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Chapter 1

Introduction

1.1 Unmanned Aerial Vehicles

In the past years there has been an increasing interest in Unmmaned Aerial Systems (UAS).
It is important to mention that UAS regulations are becoming more strict worldwide, limit-
ing their range of applications and requiring the pilots to obtain a license which guarantees
they have the necessary skills to remotely operate the aircraft in a safe manner. In the case
of Spain, the flight of UAVs for commercial and civil purposes was regulated the 5th of July
of 2014.

Among the UAS, quadrotors are of special interest in control from both perspectives,
theoretical and applied [1]. They have been used as testbed platforms for validation of
non-linear [2], robust and predictive controllers [3]. Disregarding the control strategy, a
high-performance attitude tracking subsystem is a requisite for developing any other high-
level controlling task. A good example of this statement can be found in [4], where a full
control (vision, collision avoidance, landing/taking-off) is developed relying on the attitude
control.

Developing a quadrotor vehicle involves several challenges. They are unstable systems,
governed by coupled nonlinear equations. Furthermore, they rotational dynamics is quite
fast and thus, control algorithms have to be implemented with a small sample period. This
enforces strong requirements on the architecture of the device (motors, drivers, communica-
tions, real-time operative systems).

Sensing is the first challenge when it comes to controlling quadrotors. The key state
variables to be estimated are the attitude and the angular velocity, as they are the primary
variables used in attitude control of the vehicle [5]. Inertial Measurement Units (IMUs),
which are the core of lightweight robotic applications have experienced a proliferation, re-
sulting in cheaper, and more accurate devices [6]. The emergence of cheaper IMUs makes it
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possible to use UAS for civil purposes like ground traffic inspection [7], forest fire monitoring
[8] or real-time irrigation control [9]. Researchers have also been able to push the limits
beyond traditional control stabilization, achieving outstanding acrobatic maneuvers [10].

It is thus both a challenging and an interesting task to obtain a reliable attitude estima-
tion using low-cost sensors. This is difficult due to the low performance of the sensors which
restricts the quality of the resulting estimation. And it is definitely interesting because the
problem of obtaining an accurate attitude estimation is crucial and it usually represents a
large portion of the cost of an UAS [6].

The sensor fusion problem consists of obtaining an optimal estimation of the required
vehicle state variables with the direct measurements from multiple sensors. There are many
possible solutions to this problem, e.g., Kalman filters [11, 12] or complementary filters [13].
The major part of this thesis will be focused on the problem of attitude estimation.

Control of quadrotors involves also challenges such as parametric uncertainties, non-
linearity, coupling and external disturbances [14, 15]. A high-performance attitude tracking
subsystem is a prerequisite for developing any other high-level control tasks [16, 4]. In
practical applications, the attitude of an UAV is automatically stabilized via an on-board
controller and its position is generally controlled by an operator through a remote control
system [17]. A wide variety of attitude controllers already exist in the literature. Some of
them are based on classical techniques, whilst others employ nonlinear and robust control
strategies; see for example [3, 18, 15] and the references therein. The last part of this thesis
will treat the problem of controlling qudarotor systems.

1.2 Thesis Organization and Contributions

This thesis summarizes the work carried out for a period of one year related to improving
the estimation and control of quadrotor vehicles. Such work derived into several publications
which are spread out along this thesis. The rest of it is structured as follows:

The preliminaries can be found in Chapter 2, where probability concepts and the Kalman
Filter are reviewed. Also the mathematical representation of 3D-orientations of a rigid body
is treated. An insight into MEMS (Micro-Electro-Mechanical Systems) sensors, which are
the basis of modern attitude estimation devices for lightweight robotics, is also given. The
chapter finishes with an explanation of the experimental platforms used to validate the al-
gorithms presented along the rest of the thesis.

Chapter 3 contains two sections, each of them related to an individual publication. The
first section is based on [19], presented at the World Congress on Intelligent Control and
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Automation (WCICA) 2014, where a comparison between different estimation algorithms
can be found. The second section is focused on an efficient attitude estimation algorithm
[20] presented at the International Conference of Unmanned Aircraft Systems (ICUAS) 2014.

The problematic of time delays in attitude estimation is introduced in Chapter 5. The
whole chapter is dedicated to [21], presented at the International Conference on Information
Fusion (FUSION) 2014, where a method to compensate the delay of the attitude measure-
ments was introduced.

Chapters 5 and 6 are related to control of quadrotors. In Chapter 4, a brief introduc-
tion to modeling of quadrotor systems is given, while the rest of the chapter is related to a
technique called Uncertainty and Disturbance Estimator (UDE). A complete derivation of
this method is given and extensive results in real experiments are presented. This chapter is
a revisited version of [22], which has been already submitted to the IEEE Transactions on
Control Systems Technology, and it is still pending of acceptance.

Similarly, the last chapter introduces the theory of adaptive controllers based on reference
models. Simulations and successful experimental results are also presented. This chapter is
derived from , which was also presented at the WCICA 2014.
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Chapter 2

Preliminaries

2.1 Random variables

2.1.1 General definitions

A random variable is a variable whose value is subject to variations due to its nature. The
possible values that a random variable can take (continuous or discrete) have an associated
probability. In case the variable is discrete, one can speak about probability distribution,
whereas the term probability density function is used for continuous variables.

Among the continuous probability functions, the so-called normal (or Gaussian) distri-
bution is a very commonly occurring one. The normal distribution is

f(x, µ, σ) =
1

σ
√
2π
e−

(x−µ)2

2σ2 (2.1)

The parameter µ is the mean or expected value of the distribution. Given an univariate
random variable X defined in a domain X which follows a probability density function f(x)
(this is denoted by X ∼ f(x)), the expected value is defined as

E[X ] =

∫

X

xf(x)dx (2.2)

The parameter σ is the standard deviation, which is the square root of the variance. Although
they are directly related, many statistical properties are easier to handle in terms of the
variance rather than the standard deviation. The variance is defined as

Var[X ] = σ2 =

∫

X

(x− µ)2f(x)dx (2.3)

Intuitively, the variance measures how far a set of numbers is spread out around the mean
value. The following expression, which can be easily derived, relates the variance and the
expected value

Var[X] = E[X2]− (E[X ])2 (2.4)
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There is one more measure, which will be regularly used in the rest of this chapter, which is
called covariance. The covariance indicates how much two random variables change together.
The covariance between two variables x and y is defined as

Cov(x, y) = E[(x− E[x])(y − E[y])] (2.5)

Similarly as it occurred with the variance, it is possible to simplify the expression to obtain

Cov(x, y) = E[xy]− E[x]E[y] (2.6)

2.1.2 Random vectors and covariance matrices

A random vector or more formally, a multivariate random variable, is a collection of random
variables. The individual variables are gathered because there may be correlations between
them. The use of random vector is convenient in many cases.

The previous definitions will be extended to the case of random vectors. The expected
value of a random vector X is a vector E[X] whose elements are the expected values of the
respective random variable.

The covariance matrix is a very useful representation, which is defined between two
random vectors X and Y as

Cov[X,Y ] = E[(X − E[X])(Y − E[Y ])T ] = E[XY T ]− E[X]E[Y ]T (2.7)

Let us consider a particular case that will commonly happen in the derivation of the Kalman
Filter. Let X be a random vector with E[X] = 0, which means that every variable con-
tained in the vector has null expectation. The covariance matrix of X, which will be always
symmetric, is given by

Cov[X,X] = E[XXT ]− E[X]E[X]T = E[XXT ] (2.8)

where the last equality follows from the fact that E[X] = 0. It is interesting to see that
the diagonal of Cov[X,X] contains the variance of each element in the vector X, while the
off-diagonal terms are the covariances between every combination of them. If a random
variable is characterized by a diagonal covariance matrix, that implies that the variables in
the vector a independent (not correlated). The notation X ∼ (M , 0) is used, to describe a
random vector X that follows a zero-mean normal distribution with covariance matrix M .

2.2 The Kalman Filter

2.2.1 Introduction

The Kalman Filter [23] (and its variants) is one of the most popular data fusion algorithms
in the field of information processing. The most famous early use of the Kalman Filter was in
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the Apollo navigation computer that took Neil Armstrong to the moon. Today, Kalman fil-
ters are at work in every satellite navigation device, smart phone and many computer games.

From a theoretical point of view, the Kalman Filter is an algorithm permitting exact
inference in a linear dynamical system. It is usually referred to as the optimal observer for
linear systems. The following introduction will help placing the Kalman Filter in the context
of linear observers.

Let us consider a generic LTI system

ẋ = Ax+Bu

y = Cx
(2.9)

where the output of the system y can be measured with some measurement error. Let
us denote by x̂ and define z = y − Cx̂ as the innovation error. This variable shows the
discrepancy between the model and the measurements. A traditional approach, the so-called
Luenberger observer, consists of using the dynamic model to propagate the state estimation
and adding a correction term based on the innovation error as follows

˙̂x = Ax̂+Bu+L(y −Cx̂) (2.10)

The matrix L is the observer gain which has to be designed. Defining the estimation error
as e = x̂− x, it can be seen that the error dynamics satisfy

ė = (A− LC)e (2.11)

Thus the gain L can be designed using the pole placement method such that the desired
error dynamics is achieved. A general rule of thumb suggests that the error dynamics should
converge ten times faster than the system dynamics. However, an obvious question arises:
is there a way to choose the observer gain in an optimal manner depending on the model
reliability and the quality of the measurements?

The Kalman Filter solves this problem for linear systems in which the state and measured
variables have a Gaussian distribution.

2.2.2 Kalman Filter Derivation

Let us consider a discrete-time dynamic model in which both the model and the measure-
ments are corrupted by noise as follows

xk+1 = Φkxk + Γkuk +wk (2.12)

yk = Hkxk + vk (2.13)
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where vk and wk are assumed to be zero-mean Gaussian white-noise errors, which means
that they are not correlated forward or backward in time so that

E[vkv
T
j ] = Rkδkj E[wkw

T
j ] = Qkδkj (2.14)

being δjk the Kronecker delta function. Furthermore, it is also assumed that both errors are
uncorrelated so that E[vkw

T
k ] = 0, ∀k.

The following estimator form, following the idea of the Luenberger’s observer previously
described, is considered

x̂−

k+1 = Φkx̂
+ + Γkuk (2.15)

x̂+
k = x̂−

k +Kk(yk −Hkx̂
−) (2.16)

where a distinction is made between the a priori state estimation, x̂−

k , propagated using
the dynamic model, and the a posteriori estimation, x̂+

k , updated upon the arrival of a new
measurement.

The following error covariances are defined

P−

k = E[e−

k e
−T
k ], P−

k+1 ≡ E[e−

k+1e
−T
k+1] (2.17)

P+
k = E[e+

k e
+T
k ], P+

k+1 ≡ E[e+
k+1e

+T
k+1] (2.18)

(2.19)

where

e−

k ≡ x̂−

k − xk, e−

k+1 ≡ x̂−

k+1 − xk+1 (2.20)

e+
k ≡ x̂+

k − xk, e+
k+1 ≡ x̂+

k+1 − xk+1 (2.21)

are the state errors in the prediction and update stages. The goal is to derive recursive
expressions for the propagation and update of the error covariance matrices, and also, derive
an optimal expression for the gain Kk, which will be obtained by minimizing the error.

