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Júlia, Meritxell,

and to all my family
and friends.

I



II



Agradecimientos

Quiero expresar mi agradecimiento sincero a mis Directores de tesis José Bonet
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Resumen

La presente memoria, “Espacios de Banach ponderados de funciones armónicas”,
trata diversos tópicos del análisis funcional, como son las funciones peso, los ope-
radores de composición, la diferenciabilidad Fréchet y Gâteaux de la norma y las
clases de isomorfismos. El trabajo está dividido en cuatro caṕıtulos precedidos
de uno inicial en el que introducimos la notación y las propiedades conocidas que
usamos en las demostraciones del resto de caṕıtulos.

En el primer caṕıtulo estudiamos espacios de Banach de funciones armónicas en
conjuntos abiertos de Rd dotados de normas del supremo ponderadas. Definimos
el peso asociado armónico, explicamos sus propiedades, lo comparamos con el peso
asociado holomorfo introducido por Bierstedt, Bonet y Taskinen, y encontramos
diferencias y condiciones para que sean exactamente iguales y condiciones para
que sean equivalentes.

El caṕıtulo segundo está dedicado al análisis de los operadores de composición
con śımbolo holomorfo entre espacios de Banach ponderados de funciones pluri-
armónicas. Caracterizamos la continuidad, la compacidad y la norma esencial de
operadores de composición entre estos espacios en términos de los pesos, exten-
diendo los resultados de Bonet, Taskinen, Lindström, Wolf, Contreras, Montes
y otros para operadores de composición entre espacios de funciones holomorfas.
Probamos que para todo valor del intervalo [0, 1] existe un operador de composición
sobre espacios ponderados de funciones armónicas tal que su norma esencial al-
canza dicho valor.

La mayoŕıa de los contenidos de los caṕıtulos 1 y 2 han sido publicados por E.
Jordá y la autora en [48].

El caṕıtulo tercero está relacionado con el estudio de la diferenciabilidad Gâ-
teaux y Fréchet de la norma. El criterio de Šmulyan establece que la norma
de un espacio de Banach real X es Gâteaux diferenciable en x ∈ X si y sólo
si existe x∗ en la bola unidad del dual de X débil expuesto por x y la norma
es Fréchet diferenciable en x si y sólo si x∗ es débil fuertemente expuesto en la
bola unidad del dual de X por x. Mostramos que en este criterio la bola del
dual de X puede ser reemplazada por un conjunto conveniente más pequeño, y
aplicamos este criterio extendido para caracterizar los puntos de diferenciabilidad
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Gâteaux y Fréchet de la norma de algunos espacios de funciones armónicas y
continuas con valores vectoriales. A partir de estos resultados conseguimos una
prueba sencilla del teorema sobre la diferenciabilidad Gâteaux de la norma de
espacios de operadores lineales compactos enunciado por Heinrich y publicado
sin la prueba. Además, éstos nos permiten obtener aplicaciones para espacios de
Banach clásicos como H∞ de funciones holomorfas acotadas en el disco y A(D) de
funciones continuas en D que son holomorfas en D. Los contenidos de este caṕıtulo
han sido incluidos por E. Jordá y la autora en [47].

Finalmente, en el caṕıtulo cuarto mostramos que para cualquier abierto U con-
tenido en Rd y cualquier peso v en U , el espacio hv0(U), de funciones armónicas
tales que multiplicadas por el peso desaparecen en el infinito de U , es casi isométrico
a un subespacio cerrado de c0, extendiendo un teorema debido a Bonet y Wolf para
los espacios de funciones holomorfas Hv0(U) en abiertos U de Cd. Aśı mismo, ins-
pirados por un trabajo de Boyd y Rueda también estudiamos la geometŕıa de estos
espacios ponderados examinando tópicos como la v-frontera y los puntos v-peak
y damos las condiciones que proporcionan ejemplos donde hv0(U) no puede ser
isométrico a c0. Para un conjunto abierto equilibrado U de Rd, algunas condi-
ciones geométricas en U y sobre convexidad en el peso v aseguran que hv0(U) no
es rotundo. Estos resultados han sido publicados por E. Jordá y la autora en [46].



Resum

La present memòria, “Espais de Banach ponderats de funcions harmòniques”,
tracta diversos tòpics de l’anàlisi funcional, com són les funcions pes, els opera-
dors de composició, la diferenciabilitat Fréchet i Gâteaux de la norma i les classes
d’isomorfismes. El treball està dividit en quatre caṕıtols precedits d’un d’inicial
en què introdüım la notació i les propietats conegudes que fem servir en les de-
mostracions de la resta de caṕıtols.

En el primer caṕıtol estudiem espais de Banach de funcions harmòniques en
conjunts oberts de Rd dotats de normes del suprem ponderades. Definim el pes
associat harmònic, expliquem les seues propietats, el comparem amb el pes as-
sociat holomorf introdüıt per Bierstedt, Bonet i Taskinen, i trobem diferències i
condicions perquè siguen exactament iguals i condicions perquè siguen equivalents.

El caṕıtol segon està dedicat a l’anàlisi dels operadors de composició amb
śımbol holomorf entre espais de Banach ponderats de funcions pluriharmòniques.
Caracteritzem la continüıtat, la compacitat i la norma essencial d’operadors de
composició entre aquests espais en termes dels pesos, estenent els resultats de
Bonet, Taskinen, Lindström, Wolf, Contreras, Montes i altres per a operadors de
composició entre espais de funcions holomorfes. Provem que per a tot valor de
l’interval [0, 1] hi ha un operador de composició sobre espais ponderats de funcions
harmòniques tal que la seua norma essencial arriba aquest valor.

La majoria dels continguts dels caṕıtols 1 i 2 han estat publicats per E. Jordá
i l’autora en [48].

El caṕıtol tercer està relacionat amb l’estudi de la diferenciabilitat Gâteaux y
Fréchet de la norma. El criteri de Šmulyan estableix que la norma d’un espai de
Banach real X és Gâteaux diferenciable en x si i només si existeix x∗ a la bola
unitat del dual de X feble exposat per x i la norma és Fréchet diferenciable en
x si i només si x∗ és feble fortament exposat a la bola unitat del dual de X per
x. Mostrem que en aquest criteri la bola del dual de X pot ser substitüıda per
un conjunt convenient més petit, i apliquem aquest criteri estès per caracteritzar
els punts de diferenciabilitat Gâteaux i Fréchet de la norma d’alguns espais de
funcions harmòniques i cont́ınues amb valors vectorials. A partir d’aquests resul-
tats aconseguim una prova senzilla del teorema sobre la diferenciabilitat Gâteaux
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de la norma d’espais d’operadors lineals compactes enunciat per Heinrich i publi-
cat sense la prova. A més, aquests ens permeten obtenir aplicacions per a espais
de Banach clàssics com l’espai H∞ de funcions holomorfes acotades en el disc i
l’àlgebra A(D) de funcions cont́ınues en D que són holomorfes en D. Els continguts
d’aquest caṕıtol han estat inclosos per E. Jordá i l’autora en [47].

Finalment, en el caṕıtol quart mostrem que per a qualsevol conjunt obert U
de Rd i qualsevol pes v en U , l’espai hv0(U), de funcions harmòniques tals que
multiplicades pel pes desapareixen en el infinit d’U , és gairebé isomètric a un
subespai tancat de c0, estenent un teorema degut a Bonet y Wolf per als espais
de funcions holomorfes Hv0(U) en oberts U de Cd. Aix́ı mateix, inspirats per un
treball de Boyd i Rueda també estudiem la geometria d’aquests espais ponderats
examinant tòpics com la v-frontera i els punts v-peak i donem les condicions que
proporcionen exemples on hv0(U) no pot ser isomètric a c0. Per a un conjunt obert
equilibrat U de Rd, algunes condicions geomètriques en U i sobre convexitat en el
pes v asseguren que hv0(U) no és rotund. Aquests resultats han estat publicats
per E. Jordá i l’autora en [46].



Summary

The Ph.D. thesis “Weighted Banach Spaces of harmonic functions” presented
here, treats several topics of functional analysis such as weights, composition oper-
ators, Fréchet and Gâteaux differentiability of the norm and isomorphism classes.
The work is divided into four chapters that are preceded by one in which we in-
troduce the notation and the well-known properties that we use in the proofs in
the rest of the chapters.

In the first chapter we study Banach spaces of harmonic functions on open sets
of Rd endowed with weighted supremun norms. We define the harmonic associated
weight, we explain its properties, we compare it with the holomorphic associated
weight introduced by Bierstedt, Bonet and Taskinen, and we find differences and
conditions under which they are exactly the same and conditions under which they
are equivalent.

The second chapter is devoted to the analysis of composition operators with
holomorphic symbol between weighted Banach spaces of pluriharmonic functions.
We characterize the continuity, the compactness and the essential norm of com-
position operators among these spaces in terms of their weights, thus extending
the results of Bonet, Taskinen, Lindström, Wolf, Contreras, Montes and others for
composition operators between spaces of holomorphic functions. We prove that for
each value of the interval [0, 1] there is a composition operator between weighted
spaces of harmonic functions such that its essential norm attains this value. Most
of the contents of Chapters 1 and 2 have been published by E. Jordá and the
author in [48].

The third chapter is related with the study of Gâteaux and Fréchet differentia-
bility of the norm. The Šmulyan criterion states that the norm of a real Banach
space X is Gâteaux differentiable at x ∈ X if and only if there exists x∗ in the unit
ball of the dual of X weak∗ exposed by x and the norm is Fréchet differentiable at
x if and only if x∗ is weak∗ strongly exposed in the unit ball of the dual of X by
x. We show that in this criterion the unit ball of the dual of X can be replaced
by a smaller convenient set, and we apply this extended criterion to characterize
the points of Gâteaux and Fréchet differentiability of the norm of some spaces of
harmonic functions and continuous functions with vector values. Starting from
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these results we get an easy proof of the theorem about the Gâteaux differentiabil-
ity of the norm for spaces of compact linear operators announced by Heinrich and
published without proof. Moreover, these results allow us to obtain applications
to classical Banach spaces as the space H∞ of bounded holomorphic functions in
the disc and the algebra A(D) of continuous functions on D which are holomorphic
on D. The content of this chapter has been included by E. Jordá and the author
in [47].

Finally, in the forth chapter we show that for any open set U of Rd and weight
v on U , the space hv0(U) of harmonic functions such that multiplied by the weight
vanishes at the boundary on U is almost isometric to a closed subspace of c0,
extending a theorem due to Bonet and Wolf for the spaces of holomorphic functions
Hv0(U) on open sets U of Cd. Likewise, we also study the geometry of these
weighted spaces inspired by a work of Boyd and Rueda, examining topics such
as the v-boundary and v-peak points and we give the conditions that provide
examples where hv0(U) cannot be isometric to c0. For a balanced open set U of
Rd, some geometrical conditions in U and convexity in the weight v ensure that
hv0(U) is not rotund. These results have been published by E. Jordá and the
author in [46].
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Introduction

This work is devoted to the study of weighted Banach spaces of harmonic
functions.

In the first chapter we start with an open and connected set U of Rd. A
weight on U is a continuous function v : U →]0,∞[. We introduce the harmonic
associated weight ṽh analogously as in the holomorphic case by Bierstedt, Bonet
and Taskinen. The problem consists in explaining its properties, comparing the
harmonic and holomorphic associated weights, finding differences and conditions
for which they are the same or equivalent and studying the behavior with changes
in the norm of Rd and in the dimension.

The second chapter is formulated in the following context. If G1 and G2 are
open and connected subsets in CN and CM and ϕ : G2 → G1 is a holomorphic
function, then we can consider the composition operator

Cϕ : ph(G1)→ ph(G2),

Cϕ(f) := f ◦ ϕ.

where ph(G1) and ph(G2) are spaces of pluriharmonic functions. The aim is to
characterize the continuity, the compactness and the essential norm of composi-
tion operators among weighted spaces of pluriharmonic functions phv1(G1) and
phv2(G2).

In the third chapter we study Gâteaux and Fréchet differentiability of the norm
of hv(U). If X is a real Banach space and X∗ denotes its topological dual, then
Šmulyan criterion states that the norm of X is Gâteaux differentiable at x ∈ X if
and only if there exists x∗ in the unit ball of X∗ weak∗ exposed by x, and that the
norm is Fréchet differentiable at x if and only if x∗ is weak∗ strongly exposed in
the unit ball of X∗ by x. Our goal is to find a good approach of differentiability
and to get applications for spaces of harmonic and continuous functions.

In the forth chapter we show that there is an isomorphism between hv0(U) and
a closed subspace of c0, thus extending a theorem due to Bonet and Wolf for spaces
of holomorphic functions Hv0(U), and study under which conditions there is an
isometry and whether these properties have some connection with the rotundity of
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the space. Thus, another purpose wrapped in this question is to look for conditions
on the weight to know the rotundity of the space hv0(U).

In connection to these problems, investigations carried out by Bierstedt, Bonet,
Boyd, Contreras, Domański, Galbis, Garćıa, Hernández-Dı́az, Jordá, Lindström,
Maestre, Rueda, Sevilla-Peris and Taskinen and others about weighted Banach
spaces of holomorphic functions with weighted supremum norms have been pub-
lished in [6, 10, 11, 12, 24, 32, 33, 45] and the references therein. Moreover, Laitila
and Tylli have discussed the difference between strong and weak definitions for
vector-valued functions in [52] and also, Banach spaces of vector-valued holomor-
phic functions have been recently studied by Bonet, Gómez-Collado, Jornet and
Wolf in [15]. Spaces of harmonic functions are investigated by Shields and Williams
[65], in connection with the growth of the harmonic conjugate of a function. In
[64], they prove results of duality for weighted spaces of harmonic functions on the
open unit disc.

Concerning the differentiability it is known that Fréchet’s notion of differen-
tiability was presented for the first time in [29]. Taylor refers to this work in [68]
and [69, Part III, pp. 41-53]. Fréchet uses the concept of “little oh” which was
previously introduced and worked by Stolz, Perpont and Young and appeared in
Stolz’s book [66]. The focus of differentiability notion used in [30] justifies that
today we refer to Fréchet differentiability. In [34] the naming of Gâteaux deriva-
tive of f appears. The rest of Gâteaux’s papers, written before spring 1914, are
posthumously published by Lèvy in 1919, [35] and 1922, [36]. Šmulyan states re-
sults about the differentiability of the norm function in [71]. Banach in [4] proves
that if K is a compact metric space, then C(K) = C(K,R) is smooth at f 6= 0
if and only if f is a peaking function, i.e., there exists a point t0 ∈ K such that
‖f‖ = |f(t0)| > |f(t)| for all t ∈ K, t 6= t0. Sundaresan in [67] and Cox and
Nadler in [25] characterize the points of Gâteaux and Fréchet differentiability of
the norm in C(K,X) when K is compact Hausdorff. In the same paper, Cox and
Nadler give a characterization of the points of Fréchet differentiability of the norm
in Cb(K,R) when K is locally compact and Cb(K,R) denotes the Banach space of
all bounded continuous functions on K with the supremum norm. Holub in [44]
deals with this question of the geometry of K(l2, l2) the space of compact linear
operators on l2. Heinrich states a theorem about the differentiability of the norm
for spaces of compact linear operators which extends the result of Holub in [44].
Later on Hennefeld proves the theorem of Heinrich in a particular case. Leonard
and Taylor in [53] obtain the points of Gâteaux and Fréchet differentiability of
the norm in Cb(K,X) where K is a locally compact Hausdorff space and X is
a real Banach space and Cb(K,X) denotes the Banach space of all bounded X-
valued continuous functions on K with the supremum norm. Contreras studies the
strong subdifferentiability of the norm in [23]. As an application of this property,
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he obtains a characterization of the points of Fréchet differentiability of the norm
in Cb(K,X) and C0(K,X) (the space of X-valued continuous functions vanishing
at infinity on K with the supremum norm) where K is a locally compact Hausdorff
space.

Boyd and Rueda have recently published a work that includes a result about
the differentiability of the norm in weighted Banach spaces of holomorphic func-
tions defined on bounded sets of Cd, [19]. Also, in [18, 19] they study isometric
classification of weighted spaces of holomorphic functions on bounded open sets
of Cd, examining topics such as the v-boundary and v-peak points. Moreover,
they investigate the isometries between weighted spaces of harmonic functions on
open sets of C in [20]. Lusky considers weighted spaces of harmonic functions in
[55, 56, 57], where the isomorphism classes in the case of radial weights on the
disc are determined. More precisely, Lusky [57, Proposition 6.3] proves that if v
is a radial weight on the unit disc then the space of weighted harmonic functions
hv0(D) is isomorphic to a complemented subspace of (

∑∞
n=1

⊕
Hn)c0 , where Hn

is the space of degree n polynomials on C endowed with the supremum norm,
‖P‖ = sup‖z‖≤1|P (z)|. Bonet and Wolf, inspired by the proof of Kalton and
Werner in [49, Corollary 4.9] get an almost isometry between the space Hv0 and a
closed subspace of c0 in [17].

Based on the mentioned studies and with a standard notation about locally
convex spaces, complex and functional analysis and Banach space theory as in
[5, 28, 38, 42, 51, 58, 61, 62] and the initial chapter we distribute the results
obtained in four chapters. Most of the contents of chapter 1, 2 and 4 have been
published by E. Jordá and A.-M. Zarco in [48, 46]. The results of chapter 3 are
included in [47].

In the first chapter, we introduce the harmonic associated weight ṽh in these
spaces in a natural way extending the work on the corresponding spaces of holo-
morphic functions due to Bierstedt, Bonet and Taskinen in [7, 1.A]. Thus, v ≤
ṽh ≤ ṽH . Associated weights constitute a very important tool for the study of
these spaces. It is better linked to the space than the original weight, for example
it has been used to study the most important properties about composition oper-
ators between weighted Banach spaces of holomorphic functions with holomorphic
symbol. We extend most of the results in that paper to the harmonic case, and
we check that in general the holomorphic and the harmonic associated weight are
different. We also give some conditions under which they coincide and conditions
under which they are equivalent.

In the second chapter, composition operators on weighted spaces of plurihar-
monic functions are analyzed. This is the convenient context to consider the
composition operator with holomorphic symbols. We characterize the norm and
the essential norm for some important weights, extending results from [10, 24, 59]
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to these spaces. If v and w are weights on G1 and G2 respectively, then the
continuity of composition operators Cϕ : phv(G1) → phw(G2) is equivalent to

Cϕ (phv(G1)) ⊂ phw(G2), and also supz∈G2

w(z)
ṽph(ϕ(z))

<∞. Moreover, if these equiv-

alences hold, then ‖Cϕ‖ = supz∈G2

w(z)
ṽph(ϕ(z))

.

In case of v being a decreasing unitary weight on the unit ball BCN of CN

and convergent to 0 on the boundary, such that log( 1
v
) is convex, G an open and

connected in CN , w a weight on G and ϕ : G→ BCN a holomorphic function, we
prove that Cϕ : Hv(BCN ) → Hw(G) is compact if and only if Cϕ : phv(BCN ) →
phw(G) is compact if and only if Cϕ : phv(BCN )→ phw0(G) is compact.

We get a sequence of compact operators in Proposition 2.4.1 which is the key to
the proofs of the results about the essential norm which extend the main theorems
in [10, 59] to our context. If G is a balanced, bounded and open subset of CN and
v is a weight on G which vanishes at infinity and such that there exists M > 0
such that

sup
z∈G,0<r<1

v(z)

ṽh(rz)
≤M,

then there exists a sequence of operators (Tn) on (h(G), τ0) such that Tn : hv(G)→
hv(G) is compact for each n ∈ N and the following conditions are fulfilled: H(G)
and ph(G) are invariant subspaces of Tn for each n ∈ N, τ0 − lim

n→∞
Tn = I and

lim sup
n→∞

‖I − Tn‖ ≤ 1.

Under the same conditions on the weight v, Theorem 2.4.2 states as upper
bound of essential norm of composition operator Cϕ : phv(G1)→ phw(G2):

lim
n→∞

sup
ϕ(z)∈G1\Kn

w(z)

ṽph(ϕ(z))
,

where w is a weight on G2 and (Kn)n is a fundamental sequence of compact
subsets of G1. Here also, we give a criterion to determine when a composi-
tion operator is compact. More precisely, Cϕ is compact if and only if ‖Cϕ‖e =

lim
n→∞

sup
ϕ(z)∈G1\Kn

w(z)

ṽph(ϕ(z))
= 0.

In Theorem 2.4.4 we get ‖Cϕ‖e = lim sup|ϕ(z)|→1
w(z)
ṽ(ϕ(z))

, where B is the unit

ball of (CN , | · |), ϕ : G → B a holomorphic function on an open and connected
set G in CM , g : [0, 1[→ R+ a continuous function with g(1−) = 0, v(z) = g(|z|)
a weight on B such that ṽH = ṽph and w a weight on G which vanishes at ∞ and
supposing that the operator Cϕ : phv(B)→ phw(G) is continuous.

Zheng proved in [74] that for a holomorphic function ϕ : D→ D, the essential
norm of the composition operator Cϕ : H∞(D) → H∞(D) is either 0 or 1. In
the weighted Banach spaces of holomorphic and harmonic functions the situation
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differs. For the typical weight v(z) = 1 − |z| and each value of the interval [0, 1]
there is a composition operator Cϕ : Hv(D)→ Hv(D) such that its essential norm
attains this value.

In the third chapter we prove that if (X, ‖ · ‖) is a real Banach space, C ⊆ BX∗

is a weak∗ closed James boundary and x0 ∈ SX weak∗ exposes x∗0 in C, then ‖ ·‖ is
Gâteaux differentiable at x0. In this case, if x∗0 is the differential of ‖ · ‖ at x0 (i.e.
x∗0 ∈ SX∗ and x∗0(x0) = 1) and if it holds that given a sequence (x∗n)n in C ∩ SX∗
which is weak∗ convergent to x∗0 then ‖x∗n − x∗0‖ tends to 0, we can conclude that
the norm ‖ · ‖ is Fréchet differentiable at x0.

