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Camino de Vera, s/n, 46022 València, Spain

Abstract

In this work we show a general procedure to obtain optimal derivative free
iterative methods [4] for nonlinear equations f(x) = 0, applying polynomial
interpolation to a generic optimal derivative free iterative method of lower
order.

Let us consider an optimal method of order q = 2n−1, v = φn(x), that

uses n functional evaluations. Performing a Newton step w = v − f(v)
f ′(v)

one
obtains a method of order 2n, that is not optimal because it introduces two
new functional evaluations. Instead, we approximate the derivative by using
a polynomial of degree n that interpolates n + 1 already known functional
values and keeps the order 2n.

We have applied this idea to Steffensen’s method, [5], obtaining a family
of optimal derivative free iterative methods of arbitrary high order.

We provide different numerical tests, that confirm the theoretical results
and compare the new family with other well known family of similar charac-
teristics.
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1. Introduction

A variety of problems in different fields of science and technology require
to find the solution of a nonlinear equation. Iterative methods for approx-
imating solutions of nonlinear equation are the most used technique. The
efficiency index, introduced by Ostrowski in [3], establishes the effectiveness
of the iterative method. In this sense, Kung and Traub conjectured in [4]
that a method is optimal if it reaches an order of convergence q = 2n, using
only n+ 1 function evaluations per step.

In recent years a number of high order iterative methods have appeared in
the literature, some of them optimal, reaching the maximal efficiency among
the methods of the same order. The classical Newton’s and Steffensen’s
methods, [5], are optimal for n = 2; Ostrowski and Jarrat’s methods, [3, 6],
for n = 3. Several optimal eighth order methods have been proposed (see for
example [7, 8, 9, 10, 11, 12]). Even optimal sixteenth order methods have
been published, such as [2].

In this paper we introduce a new family of optimal order derivative free
iterative methods for approximating the solution of nonlinear equations, al-
ternative to the families in [4, 13], proving a convergence result that shows
the optimality of the methods. The interest of high order iterative methods
is mainly theoretical because most of the applications do not need such a
high precision.

The outline of the paper is as follows. In Section 2 we describe the idea of
the procedure and show how to obtain optimal methods of increasing order,
starting from an optimal second order derivative free iterative method. In
Section 3 we prove that, under usual requirements, the procedure doubles
the order of a given optimal method, maintaining the optimality. Finally, in
Section 4, different numerical tests confirm the theoretical results and allow
us to compare the obtained methods with other known optimal methods.

2. Optimal methods of increasing order

Newton’s and Steffensen’s iterative methods for approximating the solu-
tion of the nonlinear equation f(x) = 0 are both of second order and they
are optimal, because they only need 2 functional evaluations per step. Stef-
fensen’s method has the advantage that it does not need the derivative. In
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this paper we focus on derivative free iterative methods, but our procedure
could also be applied starting from Newton’s method.

Let us start from Steffensen’s method and explain the procedure to get
optimal methods of increasing order. The idea is to compose a Steffensen’s
iteration,

y0 = xk,

y1 = y0 + f(y0),

y2 = y0 −
f(y0)

2

f(y1)− f(y0)
,

with a Newton’s step

y3 = y2 −
f(y2)

f ′(y2)
.

The resulting iteration has convergence order 4, being the composition of two
second order methods (see [15], theorem 2.4), but the method is not optimal
because it uses 4 function evaluations.

In order to get optimality, the value of f ′(y2) can be approximated by
the derivative p′2(y2) of a suitable second degree polynomial obtained from
already computed function values. It is natural to consider the interpolating
polynomial of the points (y0, f(y0)), (y1, f(y1)) and (y2, f(y2)). This polyno-
mial can be written as

p2(t) = a
(2)
0 + a

(2)
1 (t− y2) + a

(2)
2 (t− y2)2

and its coefficients are the solutions of a linear system

p2(yj) = f(yj), j = 0, 1, 2.

In particular, p′2(y2) = a
(2)
1 .