The derivation will start finding the expression for P−

k+1. Substituting the Equations
(2.15) and (2.12) into (2.20) and using the definition of e+

k in (2.21) yields

e−

k+1 = Φke
+
k −wk (2.22)

P−

k+1 ≡ E[e−

k+1e
−T
k+1]

= E[Φke
+
k e

+T
k ΦT

k ]− E[Φke
+
kw

T
k ]− E[wke

+T
k ΦT

k ] + E[wkw
T
k ]

= ΦkE[e
+
k e

+T
k ]ΦT

k −ΦkE[e
+
kw

T
k ]− E[wke

+T
k ]ΦT

k + E[wkw
T
k ]

(2.23)



CHAPTER 2. PRELIMINARIES 11

The last equality in Equation (2.23) follows from the fact that wk and e+
k are uncorrelated

and therefore E[e+
kw

T
k ] = E[wke

+T
k ] = 0. Using the definitions in Equations (2.14) and

(2.18), Equation (2.23) is reduced to

P−

k+1 = ΦkP
+
kΦ

T
k +Qk (2.24)

The next step is to find an optimal expression for the updated covariance P+
k . Sub-

stituting Equations (2.16) and (2.13) into (2.21) and using the definition of e+
k in (2.20)

yields
e+
k = (I−KkHk)e

−

k +Kkvk (2.25)

Then P+
k is given by

P+
k ≡ E[e+

k e
+T
k ]

= (I−KkHk)E[e
−

k e
−T
k ](I−KkHk)

T

+ (I−KkHk)E[e
−

k v
T
k ]K

T
k +KkE[vke

−T
k ](I−KkHk)

T +KkE[vkv
T
k ]K

T
k

(2.26)

Again, the last equality in Equation (2.26) follows from the fact that vk and e−

k are uncorre-
lated and therefore E[e−

k v
T
k ] = E[vke

−T
k ] = 0. Using the definitions in Equations (2.14) and

(2.17), Equation (2.23) is reduced to

P+
k = (I−KkHk)P

−

k (I−KkHk)
T +KkRkK

T
k (2.27)

In order to find the optimal value for the gain Kk, the minimization problem is defined

minimize J = Tr(P+
k ) (2.28)

Minimizing the trace of P+
k is equivalent to minimizing the length of the estimation error

vector. Using the following property, which holds for any symmetric matrix M

∂

∂X
(Tr(XMXT ) = 2XM , (2.29)

it is possible to see that

∂J

∂Kk
= −2(I−KkHk)P

−

kH
T
k + 2KkRk (2.30)

Setting Equation (2.30) equal to zero and solving for Kk yields

Kk = P−

kH
T
k (HkP

−

kH
T
k +Rk)

−1 (2.31)

Plugging Equation (2.31) into Equation (2.27), results in

P+
k = (I−KkHk)P

−

k (2.32)

A detailed derivation of the Kalman filter and further considerations can be found in
[24]. The Kalman filter equations can be summarized as

x̂−

k+1 = Φkx̂k + Γkuk

P−

k+1 = ΦkP kΦ
T
k +Qk

(2.33)
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———

Sk = HkP
−

kH
T
k +Rk

Kk = P−

kH
T
hS

−1
k

x̂+
k = x̂−

k +Kk

(

yk −Hkx̂
−

k

)

P+
k = (I −KkHk)P

−

k

(2.34)

2.2.3 Extended Kalman Filter

There is a large number of problems involving nonlinear models. The vast majority of
nonlinear models are given in continuous time, as follows

ẋ(t) = f (x(t),u(t), t) +w(t), w(t) ∼ N (0,Q(t)) (2.35)

y(t) = h(x(t)) + v(t), v(t) ∼ N (0,R(t)) (2.36)

The main inconvenient of nonlinear models is that the Gaussian properties are not preserved.
In other words, a Gaussian input does not imply a Gaussian output. However, if the model
is linearized, the nonlinear effects can be small in a certain neighborhood. The Extended
Kalman Filter approach consists of linearizing the model at the last estimated state. How-
ever, the optimality of the Kalman Filter is lost when applied to nonlinear systems, and
there are no guarantees of convergence either.

Let us consider the next discretized version of the model described by Equations (2.35)
and (2.36)

xk+1 = F (xk,uk, t) +wk, wk ∼ N (0,Qk) (2.37)

yk = H(xk) + vk, vk ∼ N (0,Rk) (2.38)

Then the equations of the EKF, which can be found also in [24], are summarized as

Φk =
∂F

∂x

∣

∣

∣

∣

x̂
−

k
,uk

Γk =
∂F

∂x

∣

∣

∣

∣

x̂
−

k
,uk

Hk =
∂H

∂x

∣

∣

∣

∣

x̂
−

k

(2.39)

———

x̂−

k+1 = Φkx̂k + Γkuk

P−

k+1 = ΦkP kΦ
T
k +Qk

(2.40)

———

Sk = HkP
−

kH
T
k +Rk

Kk = P−

kH
T
hS

−1
k

x̂+
k = x̂−

k +Kk

(

yk − h(x̂−

k )
)

P+
k = (I −KkHk)P

−

k

(2.41)
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Since the convergence is not guaranteed, one has to be specially careful when initializing an
EKF algorithm. The initial guess should be accurate in order avoid the filter to diverge.
Although it is very difficult, even for some simple cases, to establish uncertainty bounds
on the initial guess that guarantee the convergence, the analysis can be addressed with
numerical simulations.

2.3 Attitude Parameterization

2.3.1 Introduction

In this section, different attitude representations are reviewed. Regardless of the method,
describing the attitude of an aerial vehicle consists basically on describing the orientation of
the body-fixed reference frame (attached to the principal axes of the vehicle) with respect
to an external inertial reference frame.

Let us denote hereafter by E and B the inertial and body-fixed reference frames, re-
spectively, each consisting of three orthogonal unit vectors {ex, ey, ez} and {bx, by, bz}. A
superscript notation is used to indicate in which reference frame a vector is defined, e.g., the
vector vB is expressed in the B frame. It is possible to transform a vector between different
reference frames using a rotation matrix. The following notation is used such that BRE

maps vectors of E onto B, i.e., vB = BREv
E .

2.3.2 Direction Cosine Matrix

The Direction Cosine Matrix (DCM) is the most straightforward manner of representing the
orientation. Given two coordinate systems, namely E and B, there exist a matrix R that
relates the two coordinate systems. More specifically, the columns of the rotation matrix
BRE are given by the basis vectors of E expressed in B, i.e., BRE = [eBx , e

B
y , e

B
z ].

This way of representing orientation is highly redundant. The columns of the DCM have
several constraints. On one hand, they must be unitary, and, on the other hand, each column
is orthogonal to the others. There are six constraints in total, which means that it is possible
to obtain a minimal representation of the orientation using only three parameters.

2.3.3 Euler angles

Euler angles are a minimal representation of the orientation given only by three parameters.
Since the order of rotation matters, there are up to twelve possible sequences of rotations.
The common convention for aerial vehicles is the roll(φ) - pitch(θ) - yaw(ψ) sequence. This is
an intrinsic sequence, which means that each rotation is defined over the successive rotated
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reference frames.

It is easy to derive the rotation matrices for individual rotations around a single axis (roll,
pitch or yaw). Due to the properties of the rotation matrices, the final orientation of the
body is given by the multiplication of those individual rotations. Using the roll-pitch-yaw
convention results in the following orientation matrix

BRE =





cθcψ cθsψ −sθ
sφsθcψ − cφsψ sφsθsψ + cφcψ sφcθ
cφsθcψ + sφsψ cφsθsψ − cφcψ cφsθ



 (2.42)

Let ω = ωB
B/E = [p, q, r]T be the angular velocity of the aircraft with respect to {E}

expressed in the body frame {B}. The rotational kinematic relating these angular velocities
to the Euler angles, η = [φ θ ψ]T , is expressed as

η̇ =





1 sinφ tan θ cos φ tan θ
0 cosφ − sinφ

0 sinφ
cos θ

cosφ
cos θ



ω (2.43)

where φ, θ, and ψ denote the roll, pitch and yaw angle, respectively.

2.3.4 Quaternions

Quaternions are a convenient mathematical notation for representing orientations and rota-
tions in three-dimensional spaces. Compared to Euler angles, they do not present singulari-
ties and are more efficient to compose, which means less computational effort in embedded
applications.

According to Euler’s rotation theorem, any sequence of rotations of a coordinate system
is equivalent to a single rotation by a given angle θ about a fixed axis u. Quaternions provide
an efficient way to encode this information. They are defined as

q =

[

q0
q̃

]

(2.44)

where q0 = cos θ
2

and q̃ = u sin θ
2

are the scalar and vector parts of the quaternion, respec-
tively. When used to describe rotations, the quaternions are constrained to the surface of a
unitary hyper-sphere which means that they always satisfy q̃T q̃ + q20 = 1. This fact is used
in real applications to avoid the propagation of numerical errors.

The rotation matrix is expressed in terms of the quaternion components as follows

BRE =





q21 − q22 − q23 + q24 2(q1q2 − q3q4) 2(q1q3 + q2q4)
2(q1q2 + q3q4) q21 + q22 − q23 + q24 2(q2q3 − q1q4)
2(q1q3 − q2q4) 2(q2q3 − q1q4) q21 − q22 + q23 + q24



 (2.45)
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Figure 2.1: Detailed view of the iPhone 4s 3-axis gyroscope

2.4 Inertial MEMS Sensors

2.4.1 Introduction

Micro-Electro-Mechanical Systems (MEMS) is the integration of mechanical elements, sen-
sors, actuators, and electronics on a common silicon substrate through microfabrication
technology. The micromechanical components are fabricated by selectively etching away
parts of the silicon wafer or adding new structural layers. The exploitation of the silicon as
a mechanical material has been exceptionally successful in the production of 3D structures.
A detailed view of the structure of a 3-axis gyroscope is shown in Figure 2.1.

2.4.2 MEMS Characterization

There are several technological companies like Crossbow, Analog Devices, InvenSense that
focus on developing MEMS inertial sensors. When finding the most suitable device for an
specific application, these are some of the important metrics to look at:

Scale Factors

These parameters are responsible for the deterministic behaviour of the sensor and they can
be calibrated. A default calibration is provided by the manufacturer, which sometimes in-
cludes temperature compensation. This is commonly achieved by adjusting each coefficient
to a low-order polynomial.
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The inertial sensors are usually mounted in a tri-axial distribution on a plate. Any
misalignment can give rise to cross-axis coupling effects. Nonlinearities also appear due
to the nature of the components used to fabricate the sensors. These two effects are non-
desirable and are usually upper-bounded in the manufacturer specifications.

Bias

The bias is the term referring to a nearly-constant drift in the measurement. Although this
error can be accurately calibrated, the bias slowly drifts over time due to electro-mechanical
factors. The bias stability is an important metric of the quality of an inertial sensor, usually
expressed in deg/s/h. Similarly, the bias repeatability refers the variability of the bias every
time the sensor is turned on.

Having a mathematical representation of the bias is useful when designing filters. The
slow drift of the bias is described by a random walk process, which is the result of integrating
a white noise signal. If the bias is denoted by β, then it evolves over time according to

β̇ = w, w ∼ N (0, σ2) (2.46)

where σ2 is the variance of the underlying white noise and determines how fast the bias
drifts.