We include a vector-valued version of [26, Example I.1.6 (b)]. This result
appears in [53, Theorem 3.1 and Corollary 3.2], [67, Thereom 1 and Theorem 2] and
[23, Corollary 4] with subtle changes. More precisely, if Y ⊆ C(K,X) is a closed
subspace separating points of K, K being a compact Hausdorff space, then the
norm of Y is Gâteaux differentiable at f ∈ Y if and only if there is k ∈ K peaking
f such that the norm of X is Gâteaux differentiable at f(k). If Y = C(K,X), then
the norm is Fréchet differentiable at f if and only if there is an isolated point k ∈ K
peaking f such that the norm of X is Fréchet differentiable at f(k). The fact that
the proof works for a subspace of C(K,X) allows us to obtain as an application
an easy proof of the characterization of Gâteaux differentiability of K(X, Y ), X
being a reflexive Banach space, i.e. the norm of K(X, Y ) is Gâteaux differentiable
at T ∈ SK(X,Y ) if and only if there is x0 ∈ SX such that ‖T (x0)‖ = 1, the norm of
Y is Gâteaux differentiable at T (x0) and ‖T (x)‖ < ‖x‖ for all x ∈ X \ span {x0} .
This is the result announced by Heinrich in [40] without proof.

In Section 3.4, for a real Banach space X we denote by h(U,X) the space of
harmonic functions on U an open and connected set of Rd with values in X, h(U)
denotes the space of real valued harmonic functions. With this notation, the space
of complex valued harmonic functions observed as a real topological vector space
is denoted by h(U,R2). A function f : U → X is harmonic in a strong sense, i.e.
it is a C∞ function which is in the kernel of the vector-valued Laplacian, if and
only if x∗ ◦ f ∈ h(U) for all x∗ ∈ X∗ (e.g. [13, Corollary 10]). Here and in the
following sections a weight on U is a bounded continuous function v : U →]0,∞[.

If hv0(U) contains the polynomials of a degree smaller or equal than 1, then
the norm ‖ ·‖v is Gâteaux differentiable at f ∈ hv0(U,X) if and only if there exists
z0 ∈ Pv peaking f with the norm of X being Gâteaux differentiable at v(z0)f(z0).
In this case ‖ · ‖v is also Gâteaux differentiable at f in hcv(U,X) and the norm
‖ · ‖v is Fréchet differentiable at f considered as a function in hcv(U,X) if and only
‖ · ‖ is Fréchet differentiable at v(z0)f(z0), where hcv(U,X) := {f ∈ hv(U,X) :
(vf)(U) is relatively compact}. We deduce that the norm of A(D) is Gâteaux dif-
ferentiable at f if and only if there is z ∈ ∂D such that |f(z)| = 1 and |f(y)| < 1 for
each z 6= y and although there are functions in A(D) for which the norm is Gâteaux
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differentiable, however, there is no function f ∈ SA(D) such that the norm in A(D)
is Fréchet differentiable at f . Moreover, there is no function f ∈ SH∞(D) such
that the norm in H∞(D) is Gâteaux differentiable at f . Therefore, hv0(U,R2) and
hv(U,R2), and the corresponding subspaces of holomorphic functions Hv0(U) and
Hv(U) behave differently from A(D) and H∞(D) with respect to differentiability
of the norm.

In the last chapter, the motivation of the proposed problem is given by the
fact that for an open set U ⊆ Rd, the space hv(U) is isometric to a subspace of
l∞ and for the proof it is enough to take zn)n a countable and dense set of U and
define T : hv(U)→ l∞ by T (f) = (v(zn)f(zn))n, but this argument does not work
for hv0(U). We show that if U is a connected open subset of Rd, v is a weight
on U and 0 < ε < 1, then, there exists a continuous linear injective map with
closed range T : hv0(U) → c0 such that (1− ε) ‖f‖v ≤ ‖T (f)‖c0 ≤ ‖f‖v for each
f ∈ hv0(U). Hence, the space hv0(U) is isomorphic to a closed subspace of c0.
The argument of the proof given by Bonet and Wolf in [17] for the corresponding
spaces of holomorphic functions works here introducing Cauchy type inequalities
for the derivatives of harmonic functions.

Some geometrical conditions in U and convexity in the weight v ensure that
neither Hv0(U) nor hv0(U) are rotund. These conditions also imply that neither
Hv0(U) nor hv0(U) can be isometric to any subspace of c0.



Chapter 0

Preliminaries

0.1 Basic notation

We denote by ‖·‖ the Euclidean norm in Rd or Cd, i.e. for z = (x1+iy1, · · · , xd+
iyd), ‖z‖ =

√
x2

1 + · · ·+ x2
d + y2

1 + · · ·+ y2
d. For x, y ∈ Rd (or Cd) we denote by

< x, y > its canonical scalar product.

We use | · | for the modulus of a real or a complex number. Sometimes we make
an abuse of notation and | · | denotes an arbitrary norm in Rd or in Cd and the
modulus in R or C.

A subset C of a vector space V over either R or C is circled if λC ⊂ C whenever
|λ| ≤ 1. We denote by N = {1, 2, · · · } the set of natural numbers and N0 = N∪{0}.

If a ∈ C and r > 0, then D(a, r) denotes the disc of center a and radius
r, i.e. {z ∈ C : |z − a| < r}. For the unit disc D(0, 1) we use the symbol D.
If a = (a1, · · · , ad) ∈ Cd and r > 0 then, B(a, r) := {z ∈ Cd : ‖z − a‖ < r}
and Dd(a, r) := {z ∈ Cd : maxj{|zj − aj|} < r} denote the open Euclidean
ball and the open polydisc respectively. We also consider polydiscs of the form
D(a1, r1)× · · · ×D(ad, rd).

0.2 Harmonic and Holomorphic functions

Let U ⊆ Cd. There are many possible equivalent definitions of holomorphic func-
tion. Four of them are offered in [51, Chapter 0] relating the classical one-variable
sense in each variable separately with the Cauchy-Riemann conditions, the power
series and the Cauchy formula.

Definition 0.2.1. A function f : U → C is holomorphic if it satisfies one of the
following equivalent conditions:

7
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1. For each j = 1, · · · , d and each fixed z1, · · · , zj−1, zj+1, · · · , zd the function

ζ 7→ f(z1, · · · , zj−1, ζ, zj+1, · · · , zd)

is holomorphic, in the classical one-variable sense, on the set

U(z1, · · · , zj−1, zj+1, · · · , zd) := {ζ ∈ C : (z1, · · · , zj−1, ζ, zj+1, · · · , zd) ∈ U}.

2. f is continuously differentiable in each complex variable separately on U and
f satisfies the Cauchy-Riemann equations in each variable separately.

3. For each z0 ∈ U there is an r = r(z0) > 0 such that the closed polydisc

D
d
(z0, r) ⊆ U and f can be written as an absolutely and uniformly conver-

gent power series

f(z) =
∑
α

aα(z − z0)α

for all z ∈ Dd
(z0, r).

4. f is continuous in each variable separately and locally bounded and for each

w ∈ U there is an r = r(w) > 0 such that D
d
(w, r) ⊆ U and

f(z) =
1

(2πi)d

∮
|ζd−wd|=r

· · ·
∮
|ζ1−w1|=r

f(ζ1, · · · , ζd)
(ζ1 − z1) · · · (ζd − zd)

dζ1 · · · dζd

for all z ∈ Dd(w, r).

We denote by H(U) the space of complex valued holomorphic functions on U .

Definition 0.2.2. Let U be an open and connected set of Rd. A twice continuously
differentiable, complex-valued function f defined on U is harmonic on U if4f = 0,
where 4 is the Laplacian operator, i.e., 4 = D2

1 + · · · + D2
d and D2

j denotes the
second partial derivative with respect to the j − th coordinate variable.

We denote by h(U) the space of complex valued harmonic functions on U .

Definition 0.2.3. If U ⊆ Rd and ϕ : U → R∪{−∞} is a continuous function then,
ϕ is called subharmonic if for each a ∈ U , there exists a closed ball B(a, r) ⊆ U
such that

ϕ(a) ≤
∫
S

ϕ(a+ rζ)dσ(ζ)

whenever 0 < r ≤ R, where S is the unit sphere and σ is the unique Borel
probability measure on S that is rotation invariant.
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By identifying C with R2 we can consider U an open and connected subset
of Cd and h(U) the space of complex valued harmonic functions on U of 2d real
variables.

Although the situation in several complex variables is different and other
problems are present, some properties continue staying because of the inclusion
H(U) ⊆ h(U) which is deduced from the definitions. For instance, by [39] if h is a
separately harmonic function on an open neighbourhood of an (m−1)−dimensional
compact submanifold

∑
in Rm with m ≥ 2 then, h can be extended to a sepa-

rately harmonic function on the bounded component of Rm\Σ. However, in [72] an
example of a separately subharmonic function which is not subharmonic is given.

In one complex variable, harmonic functions are (locally) the real parts of
holomorphic functions. The analogous behaviour in several variables is given by
pluriharmornic functions (see for instance [51, 2.2]).

Definition 0.2.4. Let U ⊆ Cd be an open and connected subset. A function f :
U → C of class C2 is said to be pluriharmonic if for every complex line l = {a+ bλ}
the function λ→ f(a+ bλ) is harmonic on the set Ul = {λ ∈ C : a+ bλ ∈ U}.

Proposition 0.2.5. Let Dd(P, r) ⊆ Cd be a polydisc and assume that

f : Dd(P, r)→ R

is C2. Then f is pluriharmonic on Dd(P, r) if and only if f is the real part of a
holomorphic function on Dd(P, r).

We denote by ph(U) the space of complex valued pluriharmonic functions on
U .

All these concepts can be extended to functions which take vectorial values
in the following way. A function f : U ⊆ Rd → X, X being a locally convex
space, is said to be of class C1 if, for all 1 ≤ i ≤ d, there is a continuous function
∂f
∂xi

: U → X such that

∂f

∂xi
(x) = lim

t→0

1

t
(f(x+ tei)− f(x)), x ∈ U.

Here ei denotes the i− th vector of the canonical basis of Rd. If (α1, · · · , αd) ∈ Nd

and |α| = α1 + · · ·+ αd, then

∂αf =
∂|α|

∂xα
f =

∂|α|

∂xα1
1 · · · ∂x

αd
d

f.

The space of all functions f : U → X such that ∂|α|

∂xα
f : U → X is a well defined

continuous function for |α| ≤ k is denoted by Ck(U,X). Whenever f is infinitely
differentiable and P (∂, x) =

∑
|α|≤m aα(x)∂α is a linear partial differential operator
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with smooth coefficients, then P (∂, x)f =
∑
|α|≤m aα(x)∂αf is also an infinitely

differentiable function.
A function f : U ⊆ Cd → X is said to be holomorphic if, for each z0 ∈ U ,

there exists r > 0 and a sequence (an)n ⊆ X such that f(z) =
∑∞

n=0 an (z − z0)n

for each z ∈ B(z0, r).
The space of holomorphic functions with values in X is denoted by H(U,X).

In the same way, the space of vector-valued harmonic functions h(U,X) is defined
as the set of twice continuously differentiable functions f : U → X such that
4f ≡ 0. If X is locally complete then a function f ∈ C∞(U,X) is holomorphic if
and only if f satisfies the Cauchy-Riemann equations, see [13].

If (Y, τ) is a topological space andX a locally complete locally convex Hausdorff
space, we can consider Y ′ (topological dual of Y) endowed with the topology of
uniform convergence on all convex compact sets. The set of all continuous linear
operators from (Y ′, co) into X denoted by Y εX is called L. Schwartz’ ε−product
of Y and X.

As a consequence of results due to Bonet, Frerick, Jordá and Maestre (see
[16, prop. 2] and [13, 2]) we obtain the following: If X is locally complete then
these definitions are consistent with the following different definitions based on L.
Schwartz’ ε−product:

C∞(U,X) : = {x→ T (δx) : T ∈ C∞(G)εX} ,
H(U,X) : = {x→ T (δx) : T ∈ H(U)εX} ,
h(U,X) : = {x→ T (δx) : T ∈ h(U)εX} .

0.3 Banach spaces. Definitions and general the-

ory

0.3.1 Notations and classical theorems

For a Banach space (X, ‖·‖), the dual of X is denoted by X∗. (X,w) and (X∗, w∗)
are X and X∗ endowed with the weak (σ(X,X∗)) and the weak∗ (σ(X∗, X)) to-
pology, respectively. We write BX for the unit ball of X and BX∗ for the unit ball
of X∗. We use SX and SX∗ for the unit spheres of X and X∗, respectively. Let
M ⊆ X and N ⊆ X∗ both be nonempty. Define

M◦ := {x∗ ∈ X∗ : |x∗(x)| ≤ 1 for all x ∈M}

N◦ := {x ∈ X : |x∗(x)| ≤ 1 for all x∗ ∈ N}

M◦ is called the polar of M in X∗, N◦ is called the polar of N in X.
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The well known extension and separation theorems due to Hahn and Banach
are frequently used in the proofs of the results that we present in this work. We
state below other important theorems which we also use.

Theorem 0.3.1 (Krein-Milman). Every convex, compact subset K 6= ∅ of a
locally convex space X is the closure of the convex hull of the extreme points of K.

Theorem 0.3.2 (Josefson-Nissenzweig). If X is an infinite dimensional Ba-
nach space then there is a sequence (x∗n) of elements of the dual unit sphere SX∗
which converges to 0 in the weak∗ topology.

Theorem 0.3.3 (Alaoglu-Bourbaki). For each neighbourhood U of zero in a
locally convex space X, its polar U◦ is absolutely convex and σ(X∗, X)-compact,
being X∗ the topological dual of X.

Theorem 0.3.4 (Mazur). The norm closure and the weak closure of a convex
set A in a locally convex space X coincide.

Theorem 0.3.5 (James). A Banach space X is reflexive if and only if every
bounded linear functional on X attains its maximum on the closed unit ball in X.

Theorem 0.3.6 (Eberlein-Šmulian-Grothendieck). Let X be a Banach space.
A set in X is weakly relatively compact if and only if it is weakly sequentially
relatively compact if and only if it is weakly countably relatively compact.

Theorem 0.3.7 (Krein-Šmulian). If C is a weakly compact set in a Banach
space X, then co(C) is weakly compact.

Theorem 0.3.8 (Milman’s converse to the Krein-Milman theorem). Let
X be a locally convex space and F a nonempty subset of X such that co(F ) is
compact. Then Ext(co(F )) ⊆ F .

0.3.2 Operators

Terminology about topologies on L(X, Y ), which denotes the normed space of all
bounded linear mappings from the normed space X to the normed space Y , can
be seen in [50, p.161–164] for instance. The norm on L(X, Y ) is the operator norm

‖T‖ := sup‖x‖<1‖T (x)‖.
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It is also called the uniform operator topology (u.o.t.). We can consider two addi-
tional topologies on L(X, Y ), weaker than the uniform operator topology. A net
{Tj : j ∈ J} converges to T in the strong operator topology (s.o.t.) of L(X, Y ) if
Tj(x) → T (x) strongly in Y , for each x ∈ X. This convergence is clearly weaker
than convergence in the u.o.t. If one requires that (Tj(x))j converges weakly to
T (x), for each x ∈ X, one gets a still weaker convergence concept called conver-
gence in the weak operator topology (w.o.t.). The s.o.t. and the w.o.t. may be
defined by giving bases as follows:

1. A basis for the strong operator topology L(X, Y ) consists of all the sets of
the form

N(T, F, ε) := {S ∈ L(X, Y ) : ‖(S − T )(x)‖ < ε, x ∈ F}, where T ∈ L(X, Y ),
F ⊆ X is finite, and ε > 0.

2. A basis for the weak operator topology on L(X, Y ) consists of all sets of the
form

N(T, F,
∧
, ε) := {S ∈ L(X, Y ) : |y∗((S − T )(x))| < ε, x ∈ F, y∗ ∈

∧
}, where

T ∈ L(X, Y ), F ⊆ X and
∧
⊆ Y ∗ are finite sets, and ε > 0.

Since the bases consist of convex sets it is clear that L(X, Y ) is a locally con-
vex topological vector space for each of the above topologies. By L(X, Y )s.o. we
denote L(X,Y) endowed with the strong operator topology. Analogously we write
L(X, Y )w.o. if it is equipped with the weak operator topology. It can be shown
that L(X, Y )∗s.o. = L(X, Y )∗w.o.. Moreover, the general form of an element g of this
(common) dual is g(T ) =

∑
k y
∗
k(T (xk)), (T ∈ L(X, Y )), where the sum is finite,

xk ∈ X and y∗k ∈ Y ∗, (see [50, Theorem 6.19]). A convex subset of L(X, Y ) has
the same closure in the w.o.t. and in the s.o.t.

0.3.3 Biduality

Theorem 0.3.9 (Dixmier-Ng). Let E be a Banach space and

B = {x ∈ E : ‖x‖ ≤ 1} .

We suppose that there is a locally convex and separated topology t such that B is
compact in (E, t). Then:

(i) F := {u ∈ E∗ : u|(B,t) is continuous} endowed with the norm p(u) :=
supx∈B |u(x)| is a Banach space.

(ii) J : E → F ′ defined by J(x)(u) := u(x), x ∈ E , u ∈ F , defines a linear
and surjective isometry.

Theorem 0.3.10 (Bierstedt-Bonet-Summers). Let E be a Banach space and

B = {x ∈ E : ‖x‖ ≤ 1} .
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Suppose that a topology t locally convex and separated such that B is compact in
(E, t) exists. Let F := {u ∈ E∗ : u|(B,t) is continuous } endowed with the norm
p(u) := supx∈B |u(x)|. Let H be a closed vectorial subspace in (E, ‖·‖). Then, for
the map R : F → H ′, Ru := u|H the following properties hold:

(a) R is well defined, linear and continuous.
(b) R is a monomorphism (injective and the range is open) if and only if there

exists M > 0 such that B ⊂MB ∩H(E,t)
.

(c) R is a isometric monomorphism if and only if B ⊂ B ∩H(E,t)
.

(d) If R is a monomorphism, then R is surjective if and only if for all v in H ′

holds v|(B∩H) is t-continuous.

0.3.4 Extreme points

Definition 0.3.11. Let K be a subset of a real or complex linear vector space X.
A non void subset A ⊆ K is said to be an extremal subset of K if a proper convex
combination ak1 + (1− a)k2, 0 < a < 1, of two points of K is in A only if both k1

and k2 are in A. An extremal subset of K consisting of just one point is called an
extreme point of K.

We denote by Ext(K) the set of the extreme points of K. If A and B are
subsets of X and A ⊆ B then Ext(B)

⋂
A ⊆ Ext(A).

If K is convex, then x is an extreme point if, and only if there are no y, z ∈ K
such that y 6= z and x = 1

2
(y + z).

The set of extreme points is not necessarily closed, even in spaces of finite
dimension. For instance, if we take a circle in the plane z = 0 and a segment
vertical in R3 that cuts to the circle in an interior point, then the set of extreme
points is not closed.

Since BX is convex and SX ⊆ BX it holds that every extreme point of BX

is an extreme point of SX and reciprocally. Therefore, we can take the following
definition which is equivalent.

Definition 0.3.12. A vector x in BX of a Banach space X is called extreme point
if x ∈ SX and we can not find y, z ∈ SX with y 6= z and x = 1

2
(y + z).

Definition 0.3.13. A Banach space X is said to be rotund if
∥∥x+y

2

∥∥ < 1 for
‖x‖ = ‖y‖ = 1 and x 6= y, x, y ∈ X.

Definition 0.3.14. A vector x ∈ SX is called exposed if there is x∗ ∈ X∗ such
that ‖x∗‖ = 1, x∗(x) = 1 and x∗(y) 6= 1 for each y ∈ SX \ {x}.

Proposition 0.3.15. A vector x ∈ SX is exposed if and only if there is x∗ ∈ X∗
such that ‖x∗‖ = 1, x∗(x) = 1 and Re(x∗(y)) < 1 for each y ∈ BX \ {x} , where
Re(z) denotes the real part of a complex number z.



14 CHAPTER 0. PRELIMINARIES

Proof. Indeed, Re(x∗(y)) ≤ |Re(x∗(y))| ≤ |x∗(y)| ≤ ‖x∗‖ ‖y‖ ≤ 1, as x∗(y) 6= 1,
we have the strict inequality.

Conversely, if there exists y ∈ SX \ {x} , x∗(y) = 1 , then Re(x∗(y)) = 1, a
contradiction.

Example 0.3.16. If we consider C as a C-vector space, then every point z0 ∈ ∂D
is exposed. It is enough to take u : C→ C defined by u(z) = z0z.

Proposition 0.3.17. If X is a real Banach space on R then a vector x ∈ SX
is exposed if and only if there is x∗ ∈ X∗ such that x∗(x) > x∗(y) for each y ∈
SX \ {x} .

Proof. First, we assume that x ∈ SX is exposed. Then we can find x∗ ∈ X∗ with
‖x∗‖ = 1, x∗(x) = 1 and x∗(y) 6= 1 for each y ∈ SX \ {x}. Thus, 1 = x∗(x) =
‖x∗‖ = sup‖z‖≤1 |x∗(z)| ≥ |x∗(y)| ≥ x∗(y) for each y ∈ SX \ {x} .

The inequality is strict since x∗(y) 6= 1.
Conversely, if there is x∗ ∈ X∗ such that x∗(x) > x∗(y) for each y ∈ SX \ {x},

then, 1=‖x∗‖ = x∗(x) and x∗(y) 6= 1 for each y ∈ SX \ {x}.

Proposition 0.3.18. If x ∈ SX is exposed, then x is extreme.

Proof. Let us assume that there are y, z ∈ SX such that y 6= z and x = 1
2
(y + z).

Hence y 6= x, z 6= x.
Since x is exposed, there is x∗ ∈ X∗ such that ‖x∗‖ = 1, x∗(x) = 1 and

Re(x∗(y)) < 1. But for each y ∈ BX \ {x} we have

1 = Re(x∗(x)) =
1

2
(Re(x∗(y)) + Re(x∗(z))) < 1

which is a contradiction.

Proposition 0.3.19. If X is a rotund Banach space, then every point in SX is
exposed.

Proof. Let x ∈ SX . By the Hahn-Banach theorem there exists x∗ ∈ X∗ such that
x∗(x) = 1, ‖x∗‖ = 1.

