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Generalized matched subspace filter for non-independent noise
based on ICA

J. Moragues*, L. Vergara, and J. Gosálbez

Abstract—We propose a generalization of the matched subspace filters
for the detection of unknown signals in a background of non-Gaussian
and non-independent noise. The generalization is based on a modification
of the Rao test by including a linear transformation derived from Inde-
pendent Component Analysis (ICA). Receiver Operating Characteristic
(ROC) curves computed for simulated examples illustrate the significant
improvement achieved with the generalized solution.

Index Terms—Rao test, matched subspace filter, non-Gaussian noise,
ICA.

I. INTRODUCTION

Matched subspace filter (MSF) is known to be an uniformly most
powerful (UMP) detector for the detection of a subspace signal in
a background of uncorrelated Gaussian noise [1]. Furthermore, it is
the optimum solution for the following hypothesis problem:

H0 : y = w w : N(0, σ2
wI)

H1 : y = µs + w s : Hθ
(1)

where y is the observation vector in each hypothesis (dimension N),
w is the zero-mean multivariate Gaussian noise vector and µs is the
signal vector. It is assumed that s lies in a subspace spanned by the
p < N columns of a known matrix H (N × p) and that the model
parameters µ and θ are unknown. The MSF is based on measuring the
observation energy included in the signal subspace by implementing
the following hypothesis test (real case is assumed):

yT Py
σ2

w

H1
>
<
H0

λ, (2)

where P is the projection matrix onto the signal subspace and it is

given by P = H(HT H)−1HT . The statistic
yT Py
σ2

w
is chi-squared

distributed with p degrees of freedom (χ2
p), so that the threshold

value λ may be obtained for a required probability of false alarm
(PFA).

Optimality of the MSF is kept even in the presence of subspace
interferences [2]. Also in [3], similar detector solutions are proposed
in the presence of interference for specific types of independent non-
Gaussian noise (called generalized Gaussian distributions). Unfor-
tunately, there is not any general UMP solution for the subspace
signal detection problem when the noise is non-Gaussian and non-
independent. Hence, suboptimal detectors are to be devised. A
generalized likelihood ratio test (GLRT) could be implemented, but
it requires Maximum Likelihood (ML) estimates of the unknown
parameters (in our case µ and θ), which is not a very practical option.
Other well-known suboptimal alternatives exist, like the Wald and
Rao tests [4]. The Wald test, although simpler to implement than the
GLRT, also requires estimates of the involved parameters under H1.
However, the Rao test does not have such a requirement as in its most
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general form only needs ML estimates of the nuisance parameters
under H0. Notice that in the considered problem, the vector of
parameters is given by θr = 0 (under H0) and θr = [µ,θT ]T (under
H1), i.e., no nuisance parameters appear and Rao test becomes an
attractive alternative to deal with the non-Gaussian noise case. It is
relevant to mention that in any case GLRT, Wald and Rao test are
asymptotically equivalent. Moreover it has been recently shown that,
for a finite number of observations, the three tests are coincident or
statistically equivalent in a number of typical detection problems [5]
[6]. In particular, it is demonstrated in [6] that coincidence exists in
detection problems without nuisance parameters when the observation
probability density function (PDF) belongs to the exponential family,
thus covering a broad range of practical cases.

In consequence, we will focus our attention on the Rao test. It
is rather simple to adapt the general form of the Rao test to the
signal subspace detection problem assuming that the components of
the noise vector w are independent and identically distributed (i.i.d.)
random variables. This has been done in [4], arriving to the hypothesis
test

g(y)T Pg(y)
Pg(w)

H1
>
<
H0

λ, (3)

where function g(.) is independently applied to each element of
vector y in the form g(y) = [g(y0)g(y1) . . . g(yN−1)]

T . If p(w)
is the noise PDF, we can define

g(w) = −

dp(w)

dw
p(w)

and Pg(w) =

∫ ∞
−∞

[
dp(w)

dw

]2
p(w)

dw. (4)

Notice that Pg(w) is the preprocessed noise mean-power and can be
expressed as follows:

Pg(w) =

∫ ∞
−∞

g2(w)p(w)dw = E[g2(w)], (5)

where E[.] means statistical expectation. Therefore, (3) is an exten-
sion of the MSF in the sense that some nonlinear transformation g(.)
is applied to the original observation vector prior to the computation
of the normalized subspace energy. Note that for the Gaussian case
g(w) = w, therefore g(y) = y and Pg(w) = Pw = σ2

w, i.e. (2) and
(3) are equivalent.