Random-Walk Error

This is a measure of the noise of the sensor, and it is specially important when defining
the quality of a gyroscope, where it is given in units of deg/s/

√
Hz (noise density). The

amount of noise will determine the drift of the angular estimation obtained by integrating
the angular velocity. Because of that, some manufacturers provide an equivalent measure,
the angular rate walk (ARW) in units of deg/

√
h, from which it is straightforward to obtain

an approximation of the drift in the angular estimation over a certain period of time.

2.4.3 Gyroscopes

The MEMS gyroscopes are placed in a strapdown configuration, which means they are at-
tached to the vehicle. This differs from traditional gyroscopes used in aviation which were
mounted on gimbals. In a strapdown configuration, a 3-axis gyroscope measures the angular
velocity of the body. Using the notation introduced in Section 2.3, the output of the gyro-
scope is the angular velocity of {B} with respect to {E}, expressed in {B}, which is denoted
by ω = ωB

B/E = [p, q, r]T .
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According to the characteristics previously described about the MEMS sensors, a suitable
model for the gyroscope measurement is given by

ω̄ = ω + βω + ηω, E[ηω] = 0 E[ηωη
T
ω ] = σωI3 (2.47)

β̇ω = ηβ, E[ηβ] = 0 E[ηβη
T
β ] = σβI3 (2.48)

where the angular velocity measurement ω̄ is composed of its actual value ω, plus the
bias βω and noise in the measurement ηω. Furthermore, the bias is modeled as a random
walk process.

The measurements of the gyroscopes are directly related to the kinematics of the vehicle.
Given a known initial attitude it is possible to use the information of the gyroscopes along
with any of the equations XXXXXX to propagate over time. However, this will lead to a
drift in the angular estimation that will depend on the noise characteristics of the sensors.

2.4.4 Accelerometers

The MEMS accelerometers in strapdown configuration measure the specific force action on
the vehicle expressed in {B}. According to the characteristics previously described about
the MEMS sensors, a suitable model for the accelerometer measurements is given by

ā = a+ ηa, E[ηa] = 0 E[ηaη
T
a ] = σaI3 (2.49)

where the acceleration measurement ā is composed of its actual value a and noise in the
measurement ηa. There is also a bias in the accelerometers, but they are not critical as it
will be explained next.

In contrast to the gyroscopes, the relation between the accelerometer readings and the
attitude of the vehicle is not so straightforward. From XXXX, it can be seen that the specific
force

aB =
1

m

(

fB − BRE(mg)ê3

)

= v̇B − BREgê3 (2.50)

where v̇B is the acceleration vector due to the external forces expressed in {B}, m denotes
the mass of the aerial vehicle and fB represents the vector of external forces that act on
the quadrotor. Since the accelerations in stable flight regimes are usually small compared to
the gravity acceleration, neglecting the linear acceleration (v̇B = 0) is a classical assumption
[25]. Normalizing the vector of acceleration measurements facilitates to express the roll and
pitch angles as

a =
aB

|aB| ≈ −BREê3 =





sin θ
− sin φ cos θ
− cosφ cos θ



 (2.51)

From Equation (2.51), it can be seen that any bias in the accelerometer measurements will
result only in a small offset in the roll and pitch estimations with respect to the real horizontal
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plane perpendicular to the gravity vector. However, these offsets will also appear due to any
misalignment of the inertial sensors mounted on the vehicle. These errors can be calibrated
once the whole system is built.

2.5 Experimental Platforms

Along this thesis, the following experimental platforms will be constantly referenced.

2.5.1 Quanser Quadrotor Laboratory

Most of the algorithms contained in this thesis have been first validated using the platform
shown in Figure 2.2. It is thought of as a test bed platform of control algorithms for ver-
tical lift off vehicles, so that the translational degrees of freedom are clamped for convenience.

The orientation of the vehicle is measured by means of optical encoders with an accuracy
of 0.04 deg. These encoders provide a reliable pattern for the evaluation and comparison
of the algorithms. In addition, a commercial IMU (3DM-GX2) and a low cost inertial
sensor (MPU6050) were also included in the platform in order to validate and compare
the measurements. The 3DM-GX2 runs at 200 Hz and outputs directly the orientation
in Euler angles representation. The MPU6050 is composed of a 3-axis gyroscope and a
3-axis accelerometer. It does not provide the angles of the rigid body but only the raw
measurements of the sensors.

Figure 2.2: Experimental platform
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Figure 2.3: Quadrotor prototype

2.5.2 Quadrotor Prototype

Although the platform described above is a suitable scenario for numerical comparison, there
are two handicaps to overcome in real flight, i.e., vibrations and linear accelerations. The
proposed algorithm has been also validated in-flight using a small quadrotor specially built
for this task, see Figure 2.3. It has a distance of 41 cm between rotors, it weights around
1.3 kg without battery, and it is outfitted with an IMU MicroStrain 3DM-GX2 and with the
MPU6050, among other sensors.

The basic hardware consists of a MikroKopter frame, YGE 25i electronic speed con-
trollers, RobbeRoxxy 2827-35 brushless motors and 10x4.5 plastic propellers. All the com-
putations are made onboard using an Arduino Due which is based on an Atmel SAM3X8E
ARM Cortex-M3 microcontroller running at 84 MHz, and an Igep v2 board running Xeno-
mai real-time operating system at 1 GHz.

The Arduino Due is in charge of reading every sensor, running the Kalman filter algo-
rithm for attitude estimation and the attitude control algorithm, controlling the motor’s
speed, and sending the data to the Igep board. The control algorithm consists of a PD
controller with nested saturations. So far the Igep board is only used as Wifi bridge.

Further details about this platform can be found in [26].
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Chapter 3

Attitude estimation

3.1 A Comparison of Attitude Estimation Algorithms

3.1.1 Introduction

This chapter aims at providing a comparative evaluation of attitude estimation algorithms
using low-cost sensors (gyroscopes and accelerometers). Low-cost IMUs are considered those
devices with a price less than 100 USD. These are very cheap indeed, and they are com-
monly referred to as hobbyist-level IMUs. These devices have lower performance in terms of
bias stability, nonlinearities and signal-to-noise ratio than those on the market for industrial
applications. A comparison of a wide range of IMUs can be found in [27].

Several aspects must be taken into account while choosing the most suitable approach
for a given application: singularity existence, convergence guarantee, computational time,
bias estimation, etc. The evaluation will be focused on Kalman filtering methods, as they
provide a suitable framework for an easy integration in higher level localization techniques
based on laser range finders, cameras or GPS [4].

The major contributions of this chapter are to provide a comparative evaluation of dif-
ferent algorithms in the literature and to propose a slightly modified algorithm in order to
improve the angular velocity estimation. The results show that it is possible to obtain a
performance with a hobbyist-grade IMU similar to that of an industrial-grade IMU.

3.1.2 Estimation algorithms

The algorithms considered in the comparison will be presented here. The discrete Kalman
filtering approach is used in all of them, disregarding the formulation of the system. If the
resulting system is non-linear then the Extended Kalman Filter (EKF) is applied.
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Recall that the Kalman filter is derived for a system described by

ẋ = Ax+w E[wwT ] = Q

y = Cx+ v E[vvT ] = R
(3.1)

where w and v are the process and the measurement noises, respectively, which are assumed
to be Gaussian, with covariance matrices Q and R. Observe that, it is thus necessary to
estimate and correct the biases of the sensors as they are nearly constant errors which are not
removed in the Kalman filtering process. Moreover, it is convenient to identify the stochastic
model of the sensors for achieving a good performance.

In a first group of formulations, the elements of the DCM are manipulated directly,
leading to simpler formulations. We refer to them as DCM-based. Within this group,
different variants are distinguished depending on which variables are estimated. The last
of this variants is a new one and it has been proposed in this thesis with the intention of
obtaining a smoother estimation of the angular velocity. A second group is based on the
application of the EKF for non-linear systems using both Euler angles and quaternions.

DCM-based variant #1 [DCM #1]

Algorithms based on DCM directly update the components of the matrix, avoiding the
representation by means of Euler angles. Although the whole matrix could be updated, the
last column (denoted by r3) suffices at providing information about φ and θ, as it can be
seen in (2.42). The following formulation can be found in [28]. Using the common notation
in control theory, the vector of estimated states is denoted by x = r3, and the system is
described by

ẋ = Ax+ ξ E[ξξT ] = Q

y = Cx+ v E[vvT ] = R
(3.2)

where A = [ω̃]×; C = −I3; Q = qpI3; R = Σa

If one assumes that Σa can be determined characterizing the sensors, then there is only
one tuning parameter qp, which determines the relative importance of the state propagation
with respect to the information recovered form the accelerometers.

Notice that in this case the resultant system is linear and observable. Thus the conver-
gence of the Kalman filter is guaranteed. However, this methodology would imply the need
of zero-velocity updates in practice, as the bias of the gyroscopes is not explicitly estimated.

DCM-based variant #2 [DCM #2]

The previous filter can be modified to include the bias estimation [29]. According to the
measurement model in (2.47), the bias-free angular velocity is given by ω̃ = ω̄−βω. Denoting
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by x = [rT3 , β
T
ω ]
T the vector of estimated variables, the resulting system can be expressed as

ẋ = A(x)x+ ξ E[ξξT ] = Q

y = Cx+ v E[vvT ] = R
(3.3)

where

A(x) =

[

[ω̄ − βω]× 0

0 0

]

C =
[

−I3 0
]

Q =

[

qpI3 0

0 qβI3

]

R = Σa

There is an extra parameter qβ accounting for the bias noise. It has a physical meaning as
it describes the random walk model for the bias. Although it is used as a tuning parameter,
it has to be small enough to allow only slow variations of the bias, as it is known it happens
in reality.

New DCM-based #3 [DCM #3]

In order to improve the angular velocity estimation, the above algorithm can be extended by
including the angular velocity in the vector of estimated variables, x = [rT3 , β

T
ω , ω

T ]T . The
process model for the angular velocities is assumed to be constant, so they are only modified
in the updating phase of the Kalman filter. In practice, this will work as a low-pass filter,
controlled by the parameter qω. In this case, the matrices describing the system are

A(x) =





0 0 [r3]×
0 0 0

0 0 0



 C =

[

−I3 0 0

0 −I3 I3

]

Q =





qpI3 0 0

0 qβI3 0

0 0 qωI3



 R =

[

Σa 0

0 Σω

]

Euler EKF [EKF]

In this algorithm, six variables are estimated: three Euler angles and three biases of the
gyroscopes. The vector of estimated states can be written as x = [ηT βT ]T . The non-linear
equations are described in a state-space form as,

x = f (x) + ξ E[ξξT ] = Q

y = h(x) + v E[vvT ] = R
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where

Q =

[

qηI3 0

0 qβI3

]

R = Σa

The process equation is derived from (2.43) by incorporating directly the measurements from
the gyroscopes as follows

f (x) =

















(ω̄x − βωx
) + (ω̄y − βωy

) sinφ+ (ω̄z − βωz
) tan θ

(ω̄y − βωy
) cosφ− (ω̄z − βωz

)− sin φ

(ω̄y − βωy
) sinφ
cos θ

+ (ω̄z − βωz
) cos φ
cos θ

0
0
0

















while the measurement model is given by (2.51)

h(x) =





sin θ
− sinφ cos θ
− cosφ cos θ



 (3.4)

In this case, the parameter qη determines how reliable the state propagation (based on
gyroscopes measurements) is, with respect to the observations made by the accelerometers.