If for some y ∈ SX \ {x} we have x∗(y) = 1, then

1 =

∣∣∣∣12x∗(x+ y)

∣∣∣∣ ≤ ‖x∗‖∥∥∥∥1

2
(x+ y)

∥∥∥∥ < 1.

In the first equality we have used the linearity of x∗ and the last inequality is
deduced since the space is rotund.

We can also consider exposed points of X∗.
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Definition 0.3.20. A functional x∗ ∈ SX∗ is called weak*-exposed if there is x ∈ X
such that ‖x‖ = 1, x∗(x) = 1 and y∗(x) 6= 1 for each y∗ ∈ SX∗ \ {x∗}.

Definition 0.3.21. A functional x∗ ∈ SX∗ is called strongly weak*-exposed if there
is a unit vector x ∈ X such that x∗(x) = 1 and given any sequence (x∗k)k in the
unit ball of X∗ with x∗k(x) → 1, (x∗k)k converges to x∗ in norm. In this case, we
say that x exposes strongly-weak* the unit ball of X∗ at x∗.

Lemma 0.3.22. Let U ⊆ Cd be the unit ball for a norm |·|. Then there exists
z0 ∈ ∂U which is exposed.

The key of the proof of the following proposition is in the use of Straszewicz’s
theorem and the theorem of Krein-Milman applied to the finite dimensional space
Cd.

Theorem 0.3.23 (Straszewicz). [1, Theorem 7.89]
In a finite dimensional vector space, the set of exposed points (and hence the

set of strongly exposed points) of a nonempty closed subset is dense in the set of
its extreme points.

Proof. (Of Lemma 0.3.22)
Seeking a contradiction, if ∂U has no exposed points then by an application of

Straszewicz’s theorem it follows that ∂U has no extreme points.
Now the theorem of Krein-Milman implies that U is the closure of the convex

hull of its extreme points. Thus ∂U = ∅, which is a contradiction.

Lemma 0.3.24. [27, Lemma V.8.6] Let K be a compact and Hausdorff set. Then,
A = {αδk : |α| = 1, α ∈ C, k ∈ K} is the set of extreme points of the closed unit
ball of C(K)∗.

Proposition 0.3.25. Let X and Y be Banach spaces and T : X → Y a linear
continuous and surjective map. Let T ∗ : Y ∗ → X∗, T ∗(y∗) = y∗ ◦ T.

If T is an isometry then T ∗ is also an isometry and y∗ is an extreme point of
the unit ball of Y ∗ if and only if T ∗(y∗) is an extreme point of the unit ball of X∗.

0.3.5 Smoothness

Definition 0.3.26. Let f be a real valued function defined on a Banach space X.
We say that f is Gâteaux differentiable or Gâteaux smooth at x ∈ X, if for each
h ∈ X,

f ′(x)(h) := lim
t→0

f(x+ th)− f(x)

t
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exists and is a linear continuous function in h (i.e. f ′(x) ∈ X∗).
If, in addition, the limit above is uniform in h ∈ SX , we say that f is Fréchet

differentiable at x. Equivalently, f is Fréchet differentiable at x if there exists
f ′(x) ∈ X∗ such that

lim
y→0

f(x+ y)− f(x)− f ′(x) (y)

‖y‖
= 0.

If f is Fréchet differentiable at x, then f is Gâteaux differentiable at x. Let us
remark that the Gâteaux differential f ′(x), assigns to h its directional derivative.
But, there exist functions with directional derivatives in all directions that are not
Gâteaux differentiable. In [70] Šmulyan shows that x∗ is a weak*-exposed vector
in BX∗ by x ∈ BX if and only if the norm in X (a real Banach space) is Gâteaux
differentiable at x with derivative x∗ while in [71] he shows that x∗ is a strongly
weak*-exposed vector in BX∗ by x ∈ BX if and only if the norm in X is Fréchet
differentiable at x with derivative x∗.

Lemma 0.3.27. (Šmulyan)[26, Lemma 1.2] [70, 71] If ‖ · ‖ denotes the norm of
a Banach space X and x ∈ SX , then the following are equivalent:

(i) The norm ‖ · ‖ is Gâteaux differentiable at x.

(ii) limt→0
‖x+th‖−‖x‖

t
exists for every h ∈ X.

(iii) limt→0
‖x+th‖+‖x−th‖−2‖x‖

t
= 0 for every h ∈ X.

Lemma 0.3.28. (Šmulyan)[26, Lemma 1.3] [70, 71] If ‖ · ‖ denotes the norm of
a Banach space X and x ∈ SX , then the following are equivalent:

(i) The norm ‖ · ‖ is Fréchet differentiable at x.

(ii) limt→0
‖x+th‖−‖x‖

t
exists for every h ∈ X and is uniform in h ∈ SX .

(iii) lim‖y‖→0
‖x+y‖+‖x−y‖−2‖x‖

‖y‖ = 0.

Proposition 0.3.29. (Šmulyan)[26, Theorem 1.4] [70, 71] Suppose that ‖ · ‖ is
a norm on a Banach space X with dual norm ‖ · ‖∗. Then

1. The norm ‖ · ‖ is Fréchet differentiable at x ∈ Sx if and only if whenever
fn, gn ∈ S∗X , fn(x)→ 1 and gn(x)→ 1, then ‖fn − gn‖∗ → 0.

2. The norm ‖·‖∗ is Fréchet differentiable at f ∈ SX∗ if and only if whenever
xn, yn ∈ SX , f(xn)→ 1 and f(yn)→ 1, then ‖xn − yn‖ → 0.
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3. The norm ‖·‖ is Gâteaux differentiable at x ∈ SX if and only if whenever fn,
gn ∈ SX∗, fn(x)→ 1 and gn(x)→ 1, then fn − gn →w∗ 0.

4. The norm ‖·‖∗ is Gâteaux differentiable at f ∈ SX∗ if and only if whenever
xn, yn ∈ SX , f(xn)→ 1 and f(yn)→ 1, then xn − yn →w 0.

Proposition 0.3.30. (Šmulyan) [26, Corollary 1.5] [70, 71]
Let X be a real Banach space and ‖·‖ be a norm on X.
(i) The norm ‖·‖ is Gâteaux differentiable at x ∈ SX with derivative x∗ if and

only if there is a unique x∗ ∈ SX∗ such that x∗(x) = 1
(i.e. x∗ is weak*-exposed in SX∗).
(ii) The norm ‖·‖ is Fréchet differentiable at x ∈ SX with derivative x∗ if and

only if there is a unique x∗ ∈ SX∗ satisfying:
for every ε > 0 there exists δ > 0 such that y∗ ∈ BX∗and y∗(x) > 1 − δ imply

‖y∗ − x∗‖ < ε (i.e. u is strongly weak*-exposed in SX∗).

0.4 Classical Banach spaces of holomorphic and

harmonic functions: H∞ and h∞

We denote by H∞ the space of bounded holomorphic functions on D and h∞ the
space of bounded harmonic functions on D endowed with the supremum norm. In
this section we include some of the results on these spaces and the composition
operators on them (see [22, 74]).

Proposition 0.4.1. [22, Proposition 3.2] Let ϕ : D → D be a holomorphic func-
tion. Then the following are equivalent:

(i) Cϕ is compact on h∞.
(ii) Cϕ is compact on H∞.
(iii) ‖ϕ‖ < 1.

If we define ρ(z, w) =
∣∣ z−w

1−zw

∣∣, the pseudo-hyperbolic distance between z and w
in D, then

sup
f∈BH∞

|f(z)− f(w)| = 2ρ(z, w)

1 +
√

1− ρ(z, w)2
.

Proposition 0.4.2. [22, Proposition 3.4] Let ϕ, ψ : D → D be a holomorphic
function, ϕ 6= ψ and ‖ϕ‖ = ‖ψ‖ = 1. Then the following are equivalent:

(i) Cϕ − Cψ is compact on h∞.
(ii) Cϕ − Cψ is compact on H∞.
(iii) lim|ϕ(z)|→1 ρ(ϕ(z), ψ(z)) = lim|ψ(z)|→1 ρ(ϕ(z), ψ(z)) = 0.
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The essential norm of Cϕ on H∞ is defined to be

‖Cϕ‖e = inf{‖Cϕ −K‖ : K is compact operator on H∞}.

Theorem 0.4.3. [74, Theorem 1] If Cϕ is not compact on H∞, then its essential
norm is 1.

The results on interpolating sequences constitute an important tool to study the
differentiability of the norm function for the space H∞. Blaschke products is the
key for the proof of well-known theorems due to Carleson, Hayman and Newman.
We shall call (zk)k an interpolating sequence if, for each bounded sequence of
complex numbers (wk)k, there exists a function f ∈ H∞ such that f(zk) = wk.

Theorem 0.4.4. (Carleson; Newman) [43, p. 197] Let (zk)k be a sequence of
points in the open unit disc. Then (zk)k is an interpolating sequence if and only if
the following condition is satisfied:

(1) (Carleson’s condition)

∏
j 6=k

∣∣∣∣ zk − zj1− zjzk

∣∣∣∣ ≥ δ > 0, k = 1, 2, 3, · · ·

Theorem 0.4.5. (Hayman; Newman)[43, p. 203] Suppose (zk)k is a sequence
of points in the open unit disc which approaches the boundary exponentially, i.e.,

1−|zn|
1−|zn−1| < c < 1. Then (zk)k is an interpolating sequence.

Corollary 0.4.6. [43, p. 204] Any (zk)k such that lim|zk| = 1 contains a subse-
quence which is an interpolating sequence.

Corollary 0.4.7. (Hayman; Newman) [43, p. 204] If (zk)k is an increasing
sequence of points on the positive axis, then (zk)k is an interpolating sequence if
and only if 1−zn

1−zn−1
< c < 1.

0.5 Weighted Banach spaces of harmonic func-

tions

Definition 0.5.1. Let U be an open and connected subset of Cd or Rd. A weight
on U is a function v : G→ R which is strictly positive and continuous.
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Let U be an open and connected subset of Cd. For a weight v the weighted
Banach spaces of holomorphic functions with weight v are defined by:

Hv(U) : = {f ∈ H(U) : ‖f‖v := sup
z∈U

v(z) |f(z)| <∞}, and

Hv0(U) : = {f ∈ H(U) : vf vanishes at infinity on U}.

A function g : U → C is said to vanish at infinity on U if for each ε > 0 there
exists a compact set K ⊂ U such that |g(z)| < ε for each z ∈ U \K.

In the same way, for a weight v the weighted Banach spaces of pluriharmonic
functions with weight v are defined by:

phv(U) : = {f ∈ ph(U) : ‖f‖v := sup
z∈U

v(z) |f(z)| <∞}, and

phv0(U) : = {f ∈ ph(U) : vf vanishes at infinity on U}.

Let U be an open and connected subset of Rd. For a weight v the weighted Banach
spaces of harmonic functions with weight v are defined by:

hv(U) : = {f ∈ h(U) : ‖f‖v := sup
z∈U

v(z) |f(z)| <∞}, and

hv0(U) : = {f ∈ h(U) : vf vanishes at infinity on U}.

The unit balls in these spaces are denoted by Bv, Bv0 , b
p
v, b

p
v0

, bv and bv0 . The balls
Bv, b

p
v and bv are compact if we endow them with the compact open topology τ0.

Definition 0.5.2. A weight v : U → R on a balanced domain U is radial if
v(z) = v(λz) for all z ∈ U and for all λ ∈ C with |λ| = 1.

0.5.1 Biduality

In this section we establish the relation between the spaces phv(G) and (phv0(G))∗∗.
To do this, we use the Theorems 0.3.9 and 0.3.10 which are due to Dixmier and
Bierstedt-Bonet-Summers respectively. When G = BCN we see that under certain
conditions on the weight v, these spaces are canonically isometric and we also
characterize the compact sets of phv0(BCN ). Applying these results in the section
2.4, we give a generalization for the upper and lower estimates of the essential
norm of composition operators in the case of pluriharmonic functions, following
the way of [10] and [59] for holomorphic functions.

Proposition 0.5.3. Let v be a weight on a connected and open set G of CN . Then
phv(G) is canonically isometric to (phv0(G))∗∗ if and only if bpv ⊂ bpv0

τ0
.
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Proof. We proceed in the same way as in the case of holomorphic functions. Let
E = phv(G), H = phv0(G) and t = τ0.

The condition is necessary, according to Theorem 0.3.10 c),

bpv ⊂ bpv ∩ phv0(G)
τ0

= bpv0
τ0
.

To prove that the condition is sufficient, first we check that for all maps ψ ∈
phv0(G)∗ we have that ψ|bpv0 is τ0-continuous. It is enough to prove that it is
τ0-continuous in 0. We consider the normed space

Cv0(G) = {f : G→ C, f continuous, vf vanishes at infinity on G}

with the norm ‖·‖v and phv0(G) is a subspace. Let ψ ∈ phv0(G)∗. By the theorem

of Hahn-Banach, there exists ψ̃ ∈ Cv0(G)∗ such that ψ̃|phv0 (G) = ψ, ‖ψ‖ =
∥∥∥ψ̃∥∥∥.

By means of the map ϕ : f → vf we establish an isometric isomorphism be-
tween Cv0(G) and C0(G). Then, ψ̃ ◦ ϕ−1 ∈ C0(G)∗. By Riesz representation
theorem applied to C0(G), a regular measure of µ exists such that |µ| < ∞ and

ψ̃ ◦ ϕ−1(ϕ(f)) =
∫
G
ϕ(f)dµ, for all f ∈ bpv0 , therefore ψ(f) =

∫
G
vfdµ, for every

f ∈ bpv0 . Given ε > 0, since µ is regular there exists a compact set K of G such
that |µ| (G \K) < ε

2
. Then

|ψ(f)| ≤
∫
G\K

v |f | dµ+

∫
K

v |f | dµ ≤

‖f‖v |µ| (G \K) + sup
z∈K

v(z) sup
z∈K
|f(z)| |µ| (K) <

ε

2
+ C ‖f‖K ,

where
C = sup

z∈K
v(z) |µ| (K).

Taking δ = ε
2C

> 0, and f in the neighborhood of 0,
VK(δ) =

{
f ∈ bpv0 : ‖f‖K < δ

}
, we have: |ψ(f)| < ε.

Let G be an open and balanced set of CN and f ∈ ph(G). Then, f = u + iv,
for certain functions u, v ∈ phR(G). Hence, there exist f1 and f2 in H(G) such
that u = Ref1 and v = Ref2. Therefore, f = 1

2

(
f1 + f1

)
+ i1

2

(
f2 + f2

)
= f1+if2

2
+(

f1−if2
2

)
.

Let
∞∑
n=0

∑
|α|=n

aαz
α,

∞∑
n=0

∑
|α|=n

bαz
α be the developments in a power series in D of

f1 and f2 respectively, where

α = (α1, · · · , αN) ∈ N0 × · · · × N0,
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|α| = α1 + · · ·+ αN ,

zα = zα1
1 · · · · · z

αN
N .

From the continuity of the function z → z, it follows:

f(z) =
∞∑
n=0

∑
|α|=n

aα+ibα
2

zα +
∞∑
n=0

∑
|α|=n

aα−ibα
2

zα, for all z ∈ D.

We denote by Cn(f) the Cesàro means of degree n associated to f defined by

Cn(f)(z) :=
1

n+ 1

n∑
k=0

(pk(z) + qk(z)),

where pk(z) =
k∑
j=0

∑
|α|=j

aα+ibα
2

zα, qk(z) =
k∑
j=0

∑
|α|=j

aα−ibα
2

zα.

Moreover, pk(z) + qk(z) = Re

(
k∑
j=0

∑
|α|=j

aαz
α

)
+ iRe

(
k∑
j=0

∑
|α|=j

bαz
α

)
. Hence,

Cn(f) ∈ ph(G).

Lemma 0.5.4. If f is pluriharmonic then,

maxθ∈[0,2π]|Cnf(eiθz0)| ≤ maxθ∈[0,2π]|f(eiθz0)|

for all z0 ∈ D.

Proof. For fixed z0 ∈ D, we consider the compact set K = {λz0 : |λ| ≤ 1}. By
applying the maximum modulus principle to the pluriharmonic function Cn(f)−f
we obtain

sup
z∈K
|Cn(f)(z)− f(z)| = sup

|z|=|z0|
|Cn(f)(z)− f(z)| =

sup
θ∈[0,2π]

∣∣Cn(f)(eiθz0)− f(eiθz0)
∣∣ .

Now,

g(θ) = f(eiθz0) =
∞∑
n=0

∑
|α|=n

Re(aαz
α
0 e

i|α|θ) + i

∞∑
n=0

∑
|α|=n

Re(bαz
α
0 e

i|α|θ) =

Re(a0) + iRe(b0) +
∞∑
n=1

∑
|α|=n

(Re(aαz
α
0 ) + iRe(bαz

α
0 )) cos (nθ)

−
∞∑
n=1

∑
|α|=n

(Im(aαz
α
0 ) + iIm(bαz

α
0 )) sin (nθ)
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is continuous and 2π−periodic.
Let sn be the n − th partial sum of the series of Fourier generated by g and

σn(θ) = s0(θ)+···+sn(θ)
n+1

= Cn(f)(eiθz0). From Fejér’s Theorem, [2, Theorem 11.15],
the sequence (σn)n converges uniformly to g in [0, 2π], together with (0.5.1) im-
plies that Cn(f) converges uniformly to f in K, so the convergence is pointwise.
Moreover, from [2, Theorem 11.14],

σn(θ) =
1

(n+ 1)π

∫ π

0

g(θ + t) + g (θ − t)
2

sin2
(
n+1

2
t
)

sin2
(

1
2
t
) dt

and
1

(n+ 1)π

∫ π

0

sin2
(
n+1

2
t
)

sin2
(

1
2
t
) dt = 1.

Since g is continuous and periodic it follows:∣∣∣∣g(θ + t) + g (θ − t)
2

∣∣∣∣ ≤ max
θ∈[0,2π]

|g(θ)| .

Hence,

∣∣Cn(f)(eiθz0)
∣∣ ≤ 1

(n+ 1)π

∫ π

0

∣∣∣∣g(θ + t) + g (θ − t)
2

∣∣∣∣ sin2
(
n+1

2
t
)

sin2
(

1
2
t
) dt ≤

max
θ∈[0,2π]

|g(θ)| = max
θ∈[0,2π]

∣∣f(eiθz0)
∣∣ .

Then,

max
θ∈[0,2π]

∣∣Cn(f)(eiθz0)
∣∣ ≤ max

θ∈[0,2π]

∣∣f(eiθz0)
∣∣ . (1)

Proposition 0.5.5. Let v be a radial weight on an open and balanced set G of
CN . If phv0(G) contains every function f ∈ ph(G) such that f(z) = pn(z)+qm(z),

where pn and qm are polynomials of degree n and m respectively, then bpv = bpv0
τ0

.

Proof. As bpv0 ⊂ bpv and bpv
τ0

= bpv, then it suffices to check one inclusion. Let f ∈ bpv
and Cn(f) be the Cesàro means of degree n associated to f . The sequence (Cn(f))n
converges to f in (ph(/D), τ0). By hypothesis, (Cn(f))n ⊂ phv0(G). Now, we fix
z0 ∈ G. Since (1) holds, v is radial and ‖f‖v ≤ 1 it follows:

v(z0) |Cn(f)(z0)| ≤ v(z0) max
θ∈[0,2π]

∣∣Cn(f)(eiθz0)
∣∣ ≤ v(z0) max

θ∈[0,2π]

∣∣f(eiθz0)
∣∣ =
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v(z0)
∣∣f(eiθ0z0)

∣∣ = v(eiθ0z0)
∣∣f(eiθ0z0)

∣∣ ≤ 1.

Therefore, ‖Cn(f)‖v ≤ 1, for all n and as the pointwise topology on bpv coincides

with the topology τ0 then we have that f ∈ bpv0
τ0

.

The following results are immediately deduced from the continuity of the poly-
nomials.

Proposition 0.5.6. Let v be a radial weight on an open balanced and bounded set
G of CN , which vanishes at infinity on G. Then, phv0(G) contains the functions
f ∈ ph(G) such that f(z) = pn(z) + qm(z), where pn, qm are polynomials of degree
n and m respectively.

Proposition 0.5.7. Let v be a radial weight on CN , such that

lim
|z|→+∞

|z|mv(z) = 0

for all m ∈ N. Then, phv0(CN) contains all f ∈ ph(CN) with f(z) = pn(z)+qm(z),
where pn, qm are polynomials of degree n and m respectively.

Corollary 0.5.8. If v is a radial weight on an open balanced and bounded set G
of CN which vanishes at the boundary of G then bpv = bpv0

τ0
and therefore phv(G)

is canonically isometric to (phv0(G))∗∗.

Corollary 0.5.9. Let v be a radial weight on CN , such that

lim
|z|→+∞

|z|mv(z) = 0

for all m ∈ N. Then, bpv = bpv0
τ0

and therefore phv(G) is canonically isometric to
(phv0(G))∗∗.

Proposition 0.5.10. If G is balanced and bounded, v vanishes at the boundary of
G and supz∈G

v(z)
ṽph(rz)

≤ 1 then, bpv = bpv0
τ0

.

Proof. If f ∈ bpv then, for 0 < r < 1, Cr(f) := f(r·) ∈ (bp)v0 , since v(z)|f(rz)| ≤
v(z)

ṽph(rz)
‖f‖v for all z ∈ G. Now, if we take a sequence (rn)n such that 0 < rn < 1

and rn → 1 then, Cr(f) converges to f in compact open topology.

The next result is proved by Montes in an analogous way in [59, Lemma 2.1]
for holomorphic functions on D.
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Lemma 0.5.11. Let v be a radial decreasing weight on BCN , which vanishes at
the boundary of BCN , K ⊂ phv0(BCN ) a closed subset. Then K is compact if and
only if K is bounded and for each ε > 0 there exists 0 < δ < 1 such that:

sup
f∈K

sup
|z|>δ

v(z) |f(z)| < ε. (2)

Proof. We first prove that the condition is necessary. Let ε > 0 be fixed. As K
is compact, there exist f1, · · · fn in K such that for every f ∈ K, we can find
1 ≤ i ≤ n such that ‖f − fi‖v <

ε
2
. On the other hand, from fi ∈ phv0(BCN ) it

follows that for ε
2

there is δ0 ∈]0, 1[ such that sup|z|>δi v(z) |fi(z)| < ε
2

for every
1 ≤ i ≤ n.

