drawback in some applications. Steffensen’s method (SM),(see [3])
is not only optimal but also derivative free,

xn+1 = xn − f(xn)2

f(zn)− f(xn)
, (1)

where zn = xn + f(xn).
In this work, we introduce a technique to obtain optimal order methods

for n = 3, 4, .... The idea is to compose an optimal derivative free method
with a modified Newton’s step in which the derivative is computed using a
Padé approximant.

The paper is organized as follows. In Section 2 we apply the technique
to Steffensen’s method, obtaining an optimal fourth order method and prove
a convergence result. In the next section, the technique is generalized for
getting higher order derivative free optimal methods. Finally, different nu-
merical tests confirm the theoretical results. In this numerical section, we
also analyze the behavior of the new schemes on nonsmooth equations.

2. Fourth order optimal method

We first compose the well-known Steffensen method, defined by (1), with
Newton’s method obtaining the fourth-order scheme

yn = xn − f(xn)2

f(zn)− f(xn)
,

xn+1 = yn − f(yn)

f ′(yn)
,

(2)

where zn = xn + f(xn). Now, in order to avoid the evaluation of f ′(yn), we
approximate it by the derivative m′(yn) of the following first degree Padé
approximant

m(t) =
a1 + a2(t− yn)

1 + a3(t− yn)
,

where a1, a2 and a3 are real parameters to be determined satisfying the
following conditions:

m(xn) = f(xn), (3)

m(yn) = f(yn), (4)
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and
m(zn) = f(zn). (5)

From (4) one immediately obtains

a1 = f(yn).

Conditions (3) and (5), give, respectively,

a2 − f(xn)a3 = f [xn, yn]

and
a2 − f(zn)a3 = f [zn, yn],

where f [xn, yn] denotes the divided difference f(xn)−f(yn)
xn−yn

. After some algebraic
manipulations, the following values are obtained for the parameters:

a2 = f [yn, zn]− f(zn)f [xn, yn, zn]

f [zn, xn]

and

a3 = −f [xn, yn, zn]

f [xn, zn]
,

where f [xn, yn, zn] = f [xn,yn]−f [yn,zn]
xn−zn

is a second order divided difference.
The derivative of the Padé approximant evaluated in yn can be expressed

as

m′(yn) =
f [xn, yn]f [yn, zn]

f [xn, zn]
. (6)

Substituting (6) in the second equation of (2), we obtain a new iterative
method denoted by M4, whose expression is:

yn = xn − f(xn)2

f(zn)− f(xn)
, (7)

xn+1 = yn − f(yn)f [xn, zn]

f [xn, yn]f [yn, zn]
. (8)

Let us note that in each iteration we only evaluate f(xn), f(yn) and f(zn),
so that the method will be optimal in the sense of Kung-Traub’s conjecture
if we show that its convergence order is 4.
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Theorem 1. Let α ∈ I be a simple zero of a sufficiently differentiable func-
tion f : I ⊆ R −→ R in an open interval I. If x0 is sufficiently close to α,
then the method M4 defined by (7)-(8) has optimal convergence order 4.

Proof: Let en be the error in xn, that is en = xn − α. By using Taylor’s
expansion around x = α, we write

f(xn) = c1en + c2e
2
n + c3e

3
n + c4e

4
n + O(e5

n), (9)

where ck = f (k)(α)/k!, k = 1, 2, . . .
Using that zn = xn + f(xn), we write

f(zn) = c1 (1 + c1) en +
(
c1 + (1 + c1)

2
)
c2e

2
n

+
(
2 (1 + c1) c2

2 + c1c3 + (1 + c1)
3 + c3

)
e3

n

+
(
3 (1 + c1)

2c2c3 + c2

(
c2
2 + 2 (1 + c1) c3

)

+ c1c4 + (1 + c1)
4c4

)
e4

n + O(e5
n) (10)