In addition to the already mentioned equivalences with the GLRT
and the Wald test, the Rao test has the interesting property that the
involved statistic g(y)T Pg(y)/Pg(w) is χ2

p as in (2), hence we can
easily compute the value λ for a required PFA. In the following,
we will denote as MSF the extension defined in (3) suitable for
independent and non-Gaussian noise.

In this work, we propose a further generalization of the MSF, called
generalized MSF (GMSF), in order to consider the most general case
of non-Gaussian and non-independent noise. It is based on the use of
Independent Component Analysis (ICA), a generalization of Principal
Component Analysis (PCA), [7] [8], which implements a matrix
linear transformation to make the components of the transformed
observation vector as independent as possible. The same idea was
exploited in [9] to derive energy detectors in the presence of non-
Gaussian noise. Actually, ICA could be resorted to implement a
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linear pre-processing step in any detection problem involving non-
Gaussianity and statistical dependence among the observed vector
components. However, each detector requires a particular attention
due to the specific implementation of the non-linear transformation
g(.). In [9], an ”ad hoc” non-linear function is proposed to make as
Gaussian as possible the linearly transformed observation vector, but
the GLRT condition of the extended energy detector used is not gen-
erally demonstrated. Nevertheless, this is not the case in the detection
problem considered in this work since the non-linear transformation
defined in (4) is inherent to the Rao test, thus preserving its properties.

The paper is organized as follows. In Section II, the GMSF is
defined and the computations required to implement it are given.
In Section III, the experimental setup and the simulation results are
included in order to verify the improvement of the GMSF with respect
to the MSF when the noise is neither Gaussian nor independent.
Finally, the conclusions of our work are mentioned in Section IV.

II. GENERALIZED MATCHED SUBSPACE FILTER

Test (3) assumes that the components of w are i.i.d. When this
is not the case, we could transform the non-independent observation
vector into a new one having independent components. This can be
done by means of ICA and an appropriate linear transformation. Let
us call U the transformation used to obtain i.i.d. vector noise samples
by means of u=Uw. We propose the GMSF in the form

g(Uy)T PUg(Uy)
Pg(u)

H1
>
<
H0

λ, (6)

where Pg(u)=E[g2(u)], and PU=HU (HT
UHU )

−1HT
U with HU=UH.

Notice that the non-linear transformation appearing in (6) must be
defined from the PDF of the linearly transformed noise samples u,
which will generally have a different (non-Gaussian) PDF of the
original noise w. Thereby, using (4) and changing w by u we obtain:

g(u) = −

dp(u)

du
p(u)

. (7)

Thus, it is guaranteed that equation (6) implements a Rao test in
the linearly transformed observation vector yU=Uy, hence keeping all
the mentioned properties of the Rao test such as the χ2

p distribution of
the statistic g(Uy)T PUg(Uy)/Pg(u) and the asymptotic equivalence
with the GLRT and Wald test.