Therefore, if f ∈ K, we take fi such that ‖f − fi‖v <
ε
2
. Now, let 1 > s > δ

sup
|z|>s

v(z) |f(z)| ≤ sup
|z|>δ

v(z) |f(z)− fi(z) + fi(z)| ≤

sup
|z|>δ

v(z)|f(z)− fi(z)|+ sup
|z|>δ

v(z) |fi(z)| ≤

‖f − fi‖v + sup
|z|>δ

v(z) |fi(z)| < ε.

Conversely, let us suppose that K is a closed and bounded subset of phv0(BCN )
satisfying (2). Let (fn)n be a sequence in K. As K is bounded, a constant
M > 0 exists such that K ⊂ M(bpv) and as bpv is compact in (ph(BCN ), τ0) we get
a subsequence (fnk)k which converges to a function f ∈ ph(BCN ) in τ0. Next, we
fix ε > 0. Now take δ > 0 given by (2) and obtain

sup
|z|>δ

v(z) |fnk(z)| < ε,

for every k ∈ N. Therefore,

sup
|z|>δ

v(z) |f(z)| ≤ ε. (3)

Considering BCN (0, 1) and the uniform convergence on compact of BCN , for
ε

sup|z|<1 v(z)
> 0 there exists k0 such that k ≥ k0 implies

sup
|z|≤δ
|fnk(z)− f(z)| < ε

sup|z|<1 v(z)
.

Hence, for k ≥ k0,

sup
|z|≤δ

v(z) |fnk(z)− f(z)| < ε. (4)
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From (3) and (4), for k ≥ k0,
‖fnk − f‖v ≤

max

{
sup
|z|≤δ

v(z) |fnk(z)− f(z)| , sup
|z|>δ

v(z) |fnk(z)− f(z)|

}
< 2ε.

This proves that (fnk)k converges to f in phv(BCN ), and as phv0(BCN ) is a closed
subspace of phv(BCN ) and K is closed in phv0(BCN ), we conclude f ∈ K.

0.5.2 Compact operators

Let X and Y be normed spaces and let U := {x ∈ X : ‖x‖ ≤ 1} be the closed
unit ball in X. A linear map A : X → Y is called compact, if A(U) is relatively
compact in Y . If X is a Banach space, then A(U) is relatively compact in Y if
and only if, for every sequence (xn)n in U , the sequence (Axn)n has a convergent
subsequence in Y , [58, Corollary 4.10]. The weak topology on X is denoted by
σ(X,X∗), and it is the topology induced by the seminorm system (pM)M∈ε(X∗),
pM : x→ supy∈M |y(x)|, x ∈ E, where ε(X∗) is the set of finite subsets in X∗ (See
[58, 23]).

Proposition 0.5.12. Let X be a Banach space and let H ⊆ X∗ be a σ(X∗, X∗∗)
dense subspace. In BX , the weak topology σ(X,X∗) coincides with σ(X,H).

Proof. (BX , w) is a subspace of the compact topological space (BX∗∗ , w
∗). The

hypothesis on H implies that σ(X∗∗, H) is a Hausdorff topology, which is obviously
weaker than w∗ = σ(X∗∗, X∗). Thus, compactness of (BX∗ , w

∗) implies the result.

Corollary 0.5.13. If h∗∗v0(U) = hv(U) then in bv0 the weak topology coincides with
the pointwise convergence in U .

Theorem 0.5.14. Let X, Y be normed spaces. A compact operator T : X → Y
sends weakly convergent sequences to sequences which converge in norm. Precisely,
if (xn)n → x weakly then: 1) supn ‖xn‖ < ∞, 2) ‖T (xn)‖ ≤ ‖T‖ ‖xn‖ < ∞,
3) (T (xn))n converges to Tx weakly in Y, 4) (T (xn))n converges to Tx in norm .

Corollary 0.5.15. Let G be an open and connected subset of CN , w a weight
on G, v a radial weight on BCN which vanishes at the boundary of BCN and K :
phv(BCN ) → phw(G) a compact operator. If (gn)n ⊂ bpv0 converges pointwise to 0
then,

lim
n→∞

‖K(gn)‖ = 0.
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Proof. By Proposition 0.5.12,

gn → 0 in σ(H,H∗)|bpv0 .

As K is a compact operator K(bpv0)
phw(G)

⊂ K(bpv)
phw(G)

we have K|H : H →
phw(G) is also a compact operator. Now, by applying Theorem 0.5.14 we arrive
at

‖K(gn)− 0‖ = ‖K(gn)−K(0)‖ → 0.



Chapter 1

Harmonic associated weights

1.1 Definitions and notation

Let G be an open and connected subset of RN . A weight on G is a function
v : G→ R which is strictly positive and continuous.

For a weight v the weighted Banach spaces of harmonic functions with weight
v are defined by:

hv(G) : = {f ∈ h(G) : ‖f‖v := sup
z∈G

v(z) |f(z)| <∞}, and

hv0(G) : = {f ∈ h(G) : vf vanishes at infinity on G}.

A function g : G→ C is said to vanish at infinity on G if for each ε > 0 there
exists a compact set K ⊂ G such that |g(z)| < ε for each z ∈ G \K. If G ⊆ CN ,
the corresponding spaces of holomorphic functions Hv(G) and Hv0(G) have been
deeply studied as we mentioned in the introduction. The unit balls in these spaces
are denoted by bv, bv0 , Bv and Bv0 . The balls Bv and bv are compact if we endow
them with the compact open topology τ0.

An open and connected set (domain) G of RN (or CN) is called balanced if for
each z ∈ G and for each λ ∈ R (λ ∈ C) with |λ| ≤ 1 we have λz ∈ G. A weight
v : G→ R on a balanced domain G is radial if v(z) = v(λz) for all z ∈ G and for
all |λ| = 1. It is called unitary for a norm | · | if there exists a positive continuous
function g : [0,∞[→]0,∞[ such that v(x) = g(|x|), and it is said to be unitary
whenever it is unitary for the Euclidean norm ‖ · ‖.

At first glance, since all the norms are equivalent in CN and RN , one might
expect that the results in weighted Banach spaces of harmonic functions do not
depend on the norm. But, as we shall see below, there are some differences.
Most of them are due to the fact that the Euclidean norm has special properties
related with orthogonal transformations which allow us to obtain optimal results.

27
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Specifically, if T is orthogonal and f ∈ C2(G) then 4f ◦ T = (4f) ◦ T . This
calculation appears in [3, Chapter 1].

The function f ◦T is called a rotation of f . It follows that rotations of harmonic
functions are harmonic.

Definition 1.1.1. Let v be a weight on G and let w = 1
v
. By w̃h, : G → R we

denote the function
w̃h(z) := sup {|f(z)| : f ∈ bv} ,

w is called the growth condition of the weight v and w̃h(z) the associated growth
condition. The harmonic associated weight with v is defined as ṽh := 1

w̃h
.

For each z ∈ G we consider the function δz : (h(G), τ0) → C defined by
δz(f) := f(z). This function is called the evaluation at z and it is linear and
continuous. The compactness of the unit ball bv in (h(G), τ0) implies that the
supremum in the definition is a maximum. Since the norm topology on hv(G) is
stronger than the one induced by τ0, we have that the restriction δz : hv(G)→ C
is also linear and continuous. We denote by hv(G)∗ the topological dual space of
hv(G). From the very definition we have w̃h(z) = ‖δz‖hv(G)∗ . In case G ⊆ CN , the
holomorphic associated weight is denoted by ṽH and its corresponding associated
growth condition by w̃H .

In the same way, by hR(G) we mean the corresponding space of real valued
harmonic functions. We can consider the weighted space hRv (G) of real valued
harmonic functions and define over this space the growth condition

w̃R
h (z) := sup

{
|f(z)| : f ∈ bv ∩ hR(G)

}
.

Since (b)v ∩ hR(G) is a compact set of
(
hR(G), τ0

)
then the supremum of the

definition of w̃R
h is a maximum, just as it happens with the complex case.

1.2 Properties of weights

In this section we present a list of properties satisfied by the growth conditions
w,w1 and w2 and the weight v defined on G. Many of them constitute a generaliza-
tion of the well known properties for the holomorphic case. The first proposition
is an extension to the harmonic case of results for the holomorphic case which are
due to Bierstedt, Bonet and Taskinen (see [7, 1.A]) and the proofs are analogous.
All these properties can be stated in terms of the weights instead of the growth
conditions. In particular, the first one is used during the rest of this work mainly
in the form

v ≤ ṽh ≤ ṽH .
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Proposition 1.2.1. Let w,w1 and w2 be growth conditions defined on G ⊆ RN .
Then the following assertions are true:

(1) 0 ≤ w̃H ≤ w̃h ≤ w for N = 2k.

(2) Let f ∈ h(G). Then |f | ≤ w ⇔ |f | ≤ w̃h.

(3) For each z0 ∈ G there exists fz0 ∈ h(G) such that |fz0(z0)| = w̃h(z0) and
|fz0(z)| ≤ w(z) for all z ∈ G.

(4) w̃h is continuous and subharmonic.

(5) w1 ≤ w2 ⇒ w̃1h ≤ w̃2h.

(6) (Cw) h̃ = Cw̃h for every constant C > 0.

(7) (w̃h) h̃ = w̃h.

(8) (min(w1, w2)) h̃ = (min (w̃1h, w̃2h)) h̃.

(9) (max (w̃1h, w̃2h)) h̃ ≤ (max(w1, w2)h̃.

Proof. (1) This follows from H(G) ⊂ h(G) and the definitions of w̃H and w̃h.

(2) This is trivial.

(3) Since w̃h(z0) = supf∈bv |δz0(f)|, bv is τ0 − compact and δz0 : bv → C is continu-
ous.

(4) First, we show that w̃h : G → R is upper semicontinuous, that is, for all
α ∈ [0,+∞[ the set {z ∈ G : w̃h(z) ≥ α} is closed. To do this, we fix α ≥ 0
and consider a convergent sequence (zn)n to z0 such that w̃h(zn) ≥ α. By (3),
for each n ∈ N there exists fn ∈ bv such that |fn(zn)| = w̃h(zn) ≥ α. Since bv
is a compact subset of (h(G), τ0), there exists a subsequence (fnj)j ⊂ bv that
converges to a certain f ∈ bv with τ0 topology. Hence, for the compact set
K = {znj : j ∈ N} ∪ {z0}, and for each ε > 0 there exists j1 ∈ N such that j ≥ j1

implies supz∈K
∣∣f(z)− fnj(z)

∣∣ < ε
2
. Since f is continuous in z0, there exists j2 such

that if j ≥ j2 then
∣∣f(z0)− f(znj)

∣∣ < ε
2
. Therefore, by taking j0 = max(j1, j2), for

all j ≥ j0 we have∣∣f (z0)− fnj(znj)
∣∣ ≤ ∣∣f(z0)− f(znj)

∣∣+
∣∣f(znj)− fnj(znj)

∣∣ ≤∣∣f(z0)− f(znj)
∣∣+ sup

z∈K

∣∣f(z)− fnj(z)
∣∣ < ε.
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Thus,
lim
j→∞

fnj(znj) = f(z0),

together with
∣∣fnj(znj)∣∣ = w̃h(znj) ≥ α for all j ∈ N, and 1) yields w̃h(z0) ≥

|f(z0)| ≥ α, that is z0 ∈ {z ∈ G : w̃h(z) ≥ α}.
Now, we show that w̃h : G → R is lower semicontinuous, that is, for all

α ∈ [0,+∞[ the set {z ∈ G : w̃h(z) > α} is open. Thus, we fix α ≥ 0 and consider
z0 ∈ G such that w̃h(z0) > α. From the definition of w̃h we can deduce that there
is f ∈ bv such that α < |f(z0)| ≤ w̃h(z0). The continuity of the function |f | in
G yields the existence of an open U ⊂ G, with z0 ∈ U such that |f(z)| > α, for
all z ∈ U . Therefore, w̃h(z) ≥ |f(z)| > α, for all z ∈ U . Then, U is contained in
{z ∈ G : w̃h(z) > α}.

Finally, we check that w̃h is subharmonic. Let a ∈ G and r > 0 such that the
closed ball B(a, r) of center a and radius r is contained in G. By (3), we can find
f ∈ bv such that |f(a)| = w̃h(a). The Mean-Value Property [3, 1.4] implies that f
equals the average of f over ∂B(a, r), i.e.

f(a) =

∫
S

f(a+ rζ)dσ(ζ),

where S denotes the unit sphere and σ is the unique Borel probability measure on
S that is rotation invariant. Therefore,

|f(a)| ≤
∫
S

|f(a+ rζ)|dσ(ζ)

and |f(a+ rζ)| ≤ w̃h(a+ rζ) for all ζ ∈ S. We deduce

w̃h(a) ≤
∫
S

w̃h(a+ rζ)dσ(ζ).

Since we have already shown that w̃h is continuous and 0 ≤ w̃h(z) ≤ w(z) < ∞,
for all z ∈ G, we can conclude that w̃h is subharmonic.

(5) This follows directly from the definition.

(6) Let a ∈ G and C > 0. By (3) there exists f ∈ h(G), such that |f | ≤
w, |f(a)| = w̃h(a). Therefore, Cf ∈ h(G), |Cf | = C |f | ≤ Cw. Now, by (1) we
have, |Cf(a)| ≤ (Cw) h̃(a). Finally we can conclude

Cw̃h(a) ≤ (Cw) h̃(a).

(3) yields that there is g ∈ h(G), such that |g| ≤ Cw, |g(a)| = (Cw) h̃(a).
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Since C > 0 it follows 1
C
g ∈ h(G),

∣∣ 1
C
g
∣∣ ≤ w. By (1) we have

∣∣ 1
C
g(a)

∣∣ ≤ w̃h(a),
which implies

1

C
(Cw) h̃(a) ≤ w̃h(a).

(7) Let a ∈ G. From w̃h ≤ w and (4), we get (w̃h) h̃ ≤ w̃h.
By (3) there exists f ∈ h(G), such that |f | ≤ w, |f(a)| = w̃h(a). By (1),

|f | ≤ w̃h, and applying the definition of (w̃h) h̃, we obtain |f(a)| ≤ (w̃h) h̃(a).
Hence, w̃h ≤ (w̃h) h̃.

(8) Obviously, min (w̃1h, w̃2h) ≤ w̃jh ≤ wj, j = 1, 2. Then,

min (w̃1h, w̃2h) ≤ min(w1, w2).

An applyication of (5) gives

(min (w̃1h, w̃2h)) h̃ ≤ (min(w1, w2)) h̃.

On the other hand, min(w1, w2) ≤ wj, j = 1, 2. By (5), (min(w1, w2)) h̃ ≤ w̃jh,
j = 1, 2. Hence, (min(w1, w2)) h̃ ≤ min(w̃1h, w̃2h). Now, using (5) and (7) we
arrive at

(min(w1, w2)) h̃ = ((min(w1, w2)) h̃) h̃ ≤ (min (w̃1h, w̃2h)) h̃.

(9) We have wj ≤ max(w1, w2), j = 1, 2. Then, by (5) w̃jh ≤ (max(w1, w2)h̃,
j = 1, 2. Thus, max(w̃1h, w̃2h) ≤ (max(w1, w2))h̃. Now, (5) and (7) yield that

(max (w̃1h, w̃2h)) h̃ ≤ (max(w1, w2)h̃) h̃ = max(w1, w2)h̃.

Proposition 1.2.2. For a growth condition w defined on G ⊆ CN , the following
results hold:

(i) w̃H ≤ (w̃H) h̃ ≤ w̃h,
(ii) (w̃h) H̃ = w̃H .

Proof. By Properties 1.2.1 and [7, Section 1A]:
i) w̃H = (w̃H) H̃ ≤ (w̃H) h̃ ≤ (w̃h) h̃ = w̃h,
ii) w̃H = (w̃H) H̃ ≤ (w̃h) H̃ ≤ w̃H .

Definition 1.2.3. Two weights v1, v2 : G→ R are called equivalent if there exist
two positive constants C and D such that Cv1 ≤ v2 ≤ Dv1. We write v1 ∼ v2.
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Proposition 1.2.4. Let v be a weight on G ⊆ CN . If v and ṽH are equivalent
then v and ṽh are equivalent.

Proof. This is a direct consequence from 0 < v ≤ vh ≤ vH .

Definition 1.2.5. A weight v on G ⊆ CN is said to be essential if v ∼ ṽH .

Proposition 1.2.6. If v1 and v2 are equivalent weights then:

(i) ṽ1h, ṽ2h are equivalent,

(ii) ṽ1H , ṽ2H are equivalent.

Proof. This follows from the definition and Property 1.2.1 (5).

Proposition 1.2.7. If w is a growth condition on G ⊆ RN , then w̃R
h = w̃h.

Proof. From hR(G) ⊂ h(G), we obtain w̃R
h ≤ w̃h. Let z0 ∈ G and f ∈ h(G) such

that |f(z0| = w̃h(z0) and |f(z)| ≤ w(z) for all z ∈ G. Let α = f(z0)
|f(z0)| . Then,

Re(αf) ∈ hR(G), and, moreover,

|Re(αf(z)| ≤ |f(z)| ≤ w(z),

for all z ∈ G. Therefore,
|Re(αf)(z0)| ≤ w̃R

h (z0).

Since
w̃h(z0) = |f(z0)| = |Re(αf)(z0)|

then
w̃h(z0) ≤ w̃R

h (z0).

Corollary 1.2.8. For each z0 ∈ G ⊆ RN there exists fz0 ∈ hR(G) such that
fz0(z0) = w̃h(z0) and |fz0(z)| ≤ w(z) for all z ∈ G.

Proposition 1.2.9. If G is an open, bounded and connected subset of RN , and w
has a continuous extension on G with w|∂G = 0, then w̃h = 0.

Proof. We proceed by contradiction. We suppose that there exists z0 ∈ G such that
w̃h(z0) > 0. By Corollary 1.2.8, we can find f ∈ hR(G) such that f(z0) = w̃h(z0)
and |f(z)| ≤ w(z) for all z ∈ G. From the continuity of w in G (which is compact),

and from w|∂G = 0, we obtain that for ε = f(z0)
2

, there exists n ∈ N sufficiently

large so that d(z, ∂G) ≤ 1
n

implies w(z) < f(z0)
2

. Let Ω :=
{
z ∈ G : d(z, ∂G) > 1

n

}
.

Clearly z0 ∈ Ω and Ω ⊂ G. By applying the Maximum Modulus Principle
of harmonic functions [3, 1.8] to f in Ω, we get a ∈ ∂Ω such that |f(z0)| ≤
maxς∈∂Ω {|f(ς)|} = |f(a)| ≤ f(z0)

2
, which is a contradiction.
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Proposition 1.2.10. If bv0
τ0

= bv then sup {|f(z)| : f ∈ bv} = sup {|f(z)| : f ∈ bv0}
for all z ∈ G.

Proof. Since bv ⊃ bv0 we obtain

sup {|f(z)| : f ∈ bv} ≥ sup {|f(z)| : f ∈ bv0}

for each z ∈ G.
To show the reverse inequality we fix z ∈ G. By Proposition 1.2.1(3) there

exists f ∈ bv such that |f(z)| = sup {|f(z)| : f ∈ bv}. By hypothesis, bv0
τ0

= bv.
Thus, f ∈ bv0

τ0
, that implies the existence of a sequence (fn)n ⊂ bv0 , which

converges uniformly on compacts to f . Hence it also converges pointwise. Now,
|fn(z)| ≤ sup {|f(z)| : f ∈ bv0} for all n ∈ N. Then |f(z)| = limn→+∞ |fn(z)| ≤
sup {|f(z)| : f ∈ bv0}.

In general, sup {|f(z)| : f ∈ bv0} is not a maximum since bv0 is not τ0-compact.

Proposition 1.2.11. (i) Let v be a weight on G ⊂ RN . If ṽh(z) < ∞, for all
z ∈ G then hv(G) = hṽh(G) and the norms ‖.‖v and ‖.‖ṽh coincide.

(ii) Let v be a weight on G ⊂ CN . If ṽH(z) <∞, for all z ∈ G then Hv(G) =
Hṽh(G) = HṽH (G) and the norms ‖.‖v,‖.‖ṽH and ‖.‖ṽh coincide.

Proof. (i) From v ≤ ṽh, it is deduced that ‖.‖v ≤ ‖.‖ṽh and hṽh(G) ⊂ hv(G).

If f ∈ hv(G), f 6= 0 then f
‖f‖v
∈ bv. By proposition 1.2.1(1), f

‖f‖v
∈ bṽh . Hence,

‖f‖ṽh ≤ ‖f‖v, and f ∈ hṽh(G).
(ii) It is a consequence of v ≤ ṽh ≤ ṽH and the above argument.

Remark 1.2.12. By [7, Observation 1.12] we know that Hv(G) = HṽH (G) and
the norms ‖.‖v and ‖.‖ṽH coincide.

If v is a bounded weight in G then supz∈G v(z) <∞. Therefore, 1 ∈ Hv(G) ⊂
hv(G) and hence {0} 6= Hv(G), {0} 6= hv(G).

In [14, Ob.1], it is shown that the condition ṽH(z) < ∞, for all z ∈ G is
equivalent to Hv(G) 6= {0} for G ⊂ C.

Condition ṽH < ∞ implies ṽh < ∞, but the converse is not in general true as
we will see in Example 1.2.23.

Proposition 1.2.13. For the growth conditions w, w1 and w2 defined on G, the
following results hold:

(1) If G is balanced (G is a ball or G = RN) then w̃h is unitary whenever w is.
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(2) If w̃h is unitary in a ball B (or the whole space) for a norm | · | then w̃h is
non decreasing.

(3) If G bounded and v is bounded or G = Rn and v(z) tends to zero when ‖z‖
tends to infinity then hv(G) 6= 0, and then ṽh is bounded.