Quaternions

In this algorithm, six variables are estimated: four quaternions and two biases of the gy-
roscopes. The vector of estimated states can be written as x = [qT , βT ]T . The non-linear
equations are described in a state-space form as,

ẋ = A(x)x+ ξ E[ξξT ] = Q

ẏ = h(x) + v E[vvT ] = R
(3.5)

where

A(x) =

[

Ω(ω̄) 0

0 0

]

C =
[

−I3 0
]

Q =

[

qqI4 0

0 qβI3

]

R = Σa

The measurement model is given by the third column of (2.45),

h(x) =





2(q1q3 + q2q4)
2(q2q3 − q1q4)

q21 − q22 + q23 + q24



 (3.6)
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Figure 3.1: Root mean square errors and standard deviations.

3.1.3 Conlusions

The results show that it is possible to obtain a high-performance attitude estimation using
hobbyist-level sensors, in an almost-true non-accelerated experimental platform. A new pro-
posed algorithm provides very fast and smooth velocity estimation, which may be beneficial
for the attitude control of UAS.

3.2 A High-Performance Computationally-Efficient

Attitude Estimation Algorithm

3.2.1 Proposed Algorithm

The kinematics of an aerial vehicle and the measurement model can be expressed by (2.43)
and (2.51), respectively. An advantage of the Euler formulation is that the yaw angle can
be removed from the equations. Let us denote the state vector of estimated variables by
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x = [φ, βx, θ, βy]. Thus, the filter can be written as

ẋ =









(ω̄x − βx) + (ω̄y − βy) sinφ tan θ
0

(ω̄y − βy) cosφ
0









+w

y =





sin θ
− sinφ cos θ
− cosφ cos θ



+ v

(3.7)

Moreover, it is reasonable to simplify the equations by assuming small angles approximations,
sinα ≈ α and cosα ≈ 1, with α = {φ, θ}, which leads to the following linear equations

ẋ =









0 −1 0 0
0 0 0 0
0 0 0 −1
0 0 0 0









x+









1 0
0 0
0 1
0 0









u+w

y =

[

0 0 1 0
−1 0 0 0

]

v + v

(3.8)

where the input vector consists of the angular velocity measurements u = [ω̄x, ω̄y], and
y = [āx, āy] contains the acceleration measurements. The third equation of the measurement
model which involves the third accelerometer axis has been removed, as it has very low
sensitivity with respect to the roll-pitch orientation for small angles.

These simplifications result in a smaller-size linear system thus reducing the compu-
tational load substantially. Furthermore, it will be shown next how the structure of the
matrices can be also exploited to reduce the Kalman filter to a set of simple equations. The
continuous-time system (3.8) can be discretized with sample time T, assuming zero-order
hold of the input, as follows

xk+1 = Akxk +Bkuk +wk E[wkw
T
k ] = Qk

yk = Hkxk + vk E[vkv
T
k ] = Rk

(3.9)

where

Ak = eAT =









1 −T 0 0
0 1 0 0
0 0 1 −T
0 0 0 1









Bk =

∫ T

0

eAτdτ =









T 0
0 0
0 T
0 0









Hk =

[

0 0 1 0
−1 0 0 0

]
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Notice that, as a consequence of the simplifications, the resulting system is decoupled. There-
fore, one can implement two different Kalman filters separately for roll and pitch. Also, one
can take advantage of the fact that the matrix P is symmetric, so that only three of its
entries need to be stored in memory. Using (2.33) and (2.34), the following equations for the
Kalman filter of the roll angle can be derived

φ−

k = φk−1 + T (ω̄x − βxk)

β−

xk
= βxk−1

p−11k = p11k−1
− 2Tp12k−1

+ T 2p22k−1
+ q11k

p−12k = p12k−1
− Tp22k−1

p−22k = p22k−1
+ q22k

(3.10)

φ+
k = (1− αφ)φ

−

k − αφāy

β+
xk

= β−

xk
− γφ(āy + φ−

k )

p+11k = (1− αφ)p
−

11k

p+12k = (1− αφ)p
−

12k

p+22k = −γφp−12k + p−22k

(3.11)

where

αφ =
p+11k

p+11k + r11
γφ =

p+12k
p+11k + r11k

(3.12)

In a very similar way, the derivation of the Kalman filter equations for the pitch angle leads
to the following set of equations

θ−k = θk−1 + T (ω̄x − βxk)

β−

yk
= βyk−1

p−11k = p11k−1
− 2Tp12k−1

+ T 2p22k−1
+ q33k

p−12k = p12k−1
− Tp22k−1

p−22k = p22k−1
+ q44k

(3.13)

———

θ+k = (1− αφ)θ
−

k + αφāy

β+
yk

= β−

yk
+ γφ(āx − θ−k )

p+11k = (1− αθ)p
−

11k

p+12k = (1− αθ)p
−

12k

p+22k = −γθp−12k + p−22k

(3.14)

where

αθ =
p+11k

p+11k + r22k
γθ =

p+12k
p+11k + r22k

(3.15)
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3.2.2 Numerical Validation

The Kalman filter algorithm proposed for attitude estimation has been first validated using
the platform shown in Figure 2.2. It is thought of as a test bed platform of control algorithms
for vertical lift off vehicles, so that the translational degrees of freedom are clamped for
convenience.

The orientation of the vehicle is measured by means of optical encoders with an accuracy
of 0.04 deg. These encoders provide a reliable pattern for the evaluation and comparison
of the algorithms. In addition, a commercial IMU (3DM-GX2) and a low cost inertial
sensor (MPU6050) were also included in the platform in order to validate and compare
the measurements. The 3DM-GX2 runs at 200 Hz and outputs directly the orientation
in Euler angles representation. The MPU6050 is composed of a 3-axis gyroscope and a
3-axis accelerometer. It does not provide the angles of the rigid body but only the raw
measurements of the sensors. The characteristics of the both devices are given in table 3.1.

Table 3.1: IMUs specifications

Microstrain 3DM-GX2 MPU-6050
Size 63× 41× 32 21× 17× 2

Weight 50 g 6 g
Gyro range ±75 to ±1200 deg/s ±250 to ±2000 deg/s
Gyro bias ±0.2 deg/s ±20 deg/s

Gyro nonlinearity 0.2 % 0.2%
Gyro noise performance 0.17 deg/s (rms) 0.025 deg/s/ (rms)

Accel. bias ±5 mg ±50 mg
Accel. nonlinearity 0.2 % 0.5 %

Accel. noise performance 0.6 mg (rms) 1
1.3 mg (rms)

A PD controller was used to stabilize the system to constant references of pitch and roll.
The system was then perturbed applying disturbances by hand. All data was collected at
333 Hz and the algorithm described in Section 3.2.1 was computed offline using Matlab. A
trial and error tuning process resulted in the following covariance matrices

Qk =









0.94 · 10−6 0 0 0
0 0.91 · 10−6 0 0
0 0 0 0
0 0 0 0









Rk =

[

0.37 0
0 0.39

]

The estimation obtained by means of this procedure can be seen in Figure 3.2. At first
sight, it can be noticed that the proposed algorithm performs fairly well, thus validating
the simplifications made on its derivation. As it is difficult to visually evaluate the quality
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Figure 3.2: Attitude estimation

of both estimations, some performance indexes were chosen, i.e., the root mean squared er-
ror, the maximum absolute error and the delay, all of them computed with respect to the
estimation given by the encoders. Table 3.2 gathers the information of these indexes for
an experiment of several minutes. One can see how the proposed algorithm performs even
better than the 3DM-GX2.

Table 3.2: Performance indexes

rmse |error|max delay

3DM-GX2
roll 0.3 deg 1.56 deg

25 ms
pitch 0.27 deg 1.46 deg

MPU 6050
roll 0.14 deg 0.72 deg

15 ms
pitch 0.19 deg 0.91 deg

Figure 3.3 shows the evolution of the bias estimation. The real bias of the gyroscopes
was computed averaging the first few seconds during which the system remains steady. It is
possible to see how the estimated bias converges to the real value within a few seconds.

The accelerations measured by the MPU6050 are depicted in Figure 3.4 along with the
ideal measurements, which were built by computing (2.51) using the angular measurements
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Figure 3.3: Bias estimation

from the encoders and adding Gaussian noise. It is pointed out that the accelerometers are
easily affected by the vibrations of the motors.

3.2.3 Flight tests

The quadrotor was controlled in roll and pitch angles using the estimated values, φ̂, θ̂ and
˙̂
φ,

˙̂
θ, computed using the proposed algorithm. The yaw angle was stabilized with the mea-

surement of the Microstrain sensor.

In the lack of a motion capture system, the in-flight attitude estimation of the proposed
algorithm is compared to the 3DM-GX2. Figure 3.5 shows the attitude estimation during
one minute of flight. One can see that both estimations are very similar. Although the
3DM-GX2 is not a fully reliable pattern, it can be seen that the proposed algorithm pro-
vides a fast, noise-free and drift-free estimation. Furthermore, it must be also noticed that
the control is computed with the attitude estimation of the proposed algorithm. The small
oscillations around the equilibrium point evidence that the attitude and velocity estimations
lead to a very good control performance.

The angular velocities are shown in Figure 3.6. The estimated angular velocities consist
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Figure 3.4: Accelerometer responses

of the raw gyroscope measurements corrected with the estimated biases. The estimation of
the bias avoids the need of correcting the offset of the gyroscopes prior to each flight and
allows operation over long periods of time.

3.2.4 Conclusions

A simplified algorithm for attitude estimation based on the Kalman filter has been proposed
and validated in-flight. The simplifications in both the dynamic and measurement models
result in a very computationally-efficient algorithm.

Despite the simplifications, a comparison carried out in an experimental platform with a
reliable pattern provided by optical encoders showed that the proposed algorithm exhibits
even better performance than a commercial IMU, the Microstrain 3DM-GX2. Further val-
idation in-flight showed that the proposed algorithm performs also very well under strong
vibrations and linear accelerations.
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Figure 3.5: Comparison of the attitude estimations in-flight
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Figure 3.6: Comparison of the angular velocity estimations in-flight.
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Chapter 4

Delays in the Attitude Estimation

Process

4.1 Introduction

Different approaches to the attitude estimation problem have been reported in literature,
e.g., Kalman filters [11, 12] or complementary filters [13]. Although its convergence is not
guaranteed, the Extended Kalman Filter (EKF) has been the workhorse of real-time space-
craft attitude estimation for quite some time [30]. On the other hand, some processes are
internally performed before the observer algorithms are computed. For example, during the
data acquisition process in an IMU, the signals are low-pass filtered to remove noise and
avoid aliasing effects. The filter introduces a time delay in the measurements, which results
in an attitude estimation which is also delayed by the same amount of time. One of the
unavoidable sources of delay is the low-pass filtering before sampling. The other one is the
computational time required to run the estimation algorithm.

It is well-known that measurement delays decrease the phase margin and can even lead
to the instability of the controlled process [31]. The incorporation of delayed measurements
into the Kalman filter while preserving optimality is far from being trivial. When the delay
consists only of a few sample periods, the problem can be handled optimally by augmenting
the state vector [32]. However, for larger delays, the computational burden of this approach
becomes too large. This topic has been investigated in [33]. More recent work on this topic
has been done in [34], where a general delayed Kalman filter framework is derived for linear-
time invariant systems.