Different criteria have been proposed to estimate the required
ICA transformation. In essence, all of them are trying to minimize
some appropriate measure of the dependence among the vector
components. In particular, U may be decomposed as follows:

U = QR−
1
2

w , (8)

where Q is a unitary matrix which performs the required rotation
when the observation noise is non-Gaussian and Rw is the noise
autocorrelation matrix that can be estimated using the classical
unbiased estimator:

R̂w =
1

K

K∑
k=1

wkwT
k , (9)

where K is the number of available noise vectors used to train the
detector. Then, by applying an iterative gradient algorithm, as used
in [9], it is possible to estimate the rotation matrix Q as follows:

Q̂
′

i+1 = Q̂i + β

K∑
k+1

[
(Q̂

T

i )
−1 − g(Q̂iwpk)wT

pk

]
(10)

Q̂i+1 = Q̂
′

i+1

(
Q̂

′T
i+1Q̂

′

i+1

)− 1
2

, (11)

where wpk = R̂
− 1

2
w wk are prewhitened training noise vectors and

(11) is required to make the estimate of Q a unitary matrix.
Test (6) and equation (10) require knowledge of the pre-processing

function g(.), which depends on the noise PDF p(u) as shown in (7).
If there is a priori knowledge of p(u), we can directly compute the
nonlinear function g(.). For example, if u follows a Laplacian PDF:

p(u) =
1√
2σ2

exp

(
−
√

2

σ2
|u|

)
, (12)

where σ2 is the variance, the pre-processing function can be ex-
pressed as:

g(u) = −

dp(u)

du
p(u)

=

√
2

σ2

d|u|
du

. (13)

But, in general, there will not be any available knowledge about
the PDF of u, hence we have to use a non-parametric approach. Let
us consider the set of samples {ul}, l = 1 . . . L corresponding to
realizations of the random variable u whose PDF is to be estimated.
The classical non-parametric estimator takes the form [10]:

p̂(u) = a

L∑
l=1

exp

(
−1

2

(u− ul

h

)2)
, (14)

where a =
1

Nh
√
2π

is a normalization constant and h is a parameter

which controls the degree of smoothing of the estimated PDF (some
rule of thumbs are available to fit h). Let us assume that the quality of
the estimate (14) is appropriate to consider p(u) ∼= p̂(u), so that we
can compute the nonlinear pre-processing function g(.) as described
in (7). We start by computing the derivative of (14) with respect to
u as follows

dp(u)

du
= a

L∑
l=1

exp

(
−1

2

(u− ul

h

)2)
·
(
−u− ul

h

) 1

h

=
a

h2

L∑
l=1

ul · exp
(
−1

2

(u− ul

h

)2)

− a

h2

L∑
l=1

u · exp
(
−1

2

(u− ul

h

)2)
, (15)

and hence

g(u) =
1

h2

u−
L∑

l=1

ul · exp
(
−1

2

(u− ul

h

)2)
L∑

l=1

exp

(
−1

2

(u− ul

h

)2)
 . (16)

We may identify in (16) a linear and a nonlinear term. This later
accounts for the possible non-Gaussianity of the random variable u.

III. EXPERIMENTAL ANALYSIS

A. Signal model

In order to evaluate the improvement of the GMSF in comparison
to the MSF, different experiments were conducted using (6) and (3)
respectively. Thereby, a subspace signal is to be detected in presence
of non-Gaussian and non-independent noise. Subspace signals will be
considered band-limited formed by the sum of one or more sinusoids
as defined in (17). This is a specific subspace signal, but it is of
particular interest to study the expected improvements when using
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the GMSF as it will be shown in the experiments performed. Hence,
the detection problem is expressed as follows:

H0 : y[n] = w[n]

H1 : y[n] =

M∑
m=1

Am cos(2πmf0n+ φm) + w[n]
(17)

where n = 0, 1, . . . , N−1 and m = 1, . . . ,M represents the number
of sinusoids used. The amplitude Am and phase φm are assumed
to be unknown, f0 is assumed to be known and w[n] are the non-
independent and non-Gaussian noise samples. We can rewrite the data
model in the linear model form as y = Hθ + w, with the subspace
matrix given by:

H =




1 0
cos[ω1] sin[ω1]

...
...

cos[ω1(N − 1)] sin[ω1(N − 1)]


∥∥∥∥∥∥∥∥

. . .

. . .

. . .

. . .

. . .

. . .

∥∥∥∥∥∥∥∥∥


1 0

cos[ωM ] sin[ωM ]
...