(4) If G is the unit ball for a norm | · | of RN or G = RN , v is unitary for | · | and
hv(G) 6= 0 then supz∈G v(z) < ∞. If G is the Euclidean ball (or G = RN)
and v is unitary then supz∈G ṽh(z) < ∞. In case G = RN we have even
lim|z|→∞ v(z) = 0 and if v is unitary with respect to the Euclidean norm we
also have lim‖z‖→∞ ṽh(z) = 0, whenever there is a non-constant function in
hv(G).

Proof. (1) Assume that G is the Euclidean unit ball of RN and v is unitary. Then,
there exists a positive continuous function g : [0,∞[→ R such that v(x) = g(‖x‖).
We show that for every 0 < r < 1 and every ‖x‖ = ‖y‖ = r we have w̃h(x) = w̃h(y)
which implies that w̃h(z) = sup{M(f, z) : f ∈ bv}, where M(f, z) = sup{|f ◦
T (z) : T orthogonal tranformation}. For each orthogonal transformation T we
have that f ◦ T is harmonic (cf. [3, Chapter 1]). Moreover, since v is unitary,
then v(x)|f(T (x))| = v(T (x))|f(T (x))| and from this it follows that composition
of functions in hv(G) with orthogonal transformations gives an isometry in hv(G).

Let 0 < r < 1 be fixed. There exists f ∈ hv(G) with ‖f‖v = 1 such that
f(r, 0, . . . , 0) = w̃h(r, 0, . . . , 0). Let x0 ∈ G such that ‖x0‖ = r. Consider an
orthogonal transformation T such that T (x0) = (r, 0, . . . , 0). Since f ◦ T is in bv
we get that w̃h(x0) ≥ f ◦ T (x0) = w̃h(r, 0, . . . , 0). If there is f1 ∈ bv such that
f1(x0) > f ◦T (x0), then f1(x0) = f1 ◦T−1 ◦T (x0) = f1 ◦T−1(r, 0, . . . , 0) ≤ w(x0) =
w(r, 0, . . . , 0) and g◦T−1 is in bv because T−1 is an orthogonal transformation. This
contradicts f(r, 0, . . . , 0) = w̃h(r, 0, . . . , 0). Therefore, w̃(x0) = w̃(‖x0‖, 0, · · · , 0).

(2) We consider a weight v on a ball B with respect to a norm | · | which is
unitary. Let 0 < r1 < r2 and z1 ∈ B with |z1| = r1. We take f0 ∈ bv such that
|f0(z1)| = w̃h(z1). By the maximum modulus principle for harmonic functions [3,
1.8] there exists z2 such that |f0(z2)| ≥ |f0(z1)|. Hence w̃h(z2) = supf∈bv |f(z2)| ≥
|f0(z1)| = w̃h(z1). Since w̃h is unitary with respect to | · | we conclude that w̃h is
not decreasing.

(3) In both cases we have 1 ∈ hv(G) and therefore ṽh ≤ ‖1‖v.

(4) Seeking a contradiction, we suppose that v is not bounded. We consider
v(x) = g(|x|). Then, there exists a strictly increasing sequence (rn)n of positive
numbers such that (g (rn))n → ∞, rn → 1 when G is the unit ball for | · |, and
rn → ∞ when G = RN . From hv(G) 6= 0, we get hRv (G) 6= 0. Let u ∈ hRv (G),
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u 6= 0 and M(r) = sup|z|=r |u(z)|. Then

sup
n∈N

g(rn)M(rn) ≤ sup
z∈G

v(z) |u(z)| = ‖u‖v <∞

and furthermore, the sequence (M(rn))n is increasing by the Maximum Modulus
Principle of harmonic functions [3, 1.8]. Hence,

M(rn) ≤ ‖u‖v
g(rn)

, for all n ∈ N.

Taking limit when n tends to ∞ we get a contradiction since u 6= 0. If G = RN

and we assume that there exist c and a sequence (rn)n with rn → ∞ such that
v(rn) > c, then we obtain that, for each non-constant f ∈ bv and |z| = rn we
have |f(z)| ≤ 1/c. Applying again the Maximum Modulus Principle for harmonic
functions we get a contradiction with the Liouville Theorem for harmonic functions
[3, 2.1]. Properties (1) and (2) together mean that if v is a unitary weight in the
unit ball B (or B is the whole space) of (CN , | · |), then ṽh is unitary and non
increasing. The corresponding statements for ṽh when v(x) = g(‖x‖) follow from
the equality hv(G) = hṽh(G) and the fact that ṽh is unitary (Proposition 1.2.13
(1)).

Proposition 1.2.14. Let G ⊂ C be balanced, v a radial weight on G and w the
corresponding growth condition. For f ∈ hR(G), let

M(f, z) := max {|f(λz)| : |λ| = 1}.
Then w̃h(z) = sup

{
M(f, z) : f ∈ bRv

}
for all z ∈ G and the supremum is a

maximum, w̃h is radial and increasing in r.

Proof. If f ∈ bRv , z ∈ G and |λ| = 1 then |f(λz)| ≤ w(λz). Since w is radial and G
balanced, we have w(λz) = w(|λz|) = w(|z|) = w(z). The function z → f(λz) is
in bRv . By Proposition 1.2.1(2), |f(λz)| ≤ w̃h(z). Thus, sup

{
M(f, z) : f ∈ bRv

}
≤

w̃h(z). On the other hand, by Corollary 1.2.8, for each z0 ∈ G, there exists fz0 ∈ bRv
and fz0(z0) = w̃h(z0). Now,

fz0(z0) = |fz0(z0)| ≤ M(fz0 , z0) ≤ sup
{
M(f, z0) : f ∈ bRv

}
. So, the supremum

is a maximum. From M(f, µz) = M(f ◦ Rµ, z), for Rµ(z) = µz, |µ| = 1, z ∈ G
and f ∈ bRv , it follows w̃h(µz) ≤ w̃h(z), z ∈ G and |µ| = 1. Therefore, w̃h(

1
µ
µz) ≤

w̃h(µz), z ∈ G and |µ| = 1. Thus, w̃h is radial. If 0 ≤ r1 ≤ r2 then by Maximum
Modulus Principle of harmonic functions, M(f, r1) ≤ M(f, r2), for all f ∈ bRv and
taking supremum, we get w̃h(r1) ≤ w̃h(r2). Hence, w̃h is increasing in r.

Corollary 1.2.15. Let G ⊂ C balanced, v a radial weight on G and w the corre-
sponding growth condition. If there exists f ∈ hR(G), such that w(z) = M(f, z),
for all z ∈ G, then w̃h = w.
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Proof. w̃h(z) ≤ w(z) = M(f, z) ≤ sup
{
M(f, z) : f ∈ bRv

}
= w̃h(z).

To state the following result, we remark that if G is the unit ball of Rn (or
G = Rn) and v is a unitary weight then Proposition 1.2.13 (1) proved above implies
the existence of a positive function g such that ṽh(x) = g(‖x‖). Moreover, g is a
non increasing function by Proposition 1.2.13 (2).

Proposition 1.2.16. Let g : [0, 1[→ R+ (or g : [0,∞[→ R+) be a continuous
function and let Gn be the unit ball of Rn (or Gn = Rn) for the Euclidean norm.
Define vn(x) = g(‖x‖) for x ∈ Rn. Let gn : [0, 1[→ R+ be the function such that
(ṽn)h(x) = gn(‖x‖) for each n ≥ 2. Then gn+1 ≤ gn for each n ≥ 2.

Proof. We only give the proof for Gn being the unit ball. Let n ≥ 2 and 0 < r < 1.
Denote rn = (r, 0 . . . , 0) ∈ Rn, and let f be in the unit ball of hvn(Gn) such
that 1/gn(r) = f(rn). Such an f exists because Proposition 1.2.1 (3). Consider
f̃(x1, . . . , xn, xn+1) = f(x1, x2, . . . , xn). It is immediate that f̃ ∈ bvn+1 . We have

f̃(rn+1) = f(rn) = 1/gn(r) ≤ 1/gn+1(r).

Our aim is to connect this harmonic associated weight with the holomorphic
one. First we observe that Proposition 1.2.13 (1) above is valid for the holomorphic
case in the ball (or the whole space) with respect to any norm in CN . Further,
Bonet proved in [21, Proposition 2] that, for unitary weights, the corresponding
associated weight does not depend either on the norm or on the dimension. We
state this result below as we need it, the original result is written in terms of entire
functions on Banach spaces.

Proposition 1.2.17 (Bonet). Let g be a non-increasing positive continuous func-
tion defined on positive numbers. If we consider a norm | · | in Cn and a weight
v = g(|z|) for z ∈ Gn ⊂ Cn, Gn being the unit ball of Cn for | · | or Gn = Cn, then
ṽH(z) = g̃(|z|), where

g̃(t) = 1/{sup |h(z)| : h ∈ H(G1), |h(z)| ≤ 1/g(|z|) for all z ∈ G1, |z| = t},

for G1 = D in case Gn the ball of (Cn, | · |n) or G1 = C if we are considering
Gn = Cn.

The argument given there does not work for the harmonic case since f : Cn → C
being harmonic does not imply that λ→ f(λz) (λ ∈ C) is harmonic, for instance,
f(z1, z2) = z1z2. Next, we look for conditions which ensure that ṽH = ṽh.

Definition 1.2.18. A function f :]a, b[⊂]0,+∞[→ R is called convex in log r
with r ∈]a, b[, when the function ψ defined by ψ(t) := f(et) is a convex function
and is called log-convex when the function ψ defined by ψ(t) := log f(et), for
t ∈ log (]a, b[) is a convex function (i.e. log f is convex in log r).
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The following lemma is [10, Lemma 5].

Lemma 1.2.19 (Bonet, Domański, Lindström). Let v : [0, 1[→]0,+∞[ a
decreasing and continuous function with limr→1− v(r) = 0. Let v : D → [0,+∞[,
and consider the radial extension (v(z) = v(|z|)). If 1

v
is log-convex, then v is

equivalent to ṽH (and consequently also to ṽh).

As a clear consequence we have that for a radial weight v in D if limr→1− v(r) = 0
and 1

ṽh
is log-convex, then ṽh is equivalent to ṽH . In view of [12, Proposition 1.1],

the hypothesis of limr→1− v(r) = 0 is equivalent to limr→1− ṽH(r) = 0. Moreover,
because of Proposition 1.2.17, if v = g(|z|) is equivalent to ṽH in D, and we define
vn(z) = g(|z|) for z in the unit ball Bn of (Cn, | · |), | · | being a norm in Cn,
Proposition 1.2.17 implies that there is g̃ not depending neither on n nor on | · |
such that (ṽn)H(z) = g̃(|z|). This implies the equivalence between vn and (ṽn)H
for each n ∈ N. The order relation vn ≤ (ṽn)h ≤ (ṽn)H between the associated
weights implies that vn and (ṽn)h are also equivalent. It seems remarkable that we
do not know if (ṽn)h is unitary with respect to an arbitrary norm | · | if it is not
the Euclidean.

By [10, Remark 2] there exist radial and continuous weights on C which are
decreasing in [0,+∞[, limr→∞ r

nv(r) = 0 for all n ∈ N and for which 1/v is log-
convex, but still v is not an essential weight. An inspection of the proof of [7,
Example 3.3] shows that v is not equivalent to ṽh.

Proposition 1.2.20. Let G ⊂ C be balanced, v a radial weight on G and w
the corresponding growth condition. Then w̃h is radial, subharmonic, continuous,
increasing in r and convex in log r.

Proof. It has been proved in the Proposition 1.2.14 that for a radial growth con-
dition w the corresponding w̃h is radial and increasing in r. By Proposition 1.2.1
(4), w̃h is subharmonic and continuous. Applying Hadamard’s Three Circles The-
orem [5, Proposition 4.4.32], and using the fact that w̃h is radial, we deduce that
r → sup|ζ|=r w̃h(ζ) = w̃h(r) is convex in log r.

The relation between holomorphic functions and subharmonic functions is given
by the fact that if f is a holomorphic function, then log |f | and |f |p for p > 0
are subharmonic functions. Furthermore, for a subharmonic function u ≥ 0 not
identically null one has that log u is subharmonic if and only if up is subharmonic
for each p > 0 (See [5, 4]). These properties are used to show that log w̃H is
subharmonic for any growth condition w. Indeed, let p > 0, z0 ∈ D, D(z0, r) ⊂ D,
w̃H(z0) = |f(z0)|, f holomorphic, f ≤ w. By [5, 4.4.19 (4)], |f |p is subharmonic for

each p > 0. Then, |f(z0)|p ≤ 1
2π

∫ 2π

0
|f(z0 + reit)|p dt ≤ 1

2π

∫ 2π

0
(w̃H(z0 + reit))pdt.

The function w̃pH is continuous. Therefore, w̃pH is subharmonic, for each p > 0.
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Thus, log w̃H is subharmonic. If we add that w is radial, we have that w̃H is radial
and now, from Hadamard’s Three Circle Theorem [5, Proposition 4.4.32], it follows
w̃H is log-convex, i.e. the function t→ log w̃H(et) is convex.

In general, the function |Ref |p is not subharmonic for all p > 0, as well as
the function M :]0, 1[→ R defined by M(r) := max|z|=r |U(z)|, where U is a
real harmonic function, is not always log-convex, and finally, the function t →
log w̃h(e

t) is not convex for all t, as it happens for U = Re(z3 − z), for which
M(r) = r − r3 if 0 < r < 1

3
and M(r) = 1

9

√
9r2 + 3(3r2 + 1) if 1

3
≤ r < 1.

Although we do not know if for unitary weights in the unit disc the associated
and the harmonic weights are equivalent, we have a negative answer for the equiv-
alence of associated weights in the disc with non radial weights. This example is
inspired by [7, Proposition 3.6].

Example 1.2.21. We define the function g in the following way: g : ∂D → R,
g(eit) = |1− eit|2, t ∈ [−π, π]. Then g belongs to L1(∂D), is continuous, g(1) = 0
and g ≥ 0. Let w : D → R be the Poisson Kernel of the function g, that is

w(z) = 1
2π

∫ π
−π Re

(
eit+z
eit−z

)
g(eit)dt. By [61, Theorem 11.7], w is harmonic in D.

Furthermore, w is positive since Re
(
eit+z
eit−z

)
= 1−|z|2

|eit−z|2 > 0 and g > 0 in ∂D \ {1}.
Therefore, w is a growth condition in D and w̃h = w.

On the other hand, log g ∈ L1(∂D), since∫ π

−π

∣∣∣log
∣∣1− eit∣∣2∣∣∣ dt =

∫ π

−π

∣∣log
(
(1− cos t)2 + sin2(t)

)∣∣ dt =∫ π

−π
|log (2 (1− cos t))| dt <∞

By applying [7, Corollary 3.7], w̃H = |Qg|, where Qg is the outer function

of g, that is, Qg(z) = exp

(
1

2π

π∫
−π

eit+z
eit−z log g (eit) dt

)
. For every ε > 0, the so-

lution of Dirichlet problem in the disc D(0, 1 − ε) with boundary condition t →
log |1− (1− ε)eit|2, t ∈ [−π, π], is the function z → log |1− z|2. Since this function
is harmonic on D and

∫ π
0

log(2(1− cos(t))dt = 0, we conclude |Qg(z)| = |1− z|2.
Let r ∈]0, 1[,

ṽH(r)

ṽh(r)
=
w̃h(r)

w̃H(r)
=

1

(1− r)2

1

2π

∫ π

−π
Re

(
eit + r

eit − r

) ∣∣1− eit∣∣2 dt =

1

(1− r)2

1

2π

∫ π

−π

1− r2

|eit − r|2
∣∣1− eit∣∣2 dt ≥ 1

(1− r)
1

2π

∫ π

−π

1 + r

(1 + r)2

∣∣1− eit∣∣2 dt ≥
≥ 1

1− r2

1

2π

∫ π

−π
2(1− cos t)dt =

2

1− r2
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Hence,

sup
r∈]0,1[

ṽH(r)

ṽh(r)
=∞.

Therefore, the corresponding associated weights ṽH , ṽh are not equivalent.

Example 1.2.22. This example shows that there are non-radial weights v : D→ R
such that ṽH and ṽh are equivalent, but ṽh < ṽH for each z ∈ D.

Let m and M be two different positive real numbers. We define the func-
tion g by g : ∂D → R, g(eit) = m if t ∈ [−π, 0] and g(eit) = M if t ∈
]0, π], which is in L1(∂D). Now, we consider the function w : D → R, w(z) =
1

2π

∫ π
−π Re

(
eit+z
eit−z

)
g(eit)dt. This is in fact the Poisson Kernel of the function g and

by [61, Theorem 11.7], w is harmonic in D. Furthermore, w is positive since

Re
(
eit+z
eit−z

)
g(eit) = 1−|z|2

|eit−z|2 g(eit) > 0. Thus, w is a growth condition in D. Since

w is harmonic and positive, it follows w̃h = w. In [7, Corollary 3.7], it is shown
that with these conditions w̃H = |Qg|, where Qg is the outer function of g, i.e.,

Qg(z) = exp

(
1

2π

π∫
−π

eit+z
eit−z log g (eit) dt

)
. Now, as we have taken m 6= M , and by

applying that the geometric mean is smaller than the arithmetic mean, we get the
inequality:

maM1−a < am+ (1− a)M , for all 0 < a < 1.

In particular, for a = 1
2π

∫ 0

−π Re
(
eit+z
eit−z

)
dt:

w̃H(z) = |Qg(z)| = exp( 1
2π

π∫
−π

Re
(
eit+z
eit−z

)
log g (eit) dt) =

maM1−a < am+ (1− a)M = w(z) = w̃h(z).
Therefore, the corresponding associated weights ṽH , ṽh satisfy ṽH > ṽh.

To check that ṽH and ṽh are equivalent, suppose that M > m, then,

0 <
(1− a)M

m
+ a(

M
m

)1−a ≤ (1− a)
M

m
+ a ≤ M

m
.

Hence, am + (1 − a)M ≤ M
m
maM1−a. So, w̃H(z) < w̃h(z) ≤ M

m
w̃H(z) for each

z ∈ D.

We can also obtain an example with a radial weight considering the punctured
disc where ṽH and w̃h are not equivalent.

Example 1.2.23. Let G = {z ∈ C : 0 < |z| < 1}. Let consider the weight v :
G→ R defined by v(z) = 1

− log|z| , and the corresponding growth condition w := 1
v
.

Let f(z) = log |z|, z ∈ G. From f ∈ hR(G) and |f(z)| = w(z) = − log |z| we
obtain w̃h = w̃R

h = w.
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If f ∈ H(G), |f(z)| ≤ w(z), for all z ∈ G then limz→a,|a|=1 f(z) = 0. Moreover
e|f(z)| ≤ e− log|z| = 1

|z| , for all z ∈ G, and then
∣∣zef(z)

∣∣ ≤ 1, for all z ∈ G. This

implies that zef(z) can be holomorphically extended to a function g on D with
g(z) 6= 0 if z 6= 0. Hence there exists k ∈ N0 such that ĝ(z) := g(z)

zk
is holomorphic

on D and satisfies ĝ(0) 6= 0. Now log |ĝ| is a harmonic function that can be
extended continuously to ∂D as 0. This yields that log |ĝ| is identically null and
consequently |ef(z)| = |z|k−1 for each z ∈ D \ {0}. The unique k ∈ N0 which does
not give contradiction is k = 1. Thus f has to be constantly 0 because of the
behaviour when going to the boundary. This means w̃H = 0.

The next result is inspired by the results of [19, Section 6]. Besides putting
the more general context, we remove from the weight the condition of being twice
differentiable. For the proof we use the following property:

Let Ψ :]0, 1[→ R be an increasing and convex function. Then, for each r0 ∈
[0, 1[ there exists α0 ≥ 0 depending on r0 such that Ψ(r) ≥ α0(r − r0) + Ψ(r0).

If, in addition Ψ is a strictly convex function, then, for each r0 ∈ [0, 1[ there
exists α0 ≥ 0 depending on r0 such that Ψ(r) > α0(r − r0) + Ψ(r0) for all r ∈
[0, 1[\r0.

Theorem 1.2.24. Let g : [0, 1[→ R+ be a non increasing continuous function such
that g(1−) = 0 and log(1

g
)|]0,1[ is convex. Let N ≥ 2. Consider the unitary weight

v : BRN → R+ defined by v(x) := g(‖x‖). Then v = ṽh. Moreover if N = 2k is
even and we consider v(z) = g(|z|) for a norm | · | in Ck and z in the corresponding
unit ball, then we have v = ṽH .

Proof. We restrict ourselves to the case v : D → R+, considering v(z) = g(|z|).
Proving the equality v = ṽH in this case, the statement is a consequence of Propo-
sition 1.2.16, Proposition 1.2.17 and the order relation v ≤ ṽh ≤ ṽH .

We fix r0 ∈ [0, 1[. Define Ψ := log( 1
v
|[0,1[). As Ψ is increasing and convex we

can get α0 ≥ 0 which depends on r0 such that Ψ(r) ≥ α0(r − r0) + Ψ(r0), for all
r ∈ [0, 1[. Now we compute

sup
0<r<1

v(r) exp(α0r) = exp

(
sup

0<r<1
(log v(r) + α0r)

)
=

exp

(
sup

0<r<1
(−Ψ(r0) + α0r)

)
≤

exp

(
sup

0<r<1
(−α0(r − r0)−Ψ(r0) + α0r)

)
= v(r0) exp(α0r0).

Now we consider f0(z) := 1
v(r0) exp(α0r0)

exp(α0z) for z ∈ D. We have

v(r0) |f0(r0)| = 1.
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Let z ∈ D,

v(|z|) |f0(z)| ≤ v(|z|) exp(α0|z|)
v(r0) exp(α0r0)

≤ 1,

and this means f0 ∈ Hv(D) and ‖f0‖v = 1. (a) Let |·| be a norm in CN for N ≥ 2
fixed. Now we denote vN(z) := g (|z|) for z ∈ CN . We apply Proposition 1.2.17
and v = ṽH to get (ṽN)H (z) = g (|z|) for each z ∈ CN . Hence, we have from the
order relation (Proposition 1.2.1) in the weights that vN = (ṽN)h = (ṽN)H holds.