Dead-time compensation techniques are frequently used in the control of time-delay sys-
tems [35, 36, 37]. In [38] a discrete predictor for continuous-time plants with time delay is
proposed and the closed-loop stability is proved. Later, the proposed predictor has been
explored to perform in different scenarios [39, 40, 41, 42, 43, 44]. Nowadays, almost any con-
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trol system application is implemented by using a computer, discrete-time predictor-based
control schemes increase their internes in practical applications [45, 46].

The goal of this paper is to improve the estimation of the pitch and roll angle with a
low-cost IMU by proposing an observer-predictor algorithm (OP-A). The proposed scheme
uses a KF and a discrete-time predictor to fuse the measurements coming from this sensor.
The KF estimates the roll and pitch angles and corrects the bias of the gyroscopes, while
the predictor counteracts the inherent delay in the estimated states.

In practice, it is observed that attitude estimation obtained by applying fusing algo-
rithms to the inertial sensors measurements exhibit a delay with respect to their real value.
For illustration purposes, the angular measurements coming from a commercial IMU (the
Mircrostrain 3DM-GX2) are compared with those of set of encoders. It is well know that
the encoders are faster and more accurate than any IMU. Thus, the delayed measurement
of the commercial IMU is represented in Figure 4.1 along with the ideal value measured by
encoders. The experimental platform that allows taking these measurements is described in
detail in Section 2.5.1.
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Figure 4.1: Delay of the 3DM-GX2, a commercial IMU

One of the unavoidable sources of delay is the low-pass filtering before sampling. During
the data acquisition process in an IMU, the signals are low-pass filtered to remove noise
and avoid aliasing effects. The other one is the computational time required to run the
estimation algorithm, which is often carried out in an on-board microcontroller. In addition,
it is well-known that measurement delays decrease the phase margin and can even lead to
the instability of the controlled process.



CHAPTER 4. DELAYS IN THE ATTITUDE ESTIMATION PROCESS 34

4.2 Time-Delay Compensation Using Inertial

Measurement Systems

4.2.1 Observer-Predictor Scheme

Kalman filter

The following dicrete-time filter derived in Section 3.2.1 will be used hereafter

x̂k+1 =









1 −T 0 0
0 1 0 0
0 0 1 −T
0 0 0 1









x̂k +









T 0
0 0
0 T
0 0









uk +wk

ŷk =

[

0 0 1 0
−1 0 0 0

]

x̂k + vk

(4.1)

where x̂k = [φ̂k, β̂xk , θ̂k, β̂yk ]
T and ŷk = [âxk , âyk ]

T are the discrete state and output vectors,
uk = [ω̄xk , ω̄yk ]

T defines the system input which consists of the measured angular velocities,
and wk and vk represent the discrete process and measurement vectors, respectively.

h-step ahead Predictor

The discrete-time predictor algorithm used to improve the KF estimation is described in this
part. The predictor algorithm compensates the delays in the estimated variables improving
considerably the closed-loop stability.

The state of the plant is fully accessible but there is a known constant transmission delay
τ , which is assumed to be a multiple of the sampling period1 T, i.e., τ = Td. The measured
state can be thus written as

x̄k = xk−d (4.2)

An h-step ahead predicted state x̃k+h, with h ∈ Z
+ being a design parameter, is computed

using the discrete-time model of the plan [38] in order to counteract the delay

x̃k+h = Ahx̄k +

h−1
∑

i=0

Ah−i−1Buk+i−h (4.3)

where x̃, x̄ ∈ R
n, u ∈ R

m, A ∈ R
n×n and B ∈ R

n×m.

The proposed algorithm consists of applying the predictor to the Kalman estimates, i.e.,
x̄k = x̂k. The resulting algorithm can be considered as a self-contained predictor-based
observer, which is depicted in Figure 4.2.

1As the control structure should be robust under model parameters uncertainty, the round-off of the
fractional delay will not be a problem [38].
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4.2.2 Simulations
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Figure 4.3: Simulink model

For the sake of brevity and without loss of generality, only the roll axis of the quadrotor
is considered in what follows. Therefore, the state of the plant is given by x = [φ, φ̇]T while
the dynamic model is a double integrator. Thus

ẋ =

[

0 1
0 0

]

x+

[

0
b

]

u (4.4)

where u = τφ represents the external torque in the roll axis. A zero-order hold discretization
of (4.4) leads to

xk+1 = Axk +Buk (4.5)

with

A =

[

1 T
0 1

]

B =

[

0
T

]

(4.6)

The parameter h is chosen to be equal to the number of delayed sample periods d. In
simulations, d is known, whereas in the experiments it has to be measured.
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An h-step ahead prediction given by (4.3) is proposed to compensate the delay in the
system. Simulations were carried out using the simulink model depicted in Figure 4.3. The
nonlinear quadrotor model in (5.1) is used to represent the plant. For the sake of simplicity,
only references in the roll angle are applied while pitch and yaw are driven to zero using
PD controllers. The predictor is applied to the estimates given by the Kalman filter. The
results are shown in Figure 4.4. Notice that in this figure the predictor algorithm improves
the estimated value and compensates the delay.
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Figure 4.4: Simulated measurements

As aforementioned, a delayed measurement decreases the performance of a given con-
troller. A simple state-feedback controller with reference tracking was used

uk = [φ∗

k, 0]
T −Kxk = kp(φ

∗

k − φk)− kdφ̇k (4.7)

Figure 4.5 shows the output of the closed-loop system and the control action when the
different state measurements are fed to the controller. Notice how oscillations arise when
the delayed measurement from the Kalman filter is used. However, the use of the predictor
improves the performance substantially, and the response gets very close to that of the system
when using a non-delayed measurement.
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Figure 4.5: Simulated closed-loop response

4.2.3 Experiments

Some experiments were carried out using the platform shown in Figure 2.2. It is thought of as
a test bed platform of control algorithms for vertical lift off vehicles, so that the translational
degrees of freedom are clamped for convenience. The orientation of the vehicle is measured
by means of optical encoders with an accuracy of 0.04 deg. These encoders provide almost-
true non-delayed angular measurements in three axis. The angular rate was computed offline
from the encoder measurement by using central difference approximation and filtering. The
same controller structure as in the simulations (4.7) was used for the experiments.

In order to illustrate the performance of the proposed algorithm, two experiments are
carried out. First, the system is controlled via state feedback, according to (4.7), using the
measurements coming from the 3DM-GX2. The different state estimations are shown in
Figure 4.6. A detail of the rising phase of the response can be seen in Figure 4.7. The delay
of the 3DM-GX2 is quantified as 40 ms, while the delay if the proposed OP-A is used is
almost negligible.

In the second experiment, the benefits of using the measurement obtained with the OP-
A are analyzed. For this purpose, the OP-A is implemented in real-time. The system is
brought to marginal stability by increasing the gain of the controller, and a step reference of
8 deg is applied. The result is shown in Figure 4.8. Notice that, for a given controller, the
system becomes unstable when the measurement of the 3DM-GX2 is used. However, if the
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Figure 4.6: Experimental state measurements

measurement obtained by the OP-A is used, the system remains stable.

4.2.4 Conclusions

A new attitude estimation approach for quadrotor vehicles based on an observer-predictor
algorithm is presented. The scheme consists of a Kalman filter that estimates the desired
states and an h-step ahead predictor that improves the estimated measurement. Several
simulations were carried out to validate the proposed schema and some graphs were selected
to illustrate its behavior. In addition, real-time validation was also carried out. Experimen-
tal results show that the proposed algorithm improves significantly the measurements of a
commercial IMU. Finally, closed-loop experiments evidence the importance of having a non-
delayed measurement in fast unstable system such as quadrotors. For a given state-feedback
controller, the delayed measurements of the commercial IMU resulted in an unstable response
while the measurements obtained with the proposed algorithm succeeded in stabilizing the
system.
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Chapter 5

UDE-based Control

5.1 Introduction

Although many linear and nonlinear attitude control strategies have been proposed in the
literature, very few of these controllers have been validated in real flight tests and the most
popular techniques are still based on the classical PID-based control strategy with nested
saturation algorithms [47, 48, 49, 1, 50, 51, 52, 53]. This is mainly due to the fact that, in
practical applications, the attitude is stabilized via an on-board controller [54]. The unstable
nature of quadrotors and their fast rotational dynamics impose strong requirements on the
attitude controller. As the controllers must run typically at very high frequencies [16], algo-
rithms with low computational cost are needed. Also, only few of them explicitly address the
robustness issue with respect to uncertainties of the physical parameters and external distur-
bances [18], which is critical for UAVs because the aerodynamic effects are extremely hard
to be accurately modeled [55]. Similarly, in outdoor applications, a UAV is constantly per-
turbed by wind gusts [56]. Therefore, good disturbance rejection capability is also demanded.

The UDE-based control algorithm, which was originally proposed in [57], is a robust
control strategy that is devoted to handling uncertainties and disturbances. Based on the
assumption that a signal can be recovered by passing it through a filter with the appropriate
bandwidth, all uncertainties and disturbances can be treated as a lumped signal to be esti-
mated and compensated in the controller straight away. The UDE strategy has demonstrated
excellent performance in handling uncertainties and disturbances and has been successfully
applied to robust input-output linearization [58], linear and nonlinear systems with state
delays [59, 60], combined with sliding-model control [61], and uncertain nonlinear systems
[62]. Some applications of UDE can be also found in [63, 64, 65].

In this chapter, the UDE-based control is applied to quadrotor systems. At first, the
UDE-based control strategy is revisited and further developed to highlight the decoupling
of the reference tracking from disturbance rejection and the trade-off between disturbance
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Figure 5.1: Sketch of a 6-DoF quadrotor

rejection and noise attenuation. The desired tracking performance can be guaranteed via
selecting an appropriate reference model. The trade-off between the disturbance rejection
and noise attenuation can be achieved via tuning one parameter in the UDE control law,
which makes the real-time implementation very straightforward. Then, the dynamic model
of quadrotors is formulated as a set of double integrators with non-linear uncertainties so
that the UDE-based control strategy can be applied. A numerical example is presented to
show that, for the same degree of robustness, the UDE has much better disturbance rejection
than an equivalent 2-DoF PID controller. The easy tuning process and the advantage of the
UDE are validated with a 3 DoF quadrotor laboratory setup and then with a 6 DoF quadro-
tor in real flight tests. The proposed UDE-based controller offers much better performance
than a widely-used PID controller, which is illustrated by indexes like the integral absolute
error (IAE) and the root mean squared error (RMSE).

5.2 Modeling of Quadrotor Systems

The key variables involved in the formulation of the quadrotor dynamics are illustrated in
Figure 5.1. A fairly accurate model of a quadrotor is given by the following set of nonlinear
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equations [47]

φ̈ =
Iy − Iz
Ix

θ̇ψ̇ − J

Ix
θ̇Ω+

τφ
Ix
,

θ̈ =
Iz − Ix
Iy

ψ̇φ̇+
J

Iy
φ̇Ω +

τθ
Iy
, (5.1)

ψ̈ =
Ix − Iy
Iz

θ̇φ̇+
τψ
Iz
,

z̈ = g − Γ

m
cosφ cos θ,

ẍ = − Γ

m
cosφ sin θ, (5.2)

ÿ =
Γ

m
sinφ, (5.3)

where φ, θ, and ψ are the roll, pitch and yaw Euler angles, and Ii, i = {x, y, z} are the
moments of inertia, Ω = Ω2 +Ω4 −Ω1 −Ω3 with Ωi being the rotor speed of the ith motor,
τi, i = {φ, θ, ψ} are the input torques along the axes of a body-fixed reference frame, z is the
coordinate along the z−axis of the body-fixed frame which points downwards, g is the gravity
acceleration, m is the mass of the quadrotor and Γ =

∑4
i=1 Fi is the total thrust. Since Ix

and Iy are almost symmetric and only differ slightly because of construction tolerance, the
roll and the pitch axes have very similar dynamics.