...
cos[ωM (N − 1)] sin[ωM (N − 1)]


 (18)

where each sinusoid ωm=2πmf0 is represented by a couple of
column vectors and the operator ‖ just signifies column augmen-
tation, that is, removing the abutting parentheses and making a
wider matrix out of the operands of the operator ‖. Using the
same notation, the unknown parameter vector θ can be expressed
as θ = [(α1β1)‖ . . . ‖(αMβM )]T , where αm = Am cosφm and
βm = −Am sinφm.

B. Experimental setup

The detector evaluation has been conducted by studying the
performance of the Receiver Operating Characteristic (ROC) curves,
where the PD is calculated for every possible PFA. On one hand,
this requires the generation of random variables corresponding to
non-Gaussian and non-independent noise denoted in the following as
wd. They are obtained by first generating non-Gaussian independent
random variables wi leading to noise vectors wi and, after that,
transforming them as follows wd = U−1wi. The elements of the
mixture matrix U−1 (dimension N×N ) are obtained from a random
variable with a standard uniform distribution on the open interval
(0,1). Therefore, a total number of 3 ·104 noise vectors are generated
for each simulation. On the other hand, it is also required to generate
the subspace signals. In this case, we set the frequency f0 to 0.1, φm

are samples of a uniform random variable between [−π −π] and Am

are selected for every required signal to noise ratio (SNR) defined as
SNR =

∑M
m=1 |Am|2/σ2

wi
.

In order to evaluate the GMSF, we assume that the estimate of the
linear transformation U and the pre-processing function g(.) required
in (6) are obtained in a previous training step where only noise
is present. Thereby, selecting the number of noise training vectors
K, used for the estimation of U, becomes an important problem of
practical interest. Obviously, good estimates of U require a relative
great value of K. However, it cannot be made arbitrarily large as
there are some limiting factors, namely, the computational burden
and the time interval duration allowed for training. In general, this
decision may be considered part of the overall calibration of the
detector for each application, but unfortunately, it is not easy to
find an analytic closed equation giving us the best values. Instead,
we use an experimental fitting taking the value that results in the
best performance in terms of the ROC curves. For example, in Fig.1

0 0.5 1 1.5 2 2.5 3 3.5 x10e−2

0.5

0.6

0.7

0.8

0.9

1
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P
D

 

 

K = 500
K = 1500
K = 2000
K = 2500

Fig. 1: ROC curves of GMSF for non-Gaussian and non-independent
noise generated from Laplacian PDF with SNR = −2dB, N = 25,
M = 1 and different K setups.

we show the results obtained for non-Gaussian and non-independent
noise wd (generated from Laplacian PDF) with SNR = −2dB,
N = 25, M = 1 and different K setups. It can be observed how for
K > 2000 there is not a significant improvement of the ROC curve.
Similar results were achieved varying SNR, N and M , therefore,
in our experiments K was set to 2000.

Once we have obtained Û, it is necessary to estimate the non-
parametric function g(.). For that, the estimated linear transformation
Û is applied to the K available noise training vectors wd as follows:
û = Ûwd. This leads to K linearly preprocessed vectors û and to a
total set of KN independent samples of the random variable u which
will have similar PDFs to the originals wi. However, only a subset
of L = NK/4 samples will be randomly selected to estimate g(.)
using (16) in an effort to reduce the computational requirements.
The parameter L was set considering similar experiments to those
conducted to determine the most suitable value of K.