Finally, if we consider now vN(x) := g (‖x‖) for x ∈ RN , then 1.2.16 implies
also that, for N ≥ 1 there exists g2N+1 : [0, 1[→]0,∞[ such that

v2N+1(x) = g (‖x‖) ≤ (ṽ2N+1(x))h = g2N+1 (‖x‖) ≤ (ṽ2N(x))h = g (‖x‖) ,

the last equality being a consequence from (a) since the Euclidean norm is the
same in CN as in R2N .

Remark 1.2.25. (a) From the proof given above we can deduced that for a weight
v(z) = g(|z|) defined on C for g : [0,∞[→ R+ continuous and such that f(z) :=
exp(αz) ∈ Hv(C) for all α ≥ 0 we have v = ṽH . This implies that, for such a
function g there exists g̃ : [0,∞[→ R+ such that if we define vn in Cn as vn(z) =
g(|z|) then (ṽn)H(z) = g̃(|z|) for each n ∈ N and for each norm | · | defined in Cn.

(b) For any increasing function h : [0, 1[→ [0,∞[ which is strictly convex and
satisfies limt→1 h(t) = ∞ (or h : [0,∞[→ [0,∞[ with eat = o(eh(t)) when t goes
to infinity for each a > 0), the function g(t) = e−h(t) satisfies the hypothesis of
Theorem 1.2.24. Thus, we obtain examples of weights where v = ṽH .

Example 1.2.26. In [7, Examples 1.7] and in [19, Example 13] there are examples
of weights v(z) = g(‖z‖) defined on the Euclidean unit ball of Cn which satisfy
that v = ṽH . We write below some of them for which we have v = g(|z|) with log 1

g

convex and | · | being any norm in Cn. The function g can be obtained using the
general method given in Remark 1.2.25.

(a) v(z) = exp(C/(1− |z|β), C > 0, β > 1,
(b) v(z) = (1− |z|)α, α > 0,
(c) v(z) = arccos(|z|),
(d) v(z) = cos(π

2
|z|),

(e) v(z) = 1/max (1,−C log(1− |z|)).
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Chapter 2

Composition operators

2.1 Pluriharmonic functions

Let G ⊆ CN be an open and connected set. A function f : G → C of
class C2 is said to be pluriharmonic (see for instance [51, 2.2]) if for every com-
plex line l = {a+ bλ} the function λ → f(a + bλ) is harmonic on the set
Gl ≡ {λ ∈ C : a+ bλ ∈ G}. This condition is equivalent to:

∂2f

∂zj∂zk
= 0,∀j, k = 1, · · · , n.

Let ph(G) denote the set of pluriharmonic functions on G. In this case we have
the inclusions

H(G) ⊂ ph(G) ⊂ h(G).

For a weight v the weighted Banach spaces of pluriharmonic functions with
weight v are defined by:

phv(G) : = {f ∈ ph(G) : ‖f‖v := sup
z∈G

v(z) |f(z)| <∞}, and

phv0(G) : = {f ∈ ph(G) : vf vanishes at infinity on G}.

The unit balls in these spaces are denoted by bpv and bpv0 .

Definition 2.1.1. Let v be a weight on G and let w = 1
v
. By w̃ph, : G → R we

denote the function
w̃ph(z) := sup {|f(z)| : f ∈ bpv} ,

w is called the growth condition of the weight v and w̃ph(z) the associated growth
condition. The pluriharmonic associated weight with v is defined as ṽph := 1

w̃ph
.

43
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The inclusions Hv(G) ⊆ phv(G) ⊆ hv(G) imply v ≤ ṽh ≤ ṽph ≤ ṽH . The
unit ball bpv is compact for the compact open topology τ0. Hence, these plurihar-
monic associated weights share all the properties of the corresponding harmonic
associated weights given in Chapter 1.

If f ∈ ph(G), then f = u + iv with u, v in the space ph(G)R of real valued
pluriharmonic functions. By [51, Proposition 2.2.3], u and v are locally real parts
of holomorphic functions. Thus, the argument of Proposition 1.2.17, which is not
valid for the harmonic case, works for the pluriharmonic associated weight.

If G1 and G2 are open and connected subsets of CN and CM and ϕ : G2 → G1

is a holomorphic function, then we can consider the composition operator

Cϕ : ph(G1)→ ph(G2),

Cϕ(f) := f ◦ ϕ.

It is in fact well defined, since if f ∈ ph(G1), then f ◦ ϕ ∈ C2(G2) and f =
u+ iv with u, v in the space ph(G1)R of real valued pluriharmonic functions, being
locally real parts of holomorphic functions. Now, the composition of holomorphic
functions is a holomorphic function (see [38, Theorem 5. Chap 1]). From this, it is
concluded that u ◦ϕ and v ◦ϕ are also locally real parts of holomorphic functions.
Thus, by [51, Proposition 2.2.3], u ◦ ϕ, v ◦ ϕ ∈ ph(G1)R. Also, Cϕ : (ph(G1), τ0)→
(ph(G2), τ0) is a continuous and linear map.

2.2 Continuity characterization

Proposition 2.2.1. Let v and w be weights on G1 and G2 respectively. The
following conditions are equivalent for the composition operator Cϕ:

(a) Cϕ : phv(G1)→ phw(G2) is continuous,
(b) Cϕ (phv(G1)) ⊂ phw(G2),

(c) supz∈G2

w(z)
ṽph(ϕ(z))

<∞.

Moreover, if these equivalences hold, then ‖Cϕ‖ = supz∈G2

w(z)
ṽph(ϕ(z))

.

Proof. The arguments are an adaptation of those used in [14] for spaces of holo-
morphic functions. (a) and (b) are equivalent by the Closed Graph Theorem.
We assume that (a) holds. If (c) does not hold then there exists a sequence

(zn)n ⊆ G2 such that w(zn)
ṽph(ϕ(zn))

tends to ∞. For each n ∈ N we take fn ∈ bpv such

that |fn(ϕ(zn))| = 1
ṽph(ϕ(zn))

. This implies that, for all n ∈ N, ‖Cϕ‖ ≥ |Cϕ(fn)| ≥
w(zn)|f(ϕ(zn))| = w(zn)

ṽph(ϕ(zn))
, a contradiction. If (c) is true then for all f ∈ bpv we

have ‖Cϕ(f)(z)‖w = supz∈G2
w(z)|f ◦ ϕ(z)| ≤ supz∈G2

w(z)
ṽph(ϕ(z))

‖f‖v.
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To estimate the norm of Cϕ when it is continuous, we proceed in a similar
way as in [10] the holomorphic case, obtaining a slight improvement. From the

above argument we have that ‖Cϕ‖ ≤ supz∈G
w(z)

ṽph(ϕ(z))
. The transpose Ct

ϕ is also

continuous and for each z ∈ G2 we have w(z)δz is in the unit ball of phw(G2)∗.
Now, for each z ∈ G2,

Ct
ϕ(w(z)δz)(f) = w(z)Ct

ϕ(δz)(f) = w(z)δz ◦ Cϕ(f) = w(z)f(ϕ(z)) = w(z)δϕ(z)(f),

‖Cϕ‖ = ‖Ct
ϕ‖ ≥ ‖Ct

ϕ(w(z)δz)‖ = w(z)‖δϕ(z)‖ =
w(z)

ṽph(z)
,

when ‖ · ‖ denotes both the operator norm and the dual norm.

For essential weights, i.e. those for which v ∼ ṽH , the continuity in the weighted
space of holomorphic functions is equivalent to the continuity in the space of
pluriharmonic functions. For weights on the unit ball of CN endowed with an
arbitrary norm | · |, defined by v(x) = g(|x|) with g : [0, 1[→ R+ being continuous
and non increasing this happens when t 7→ log(1/g)(et) is convex by [10] and
Proposition 1.2.16.

2.3 Compactness characterization

Proposition 2.3.1. The following conditions are equivalent:
(i) Cϕ : phv1(G1)→ ph(v2)0

(G2) is compact.
(ii) Cϕ(phv1(G1)) ⊂ ph(v2)0

(G2) and, for every sequence (fn)n ⊂ bpv1 and con-
vergent to 0 in τ0, the sequence (Cϕ(fn))n has a convergent subsequence to 0 in the
norm topology ‖·‖v2.

Proof. (i)=⇒(ii) Let (fn)n ⊂ bpv1 be such that it converges to 0 in τ0. Since
(fn)n ⊂ bpv1 , using (i) we get a subsequence (Cϕ(fnt))t which is convergent in
phv2(G2), and therefore, convergent to the same function in τ0. As (fn)n converges
to 0 in τ0 and Cϕ : (ph(G1), τ0) → (ph(G2), τ0) is continuous, then (Cϕ(fn))n
converges to 0 in τ0 and we obtain (Cϕ(fnt))t is convergent to 0 in phv2(G2).

(ii)=⇒(i) By the first part of (ii), Cϕ : phv1(G1)→ ph(v2)0
(G2) is a well defined

linear map. Let (fn)n ⊂ bpv1 . Since bpv1 is compact in τ0, the sequence (fn)n has a
convergent subsequence (fnt)t to some f ∈ bpv1 in τ0. By the second part of (ii),

the sequence (Cϕ(
fnt−f

2
))t has a convergent subsequence to 0 in the norm ‖·‖v2 ,

and since Cϕ is C-linear, (Cϕ(fnt))t has a convergent subsequence in norm ‖·‖v2 .
So, Cϕ : phv1(G1)→ ph(v2)0

(G2) is compact.

Theorem 2.3.2. Consider the following assertions:
(i) Cϕ : phv1(G1)→ ph(v2)0

(G2) is compact.
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(ii) Cϕ : phv1(G1)→ phv2(G2) is compact and Cϕ
(
ph(v1)0

(G1)
)
⊂ ph(v2)0

(G2).
(iii) Cϕ : ph(v1)0

(G1)→ ph(v2)0
(G2) is compact.

(iv) For each ε > 0 there exists a compact subset K2 ⊂ G2 such that v2(z)
ṽ1ph(ϕ(z))

<

ε for every z ∈ G2 \K2.

Then (i)=⇒(ii), (ii)=⇒ (iii) and (iv)=⇒(i). If we assume bp(v1)0

τ0
= bpv1, then

(iii)=⇒ (iv) and all the conditions are equivalent.

Proof. (i)=⇒(ii) and (ii)=⇒ (iii) are trivial.
(iv)=⇒(i) We show that (ii) of Proposition 2.3.1 is satisfied. We fix ε > 0. Let

f ∈ phv1(G1) satisfy ‖f‖v1 6= 0. For ε
‖f‖v1

we select a compact set K2 ⊂ G2 as in

(iv). For each z ∈ G2 \K2,

v2(z) |Cϕ(f)(z)| = v2(z) |f(ϕ(z))| = v2(z)

ṽ1ph(ϕ(z))
ṽ1ph(ϕ(z)) |f(ϕ(z))|

≤ v2(z)

ṽ1ph(ϕ(z))
‖f‖ṽ1ph < ε.

This implies Cϕ(phv1(G1)) ⊂ ph(v2)0
(G2).

Let ε > 0 and (fn)n be a sequence in (bp)v1 which tends to 0 in τ0. By (iv),
there exists a compact subset K2 ⊂ G2 such that v2(z) < ε

2
ṽ1ph(ϕ(z)), whenever

z ∈ G2 \K2. Hence,

v2(z) |fn(ϕ(z))| ≤ v2(z)

ṽ1ph(ϕ(z))
ṽ1ph(ϕ(z)) |fn(ϕ(z))| < ε

2
‖fn‖ṽ1ph ≤

ε

2
(2.1)

for each z ∈ G2 \K2 and for each n ∈ N. Since (fn)n converges to 0 in τ0, for the
compact set ϕ(K2) and ε

2 maxz∈K2
v2(z)

> 0 there exists n0 such that n ≥ n0 implies

sup
ζ∈ϕ(K2)

|fn(ζ)| < ε

2 maxz∈K2 v2(z)
. (2.2)

From (2.1) and (2.2) it follows that, for each n ≥ n0,

‖Cϕ(fn)‖v2 ≤ sup
z∈G2\K2

v2(z) |fn(ϕ(z))|+ sup
z∈K2

v2(z) |fn(ϕ(z))| < ε.

We assume bp(v1)0

τ0
= bpv1 to show (iii)=⇒ (iv).

We suppose that

Cϕ : ph(v1)0
(G1)→ ph(v2)0

(G2)
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is compact. By the Schauder Theorem [58, 15.3], the transpose operator

Ct
ϕ : ph(v2)0

(G1)∗ → ph(v1)0
(G2)∗

(Ct
ϕ(y) = y◦Cϕ) is compact. Therefore, Ct

ϕ(U) is relatively compact in ph(v1)0
(G2)∗,

where U is the unit closed ball in ph(v2)0
(G2)∗, i.e.,

U =
{
y ∈ ph(v2)0

(G2)∗ : ‖y‖ph(v2)0 (G2)∗ ≤ 1
}
.

Now, let A := {v2(z)δz : z ∈ G2}. For each z ∈ G2,

‖v2(z)δz‖ph(v2)0 (G2)∗ =

sup
f∈ph(v2)0 (G2),‖f‖v2≤1

|v2(z)δz(f)| ≤ sup
f∈ph(v2)0 (G2),‖f‖v2≤1

‖f‖v2 ≤ 1.

Hence, A ⊂ U and Ct
ϕ(A) ⊂ Ct

ϕ(U). For each z ∈ G2 and every f ∈ ph(v1)0
(G1),

Ct
ϕ(v2(z)δz)(f) = v2(z)δϕ(z)(f).

Thus, Ct
ϕ(A) =

{
v2(z)δϕ(z) : z ∈ G2

}
. LetB be the closing of Ct

ϕ(U) in ph(v1)0
(G1)∗.

Since B is compact, the identity map (B, ‖·‖ph(v1)0 (G1)∗) → (B, σ∗) is continu-

ous and closed, where σ∗ denotes the weak topology σ(ph(v1)0
(G1)∗, ph(v1)0

(G1)).
Therefore, the norm topology on B coincides with the one induced by σ∗. This
implies that, for every ε > 0 there exists a finite set {f1, · · · fs} ⊂ ph(v1)0

(G1) such
that

B ∩ V ({f1, · · · fs} , ε) ⊂
{
ψ ∈ B : ‖ψ‖ph(v1)0 (G1)∗ < ε

}
where V ({f1, · · · fs} , ε) = {ψ ∈ ph(v2)0

(G2)∗ : |ψ(fi) ≤ ε, for all i = 1 · · · s}.
Hypothesis (iii) implies Cϕ(fj) ∈ ph(v2)0

(G2), j = 1, · · · , s, so that there exists
a compact subset K2 of G2 such that∣∣v2(z)δϕ(z)(fj)

∣∣ = v2(z) |fj ◦ ϕ(z)| < ε, j = 1, · · · , s, z ∈ G2 \K2.
Thus, for each z ∈ G2 \K2 we have v2(z)δϕ(z) ∈ B ∩ V ({f1, · · · fs} , ε). Then,

∥∥v2(z)δϕ(z)

∥∥
ph(v1)0

(G1)∗
< ε, for all z ∈ G2 \K2. (2.3)

As (bp)v1 = (bp)(v1)0

τ0
, we can apply Proposition 1.2.10 to get∥∥δϕ(z)

∥∥
ph(v1)0

(G1)∗
=
∥∥δϕ(z)

∥∥
phv1 (G1)∗

= 1
ṽ1ph(ϕ(z))

,

which together with (2.3) gives us the condition (iv).
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Corollary 2.3.3. Let v be a decreasing unitary weight on BCN , which converges
to 0 at the boundary, such that log( 1

v
) is convex, G an open and connected set in

CN , w a weight on G and ϕ : G → BCN a holomorphic function. The following
conditions are equivalent:

(i) Cϕ : Hv(BCN )→ Hw(G) is compact.

(ii) Cϕ : phv(BCN )→ phw(G) is compact.

(iii) Cϕ : phv(BCN )→ phw0(G) is compact.

Proof. By Theorem 1.2.24 we have ṽph = ṽH . Now we apply [13, Theorem 8] and
Theorem 2.3.2.

2.4 Essential norm

Given normed spaces E and F and a continuous linear map A : E → F , the
essential norm of A is defined by ‖A‖e = inf{‖A−K‖ : K is compact }. It is clear
from the definition that A is compact if and only if ‖A‖e = 0. Our purpose in the
rest of the chapter is to extend the results in [10, 59] and calculate the essential
norm of the composition operator between spaces of pluriharmonic functions.

We present below a generalization of [59, Proposition 2.1] to a wider context.
We remark that in the statement CN could be replaced by RN , but we have
preferred to restrict to the complex variables case because our natural examples of
spaces of functions satisfying the hypotheses are the spaces of pluriharmonic and
holomorphic functions.

Proposition 2.4.1. Let G be a balanced, bounded and open subset of CN and let
v be a weight on G which vanishes at infinity and such that there exists M > 0
such that

sup
z∈G,0<r<1

v(z)

ṽh(rz)
≤M.

Then there exists a sequence of operators (Tn)n on (h(G), τ0) such that Tn : hv(G) 7→
hv(G) is compact for each n ∈ N and the following conditions are fulfilled:

(i) H(G) and ph(G) are invariant subspaces of Tn for each n ∈ N

(ii) τ0 − lim
n→∞

Tn = I

(iii) lim sup
n→∞

‖I − Tn‖ ≤ 1.
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Proof. We assume without loss of generality v(x) ≤ 1 for all x ∈ G. For 0 < r < 1,
let Cr(f)(·) = f(r·). The same proof of Proposition 2.2.1 shows that the hypothesis
on the weight is equivalent to the existence of an M > 0 such that ‖Cr‖ ≤ M
for each 0 < r < 1, the norm of the operators taken in L(hv(G)). For each
0 < r < 1 the operator Cr is compact on hv(G). This can be checked observing
that the image of a bounded sequence pointwise (compact open) convergent to
zero is norm convergent to zero. This compactness and the fact that Cr(hv(G)) ⊆
hv0(G) implies that for each 0 < r < 1 there exists L ⊂ G compact such that
v(z)|Cr(f)(z)| < ε for all z ∈ G \ L and for all f ∈ bv. The standard compactness
argument necessary to prove this is the same used in [59, Lemma 2.1] for the space
of one variable holomorphic functions on the unit disc and a radial weight on it.
Moreover, since G has a fundamental sequence of compact sets which are balanced,
we have τ0− limnCrn(f) = f for each f ∈ h(G) and for each sequence (rn)n ⊂]0, 1[
tending to 1. Hence the sequence (Crn)n tends uniformly on bv to the identity for
the compact open topology [58, Proposition 23.27], since this subset is relatively
compact in this topology.

Let (εn)n be a decreasing sequence of positive numbers tending to zero. The
facts established above permit us to choose an increasing sequence of positive
numbers (rn)n tending to 1 and a fundamental sequence (Ln)n of compact subsets
of G such that

sup
f∈bv ,z∈Ln

|(I − Crn)(f)(z)| ≤ εn

and

sup
f∈bv ,z∈G\Ln+1

v(z)|Crnf(z)| ≤ εn.

For each n ∈ N we choose m(n) ∈ N satisfying (1 +M)/m(n) < εn. We define

Tn =
1

m(n)

n+m(n)−1∑
j=n

Crj .

The construction implies that ‖Tn‖ ≤ M for each n ∈ N and (Tn)n is a sequence
convergent to the identity for τ0. We observe

I − Tn =
1

m(n)

n+m(n)−1∑
j=n

(I − Crj).

For z ∈ G, let j0 ≥ n be the minimum natural number with z ∈ Lj0 . Then, for
each f ∈ bv, we compute

(a) v(z)|f(z)− Crj(f)(z)| ≤ |f(z)− Crj(f)(z)| ≤ εj for j0 ≤ j.
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(b) v(z)|f(z)− Crj0−1
(f)(z)| ≤ ‖I − Crj0−1

‖ ≤ 1 +M .

(c) v(z)|f(z)−Crjf(z)| ≤ 1+supz∈G\Lj+1
v(z)|Crjf(z)| ≤ 1+εj if n ≤ j ≤ j0−2.

And we achieve,

‖I − Tn‖ ≤
m(n)− 1

m(n)
(1 + εn) +

1 +M

m(n)
≤ 1 + 2εn,

which clearly implies (ii).

The next results extend the main theorems in [10, 59] to our context.

Theorem 2.4.2. Let G1 ⊂ CN be a balanced, bounded and open subset of CN and
let v be a weight on G1 which vanishes at infinity and such that there exists M > 0
such that supz∈G1,0<r<1

v(z)
ṽh(rz)

≤ M. Let G2 ⊂ CM a connected and open set, let
w be a weight on G2 and let ϕ : G2 → G1 be a holomorphic function. For the
composition operator Cϕ : phv(G1) → phw(G2) and for any fundamental sequence
(Kn)n of compact subsets of G1 we have

(a) ‖Cϕ‖e ≤ limn→∞ supϕ(z)∈G1\Kn
w(z)

ṽph(ϕ(z))
, and

(b) Cϕ is compact if and only if ‖Cϕ‖e = lim
n→∞

sup
ϕ(z)∈G1\Kn

w(z)

ṽph(ϕ(z))
= 0.

The same result is true for the corresponding operator considered between the spaces
of holomorphic functions.

Proof. To prove (a) we consider a sequence (Tn)n of compact operators given by
Proposition 2.4.1. The invariance of ph(G1) and Tn(hv(G1)) ⊆ hv(G1) implies that
Tn|phv(G1) ∈ K(phv(G1)) for each n ∈ N. Therefore, Cϕ ◦ Tn (we are denoting by
Tn the restriction) is also compact for each n. Thus,

‖Cϕ‖e ≤ ‖Cϕ − Cϕ(Tn)‖ = ‖Cϕ(I − Tn)‖ .