Substituting (9) and (10) in (7) we have

yn − α =

(
1 +

1

c1

)
c2e

2
n +

− (2 + 2c1 + c2
1) c2

2 + c1 (2 + 3c1 + c2
1) c3

c2
1

e3
n

+
(4 + 5c1 + 3c2

1 + c3
1) c3

2 − c1 (7 + 10c1 + 7c2
1 + 2c3

1) c2c3

c3
1

e4
n

+
c2
1 (3 + 6c1 + 4c2

1 + c3
1) c4

c3
1

e4
n + O(e5

n). (11)

Then,

f(yn) = (1 + c1) c2e
2
n +

− (2 + 2c1 + c2
1) c2

2 + c1 (2 + 3c1 + c2
1) c3

c1

e3
n

+
(5 + 7c1 + 4c2

1 + c3
1) c3

2 − c1 (7 + 10c1 + 7c2
1 + 2c3

1) c2c3

c2
1

e4
n

+
+c2

1 (3 + 6c1 + 4c2
1 + c3

1) c4

c2
1

e4
n + O(e5

n). (12)

Using (8) we obtain

xn+1 − α =
(1 + c1)

2c2 (2c2
2 − c1c3)

c3
1

e4
n + O(e5

n),

showing that the method is of fourth order.
¤
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3. Higher order optimal methods

This technique can be applied to a higher order multistep method using
higher degree Padé’s approximations for the derivative that appears when
adding a Newton’s step.

Recently, in [4] Ren et al. derive a one-parameter class of fourth-order
methods with three functional evaluations per step. In these methods, an
interpolation polynomial of order three is used to get a better approximation
to the derivative of the given function. Other Steffensen type methods and
their applications are also discussed by Liu et al. in [5] and by Zheng et al.
in [6] and by Feng and He in [7].

In [8], Cordero and Torregrosa obtain a family of optimal fourth-order
methods, that we will denote by CT4 and is given by:

xn+1 = yn − f(yn)

f(yn)− b f(zn)

yn − zn

+
f(yn)− d f(xn)

yn − xn

, (13)

where yn is the approximation of the Steffensen’s method (1) and b, d ∈ R
are parameters such as b + d = 1.

Our aim now is to obtain optimal order derivative free methods for n = 4,
starting from any optimal fourth order method.

So, let us consider ψ4 a function that defines an optimal fourth or-
der derivative free iterative method, which we compose with and Newton’s
scheme. If a Padé approximant of degree two is applied to the estimation of
the derivative in the last step, the resulting method will appear as:

yn = xn − f(xn)2

f(zn)− f(xn)
,

un = ψf (xn, yn, zn),

xn+1 = un − f(un)

m̄′(un)
,

(14)

where m̄(t) =
b1 + b2(t− un) + b3(t− un)2

1 + b4(t− un)
, and the parameters b1, b2, b3 and

b4 satisfy the following conditions:

m̄(xn) = f(xn), (15)

m̄(yn) = f(yn), (16)
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m̄(zn) = f(zn), (17)

and
m̄(un) = f(un). (18)

Again, from (18) one obtains

b1 = f(un),

and, by solving the system described by (15), (16) and (17) in a similar way
as before, the following values are obtained for the parameter b4:

b4 =
f [yn, un, xn]− f [yn, un, zn]

f [yn, zn]− f [yn, xn]

and also b3:
b3 = f [yn, un, zn] + b4f [yn, zn]

and b2:
b2 = f [yn, un]− b3(yn − un) + f(yn)b4.

Therefore the derivative of the second-degree Padé approximant can be
expressed as

m̄′(un) = b2 − b1b4. (19)

Substituting (19) in (14), we obtain a new scheme, denoted by Mψ8, whose
iterative expression is:

yn = xn − f(xn)2

f(zn)− f(xn)
, (20)

un = ψ4(xn, yn, zn), (21)

xn+1 = un − f(un)

b2 − b1b4

. (22)

Let us notice that in each iteration we evaluate f(xn), f(yn), f(zn) and
f(un), so that the method will be optimal, if we show that its convergence
order is 8.