Therefore, we get a method, M4, with n + 1 = 3 functional evaluations
that will be optimal provided its order is 2n = 4.

y0 = xk, (1)

y1 = y0 + f(y0), (2)

y2 = y0 −
f(y0)

2

f(y1)− f(y0)
, (3)

xk+1 = y3 = y2 −
f(y2)

p′2(y2)
. (4)
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Incidentally, we notice that Steffensen’s method can be derived in the
same way from the first two steps (1-2) of the former iteration, substituting
the derivative in a next Newton’s step by the slope of the line through the
points (y0, f(y0)) and (y1, f(y1)).

We can improve M4 by the same procedure. Composing it with a New-
ton’s step one obtains an order 8 method but loses optimality because there
are two new function evaluations. Then, substitute the derivative of function
f by the derivative p′3(y3) of the third degree polynomial that interpolates
f at the points y0, y1, y2, y3. The order is maintained whereas the method
becomes optimal.

In theory, this procedure can be indefinitely repeated, giving a family
of optimal methods of arbitrarily high order. The iteration of the generic
method Mq, for q = 2n is xk+1 = yn+1 where

y0 = xk, (5)

y1 = y0 + f(y0), (6)

yj+1 = yj −
f(yj)

p′j(yj)
, j = 1, 2, . . . , n, (7)

and pj is the polynomial that interpolates f in y0, y1, . . . , yj.

The value p′j(yj) = a
(j)
1 can be explicitly expressed in terms of the inter-

polated points. We have to obtain the coefficient of the linear term of the
polynomial

pj(t) = a
(j)
0 + a

(j)
1 (t− yj) + a

(j)
2 (t− yj)2 + . . .+ a

(j)
j (t− yj)j.

This polynomial is determined by the interpolation conditions

pj(yi) = f(yi), i = 0, 1, . . . , j.

From the last condition one obtains a
(j)
0 = f(yj). The remaining coeffi-

cients are the solutions of a linear system that can be written as

a1 + a2(y0 − yj) + a3(y0 − yj)2 + . . .+ aj(y0 − yj)j−1 = f [y0, yj]

a1 + a2(y1 − yj) + a3(y1 − yj)2 + . . .+ aj(y1 − yj)j−1 = f [y1, yj]

...

a1 + a2(yj−1 − yj) + a3(yj−1 − yj)2 + . . .+ aj(yj−1 − yj)j−1 = f [yj−1, yj]
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where, as usual, f [yi, yj] denotes the divided difference
f(yi)− f(yj)

yi − yj
, and

where, for simplicity, we have omitted the superindexes.
The coefficient a

(j)
1 can be obtained applying Cramer’s rule

a
(j)
1 =

∆1

∆
,

where ∆ is the Vandermonde’s determinant

∆ = V (y0 − yj, y1 − yj, . . . , yj−1 − yj) = V (y0, y1, . . . , yj−1)

and

∆1 =

∣∣∣∣∣∣∣∣∣
f [y0, yj] y0 − yj (y0 − yj)2 . . . (y0 − yj)j−1
f [y1, yj] y1 − yj (y1 − yj)2 . . . (y1 − yj)j−1

...
...

...
. . .

...
f [yj−1, yj] yj−1 − yj (yj−1 − yj)2 . . . (yj−1 − yj)j−1

∣∣∣∣∣∣∣∣∣ .
This determinant can be computed by cofactors of its first column.

∆1 =

j−1∑
i=0

(−1)if [yi, yj]

j−1∏
k=0, k 6=i

(yk − yj)Vi(y0, y1, . . . , yj−1),

where Vi(y0, y1, . . . , yj−1) is the Vandermonde’s determinant of the list of
arguments where yi is missing. It is not difficult to see that

a
(j)
1 =

j−1∑
i=0

(
j−1∏

k=0, k 6=i

yk − yj
yk − yi

)
f [yi, yj].

For example, for j = 2, the derivative f ′(y2) is approximated by

a
(2)
1 =

y1 − y2
y1 − y0

f [y0, y2] +
y0 − y2
y0 − y1

f [y1, y2],

and for j = 3,

a
(3)
1 =

(y1 − y3)(y2 − y3)
(y1 − y0)(y2 − y0)

f [y0, y3] +
(y0 − y3)(y2 − y3)
(y0 − y1)(y2 − y1)

f [y1, y3]

+
(y0 − y3)(y1 − y3)
(y0 − y2)(y1 − y2)

f [y2, y3].
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3. Order of convergence

Theorem 1. Let α ∈ I be a simple zero of a function f : I ⊆ R −→ R with
bounded (n+ 1)-th derivative in an open interval I. If x is sufficiently close
to α, then the method Mq defined by (5-7) has optimal convergence order 2n.