C. Comparing GMSF and MSF

Several experiments were performed in order to assess the im-
provements of the GMSF with respect to the MSF varying different
parameters involved in the detection problem. First, it is of particular
interest to observe how the GMSF behaves in presence of indepen-
dent non-Gaussian noise (wi). In Fig. 2, the ROC curves of both
detectors are presented when using independent Laplacian noise for
SNR = −2dB, N = 25 and M = 1. It can be observed that both
detectors behave similarly as expected. Secondly, in Fig. 3, we show
the ROC curves obtained with the MSF and the GMSF considering
different types of non-independent noises (wd) for SNR = −6dB,
N = 25, and M = 1. As it was described in the previous sections,
these dependent noise samples correspond to linearly transformed
independent noises having non-Gaussian PDFs: Rayleigh, Laplacian
and Gamma. Furthermore, the ROC curve of the MSF is also
represented for the same parameters and non-Gaussian noise PDFs,
but with independent samples. Comparison of the three curves for
all noise distributions indicates that the MSF detector experiments
a considerable deterioration with non-independent noise while the
GMSF curves practically coincide with the ones corresponding to the
MSF for independent noise. Therefore, it is shown the capability of
the GMSF to compensate the degradation of the MSF which becomes
a random detector in presence of dependent noise. The above results
are of particular importance since it is possible to demonstrate the
generalization property of the GMSF, which significantly improves
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Fig. 2: ROC curves of MSF and GMSF for independent Laplacian
noise (wi) with SNR = −2dB, N = 25 and M = 1.

the MSF performance in presence of non-independent noise (Fig. 3)
and it behaves like the MSF in presence of independent noise (Fig. 2).

In Fig. 4, we extend the previous results testing the influence of
varying different parameters involved in the experiments. Fig. 4a, 4b
and 4c show the ROC curves of the GMSF and the MSF for different
values of SNR, N and M with non-Gaussian and non-independent
noise (generated from Laplacian PDF). In all the examples, the
improvements of the GMSF with respect to the MSF are evident and
the influence of the parameter value follows the expected behavior.
In Fig. 4a we can see how the PD increases with the SNR. It must
be noticed that the increase is not very significant for the MSF, thus
indicating that the SNR should be much higher to compensate the
degradation of the MSF in presence of dependent noise. Similarly,
in Fig. 4b, as expected, the PD also improves with the observation
size N since the normal behavior of any detector implies that the
test statistic increases the signal to noise ratio gain with N . Again,
we can observe how the enhancement in PD when using the MSF
is not as significant as the one obtained with the GMSF. Finally,
Fig. 4c shows the influence of varying M , the number of involved
sinusoids (dimension of the subspace). As expected, the PD increases
in the GMSF case when the subspace becomes more restrictive (lower
dimension), that is the signal bandwidth becomes narrower, although
in MSF this effect is insignificant in comparison with GMSF.

As a general conclusion, it is shown that the degradation of the
MSF due to the presence of non-independent noise cannot be easily
compensated by increasing the SNR, the observation size N or by
reducing the signal subspace dimension M . Therefore, the use of the
GMSF is presented as a practical solution to this problem.

IV. CONCLUSION

We have introduced a generalization of the matched subspace
filters for the detection of unknown signals in a background of
non-Gaussian, non-independent noise. To do so the already known
detector based on the Rao test, which is applicable to non-Gaussian
and independent noise, is modified to include a previous linear trans-
formation based on ICA. In order to obtain general applicability of the
proposed test, a non-parametric estimation of the noise PDF is used
after the linear transformation. Thereby, the properties of the Rao
test are preserved for any kind of non-Gaussian noise distribution.
Several experiments were conducted with simulated examples in
order to evaluate the MSF in comparison to the GMSF. The study
of the resulting ROC curves show the performance enhancement
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Fig. 3: ROC curves of MSF and GMSF for different types of non-
independent (wd) and independent (wi) non-gaussian noise distribu-
tions for SNR = −6dB, N = 25 and M = 1. (a) Rayleigh noise;
(b) Laplacian noise and (c) Gamma noise.

obtained with the generalized solution, and, more specifically that
the degradation of the MSF in presence of dependent noise cannot
be easily compensated except by using the GMSF.
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Fig. 4: ROC curves of MSF and GMSF with non-Gaussian and non-
independent noise distributions generated from Laplacian PDF. (a)
N = 25, M = 1 and different SNR; (b) SNR = −4dB, M = 1
and different observation vector length (N ); (c) SNR = −4dB,
N = 25 and different subspace matrix dimension (M ).
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