Theorem 2. Let α ∈ I be a simple zero of a sufficiently differentiable func-
tion f : I ⊆ R −→ R in an open interval I. If x0 is sufficiently close to α,
then the method Mψ8 defined by (20-22) has optimal convergence order 8.
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Proof: Let en be the error of xn, that is, en = xn−α. Taylor’s expansion of
f(x) around α gives

f(xn) = c1en + c2e
2
n + c3e

3
n + c4e

4
n + · · ·+ c7e

7
n + c8e

8
n + O(e9

n), (23)

where ck =
f (k)(α)

k!
, k = 1, 2, . . .. Using that zn = xn + f(xn), we write

f(zn) = c1 (1 + c1) en +
(
c1 + (1 + c1)

2
)
c2e

2
n

+
(
2 (1 + c1) c2

2 + c1c3 + (1 + c1)
3 + c3

)
e3

n + O(e4
n) (24)

Substituting (23) and (24) in (20) we have

yn − α =

(
1 +

1

c1

)
c2e

2
n +

− (2 + 2c1 + c2
1) c2

2 + c1 (2 + 3c1 + c2
1) c3

c2
1

e3
n

+
(4 + 5c1 + 3c2

1 + c3
1) c3

2 − c1 (7 + 10c1 + 7c2
1 + 2c3

1) c2c3

c3
1

e4
n

+
c2
1 (3 + 6c1 + 4c2

1 + c3
1) c4

c3
1

e4
n + O(e5

n) (25)

and

f(yn) = (1 + c1) c2e
2
n +

− (2 + 2c1 + c2
1) c2

2 + c1 (2 + 3c1 + c2
1) c3

c1

e3
n

+
(5 + 7c1 + 4c2

1 + c3
1) c3

2 − c1 (7 + 10c1 + 7c2
1 + 2c3

1) c2c3

c2
1

e4
n

+
c2
1 (3 + 6c1 + 4c2

1 + c3
1) c4

c2
1

e4
n + O(e5

n) (26)

Assume that un is obtained by means of a fourth order method. Then

un − α = h4e
4
n + h5e

5
n + h6e

6
n + h7e

7
n + h8e

8
n + O(e9

n), (27)

and so,

f(un) = c1h4e
4
n + c1h5e

5
n + c1h6e

6
n + c1h7e

7
n +

(
c2h

2
4 + c1h8

)
e8

n + O(e9
n). (28)
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By computing (19) and substituting in (22) we obtain

xn+1 − α =
− (1 + c1)

2 c2
3 + c2 ((1 + c1)

2c4 + c1h4)

c2
1

h4e
8
n + O(e9

n), (29)

showing that the method is of eighth order. ¤
The same procedure can be applied to obtain higher-order optimal meth-

ods. In this case, we can write

yn = xn − f(xn)2

f(zn)− f(xn)
,

un = ψ4(xn, yn, zn),

vn = ϕ8(xn, yn, zn, un),

xn+1 = vn − f(vn)

m̄′(vn)
,

(30)

where ψ4 and ϕ8 are the iteration functions of optimal iterative methods of
orders 4 and 8, respectively. Now, the Pade’s approximant is of third degree

m̄(t) =
b1 + b2(t− vn) + b3(t− vn)2 + b4(t− vn)3

1 + b5(t− vn)
,

and the parameters b1, b2, b3, b4 and b5 can be determined analogously to the
previous cases. Then, by substituting the approximation of the derivative
m̄′(vn) = b2 − b1b5, in (30) a new method is defined. We give the following
result for the error equation in this case.

Theorem 3. Let α ∈ I be a simple zero of a sufficiently differentiable func-
tion f : I ⊆ R −→ R in an open interval I. If x0 is sufficiently close to α,
then the method Mψϕ16 defined by (30) has optimal convergence order 16,
and satisfies the following relation:

en+1 =
c2j9 ((1 + c1)

2c4
2h4 − c3 ((1 + c1)

2c5h4 − c1j9)) en
16

c1
2c3

+ O(en
17)

where ck =
f (k)(α)

k!
, k = 1, 2, . . . , 16, and hk, jk, k = 1, 2, . . . , 16 are the

generic coefficients of the error equation for methods of fourth and eighth
orders given by ψ4 and ϕ8, that is:

un − α = h4e
4
n + h5e

5
n + . . . + h16e

16
n + O(e17

n )

vn − α = j8e
8
n + j9e

9
n + . . . + j16e

16
n + O(e17

n )
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4. Numerical results

In this section we check the effectiveness of the new optimal methods
comparing them with Steffensen’s method and also with the method of which
they are derived. Specifically, we consider the new fourth-order method M4

introduced in (7) and the method CT4 given by (13). Applying (20), we
obtain the new optimal methods M8 and CT8 and using (30), we derive
methods M16 and CT16.