Proof: Let εk,j be the error of yj, j = 0, 1, . . . , n + 1 in an iteration of
the method Mq, that is εk,j = yj − α. Then,

εk,0 = xk − α = εk,

εk,n+1 = yn+1 − α = xk+1 − α = εk+1.

We have to prove that εk+1 = O(ε2
n

k ). We will show, by induction on
j > 0, that

εk,j = O(ε2
j−1

k ). (8)

For j = 1, the result is true because

εk,1 = y1 − α = y0 − α + f(y0)

= y0 − α + f ′(α)(y0 − α) +O((y0 − α)2)

= (1 + f ′(α))εk,0 +O(ε2k,0)

= (1 + f ′(α))εk +O(ε2k) = O(εk).

For j = 2 it derives from the fact that M2 is the Steffensen’s method.
Suppose, by induction hypothesis that (8) is true for j ≤ n. Let us show that
it is also true for j = n+ 1.

The interpolating polynomial pn(t) that appears in (7) satisfies the error
equation

f(t)− pn(t) =
f (n+1)(ξ(t))

(n+ 1)!
(t− y0)(t− y1) . . . (t− yn).

Assuming ξ(t) differentiable, and setting t = yn, in the derivative, we
have

f ′(yn)− p′n(yn) =
f (n+1)(ξ)

(n+ 1)!
(yn − y0)(yn − y1) . . . (yn − yn−1). (9)

Each factor in (9) with j > 0 satisfies

yn − yj = yn − α− (yj − α) = εk,n − εk,j
= O(ε2

n−1

k ) +O(ε2
j−1

k ) = O(ε2
j−1

k ),
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by the induction hypothesis. Then

f ′(yn)− p′n(yn) =
f (n+1)(ξ)

(n+ 1)!
O(εk)O(εk)O(ε2k) . . . O(ε2

n−2

k ) = O(ε2
n−1

k ).

Then we can write

f ′(yn) = p′n(yn)(1 +O(ε2
n−1

k )), (10)

So, the order of Mq can be established from:

εk,n+1 = yn+1 − α = yn − α−
f(yn)

p′n(yn)
,

and by using (10) we have

εk,n+1 =yn+1 − α = yn − α−
f(yn)(1 +O(ε2

n−1

k ))

f ′(yn)
, (11)

=yn − α−
f(yn)

f ′(yn)
− f(yn)

f ′(yn)
O(ε2

n−1

k ).

Dividing the Taylor’s series of f(yn) and f ′(yn) in α we have

f(yn)

f ′(yn)
= (yn − α)− c2

c1
(yn − α)2 +O((yn − α)3),

with c1 = f ′(α) and c2 =
f ′′(α)

2!
. Then, using that yn−α = εk,n+1 = O(ε2

n−1

k ),

by the induction hypothesis we get

f(yn)

f ′(yn)
= O(ε2

n−1

k ), (12)

and

yn − α−
f(yn)

f ′(yn)
= O(ε2

n

k ). (13)

Substituting (12) and (13) in (11) we get

εk,n+1 = O(ε2
n

k ) +O(ε2
n−1

k )O(ε2
n−1

k ) = O(ε2
n

k ),

which completes the proof. �
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4. Numerical results

In this section we check the effectiveness of the new optimal iterative
methods Mq comparing them with the optimal family Kq, for q = 2n =
4, 8, 16 introduced in [4],

y0 = xk,

y1 = y0 + βf(y0), β 6= 0,

yj+1 = Qj(0), j = 1, 2, . . . , n,

where Qj(t) is a polynomial of degree at most j satisfying the interpolation
conditions Qj(f(yi)) = yi, i = 0, 1, . . . , j. The order 2 methods of both
families are Steffensen’s method, so that, they coincide in the comparison.