On the other hand, we have that for each j ∈ N:

‖Cϕ(I − Tn)‖ = sup
f∈bpv
‖Cϕ(I − Tn)f‖ = sup

f∈bpv
sup
z∈G2

w(z) |(I − Tn)f(ϕ(z))| ≤

≤ sup
f∈bpv

sup
ϕ(z)∈Kj

w(z) |(I − Tn)f(ϕ(z))|+ sup
f∈bpv

sup
ϕ(z)∈G1\Kj

w(z) |(I − Tn)f(ϕ(z))|
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The first term above goes to 0 as n tends to ∞ because w is bounded, bpv is τ0-
compact and Tn − I is τ0 convergent to 0 [58, Proposition 23.27]. For the second
term we have the estimate

sup
f∈bpv

sup
ϕ(z)∈G1\Kj

w(z) |(I − Tn)f(ϕ(z))| ≤ sup
ϕ(z)∈G1\Kj

w(z)

ṽph(ϕ(z))
‖I − Tn‖.

Finally taking the limit for n → ∞ and using the fact that the inequlity is valid
for each j ∈ N, we see that the claim follows.

To show (b) we assume that there is c > 0 and a sequence (zj)j such that

ϕ(zj) ∈ G1 \Kj and such that
w(zj)

ṽph(ϕ(zj))
≥ c. Since Cr(f)→ f pointwise as r → 1

and ‖Cr‖ ≤ M by hypothesis, taking a subsequence of (zj)j if necessary we can
find a sequence (fj)j ∈ Mbpv ∩ phv0(G1) such that |ṽph(zj)fj(zj) − 1| ≤ 1/4 and
v(ϕ(zk))|fj(ϕ(zk))| < 1/4 for each k > j. This last condition is possible since each
fj is in hv0(G1) and (ϕ(zj))j tends to infinity at the boundary of G1. This yields
that (fj)j is a bounded sequence in phv(G1) such that ‖Cϕ(fj) − Cϕ(fk)‖ ≥ 1/2
for j 6= k, and then Cϕ is not compact.

Remark 2.4.3. If in Proposition 2.4.1 (and then also Theorem 2.4.2) we consider
weights v defined on CN and satisfying the additional assumption

lim
‖z‖→∞

v(z)

ṽ(rz)
= 0

for each 0 < r < 1, then the corresponding operators Cr : phv(CN) → phv(CN)
are compact and Cr

(
phv(CN)

)
⊂ phv0(CN). This can be checked using standard

arguments, more precisely seeing that bounded sequences pointwise convergent to
zero are mapped to sequences which converge to zero in norm. Accordingly both
2.4.1 and 2.4.2 remain valid for this kind of weights. An example of a weight
satisfying the hypothesis is v(z) = e−‖z‖.

Theorem 2.4.4. Let B be the unit ball of (CN , | · |) and let ϕ : G → B be a
holomorphic function on an open and connected set G in CM . Let g : [0, 1[→ R+

be a continuous function with g(1−) = 0 and v(z) = g(|z|) be a weight on B such
that ṽH = ṽph. Let w be a weight on G which vanishes at ∞. Suppose that the
operator Cϕ : phv(B)→ phw(G) is continuous. Then

‖Cϕ‖e = lim sup
|ϕ(z)|→1

w(z)

ṽ(ϕ(z))

where ṽ denotes the common associated weight for the spaces of holomorphic and
pluriharmonic functions.
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Proof. By Theorem 2.4.2 we only have to show the lower bound of the essential
norm. Let us consider a compact operator K : phv(B) → phw(G). We show that

the restriction Cϕ −K to Hv(B) has norm not smaller than lim sup|ϕ(z)|→1
w(z)
ṽ(ϕ(z))

,

concluding from this that the norm of the operator Cϕ − K on phv(B) has the
same lower bound.

We can find a sequence (zn)n in G with |ϕ(zn)| > 1− 1/n and

lim
n

w(zn)

ṽ(ϕ(zn))
= lim sup
|ϕ(z)|→1

w(z)

ṽ(ϕ(z))
.

Now, taking a subsequence if necessary, we can assume that there is a ∈ CN

such that |a| = 1 and limϕ(zn) = a. We apply the theorem of Hahn-Banach to get
b ∈ CN satisfying 〈a, b〉 = 1 and |〈x, b〉| ≤ |x| for each x ∈ CN . Take a sequence
(α(n))n of natural numbers tending to ∞ such that

lim
n→∞
〈ϕ(zn), b〉α(n) = 1.

Let (εn)n be a decreasing sequence of positive numbers tending to 0. Since Bv =
Bv0

τ0
[8, Example 2.1 (ii)], for each n ∈ N, we can find fn ∈ Bv0 such that

|fn(ϕ(zn))| ≥ 1

ṽ(ϕ(zn))
− εn.

We set hn(z) := 〈z, b〉α(n)fn(z), z ∈ B. The sequence (hn)n is in the unit ball of
Hv0(B) and converges to 0 in τ0. As we have H∗∗v0 (B) = Hv(B) as a consequence of
[8, Corollary 1.2, Example 2.1 (ii)], the Ng construction of the predual of Hv(B)
[60] implies that the compact open (pointwise) topology τ0 agrees with the weak*
topology on Bv0 ⊂ Bv, since it is Hausdorff. Then the pointwise convergence of
(hn)n implies the weak convergence of this sequence in Hv0(B). This argument is
well-known. Therefore, since K is a compact operator, we get

lim
n→∞

‖K(hn)‖w = 0.

Now we compute

‖Cϕ(hn)−K(hn)‖w ≥ ‖hn ◦ ϕ‖w − ‖K(hn)‖w =

sup
z∈G

w(z) |hn(ϕ(z))| − ‖K(hn)‖w ≥

≥ w(zn)

ṽ(ϕ(zn))
|〈ϕ(zn), b〉|α(n) − w(zn) |T (ϕ(zn))|α(n) εn − ‖K(hn)‖w.

Taking the limit as n tends to ∞, we get the desired inequality.
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Concluding remarks. (a) The hypotheses of the above theorem are satisfied
by every weight v = g(|z|) for g : [0, 1[→ R+ continuous and non-increasing with
g(1−) = 0 and log(1/g) convex in ]0, 1[, by Theorem 1.2.24.
(b) If v = g(|z|) with g non-increasing and g(1) = 0 and no additional assumptions,
then Proposition 2.4.1 can be applied for G = Hv(B). For ϕ : G→ B holomorphic
and w being a weight on B vanishing at infinity, if we consider the composition
operator Cϕ : Hv(B)→ Hw(G), then the proof of Theorem 2.4.4 shows

‖Cϕ‖e = lim sup
|ϕ(z)|→1

w(z)

ṽH(ϕ(z))
.

(c) In the same situation, if we consider Cϕ : phv(B)→ phw(G), then we have

lim sup
|ϕ(z)|→1

w(z)

ṽH(ϕ(z))
≤ ‖Cϕ‖e ≤ lim sup

|ϕ(z)|→1

w(z)

ṽph(ϕ(z))
.

(d) Zheng proved in [74] that for a holomorphic function ϕ : D→ D, the essential
norm of the composition operator Cϕ : H∞(D) → H∞(D) is either 0 or 1. In
the case of weighted Banach spaces of holomorphic and harmonic functions the
situation differs. Consider the typical weight v(z) = 1 − |z| in D and the family
of symbols ϕa,n(z) = zn

(
z+a
1+a

)
, n ∈ N, a ≥ 0. Since ϕa,n(0) = 0, each ϕa,n is

contractive by the Schwarz lemma, we obtain

‖Cϕa,n‖ = sup
z∈D

v(z)

v(ϕa,n(z))
= 1,

where the maximum is attained at z = 0. To calculate the essential norm, we
observe that |ϕa,n(z)| ≤ ϕa,n(|z|) to compute

‖Cϕa,n‖e = lim sup
|ϕa,n(z)|→1

v(z)

v(ϕa,n(z))
= lim

r→1−

1− r
1− ϕa,n(r)

=
1 + a

1 + n+ an
.

All the values in ]0, 1] are attained considering all a ≥ 0 and all n ∈ N.
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Chapter 3

Smoothness of the norm

The starting point of this chapter is the study of a Šmulyan type criterion
for the smoothness with the purpose of characterizing the points where the norm
function of a real Banach space X is Fréchet and Gâteaux differentiable and in
which cases the two concepts are equivalent. We show that in this criterion BX∗

can be replaced by a convenient smaller set, and we apply this extended criterion
to some spaces of vector-valued continuous and harmonic functions.

3.1 A Šmulyan type criterion

If (X, ‖ · ‖) is a real Banach space, we say that ‖ · ‖ is Gâteaux differentiable at x,
if for each h ∈ X, the limit

u(x)(h) = lim
t→0

‖x+ th‖ − ‖x‖
t

exists and is a linear continuous function in h (i.e. u(x) ∈ X∗). If, in addition, the
limit above is uniform in h ∈ SX , we say that ‖ · ‖ is Fréchet differentiable at x.
Equivalently, ‖ · ‖ is Fréchet differentiable at x if there exists u(x) ∈ X∗ such that

lim
y→0

‖x+ y‖ − ‖x‖ − u(x) (y)

‖y‖
= 0.

Definition 3.1.1. A subset C ⊆ BX∗ is called a James boundary if ‖x‖ =
max{x∗(x) : x∗ ∈ C} for all x ∈ X, i.e., if for every x ∈ X there exists c∗ ∈ C
such that c∗(x) = ‖x‖.

This definition is a particular case of James boundary of a weak* compact
set, see, e.g.,[28], Definition 3.118. Notice that if C is weak* closed in the above
definition then the maximum is always attained since the function y → y(x) defined

55
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on (X∗, w∗) is continuous and BX∗ is weak∗ compact. It always holds that ‖x∗‖ =
sup{x∗∗(x∗) : x∗∗ ∈ J(BX)}, where J : X → X∗∗ is the canonical embedding.
However, this supremum is not a maximum unless X is reflexive by James theorem,
[28, Corollary 3.131]. Further, if C is circled, then sup{y(x) : y ∈ C} = sup{|y(x)| :
y ∈ C}.

Definition 3.1.2. Let C be a bounded subset of X∗. A functional x∗0 ∈ X∗ is
said to be weak∗ exposed in C ⊆ X∗ by x0 ∈ X if x∗0 is the unique functional in C
such that x∗0(x0) = max{|x∗(x0)| : x∗ ∈ C}.

Therefore, a functional x∗0 ∈ SX∗ is weak∗ exposed in BX∗ by x0 ∈ SX if and
only if x∗0 is the unique functional in SX∗ such that x∗0(x0) = 1.

Definition 3.1.3. If x∗0 ∈ X∗ is weak∗ exposed in C by x0 and (x∗n)→ x∗0 in norm
whenever x∗n(x0)→ x∗0(x0) then x∗0 is said to be weak∗ strongly exposed in C.

Šmulyan’s theorem [26, Theorem I.1.4, Corollary I.1.5] asserts that the norm
in X is Gâteaux (Fréchet) differentiable at x0 if and only if x0 weak∗ (strongly)
exposes a functional x∗0 in BX∗ .

The following result is well known. We provide here a proof for the sake of
completeness.

Lemma 3.1.4. Assume that ‖·‖ is Gâteaux differentiable at x0 ∈ SX , and x∗0(x0) =
1, x∗0 ∈ SX∗. Let (x∗n)n be a sequence in BX∗ such that (x∗n(x0))n tends to 1. Then
(x∗n)n weak∗ converges to x∗0.

Proof. Assume not. Then we can find x1 ∈ SX such that

|x∗nk(x1)− x∗0(x1)| ≥ ε,

for a certain subsequence (x∗nk)k of (x∗n)n and some ε > 0. The sequence (x∗nk)k
has a weak∗ cluster point, say y∗0. Observe that y∗0 ∈ BX∗ , |y∗0(x1) − x∗0(x1)| ≥ ε,
and y∗0(x0) = 1, a contradiction with the fact that ‖ · ‖ is Gâteaux differentiable
at x0.

Remark 3.1.5. Let C ⊂ BX∗ such that C is a James boundary. Then cow
∗
C =

BX∗ . Indeed, if not we can find, by the Hahn–Banach separation theorem, x ∈ SX
such that sup{f(x) : f ∈ cow

∗
C} < f0(x) for some f0 ∈ BX∗ . This contradicts

that C is a James boundary. Since cow
∗
C = BX∗ , Milman’s theorem [28, 3.66]

gives Ext(BX∗) ⊂ C
w∗

. Assume C ⊂ BX∗ such that C is a James boundary and
w*-closed. Then Ext(BX∗) ⊂ C. If C is w*-closed and a James boundary, then
every x ∈ X attains its norm at a point in C. This is obvious since the supremum
in the definition of James boundary becomes a maximum. If C is w*-closed and
a James boundary and ‖ · ‖ is Gâteaux differentiable at x0 ∈ SX , then x0 attains
its norm on BX∗ exactly at one point f0, and f0 ∈ C.
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Proposition 3.1.6. If C ⊆ BX∗ is a weak∗ closed James boundary and x0 ∈ SX
weak∗ exposes x∗0 in C, then ‖ · ‖ is Gâteaux differentiable at x0.

Proof. The element x0 ∈ SX attains its supremum on BX∗ at an extremal point of
BX∗ . This point is in C by Remark 3.1.5, hence it is unique by the assumption. It
follows that x0 exposes x∗0 in BX∗ , hence ‖ · ‖ is Gâteaux differentiable at x0.

Proposition 3.1.7. Let (X, ‖ · ‖) be a real Banach space and let C ⊆ BX∗ be
a weak∗ closed James boundary. Assume that ‖ · ‖ is Gâteaux differentiable at
x0 ∈ SX . Let x∗0 be the differential of ‖ · ‖ at x0 (i.e. x∗0 ∈ SX∗ and x∗0(x0) = 1).
Assume that given a sequence (x∗n)n in C ∩ SX∗ which is weak∗ convergent to x∗0
then ‖x∗n − x∗0‖ tends to 0. Then we can conclude that the norm ‖ · ‖ is Fréchet
differentiable at x0.

Proof. Assume not. Then we can find by [26, Lemma I.1.3] a sequence (hn)n of
non-zero vectors in X which is norm convergent to 0 and ε > 0 such that

‖x0 + hn‖+ ‖x0 − hn‖ ≥ 2 + ε‖hn‖.

Since C is a James boundary we can get x∗n, y
∗
n ∈ C such that x∗n(x0 + hn) =

‖x0 + hn‖ and y∗n(x0 − hn) = ‖x0 − hn‖. Both x∗n and y∗n belong to SX∗ and
also both x∗n(x0) and y∗n(x0) tend to 1, since x∗n(x0) = ‖x0 + hn‖ − x∗n(hn) and
the analogous for y∗n. By Lemma 3.1.4 it follows that both (x∗n)n and (y∗n)n tend
weakly to x∗0, and then ‖x∗n − y∗n‖ tends to 0 by the hypothesis. But

(x∗n − y∗n)(hn) = ‖x0 + hn‖+ ‖x0 − hn‖ − x∗n(x0)− y∗n(x0)

≥ ‖x0 + hn‖+ ‖x0 − hn‖ − 2 ≥ ε‖hn‖.

Hence ‖x∗n − y∗n‖ ≥ ε for all n, which contradicts that ‖x∗n − y∗n‖ tends to 0.

3.2 Spaces of continuous functions

Definition 3.2.1. Let K be a compact topological space and let X be a Banach
space.

(a) For a continuous function f : K → X we say that k0 ∈ K peaks f if
‖f(k0)‖ = 1 and ‖f(k)‖ < 1 for each k ∈ K \ {k0}.

(b) We say that a subspace Y of C(K,X) separates points of K if for every two
different k1, k2 ∈ K there is an f ∈ Y such that f(k1) 6= f(k2).
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We include a vector-valued version of [26, Example I.1.6 (b)] and provide here
a proof for the sake of completeness. This result appears in [67, Thereom 1 and
Theorem 2], [53, Theorem 3.1 and Corollary 3.2], and [23, Corollary 4]. For k ∈ K
we denote by δk the evaluations on C(K,X), i.e. δk : C(K,X) 3 f → f(k) =:
δk(f) ∈ X.

Theorem 3.2.2. Let K be a compact Hausdorff space and let X be a Banach
space. Let Y ⊆ C(K,X) be a closed subspace separating points of K and let f ∈ Y
be given. The norm of Y is Gâteaux differentiable at f if and only if there is
k ∈ K peaking f , such that the norm of X is Gâteaux differentiable at f(k). If
Y = C(K,X), then the norm is Fréchet differentiable at f if and only if there is an
isolated point k ∈ K peaking f , such that the norm of X is Fréchet differentiable
at f(k).

Proof. First we show that the map

T : K × (BX∗ , w
∗) → (BY ∗ , w

∗)
(k, x∗) 7→ x∗ ◦ δk �Y

is continuous. Let (k0, x
∗
0) ∈ (K × BX∗). A neighbourhood of (x∗0 ◦ δk0) in the

image of T is given by

{x∗ ◦ δk �Y : |(x∗ ◦ δk − x∗0 ◦ δk0)(fi)| =

|x∗(fi(k))− x∗0(fi(k0))| < ε, x∗ ∈ BX∗ , k ∈ K, 1 ≤ i ≤ n},

for some finite subset {f1, . . . , fn} ⊆ Y . Let U be a neighbourhood of k0 such that
fi(k) ∈ B(fi(k0), ε/2) for all k ∈ U and for all 1 ≤ i ≤ n. We define

V := {x∗ ∈ X∗ : |x∗(fi(k0))| ≤ ε

2
, 1 ≤ i ≤ n}.

The subset V is a zero neighbourhood of (X∗, w∗). For (k, x∗) ∈ (U, (x∗0+V )∩BX∗)
and for all 1 ≤ i ≤ n we get

|x∗(fi(k))− x∗0(fi(k0))| ≤ |x∗(fi(k)− fi(k0))|+ |(x∗ − x∗0)(fi(k0))| ≤ ε.

This proves the continuity of T . From this we get that

C = {x∗ ◦ δk �Y : k ∈ K, x∗ ∈ BX∗}

is a compact subset of (BY ∗ , w
∗). C ⊆ BY ∗ is easily seen to be a James boundary.

Since Y separates points of K it follows that T restricted to K × {BX∗ \ {0}} is
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injective. Apply Proposition 3.1.6 and the Hahn–Banach theorem to show that
the condition is sufficient. To check that the condition is necessary, notice that
the Gâteaux differentiabily of the norm of Y at f ∈ SY implies that there are
x∗0 ∈ BX∗ and k0 ∈ K such that x∗0(f(k0)) = 1 and x∗(f(k)) 6= 1 for (k, x∗) ∈
K × BX∗ \ {(k0, x

∗
0)}. From this, it is easily deduced that f(k0) ∈ SX exposes x∗0

in BX∗ (i.e. the norm of X is Gâteaux differentiable at f(k0)) and ‖f(k)‖ < 1 for
all k ∈ K \ {k0} (i.e. k0 peaks f).

To show the assertion about Fréchet differentiability, we assume that the norm
of C(K,X) is Gâteaux differentiable at f . Suppose that k0 ∈ K peaks f and k0 is
an accumulation point of K. Then there exists (kn)n ⊂ K\{k0} such that (f(kn))n
tends to f(k0). Let x∗0 ∈ SX∗ such that x∗0(f(k0)) = 1. Then x∗0 ◦ δkn tends weak∗

to x∗0 ◦ δk0 by Lemma 3.1.4. By Uryshon’s Lemma there are functions gn ∈ C(K)
with 0 ≤ gn ≤ 1, gn(kn) = 1 and gn(k0) = 0. For f ∈ C(K) and x ∈ X,
the tensor f ⊗ x ∈ C(K,X) is the function defined as (f ⊗ X)(k) = f(k) · x.
Considering functions of the form fn = gn ⊗ f(k0) ∈ C(K) ⊗ X we get that
‖x∗0 ◦ δkn − x∗0 ◦ δk0‖ ≥ 1. Hence the norm of C(K,X) is not Fréchet differentiable
at f by the Šmulyan criterion.

If k0 is isolated and the norm of X is Gâteaux differentiable at f(k0) with
differential x∗0 but not Fréchet differentiable, then there exists a sequence (x∗n)n ∈
BX∗ and ε > 0 such that (x∗n(f(k0)))n tends to 1 but ‖x∗n−x∗0‖ > ε for each n ∈ N.
This implies that for every n ∈ N there exists xn ∈ SX such that |x∗n(xn)−x∗0(xn)| >
ε. Then x∗n ◦ δk0(f) tends to 1, but for fn = 1 ⊗ xn we have that ‖fn‖ = 1 and
|x∗n ◦ δk0(fn) − x∗0 ◦ δk0(fn)| > ε, and hence ‖x∗n ◦ δk0 − x∗0 ◦ δk0‖ > ε. Hence the
norm of C(K,X) is not Fréchet differentiable at f by the Šmulyan criterion. This
proves the necessity of the condition.

we assume now that f ∈ C(K,X) is peaked at an isolated point k0 of K
with the norm of X being Fréchet differentiable at f(k0) (i.e there is x∗0 ∈ BX∗

which is strongly exposed by f(k0)). These conditions imply by the first part of
the Theorem that the norm of C(K,X) is Gâteaux differentiable at f . Assume
there exist sequences (x∗n)n ⊂ BX∗ and (kn)n ⊂ K such that x∗n ◦ δkn tends weak∗

to x∗0 ◦ δk0 , the continuity of the function g defined on K and with values in
X as g(k0) = f(k0) and g(k) = 0 for k 6= k0 yields that the sequence (kn)n is
eventually constant, i.e. we can assume kn = k0 for all n ∈ N. Since this implies
that (x∗n(f(k0)))n tends to 1, the hypothesis of Fréchet differentiability yields that
(x∗)n tends to x∗0 in norm, i.e. uniformly on BX . From this it follows that x∗n ◦ δk0
tends to x∗0 ◦ δk0 uniformly on BC(K,X), and Proposition 3.1.7 and the fact already
proved that C is weak∗ closed gives the conclusion.

Remark 3.2.3. The space C(K)⊗X formed by the span of the elements of the
form f ⊗ x, f ∈ C(K), x ∈ X, is dense in C(K,X) [63, 3.2]. Hence the proof
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of Fréchet differentiability in Theorem 3.2.2 does not work for a proper subspace
Y ⊆ C(K,X).