Nowadays, high-order methods are important because numerical applica-
tions use high precision in their computations; for this reason numerical tests
have been carried out using variable precision arithmetic in MATLAB 7.1.
with 2000 significant digits.

Tables 1 and 2 show for each initial estimation and every method, the
exact absolute error at first and last iterations, the number of iterations
required to obtain incr1 = |xk+1−xk| < 10−150 or incr2 = |f(xk+1)| < 10−150

and the corresponding computational order of convergence ρ (usually called
ACOC), defined by Cordero et al. in [9]:

p ≈ ρ =
ln(|xk+1 − xk| / |xk − xk−1|)

ln(|xk − xk−1| / |xk−1 − xk−2|) . (31)

The value of ρ appearing in Tables 1 and 2 is the last component of the vector
defined by (31), when it is stable, in other case we will denote it by ’-’.

The tests have been made on the nonsmooth function:

f(x) =

{
x(x + 1), if x < 0,
−2x(x− 1), if x ≥ 0,

(32)

that can be found in [10]. We use three initial estimations in order to ap-
proximate the three different roots of the equation, {−1, 0, 1}. From Table
1 it can be inferred that, as every root is close to each other, the initial es-
timation must be quite good if convergence to the central root is looked for.
In fact, for x0 = 5, Steffensen’s method converges to 0 (instead of 1) and, for
x0 = −10, method M8 converges to 0, instead of the closest root, -1.

Moreover, when x0 = 0.1 the nonsmoothness of the function (32) in 0 is
the reason why the estimated order of convergence is 2 for all the methods,
except in the case of M16 and CT16 in which, although ρ is not stable, a
visible reduction of the number of iterations show the better behavior of
these methods. In this case, the stability problems do not allow the order of
convergence to reach the theoretical ones (let us remember that these orders
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of convergence have been calculated under the assumption of the smoothness
of the nonlinear function).

When the initial approximation is near of 1 or -1, the behavior of the
methods is stable and the ACOC is near the theoretical order of convergence.
High-order methods are shown to be more efficient when the root is far
enough; for x0 = −10, the number of iterations needed have been reduced
in a reason of 1/4 from Steffensen’s method. It must be also taken into
account that, for (32), it is verified that c1 = 1, so the theoretical order of
convergence for all the methods involved, from SM to CT16, are higher than
in the standard case. The specific order of convergence will depend on each
method.

5. Conclusions

We have introduced a new technique which applied to optimal derivative
methods of order 2n−1 provides new optimal derivative methods of order 2n.
Specifically new methods of order 4, 8 and 16 are given explicitly. The pro-
cedure uses Steffensen-like methods and Padé approximant. Some numerical
tests are provided on a nonsmooth function to show the good performance
of the new methods.
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València PAID-06-2010-2285.

[1] A.M. Ostrowski, Solutions of equations and systems of equations,
Academic Press, New York-London, 1966.

[2] H.T. Kung, J.F. Traub, Optimal order of one-point and multi-point it-
eration, Journal of the Association for Computing Machinery, 21 (1974)
643-651.

[3] J.M. Ortega, W.G. Rheinboldt, Iterative solutions of nonlinear
equations in several variables, Academic Press, New York, 1970.

[4] H. Ren, Q. Wu, W. Bi, A class of two-step Steffensen type methods
with fourth-order convergence, Applied Mathematics and Computation,
209 (2009) 206–210.

10



[5] Z. Liu, Q. Zheng, P. Zhao, A variant of Steffensen’s method of
fourth-oder convergence and its applications, Applied Mathematics and
Computation, 216 (2010) 1978–1983.

[6] Q. Zheng, J. Wang, P. Zhao, L. Zhang, A Steffensen-like method
and its higher-order variants, Applied Mathematics and Computation,
214 (2009) 10–16.