Firstly, we test the different iterative methods by using the following
smooth functions:

a) f(x) = xex
2 − sin2(x) + 3 cos(x) + 5; α ≈ −1.207647827130918927

b) f(x) = x3 − 10; α ≈ 2.1544346900318837218

c) f(x) = sin2(x)− x2 + 1; α ≈ 1.404491648215341226

d) f(x) = (x+ 2)ex − 1; α ≈ −0.442854401002388583

e) f(x) = (x− 1)3 − 2; α ≈ 2.2599210498948731648

f) Let us consider Kepler’s equation f(x) = x−e sin(x)−M ; where 0 ≤ e < 1
and 0 ≤ M ≤ π. A numerical study, for different values of M and e has
been performed in [1]. We take values M = 0.01 and e = 0.9995. In this
case the solution is α ≈ 0.3899777749463621.

Numerical computations have been carried out using variable precision
arithmetic in MATLAB R2010b with 10000 significant digits.

Table 1 gives, for each test example an each method, the estimated error
of the last iterate, |xk+1 − xk|, the estimated order of convergence, ρ, (see
[16])

q ≈ ρ =
ln(|xk+1 − xk| / |xk − xk−1|)

ln(|xk − xk−1| / |xk−1 − xk−2|)
, (14)

and the number of iterations, k, needed to satisfy the condition |xk+1−xk| ≤
10−200. By means of (14), a vector is obtained by using the different iterations
calculated in the process. The value of ρ that appears in Tables 1 to 3 is the
last coordinate of this vector when the variation between its components is
small. When these components are not stable, we will denote ρ by ′−′.
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|xk+1 − xk| ρ k |xk+1 − xk| ρ k

M2 1.18e−344 2 51 K2 1.18e−344 2 51
a) M4 3.6e−395 4 7 K4 1.28e−320 4 7

x0 = −1 M8 9.57e−820 8.01 5 K8 4.36e−671 8 5
M16 1.8e−944 14.84 4 K16 2.02e−872 14.08 4

M2 6.21e−296 2 16 K2 6.21e−296 2 16
b) M4 2.67e−320 4 6 K4 1.81e−572 4 7

x0 = 2 M8 2.06e−211 8 4 K8 2.27e−739 7.99 5
M16 1.67e−1853 16.27 4 K16 4.06e−826 17.10 4

M2 5.6e−250 2 10 K2 5.6e−250 2 10
c) M4 1.06e−554 4 6 K4 2.37e−427 4 6

x0 = 1 M8 1.06e−295 8 4 K8 4.31e−204 8 4
M16 7.79e−2367 15.76 4 K16 1.03e−1580 15.68 4

M2 1.93e−299 2 16 K2 1.93e−299 2 10
d) M4 3.58e−260 4 6 K4 3.19e−250 4 6

x0 = −1 M8 8.38e−1016 8 5 K8 9.64e−279 8 5
M16 1.23e−1074 16.03 4 K16 2.02e−285 15.99 4

M2 3.56e−291 2 19 K2 3.56e−291 2 19
e) M4 4.06e−595 4 7 K4 7.44e−565 4 8

x0 = 2 M8 7.98e−816 7.99 5 K8 2.6e−1181 8 6
M16 1.29e−918 16.50 4 K16 7.75e−2139 15.75 5

M2 2.04e−272 2 12 K2 2.04e−272 2 12
f) M4 1.64e−671 4 7 K4 5.42e−483 4 7

x0 = 1 M8 1.72e−676 7.99 5 K8 1.65e−451 7.95 5
M16 4.61e−667 14.16 4 K16 8.19e−434 12.64 4

Table 1: Numerical results for smooth functions
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|xk+1 − xk| ρ k α |xk+1 − xk| ρ k α

M2 1.74e−254 2 11 1 K2 1.74e−254 2 11 1
M4 7.23e−344 4 6 1 K4 5.04e−714 4 7 1

x0 = 0.4 M8 1.89e−1411 8 5 1 K8 1.27e−583 8.02 5 1
M16 3.15e−1412 15.63 4 1 K16 1.94e−490 15.39 4 1

M2 1.62e−483 3 16 -1 K2 1.62e−483 3 16 -1
M4 3.51e−247 2 10 0 K4 4.18e−224 2 11 0

x0 = 0.2 M8 2.99e−257 2 9 0 K8 2.85e−212 2 8 0
M16 6.48e−223 2 8 0 K16 6.77e−234 2 8 0