5.3 Control Based on Uncertainty and Disturbance

Estimation

5.3.1 Revisit of the UDE-based Robust Control Strategy

General case

Consider the following class of nonlinear single-input multiple-output (SIMO) systems

ẋ(t) = Apx(t) +Bpu(t) + f(x, u, t) + d(t) (5.4)

where x(t) ∈ Rn and u(t) ∈ R are the state and control variable respectively, f(x, u, t) :
Rn ×R×R+ → Rn is a possibly unknown non-linear function, and d(t) : R+ → Rn is the
vector of unknown disturbances. The full state is accessible and measured. The state matrix
can be split as Ap = A + ∆A ∈ Rn×n, where A is the known state matrix and ∆A is the
unknown part of the state matrix, and similarly with the control matrix, Bp = B+∆B ∈ Rn,
where B is the known control matrix and ∆B the unknown control matrix.

Moreover, assume that the desired dynamics of the closed-loop system are given in terms
of the linear model described by

ẋm(t) = Amxm(t) +Bmr(t), (5.5)
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where Am ∈ Rn×n, Bm ∈ Rn, xm ∈ Rn and r(t) ∈ R is a piecewise continuous and
uniformly bounded command to the system.

The control objective is to derive a control law such that the state error between the
actual plant and the reference model, defined as

e = xm − x, (5.6)

is stable and satisfies the dynamic equation

ė = (Am +K)e (5.7)

where K is the error feedback gain with appropriate dimensions.
Combining the Equations (5.4)-(5.7), it results in

Amx+Bmr − (A+∆A)x− (B+∆B)u− f − d = Ke. (5.8)

Then, the control input signal u(t) should satisfy

Bu = Amx+Bmr −Ax− ud −Ke (5.9)

where
ud = −∆Ax−∆Bu− f − d (5.10)

denotes the unknown terms in Equation (5.8). According to the system dynamics described
by Equation (5.4), it is possible to rewrite the Equation (5.10) as

ud = ẋ−Ax−Bu (5.11)

which indicates that the unknown dynamics and disturbances can be estimated from the
known dynamics of the systems and control signal. Following the procedures provided in
[57, 60, 63], the signal given by (5.11) can be accurately represented in the frequency domain
by1

Ud(s) = Gf (s)
(

Ẋ(s)−AX(s)−BU(s)
)

(5.12)

where the filter Gf (s) is assumed to be a strictly proper low-pass filter with unitary steady-
state gain and zero phase shift over the spectrum of ud [57, 66]. Using Equations (5.9) and
(5.12) and, after some algebraic manipulation, the UDE-based control law can be derived as

U(s) =
1

1−Gf
B+ [AmX+BmR−AX(1−Gf)

−KE− sGfX] (5.13)

where B+ = (BTB)−1BT is the pseudoinverse of B. As shown in [67, 57], Equation (5.13)
is always satisfied if the system is described in the controllable canonical form.

1The Laplace transformation is introduced to facilitate the manipulation of expressions.
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The case with a SISO system

Assume that the system under consideration is a controllable SISO system. It can be rep-
resented in the controllable canonical form, i.e., the matrices involved admit the following
partitioning

A =

[

0 In−1

A1

]

B =

[

0n−1

b

]

;

Am =

[

0 In−1

A1m

]

Bm =

[

0n−1

bm

]

;

where A1 = [−a1, −a2, . . . , −an] and A1m = [−am1, −am2, . . . , −amn]. Then the transfer
functions from the input to the first state variable X1 (taken as the output Y ) for both the
known plant model and the reference model are given by G(s) = b

P (s)
and Gm(s) =

bm
Pm(s)

,
respectively, with P (s) = sn+

∑n
i=1 ais

i−1 and Pm(s) = sn+
∑n

i=1 aims
i−1. Substituting the

above matrices into (5.13), then the UDE-based control law for system (5.4) is derived as:

U =
1

(1−Gf)b

(

bmR +
n
∑

i=1

(ai − aim)Xi −Gf

n
∑

i=1

aiXi

−sGfXn +
n
∑

i=1

kiEi

) (5.14)

Assume that the frequency range of the unknown system dynamics and the external
disturbances is limited by ωf . Then, Gf (s) can be approximately chosen as a low-pass filter

Gf(s) =
1

Ts+ 1

with T = 1/ωf > 0. In this case, 1
1−Gf

is a PI controller, denoted as

PI(s) =
Ts+ 1

Ts
.

Assume K = 0 for simplicity. Then the control law (5.14) can be rewritten, after some
algebraic manipulations, as

U(s) = PI(s)

(

bm
b
R(s)−M(s)Y (s)

)

(5.15)

with

M(s) =
bm
b
G−1
m (s)− PI−1(s)G−1(s).
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Denoting by Gp(s) the actual transfer function of the plant and considering the nominal case,
i.e., Gp(s) = G(s), then the relevant closed-loop transfer functions for reference tracking,
disturbance rejection and noise attenuation are, respectively,

Y (s)

R(s)
=
bm
b

PI(s)Gp(s)

1 + PI(s)M(s)Gp(s)
= Gm(s), (5.16)

Y (s)

D(s)
=

Gp(s)

1 + PI(s)M(s)Gp(s)
=

b

bm
Gm(s)

Ts

Ts+ 1
, (5.17)

Y (s)

N(s)
=

−PI(s)Gp(s)M(s)

1 + PI(s)M(s)Gp(s)
= 1− b

bm

Gm(s)

Gp(s)

Ts

Ts+ 1
. (5.18)

It is evident that the UDE-based control structure allows decoupling between reference
tracking and disturbance rejection. The parameters of the UDE-based control are “auto-
matically” tuned by choosing the reference model which defines the closed-loop tracking
performance. But the most interesting fact is that there is only one parameter left, the
time constant of the filter T , to adjust the disturbance decay rate. This parameter should
be chosen as small as possible to improve the disturbance rejection and, theoretically, it is
only limited by the sampling period. However, in practice, reducing T would amplify higher
frequency noise from measurements to enter into the system, as can be seen from (5.18).
Hence, the choice of T is a compromise between fast disturbance rejection and acceptable
noise attenuation.

Because of these structural properties of the UDE-based control strategy, it is very
straightforward to design a control system and tune the parameters to meet the requirements:
after selecting the reference model to meet the desired reference tracking performance, the
time constant T can be either reduced or increased to reach a trade-off between disturbance
rejection and noise attenuation. This allows an easy on-line tuning of the implemented
controller.

5.3.2 Quadrotor equations

Although there are 6 DoF considered in the model (5.1), only the first four variables are
critical when controlling quadrotors because the displacements on the xy−plane can be
controlled by commanding the roll and pitch angles, as explained in [14]. The first four
variables in the model (5.1) can be written in the form of (5.4) as

φ̈ = f1(θ̇, ψ̇) + uφ

θ̈ = f2(ψ̇, φ̇) + uθ (5.19)

ψ̈ = f3(θ̇, φ̇) + uψ

z̈ = f4(θ, φ) + uz

with the control inputs given by

uφ =
τφ
Ix
, uθ =

τθ
Iy
, uψ =

τψ
Iz

and uz = g − Γ

m
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and

f1(θ̇, ψ̇) =
Iy − Iz
Ix

θ̇ψ̇ − J

Ix
θ̇Ω,

f2(ψ̇, φ̇) =
Iz − Ix
Iy

ψ̇φ̇+
J

Iy
φ̇Ω,

f3(θ̇, φ̇) =
Ix − Iy
Iz

θ̇φ̇,

f4(θ, φ) =
Γ

m
(1− cos φ cos θ).

Each of the equations in (5.19) represents a single-input dynamic system of a double in-

tegrator. They share the same known matrix A =

[

0 1
0 0

]

and the difference is that they

have different matrices B. Note that thanks to the excellent capability of UDE to handle
uncertainties and disturbances, there is no need to know the parameters of the quadrotor.

5.3.3 The Case with a 3D Hover System

In this section, a 3D hover system shown in 2.2, is investigated and validated with simulations
and experiments.

Controller design

In order to clearly demonstrate the effectiveness of the UDE-based controller, only the roll
and pitch control will be considered and the following 2-DoF PID controller with the weighted
set-point

U(s) =

(

ǫKp +
Ki

s

)

R(s)−
(

Kp +
Ki

s
d+Kds

)

θ(s)

with ǫ = 0.6956, Kp = 90, Kd = 50 and Ki = 39.2 is designed as a base for comparison. The
corresponding closed-loop transfer function is

Gc(s) =
6.26

s2 + 4.37s+ 6.26
.

For the UDE-based control, the reference model for the roll and pitch can be chosen as
the following second-order system in the canonical form

ẋm =

[

0 1
−6.26 −4.37

]

xm +

[

0
6.26

]

r (5.20)

with r = {θref , φref}, θref and φref being the reference commands for the pitch and roll
angles, respectively. T is chosen as T = 0.28s to achieve the same robustness index as the
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Figure 5.2: Nyquist plots of the system with the PID controller and the UDE-based controller
with T = 0.28s

PID controller, as shown in the Nyquist plots given in Figure 5.2. The resulting control law
is

Uude(s) =
0.28s+ 1

0.28s

(

6.25

0.1
C(s)− 6.25X(s)

−4.5Ẋ(s)− s

0.28s+ 1
Ẋ(s)

)

.

Simulation results

The simulation results for the roll axis are shown in Figure 5.3. It is shown that the UDE-
based controller performs better in disturbance rejection while maintaining similar robust-
ness. Note also that the set-point response is not affected by the choice of T , as it is
decoupled, and the system has better disturbance rejection when T is decreased. When
compared with the PID controller, it is shown that the UDE-based controller performs bet-
ter in disturbance rejection while maintaining similar robustness.

The output responses with the effect of white noise in the measurement are shown in
Figure 5.4. It can be seen that the UDE-based controller does not need much extra con-
trol effort to obtain better performance in disturbance rejection while maintaining similar
performance in noise attenuation.
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Figure 5.4: Nominal system responses with a white-noise measurement and a -10 step load
disturbance at t = 5s

Experimental results

Since the state of the plant is fully accessible, the controllers were implemented in the follow-
ing form for both the roll and pitch axes, using the same controller used in the simulations

Upid(s) =

(

62.6 +
39.2

s

)

C(s)−
(

90 +
39.2

s

)

X(s)− 50Ẋ(s),
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where X(s) = {Θ(s),Φ(s)} and C(s) = {Θref(s),Φref(s)}, depending on the axis under
control. Two experiments were carried out, with one to demonstrate the performance of
disturbance rejection and the other to demonstrate the performance of robustness against
additional model uncertainties.