[7] X. Feng, Y. He, High order oterative methods without derivatives for
solving nonlinear equations, Applied Mathematics and Computation,
186 (2007) 1617–1623.

[8] A. Cordero, J.R. Torregrosa, A class of Steffensen type methods
with optimal order of convergence, Applied Mathematics and Computa-
tion, 217 (2011) 7653–7659.

[9] A. Cordero, J.R. Torregrosa, Variants of Newton’s method using
5fth-order quadrature formulas, Applied Mathematics and Computation,
190 (2007) 686–698.

[10] S. Amat, S. Busquier, On a Steffensen’s type method and its behavior
for semismooth equations, Applied Mathematics and Computation, 177
(2006) 819–823.

[11] S. Amat, S. Busquier, On a higher order secant methods, Applied
Mathematics and Computation, 141 (2003) 321–329.

11



SM M4 M8 M16

x0 = 0.1 iter error iter error iter error iter error
1 4.52e-2 1 1.98e-2 1 6.74e-3 1 2.96e-3
2 4.60e-3 2 7.23e-3 2 6.18e-5 2 1.18e-011

α = 0
...

...
...

...
8 9.98e-124 7 6.50e-92 7 5.82e-130 4 5.01e-091
9 2.99e-246 8 8.45e-183 8 5.08e-259 5 7.54e-182

incr1 9.98e-124 6.50e-92 5.82e-130 5.01e-091
incr2 2.99e-246 8.45e-183 1.02e-258 7.54e-182
ρ 2.0058 2.0000 2.0000 -

x0 = 5 iter error iter error iter error iter error
1 2.70 1 1.42 1 3.83e-1 1 8.32e-2
2 1.21 2 0.57 2 3.25e-1 2 3.61e-16

α = 1
...

...
... 3 1.32e-246

11 1 6 2.28e-081 4 4.76e-36
12 1 7 5.43e-323 5 1.08e-282

incr1 2.76e-080 2.28e-081 4.78e-36 3.61e-16
incr2 3.05e-159 1.09e-322 2.17e-282 2.64e-246
ρ 2.0000 4.0000 7.7025 8.5860

x0 = −10 iter error iter error iter error iter error
1 8.36 1 4.13 1 1.73 1 6.72e-1
2 7.71 2 1.64 2 8.08e-1 2 2.40e-3

α = −1
...

...
... 3 2.07e-62

15 9.08e-130 11 6.06e-37 9 1 4 0
16 0 12 9.88e-218 10 1

incr1 9.04e-130 6.06e-037 1.115e-142 2.07e-062
incr2 0.0000 9.88e-218 4.90e-285 0
ρ 3.0000 - 2.0000 -

Table 1: Numerical results for function (32)
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CT4 CT8 CT16

x0 = 0.1 iter error iter error iter error
1 1.93e-2 1 6.73e-3 1 2.93e-3
2 6.95e-4 2 6.18e-5 2 1.14e-11

α = 0
...

...
...

8 6.45e-184 8 5.68e-130 4 3.76e-91
9 0 9 4.85e-259 5 4.25e-182

incr1 6.45e-184 5.68e-130 3.76e-91
incr2 0 9.69e-259 4.25e-182
ρ 2.0000 2.0000 -

x0 = 5 iter error iter error iter error
1 1.44 1 3.97e-1 1 8.79e-2
2 5.25e-1 2 3.27e-1 2 5.66e-17

α = 1
...

... 3 1.10e-260
6 2.87e-197 5 1.34e-137
7 0 6 0

incr1 2.87e-197 1.34e-137 5.66e-17
incr2 0 0 2.21e-260
ρ 4.0000 8.0017 9.2156

x0 = −10 iter error iter error iter error
1 4.29 1 1.82 1 7.15e-1
2 1.82 2 5.30e-1 2 1.32e-3

α = −1
...

... 3 8.33e-70
7 1.98e-323 4 1.08e-17 4 0
8 0 5 2.53e-204

incr1 1.98e-323 1.08e-17 8.33e-70
incr2 0 2.53e-204 0
ρ 5.9990 - -

Table 2: More numerical results for function (32)
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