M2 1.12e−481 3 7 -1 K2 1.12e−481 3 7 -1
M4 4.63e−857 6 5 -1 K4 4.58e−766 6 5 -1

x0 = −0.8 M8 1.63e−1142 12 4 -1 K8 5.85e−963 12 4 -1
M16 3.53e−381 24.06 3 -1 K16 5.07e−312 24 3 -1

M2 1.23e−288 3 8 -1 K2 1.23e−288 3 8 -1
M4 2.44e−879 6 6 -1 K4 1.14e−791 6 6 -1

x0 = 2 M8 3.86e−1860 11.99 5 -1 K8 6.91e−1449 11.98 5 -1
M16 5.16e−1239 18.82 4 -1 K16 1.28e−791 16.15 4 -1

Table 2: Numerical results for nonsmooth function (15)

The estimated convergence order of the proposed methods is always equal
to or better than that of the classical family of Kung-Traub. The number of
iterations is sometimes lower. When it is equal, the estimated error of the
last iterate is also lower.

Now, we are going to test how the methods Mq and Kq behave on nons-
mooth functions. The first test has been made on the function

f(x) =

{
x(x+ 1), x < 0
−2x(x− 1), x ≥ 0.

(15)

In Table 2 we show the numerical results for different initial estimations.
We observe that the behavior is similar in both families, but in some cases
the best precision is obtained by Kq methods and in other cases the number
of iterations needed by Mq schemes is lower.

Now, we consider, the nonsmooth function

f(x) = |x2 − 9|. (16)
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|xk+1 − xk| ρ k α |xk+1 − xk| ρ k α

M2 - - > 104 K2 - - > 104

M4 - - > 104 K4 1.5e−348 4 7 3
x0 = 2 M8 2.44e−982 8 5 3 K8 - - > 104

M16 3.52e−389 18.96 4 3 K16 5.08e−454 - 16 3

M2 9.49e−294 2 30 3 K2 9.49e−294 2 30 3
M4 - - > 104 K4 4.85e−760 4 7 3

x0 = 2.8 M8 6.10e−1270 8 5 3 K8 1.41e−343 - 11 3
M16 2.12e−552 - 4 3 K16 3.18e−465 - 11 3

M2 - - > 104 K2 - - > 104

M4 4.21e−267 - 83 -3 K4 1.27e−314 4 11 3
x0 = −2.8 M8 1.30e−249 10.77 7 -3 K8 1.62e−1098 8 13 3

M16 6.87e−296 19.6 5 -3 K16 9.22e−1587 15.3 8 3

M2 - - > 104 K2 - - > 104

M4 - - > 104 K4 1.03e−427 - 20 -3
x0 = −10 M8 5.65e−1318 - 10 -3 K8 8.35e−376 - 13 3

M16 2.87e−1005 - 6 -3 K16 1.17e−251 - 7 3

Table 3: Numerical results for nonsmooth function (16)

It is of special interest as it has severe stability problems near the nonsmooth-
ness.

The numerical experiments made on this function are summarized in
Table 3. In this case, the advantages of the high order iterative schemes
are evident when the initial estimation is far from the zero of the function.
We can observe that in many cases the value ρ is not stable. Indeed, each
family converges to a different solution in case of x0 = −2.8, so the number
of iterations and the difference |xk+1 − xk| gives no useful information. The
methods analyzed have stability problems in function (16), but it can be
observed that in many cases, the behavior of both families is complementary
(see, for example, results from M8 and K8 in case x0 = 2 and M4 vs K4 in
case x0 = −10), maybe because of they have been defined by means of direct
and inverse interpolation techniques.
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5. Conclusions

We have defined a family of optimal order derivative free iterative meth-
ods for the solution of nonlinear equations alternative to the family in [4],
proving a convergence result that shows the optimality of the methods. We
have also derived an explicit formula for the computation of the approxi-
mated derivative that avoids the solution of linear systems in each step of
the iteration. The numerical results show that the new family has a slightly
better performance than the classical one, so it can be competitive.
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