Figure 5.5 shows the output of the system from the first experiment, in which a square
input signal of ±5 deg was used as the reference signal. An input disturbance was applied
at around t = 33s, generated by software to offset the control signal before sending to the
motors. The UDE results in smaller output perturbations and faster disturbance rejection,
as expected from the simulations in the previous section.
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Figure 5.5: Disturbance rejection comparison for similar reference tracking performance.
PID (roll), UDE (pitch)

The second experiment was carried out to test the robustness with additional model
uncertainties. In this case, a weight of about 21g was placed at one end of the platform,
which affects the moment of inertia of both axes and hence additional model uncertainties
were added. The results of this experiment are shown in Figure 5.6. The UDE reacts
faster than the PID when the weight was applied.A video of this experiment is available at
https://vimeo.com/100991794.

5.3.4 Real Flight Tests with a Quadrotor

Although the platform described above is a suitable test-bed to validate the real-time control
algorithms, there are some handicaps to overcome in real flights, e.g., large model uncertain-
ties and disturbances generated by vibrations of the motors, linear accelerations, flapping and
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ground effects, noise in the sensors measurements, unknown perturbations as wind gusts, etc.

In this section, the experimental results from several real flight tests carried out on
the quadrotor shown in Figure 2.3 are presented to further illustrate the control strategy,
including the full control of the attitude (φ, θ and ψ) and the altitude (z) of the quadrotor.
The proposed strategy is compared with the following control law that is widely used in
real-time implementations [52, 68]:

ux = σ(kpxx̄, px) + σ(kdxẋ, dx) + σ(kix

∫

x̄dt, ix) (5.21)

where σ(·, ·) is the saturation function defined as

σ(x, b) =











−b if x < −b,
x if − b ≤ x ≤ b,

b if x > b,

(5.22)

kpx, kdx and kix are the proportional, derivative and integral gains, respectively, and x̄ =
xd−x is the tracking error with xd the desired value. The same control law is applied to the
roll and pitch axes, i.e., x = {φ, θ}, with the parameters given in Table 5.1.

The UDE-based controllers for each DoF were tuned using the double integrator model, as
appearing in Equation (5.19), which implies a1 = a2 = 0. The parameters of the UDE control
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law for each DoF are given in Table 5.2. Note that, in both cases, the roll and pitch axes
are tuned to obtain the same performance, which makes it possible to carry out experiments
for comparison by applying UDE and PID controllers to different axes, respectively, at the
same time.

Table 5.1: Parameters of the PID controller used in real flight tests

DoF kpx kdx kix px dx ix
Roll φ 3.3 1.2 0.03 100 50 50
Pitch θ 3.3 1.2 0.03 100 50 50

Altitude z 150 1.2 50 120 60 200

Table 5.2: Parameters of the UDE controller used in real flight tests

DoF b T am2 am1 bm
Roll φ 1.5 0.6 3.2 4 4
Pitch θ 1.5 0.6 3.2 4 4
Yaw ψ 1 5 7.6 16 16

Altitude z 1.7 0.6 3 2.25 2.25
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Figure 5.7: Real flight test of hovering: UDE for roll and PID for Pitch (left) and PID for
roll and UDE for pitch (right).
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Figure 5.8: Disturbance rejection: UDE for roll and PID for Pitch (left) and PID for roll
and UDE for pitch (right).

First flight test: Hovering (Figure 5.7)

In this experiment, the UDE-based control law was implemented for one of the roll and
pitch axes, while the other axis was controlled using the PID control law in (5.21). Data was
recorded while the quadrotor was hovering, i.e., flying freely with zero reference inputs in
both axis. The experiment was repeated after swapping the controllers for each axis, in order
to provide non-biased results. The results from both experiments are shown in Figure 5.7.
In both cases, the axis controlled with the UDE-based strategy exhibits less deviation with
respect to the reference input. This can be observed in both the angular position and the
angular velocity. Integral Absolute Error (IAE) and Root Mean Squared Error (RMSE)
are presented in Table 5.3 for comparison. It can be seen that the UDE-based controller
outperforms the widely-used PID control law significantly.

Table 5.3: IAE and RMSE of the results in Figures 5.7 and 5.8

Hovering (Fig. 5.7) Disturbances (Fig. 5.8)
IAE RMSE IAE RMSE

Pitch
UDE 7.3 0.47 11.3 0.89
PID 9.8 0.59 17.8 1.37

Roll
UDE 4.7 0.30 7.9 0.66
PID 10.5 0.69 30.2 2.2
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Second flight test: Disturbance rejection (Figure 5.8)

The goal of this experiment is to provide comparative results of the disturbance rejection
capability of both control strategies. The experiments were carried out via applying dis-
turbances to the quadrotor while it was hovering, hitting the quadrotor by hand at an
intermediate point between both axes. Due to the construction of the prototype, this is easy
because such points can be any of the corners of the squared protection frame. Similarly, the
experiment was performed twice, with different combinations of controllers. The results are
shown in Figure 5.8. The UDE-based control strategy results in much faster performance in
disturbance rejection than the PID controller. This can also be seen from the corresponding
IAE and RMSE shown in Table 5.3. Indeed, the UDE-based controller outperforms the
widely-used PID control law significantly.

Third flight test: Altitude control (Figure 5.9)

This experiment is slightly different from the previous ones. In this case, an altitude reference
input pattern which consists of alternating steps of different magnitude is fed to to the
controller. One experiment was performed to test each control strategy. The results of both
experiments are shown together in Figure 5.9. Both control strategies performed similarly.
Oscillations occurred when the quadrotor was close to the ground from a high altitude. This
is due to the well-known “ground effect”, which is an aerodynamic effect that increases the lift
of the propellers. The “ground effect” acts as a spring making the system more oscillatory.
The UDE-based control strategy is better at handling this effect.
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Figure 5.9: Altitude UDE vs. PID control
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Fourth flight test: Full control (Figure 5.10)

The purpose of this experiment is to give an overall view of the behavior of a quadrotor
fully controlled with the proposed UDE-based control strategy. The design parameters of
the UDE-based controllers are given in Table 5.2. The roll and pitch references were set at
zero and step changes in yaw and altitude were applied. The results are shown in Figure
5.10. Note that, even though the quadrotor is a coupled non-linear system, the UDE-based
control strategy could deal with it fairly well. No visible coupling effects appeared in the roll
and the pitch while the yaw and altitude references were changed. The RMSE of the roll and
pitch angles are 0.39 deg and 0.46 deg, respectively. Note that experiments performed using
the platform in Fig. 2.2 have revealed that the attitude measurements have an accuracy of
0.15 deg (RMSE), but the measurements are highly degraded in real flight tests due to the
vibrations induced by the motors and the presence of lateral accelerations [20]. Hence, it is
remarkable for the proposed UDE control strategy to achieve 0.39 deg and 0.46 deg RMSE
for the roll and pitch angles.

A video clip of the quadrotor in real flight tests, including hovering and disturbance
rejection is available at http://vimeo.com/101082533, which shows the excellent disturbance
rejection capability under the full UDE-based control. A series of very large disturbances
were applied but the quadrotor responded extremely well.

5.3.5 Conclusion

A robust control scheme based on the Uncertainty and Disturbance Estimator (UDE) has
been developed for quadrotor systems. It has been shown analytically that the UDE control
law can be easily tuned to achieve the desired reference tracking performance via selecting
an appropriate reference model. At the same time, the trade-off between disturbance atten-
uation and noise attenuation can be easily met through the tuning of only one parameter.
A numerical example has been presented to show that, for the same degree of robustness,
the UDE can offer much better disturbance rejection than an equivalent 2-DoF PID con-
troller. The proposed UDE-based control strategy has been extensively validated with a 3
DoF quadrotor and then a 6 DoF quadrotor in real flight tests. The UDE-based controller
has demonstrated much better performance than the PID-based controller, as evidenced by
indexes like the integral absolute error (IAE) and the root mean squared error (RMSE).
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Figure 5.10: Full flight test results with the proposed UDE-based control
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Chapter 6

Model Reference Adaptive Control

6.1 Introduction

Several approaches have been developed to design an adaptive controller, a controller with
adjustable parameters and a mechanism for adjusting the parameters [69], to cope with
changing plant dynamics. They are usually classified as direct adaptive control, where a
control design method is combined with the control parameter adjust mechanism, and indi-
rect adaptive control, where the control design method is combined with a plant parameter
identification mechanism.

Applying adaptive techniques to the control of aerial unmanned vehicles has been a topic
of increasing research interest, as adaptive control is a non linear control strategy well suited
to approach this kind of specific plant structure. Different adaptive control design strategies
have been proposed, like R,S,T two degree of freedom polynomial controller design methods,
fuzzy controllers, backstepping [70], [71], [72], [73], [74].

In this chapter, a Lyapunov based direct model reference adaptive control is proposed for
both plant input disturbance rejection and real-time tuning of a two degree state feedback
control. The open-loop plant may be stable or unstable, but without zeros. This is a model
frequently used when approximately modeling plants, suitable for unmanned aerial vehicles
(UAV), [75], where many parameters are negligible and the model is reduced to a chain of
integrators. The design is proved to stabilize an unstable electromechanical system, showing
good simulation and experimental results.

6.2 A two degree of freedom state feedback MRAC

A model reference adaptive control strategy combines a fast regulatory loop with a slow
parameter tuning loop. In this case, a continuous time two degree of freedom state feedback
controller design is considered, as shown in Fig. 6.1.
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Consider a SISO plant (6.1) with input u and output y

y(s) = G(s)u(s); → G(s) =
b

a(s)
(6.1)

where

a(s) = a1 + a2s+ . . .+ ans
n−1 + sn (6.2)

and b
a1

is the static gain of the plant, if stable. For this system, the controllable canonical
state space representation (A,B,C) is given by

ẋ = Ax+Bu

y = Cx
(6.3)

where x ∈ Rn and

A =















0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−a1 −a2 −a3 · · · −an















BT =
[

0 0 ... b
]

; C =
[

1 0 ... 0
]

(and D = 0, non direct output/input coupling). Assume a plant model reference (6.4) with
input uc and output ȳ

ȳ(s) = Ḡ(s)uc(s); → Ḡ(s) =
b̄

ā(s)
(6.4)

with characteristic polynomial

ā(s) = ā1 + ā2s+ . . .+ āns
n−1 + sn (6.5)

Figure 6.1: Continuous time 2DOF state feedback control.
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The internal representation (Ā, B̄, C̄) of the model reference (6.4), using the same structure
that (6.3) is obtained with āi instead of ai, b̄ instead of b and state vector x̄.

For systems with no zeros1 perfect tracking of the model reference state vector x̄ can be
obtained by using a two degree of freedom (2DOF) state feedback controller

u =Muc − Lx (6.6)

where M is a scalar and L ∈ Rn is a row vector. From (6.3) and (6.6), the state space closed
loop dynamics is given by

ẋ = (A− BL)x+BMuc = Āx+ B̄uc (6.7)

Thus, assuming full knowledge of the plant model (6.3), the ideal parameters L and M of
(6.6) matching the closed loop model reference (6.4) are given by

L∗ =
[

ā1−a1
b

ā2−a2
b

... ān−an
b

]

M∗ =
b̄

b

(6.8)

yielding
Ā = A− BL∗; B̄ = BM∗ (6.9)

Obviously, Ā defines the stable closed loop dynamics to follow, whereas b̄/ā1 defines the
static gain of the reference model.

6.2.1 Adaptation law

Note that āi, b̄ are design parameters and ai, b are assumed to be known. But usually, the
plant state matrix A as well as the parameter b representing the product of the actuator and
output sensor gain can be only estimated. One approach to obtain model reference state
perfect tracking with partial or without plant knowledge is to apply an adaptive strategy
that automatically brings to zero the steady state tracking error. Here a Lyapunov based
adaptive strategy is developed to tune the 2DOF state feedback controller (6.6) for unknown
plant parameters. As will be shown later, the required knowledge is the plant gain sign
as well as the accessibility to the plant state x, the model reference state x̄ and the input
command signal uc.

The adaptive tuning goal is to obtain the (L,M) parameters dynamically for both, con-
vergence to the “true” parameters and zero steady state tracking error vector, that is to
obtain L→ L∗, M →M∗ and lim

t→∞

‖z(t)‖ = 0, ∀t ≥ 0 from any initial condition ‖z(0)‖ 6= 0,

where z = x−x̄ is the tracking error vector. This goal can be achieved by using the Lyapunov
stability theory, as follows.

1It is well-known [76] that the plant poles can be assigned by state feedback but there is no action on
the zeros position.
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Let V (z,K) be a Lyapunov candidate function,

V (z,K) =
1

2

(

γzTPz + (K −K∗)T (K −K∗)
)

(6.10)

where z is the previously defined tracking error vector, K = [L M ]T is the parameter vector
of dimension (n + 1) × 1, and P is a symmetric positive definite matrix (P > 0). Clearly,
the continuously differentiable candidate function (6.10) meets the Lyapunov necessary con-
ditions: V (z,K) > 0 ∀z 6= 0, ∀K 6= K∗ = [L∗ M∗]T and V (0, K∗) = 0. In addition to these
conditions, Lyapunov global asymptotically stability is assured if and only if V̇ (z,K) < 0.
In that case z = 0 and K∗ will be globally asymptotically stable equilibrium points.

The tracking error vector z(t) dynamics can be expressed as (6.11)

ż = ẋ− [̄]̇x = (A− BL)x− Āx̄+ (BM − B̄)uc (6.11)

Adding and subtracting the term BL∗x and using (6.9), this equation can be arranged as

ż = Āz +B[−(L − L∗)x+ (M −M∗)uc]

= Āz +B[K −K∗]T
[

−x
uc

]

(6.12)

Due to the special form of B, it can be simplified as

ż = Āz +











0 · · · 0
0 · · · 0
...

...
...

b[K −K∗]T











[

−x
uc

]

(6.13)

which is equivalent to

ż = Āz + b











0 · · · 0
0 · · · 0
...

...
...

[

−xT uc
]











[K −K∗]

= Āz + Γ[K −K∗]

(6.14)

where Γ = Γ(x, uc) is a matrix of dimension n× (n+ 1)

Γ = b











0 · · · 0
0 · · · 0
...

...
...

[

−xT uc
]











(6.15)

with a gain being adapted in the estimation process b = b̄/M∗.
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Figure 6.2: 2DOF state space MRAC scheme.

Differentiating (6.10) and combining it with the error vector dynamics (6.14) yields to

V̇ (z,K) =
1

2
γzT (ĀTP + PĀ)z + (K −K∗)T (K̇ + γΓTPz) (6.16)

From this result, two conditions must be fulfilled to obtain global asymptotic stability

i) ĀTP + PĀ = −Q, for any given Q > 0

ii) K̇ = −γΓTPz, for any given γ > 0 (b > 0)

Condition i), known as the Lyapunov equation, is always satisfied for a stable model refer-
ence, and condition ii) represents the parameter adaptation law which requires the recursive

computation of the non square matrix Γ. With both conditions V̇ (z,K) = −1

2
γzTQz < 0 is

obtained, where γ defines the convergence velocity in a trade-off with the control effort.
The proposed adaptive strategy is shown in Fig. 6.2

6.2.2 2DOF MRAC simulation examples

Two examples are used to illustrate the performance of the proposed adaptive scheme. The
first one considers an unstable third order plant and the second one is a double integrator
SISO plant with input disturbances.

2DOF adaptive control of an unstable third order plant

Let us consider an unstable third order plant with transfer function

G(s) =
1

s3 + 2s2 + s+ 10

and assume the desired trajectory be represented by

Ḡ(s) =
8

(s+ 2)3
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That is

ẋ =





0 1 0
0 0 1

−10 −1 −2



 x+





0
0
1



 u

y =
[

1 0 0
]

x















(6.17)

[̄]̇x =





0 1 0
0 0 1
−8 −12 −6



 x̄+





0
0
8



 uc

ȳ =
[

1 0 0
]

x̄















(6.18)

Using the design method for the 2DOF state feedback controller (6.8), yields

K∗ =
[

L∗ M∗
]T

=

[

[

ā1−a1
b

ā2−a2
b

ā3−a3
b

] b̄

b

]T

(6.19)

That is, the elements of the nominal control law are L∗

1 = −2; L∗

2 = 11; L∗

3 = 4;M∗ = 8;.
Assuming full plant state accessibility, the tracking error vector dynamics can be obtained

as ż = Āz + Γ (K −K∗), where

Γ = b





0 0 0 0
0 0 0 0

−x1 −x2 −x3 uc



 (6.20)

As the state matrix Ā is stable, then ∃P > 0 solution to ĀTP + PĀ = −Q for any given
Q > 0, for which the parameter adaptation law is obtained as K̇ = −γΓTPz. Notice that
the plant gain b in Γ should be estimated (b = b̄/M∗) but it can be included into the selected
adaptation gain γ. In this way the adaptation law just requires to know the sign of b,
accessibility to the plant state x, the model reference state x̄ and the input command signal
uc. The output error result is shown in Fig. 6.3 for b̄ = 8, ā1 = 8, ā2 = 12, ā3 = 6 and
γ = 25. The Lyapunov equation has been solved for Q = I3×3, yielding to

P =





1.9063 1.2344 0.0625
1.2344 2.0938 0.1445
0.0625 0.1445 0.1074





The parameter adaptive law converges to the “true” values K∗ with almost zero tracking
error vector from t = 100[s] onwards as shown in Fig. 6.4.

2DOF adaptive control of a disturbed double integrator

Consider a double integrator plant with an input disturbance and the proposed stable model
reference (6.18) with b, b̄, ā1, ā2 > 0.

[̄]̇x =

[

0 1
−ā1 −ā2

]

x̄+

[

0
b̄

]

uc

ȳ =
[

1 0
]

x̄

(6.21)
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Figure 6.3: 2DOF state space MRAC response.

Following the previous approach, the Lyapunov equation is solved for Q = I2×2, yielding to

P =

[

1.5 0.5
0.5 0.5

]

The output error result is shown in Fig. 6.5 for b̄ = 1, ā1 = 1, ā2 = 2 and γ = 2.5. The
parameter adaptive law converges to the “true” values K∗ = [2 4 2]T with zero tracking error
vector from t = 35[s] onwards as shown in Fig. 6.6.

Now, a periodic disturbance di signal is added to the plant input u almost without
affecting the output error, as shown in Fig. 6.7. In this case, the plant state tends to the
model reference state, but the parameters (L,M) are changed to compensate the periodic
input disturbance, as shown in Fig. 6.8.

6.3 Experimental results

The proposed adaptive schema is now experimentally tested on two axis of the previously
depicted in Figure 2.2.

A PC running Linux-RT, a soft RTOS distributed with a GNU GPLv2 license is provided
to implement the control algorithms, on top of an Ubuntu installation. The communications
between the PC and the quadrotor platform were made with a PMC I/O target. Linux RT
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Figure 6.4: Parameter error evolution.

is a Linux O.S. with a patch whose objective is to minimize the amount of kernel code that is
nonpreemptible. In this way, faster sampling periods with more reliable real-time guarantees
(reduced sampling period jitter) can be implemented. The controller has been implemented
in C++, using the newmat matrix library available in Ubuntu repositories. With the above
operating system and an Intel I3 processor at 3.3 GHz, the computing power is ample enough
to execute the MRAC adaptive control loop with a sampling period of 5 ms.

The model reference adaptive control scheme is applied to the roll and pitch axis, keeping
the yaw angle constant. In this way, the MIMO model (5.1) linearized around the equilibrium
point is reduced to two decoupled double integrator subsystems, one for each axis [75]:

φ̈ = u1

θ̈ = u2

The same reference model is used in both axis, which is defined using ā1 = 4.34, ā2 = 2.3
and b̄ = 4.34. Solving ĀTP + PĀ = −Q for Q = I2×2 yields to

P =

[

1.4258 0.1152
0.1152 0.2675

]

(6.22)

This P matrix is then included in the adaptive control law K̇ = −γΓTPz, for Γ given in
(6.15). The experimental response to a square wave reference input uc and γ = 0.1 is shown
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in Fig. 6.9. The measured output is close to the reference model although they do not match
perfectly. However, the system is able to follow the references fairly well. The evolution of
the adaptation parameters is shown in Fig. 6.10. Notice that the parameters convergence
is slower than in the simulation examples (here, γ = 0.1), but an attempt to increase the
convergence rate will saturate the quadrotor actuators. The adaptation algorithm was active
only during the first two step references. After that moment, the parameters were kept
constant. Notice that all the parameters were initialized with a null value (L) and unity
(M), i.e., the system starts from an open-loop situation.

6.4 Conclusions

The MRAC control strategy has been applied for a special kind of systems, those without
transmission zeros. This kind of models is frequent in practical applications and it is ob-
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tained when linearized electromechanical systems are considered, as it has been illustrated
for a lab quadrotor. An adaptive state feedback control with adjusted input/output gain
has been derived, its convergence being proved and experimentally illustrated when applied
to the quadrotor.

The adaptation mechanism allows dealing with uncertain plant models and the algorithm
provides the estimated controller parameters. They converge to the ideal ones, in simula-
tion. The convergence rate can be tuned by a design parameter (γ), requiring a tradeoff
between convergence speed and control action. In practical applications, the control action
amplitude is limited and thus, the parameters convergence is slow. If this speed is increased,
the actuators saturate and the stability is not guaranteed.

Next step will be to extend the results to a more general class of systems and to investigate
the implementation constraints.
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Conclusions and Future Work

Although quadrotors are available commercial products nowadays, they remain an open
topic for the research community. The computational efficiency of the algorithms is an
strong requirement that restricts the number of techniques which can be implemented in
real applications.

Despite of that, in this thesis some improvements in both estimation and control have
been reported. Regarding the attitude estimation, an observer-predictor scheme was used to
compensate the small delays present in the data acquisition and processing. A smaller delay
allows for higher gains in the controller, which results in a higher performance. On the other
hand, a novel control approach based on the uncertainty and disturbance estimator (UDE),
has been successfully applied in real flights.

Future work will consist on exploiting the advantages of both techniques, in order to ob-
tain a more robust control with higher performances. It could be also interesting to explore
further the capabilities of the predictor as a technique for improving the performance of a
given controller.

Developing new control strategies, focusing on robustness and disturbance rejection, is
also a matter of interest. The UDE-based has shown promising results and future work
following the same philosophy may lead to interesting results. The adaptive controller per-
formed also fairly well in the laboratory platform, and its application in real flight is still
pending.
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