3.3 Applications in K(X, Y )

In this section we give an application of Proposition 3.1.6 to get an easy proof of
a Theorem stated without proof by Heinrich in [40]. Heinrich’s theorem contains
results due to Holub and Hennefeld in ([41, 44]).

Theorem 3.3.1. If X and Y are Banach spaces and X is reflexive, then the
norm of K(X, Y ) is Gâteaux differentiable at T ∈ SK(X,Y ) if and only if there is
x0 ∈ SX such that ‖T (x0)‖ = 1, the norm of Y is Gâteaux differentiable at T (x0)
and ‖T (x)‖ < ‖x‖ for all x ∈ X \ span {x0} .

Proof. Since every bounded linear operator is weakly-weakly continuous and in
any relatively compact set of Y the norm topology agrees with the weak topology,
we can regard K(X, Y ) as a subspace of C((BX , w), Y ). Now, we show that the
map

T : (BX , w)× (BY ∗ , w
∗) → (BK(X,Y )∗ , w

∗)
(x, y∗) 7→ y∗ ◦ δx �K(X,Y )

is continuous. Let (x0, y
∗
0) ∈ (BX × BY ∗). A neighbourhood of (y∗0 ◦ δx0) in the

image of T is given by

{y∗ ◦ δx �K(X,Y ): |(y∗ ◦ δx − y∗0 ◦ δx0)(fi)| =

|y∗(fi(x))− y∗0(fi(x0))| < ε, y∗ ∈ BY ∗ , x ∈ BX , 1 ≤ i ≤ n},

for some finite subset {f1, . . . , fn} ⊆ K(X, Y ) and so {f1, . . . , fn} ⊆ C((BX , w), Y ).
Let U be a neighbourhood of x0 such that fi(x) ∈ B(fi(x0), ε/2) for all x ∈ U and
for all 1 ≤ i ≤ n. We define

V := {y∗ ∈ Y ∗ : |y∗(fi(x0))| ≤ ε

2
, 1 ≤ i ≤ n}.

The subset V is a zero neighbourhood of (Y ∗, w∗). For (x, y∗) ∈ (U, (y∗0 +V )∩BY ∗)
and for all 1 ≤ i ≤ n we get

|y∗(fi(x))− y∗0(fi(x0))| ≤ |y∗(fi(x)− fi(x0))|+ |(y∗ − y∗0)(fi(x0))| ≤ ε.

This proves the continuity of T . From this we get that
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C = {y∗ ◦ δx �K(X,Y ): x ∈ BX , y
∗ ∈ BY ∗}

is a compact subset of (BK(X,Y )∗ , w
∗). C ⊆ BK(X,Y )∗ is easily seen to be a James

boundary.

The norm in K(X, Y ) is Gâteaux differentiable at T ∈ SK(X,Y ) if and only if
there is a unique T ∗ ∈ K(X, Y )∗ such that T ∗(T ) = 1, ‖T ∗‖ = 1. So, T ∗ is extreme
and therefore T ∗ ∈ C.

Now, let x1, x2 ∈ SX and y∗1, y
∗
2 ∈ SY ∗ . We show that y∗1 ◦ δx1 �K(X,Y )=

y∗2 ◦ δx2 �K(X,Y ) if and only if either y∗1 = y∗2, x1 = x2 or y∗1 = −y∗2, x1 = −x2.
Indeed, we assume that y∗1◦δx1 �K(X,Y )= y∗2◦δx2 �K(X,Y ) and x1 6= x2. The Theorem
of Hahn–Banach provides us x∗ ∈ X∗ such that x∗(x1) = 1 and x∗(x2) = 0.
We choose y1 ∈ Y such that y∗1(y1) 6= 0 and define g : X → Y by g(x) =
x∗(x) · y1. We have y∗1 ◦ δx1(g) 6= 0 and y∗2 ◦ δx2(g) = 0. If x1 = x2, it is clear
that y∗1 ◦ δx1 �K(X,Y )= y∗2 ◦ δx2 �K(X,Y ) implies y∗1 = y∗2. Conversely, by the linearity
y∗1 ◦ δx1 �K(X,Y )= (−y∗1) ◦ δ−x1 �K(X,Y ). From this and Proposition 3.1.6 we get the
desired conclusion.

3.4 Spaces of harmonic functions

Let U ⊆ Rd be an open and connected set. For a real Banach space X we denote
by h(U,X) the space of harmonic functions on U with values in X, h(U) denotes
the space of real valued harmonic functions. With this notation, the space of
complex valued harmonic functions regarded as a real topological vector space is
written h(U,R2). A function f : U → X is harmonic in a strong sense, i.e. it is
a C∞-function which is in the kernel of the vector-valued Laplacian, if and only if
x∗ ◦ f ∈ h(U) for all x∗ ∈ X∗ (e.g. [13, Corollary 10]). Here and at the following
sections a weight on U is a bounded continuous function v : U →]0,∞[. We define
the weighted spaces of vector-valued functions as

hv(U,X) : = {f ∈ h(U,X) : ‖f‖v = sup
z∈U

v(z)‖f(z)‖ <∞}

hv0(U,X) : = {f ∈ hv(U,X) : v‖f‖ vanishes at infinity on U}.

hcv(U,X) : = {f ∈ hv(U,X) : (vf)(U) is relatively compact}.

A function g : U → R is said to vanish at infinity on U if for each ε > 0 there
exists a compact set K ⊂ U such that |g(z)| ≤ ε for each z ∈ U \ K. Hence,
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hv0(U,X) can be identified by the isometry f → vf with a subspace of C(Û ,X),

Û being the Alexandroff compactification of U . This gives the inclusions

hv0(U,X) ⊆ hcv(U,X) ⊆ hv(U,X).

Obviously hcv(U,X) = hv(U,X) when X is finite dimensional.
As Rd is locally compact and Hausdorff, so it is Tychonoff, i.e. T1 and com-

pletely regular, we can consider the Stone-Čech compactification (βU, e). For each
f ∈ hcv(U,X), we have a continuous map with values in a compact Hausdorff space,
i.e. (vf) : U → (vf)(U). If we take the continuous extension that the Stone-Čech
Theorem provides, we can consider hcv(U,X) as a subspace of C(βU,X). For
X = R we write hv0(U) and hv(U). The unit balls of these spaces are denoted by
bv and bv0 . The following definition is taken from [19].

Definition 3.4.1. Let U ⊆ Rd be an open subset and let v be a weight on U . We
define the set of peak points of hv0(U) as

Pv = {z ∈ U : ∃f ∈ bv0 such that v(z)f(z) = 1 and v(y)|f(y)| < 1 ∀y ∈ U \ {z}}.

The following basic lemma shows that being a peak point in spaces of vector-valued
harmonic functions does not depend on the range space.

Lemma 3.4.2. Let U ⊆ Rd be an open subset, let v be a weight on U and let X
be a Banach space. Let z ∈ U . The following are equivalent

(i) z ∈ Pv.

(ii) There exists f ∈ hv0(U,X) such that v(z)‖f(z)‖ = 1 and v(y)‖f(y)‖ < 1 for
all y ∈ U \ {z}.

Proof. If z is a peak point, let g ∈ hv0(U) be such that v(z)g(z) = 1 and
v(y)|g(y)| < 1 for y 6= z. Let x0 ∈ SX . The function f(z) = g(z)x0, z ∈ U satisfies
(ii). Conversely, if f ∈ hv0(U,X) satisfies the conditions on (ii) and x∗0 ∈ SX∗
is such that x∗0(f(z)) = ‖f(z)‖, then x∗0 ◦ f ∈ hv0(U) and z is a peak point by
x∗0 ◦ f .

If f ∈ hv0(U,X) satisfies condition [(ii)] of the previous lemma we say that z
peaks f . This lemma permits to use [19, Example 13] and [46, Proposition 10] to
construct examples of functions in weighted Banach spaces of harmonic functions
satisfying the conditions of the theorem below.

Theorem 3.4.3. Let X be a real Banach space. Let U be an open subset of Rd,
let v be a weight on U such that hv0(U) contains the polynomials of degree smaller
or equal than 1 and let f be an element of hv0(U,X), with ‖f‖v = 1. Then
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(a) The norm ‖ · ‖v, when is restricted to the space hv0(U), even to hcv(U,X), is
Gâteaux differentiable at f ∈ hv0(U,X) if and only if there exists a z0 ∈ U
that peaks the function f and such that the norm ‖ · ‖ on X is Gâteaux
differentiable at v(z0)f(z0).

(b) The norm ‖ · ‖v, when is restricted to the space hv0(U), even to hcv(U,X), is
Fréchet differentiable at f ∈ hv0(U,X) if and only if there exists a z0 ∈ U
that peaks the function f and such that the norm ‖ · ‖ on X is Fréchet
differentiable at v(z0)f(z0).

Proof. Let Û be the Alexandroff compactification of U . By the isometric embed-
ding hv0(U,X) → C(Û ,X), f 7→ vf we apply the Theorem 3.2.2 to get that the
norm of hv0(U,X) is Gâteaux differentiable at f ∈ hv0(U,X) if and only if there
exists z0 ∈ Pv peaking f such that the norm of X is Gâteaux differentiable at
v(z0)f(z0). The same argument is applied to f considered as a function of hcv(U,X),
isometrically embedded also by f 7→ vf in C(βU,X). For each z ∈ βU \U , we de-

fine v(z)δz : hcv(U,X)→ X, v(z)δz(f) = ṽf(z), i.e. the continuous extension of vf
at z. This is an abuse of notation since f(z) is not necessarily defined on βU \ U .
With this definition, v(z)δz is identically null on hv0(U,X) for each z ∈ βU \ U .
Hence, the Gâteaux differential of ‖ · ‖v at f must be a functional in the subset of
hcv(U,X)∗

C := {x∗ ◦ v(z)δz : x∗ ∈ BX∗ , z ∈ U}.

Let us assume that z0 peaks f , f ∈ hv0(U,X) and the norm of X is Fréchet
differentiable at v(z0)f(z0). This means that there is x∗0 ∈ SX∗ such that v(z0)f(z0)
strongly exposes x∗0 in BX∗ . By the first part, we have that the norm of hv0(U,X)
is Gâteaux differentiable at f . Necessarily the exposed functional is x∗0 ◦ v(z0)δz0
since v(z0)x∗0 ◦ δz0(f) = x∗0(v(z0)f(z0)) = 1. We consider the following set

C1 := {x∗ ◦ v(z)δz : x∗ ∈ BX∗ , z ∈ βU}.

By Proposition 3.1.7 we have to show that each sequence in C1 ∩ Shv0 (U,X)∗ which
is weak∗ convergent to x∗0 ◦ v(z0)δz0 is also norm convergent, since C1 is a weak∗

compact James boundary of hv0(U,X)∗ by the isometry f 7→ vf into C(βU,X)
and the proof of Theorem 3.2.2. Let (zn)n and (x∗n)n be two sequences in βU and
BX∗ respectively such that (x∗n ◦ v(zn)δzn) is weak∗ convergent to x∗0 ◦ v(z0)δz0 .
The sequence (zn)n is relatively compact in U , otherwise (x∗n ◦ v(zn)δzn)n would
contain a subsequence σ(hcv(U,X)∗, hv0(U,X)) convergent to 0. The hypothesis
on hv0(U) yields that the functions P (z)x, P being a polynomial of degree 1 and
x ∈ X are in hv0(U,X). If we suppose that (zn)n does not tend to z0 then we
would get w0 ∈ U a cluster point for (zn)n. We consider the function f(z) =
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P (z)x0 where P is a polynomial of degree one with P (z0) = 1 and P (w0) = 0,
and x0 ∈ X such that x∗0(x0) > 0. By the hypothesis f ∈ hv0(U,X) and 0
is a cluster point of (〈x∗n ◦ v(zn)δzn), f〉)n. This contradicts x∗0(v(z0)f(z0)) > 0.
Analyzing constant functions we also get that (x∗n)n weak∗ converges to x∗0. By
the hypothesis v(z0)f(z0) strongly exposes x∗0 in BX∗ . Hence we have that (x∗n)n
is norm convergent to x∗0. The map

F : U → L(hcv(U,X), X)
z 7→ δz

is harmonic for the Weak Operator Topology, i.e. z 7→ x∗ ◦ F (f)(z) = x∗ ◦
f(z) ∈ h(U) for each x∗ ∈ X∗ and f ∈ hcv(U,X). Hence F is harmonic (and
then continuous) for the norm operator topology by [13, Corollary 10, Remark
11]. Thus (v(zn)δzn)n converges uniformly on Bhv0 (U,X) to v(z0)δz0 . We use this
and the norm convergence from (x∗n)n to x∗0 to obtain the desired conclusion. Let
ε > 0. Getting n0 such that ‖v(zn)g(zn)− v(z0)g(z0)‖ < ε/2 and ‖x∗n − x∗0‖ < ε/2
for each n ≥ n0 and each g ∈ Bhv0 (U,X) we get

|x∗n(v(zn)g(zn))− x∗0(v(z0)g(z0))| ≤
|x∗n(v(zn)g(zn)− v(z0)g(z0))|+ |(x∗n − x∗0)(v(z0)g(z0))| ≤ ε

for each f ∈ Bhv0 (U,X), i.e. x∗n ◦ v(zn)δzn converges uniformly on Bhv0 (U,X) to
x∗0 ◦ v(z0)δz0 .

Conversely, if there is z0 ∈ U such that x∗0 ◦ v(z0)δz0 is strongly exposed by
f ∈ Bhv0 (U,X) it follows that z0 ∈ Pv(U) by Lemma 3.4.2. Suppose that x∗0 is weak∗

exposed but not strongly exposed by v(z0)f(z0). Then there exists a sequence (x∗n)n
which is weak∗ convergent to x∗0 but there exists ε > 0 such that ‖x∗n−x∗0‖ > ε for
all n ∈ N. Let g ∈ hv0(U) be peaked by z0, i.e v(z0)g(z0) = 1 and v(z)|g(z)| < 1
for all z ∈ U \ {z0} . For all x ∈ BX , the function fx(z) = g(z)x is in Bhcv(U,X).
The sequence (x∗n ◦ v(z0)δz0)n converges weak∗ to x∗0 ◦ v(z0)δz0 , but the hypothesis
on (x∗n)n implies that, for all n ∈ N there exists xn ∈ BX such that

|v(z0)x∗0 ◦ δz0(gxn)− v(z0)x∗n ◦ δz0(gxn)| = |x∗0(xn)− x∗n(xn)| > ε,

a contradiction.

We close this section with the following corollary that extends a result of Boyd
and Rueda, see [19, Theorem 1].

Corollary 3.4.4. Let U ⊆ Rd be an open set and let Rn be endowed with the
Euclidean norm. Let v be a weight on U such that hv0(U) contains the polynomials
of degree smaller or equal than 1. The norm ‖ · ‖v is Gâteaux differentiable at
f ∈ hv0(U,Rn) if and only if ‖ · ‖v is Fréchet differentiable at f in hv0(U,Rn) if
and only if there exists z ∈ U such that v(z)‖f(z)‖ = 1 and v(y)‖f(y)‖ < 1 for
any y 6= z.
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3.5 Applications in A(D) and H∞(D)
We consider the space A(D) of continuous functions on D which are holomorphic
on D and regarde it as a real Banach space of functions f : D→ R2.

Proposition 3.5.1. The following properties hold:

(i) ExtSA(D)∗ ⊂
{
λδz : λ ∈ ∂D, z ∈ D

}
.

(ii) The set of peak point of A(D) is contained in ∂D.

(iii) The norm of A(D) is Gâteaux differentiable at f if and only if there is z ∈ ∂D
such that |f(z)| = 1 and |f(y)| < 1 for each z 6= y.

(iv) There are functions in A(D) for which the norm is Gâteaux differentiable.

Proof. The first three properties are a consequence of Theorem 3.2.2 and the Max-
imum Modulus Principle. To prove (iv), notice that if a ∈ ∂D for f(z) = z+a

2
,

z ∈ D, we have

sup
z∈D
|f(z)| = f(a) = 1, |f(z)| < 1, for all z 6= a, z ∈ D.

We reach the same conclusion with the function f(z) = e〈z,a〉−1.

Proposition 3.5.2. There is no function f ∈ SA(D) such that the norm in A(D)
is Fréchet differentiable at f.

Proof. Take any f ∈ SA(D). If ‖ · ‖ is not Gâteaux differentiable at f , we are
done. Further assume that the opposite holds. By Proposition 3.5.1 ii) we can
find z ∈ ∂D such that |f(z)| = 1 and |f(y)| < 1 for y ∈ D \ z. Select α ∈ ∂D so
that αf(z) = 1. Then for every y ∈ D \ {z} and every n ∈ N we have

‖δz − δy‖ ≥ 〈δz − δy, (αf)n〉 = 1− αnfn(y) ≥ 1− |f(y)|n → 1;

thus ‖δz − δy‖ ≥ 1. But, clearly, αδy → αδz weak∗ as D 3 y → z. Hence the
Šmulyan Criterion [26, Theorem 1.4] yields that ‖ · ‖ is not Fréchet differentiable
at f .

The space H∞ can be regarded as a real Banach space generated by func-
tions defined on D and with values in R2 which are continuous in the Stone-Čech
compactification βD of the disc (or in the spectrum M ⊆ (H∞)∗) and which are
holomorphic in D. A sequence (zn)n ⊂ D is said to be an interpolating sequence
for H∞, if for each bounded sequence of complex numbers (yn)n there exists a
function f ∈ H∞ such that f(zn) = yn for every n ∈ N.
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Lemma 3.5.3. If (zn)n is an interpolating sequence for H = H∞(D) and we
consider F = {δzn : n ∈ N} ⊆ H∗ endowed with weak* topology w∗ = σ(H∗, H)

then F
w∗ \ F is homeomorphic to βN \ N. Moreover, card(F

w∗

) = 2c, c being the
cardinality of the continuum.

Proof. If we fix j ∈ N then there exists a function f ∈ H such that f(zj) = 1 and
f(zn) = 0 for all n 6= j, since (zn)n is an interpolating sequence for H. So,{

δzn ∈ F :
∣∣δzn(f)− δzj(f)

∣∣ < 1

2

}
=
{
δzj
}

Therefore, F is a discrete set in the inherited weak* topology. Taking in N
the discrete topology we get and homeomorphism between F and N. Hence, their
Stone-Čech compactification (βF, e) is homeomorphic to βN which has the cardinal
2c [73, Examples 19.13.d].

Since (zn)n is interpolating and F discrete, for each g : F → [0, 1] continuous

there is f ∈ H∞(D) interpolating (g(zn))n. Thus, f : F
w∗ → [0, 1] is a continuous

extension of g. This implies that F
w∗

is homeomorphic to (βF,w∗).

Corollary 3.5.4. There is no function f ∈ SH∞(D) such that the norm in H∞(D)
is Gâteaux differentiable at f .

Proof. Let f ∈ SH∞(D). The Maximum Modulus Principle yields a sequence (zn)n
with (zn)n → a ∈ ∂D such that f(zn)→ α ∈ ∂D and by a corollary of a theorem of
Hayman and Newman [42, p.204] the sequence can be chosen to be interpolating.
Without loss of generality we may suppose that α = 1 since if the norm in H∞(D)
is Gâteaux differentiable at f ∈ SH∞(D) then, the norm in H∞(D) is Gâteaux

differentiable at f
α
∈ SH∞(D). Seeking a contradiction, if the norm in H∞(D) is

Gâteaux differentiable at f ∈ SH∞(D) then by [26, Corollary 1.5] there is u ∈
SH∞(D)∗ weak* exposed at f , i.e., ‖u‖ = 1, u(f) = 1 and v(f) 6= 1 for v ∈
SH∞(D)∗ \ {u}, but this is not possible because {u ∈ H∞(D)∗ : ‖u‖ = 1, u(f) = 1}
has the cardinality 2c by Lemma 3.5.3.

Corollary 3.4.4 and these examples show that hv0(U,R2) and hv(U,R2), and
the corresponding subspaces of holomorphic functions Hv0(U) and Hv(U) behave
differently from A(D) and H∞(D) with respect to the differentiability of the norm.



Chapter 4

Isomorphism classes

This chapter is devoted to solve the problem of finding the conditions to ensure
the existence of an isometric isomorphism between hv0(U) and a closed subspace
of c0. The results obtained are used to deduce properties about the rotundity
of the spaces hv0(U) and Hv0(U), which are considered here as weighted spaces
of harmonic and holomorphic functions with values in C defined on an open set
U ⊆ Rd or Cd, being v : U →]0,∞[ a bounded continuous function.

4.1 Isomorphisms on hv0(U) and hv(U).

For an open set U ⊆ Rd, the space hv(U) is isometric to a subspace of l∞. To
show that it is enough to take (zn)n a countable and dense set of U and define
T : hv(U) → l∞ by T (f) = (v(zn)f(zn))n. But this argument does not work for
hv0(U).

In this case we show that we can find an almost isometry, and that in the
general case the result is sharp, because the isometry is not possible by geometric
reasons. The argument of the next theorem is an adaptation of [17, Theorem 1]
where it is proved the statement for spaces of holomorphic functions.

Theorem 4.1.1. Let U be a connected open subset of Rd and let v be a weight on
U . Then, the space hv0(U) is isomorphic to a closed subspace of c0. More precisely,
for each ε there exists a continuous linear injective map with closed range

T : hv0(U)→ c0 such that

(1− ε) ‖f‖v ≤ ‖T (f)‖c0 ≤ ‖f‖v

for each f ∈ hv0(U).

Proof. Let (Kj)j be a fundamental sequence of compact subsets of U and let ε > 0.
We claim that there exists a sequence of pairwise disjoint finite subsets (Fj)j such

67
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that Fj ⊂ Aj := Kj \K◦j−1, and satisfying that for all f ∈ hv0(U) with ‖f‖v = 1
we have

sup
x∈Aj

v(x)|f(x)| ≤ ε+ sup
y∈Fj

v(y)|f(y)|.

We take K◦0 = ∅. These sets (Fj)j do not depend on the function f and then, if
we denote F := ∪jFj, we have

sup
x∈F

v(x)|f(x)| ≤ sup
j

sup
x∈Aj

v(x)|f(x)| = ‖f‖v ≤ ε+ sup
x∈F

v(x)|f(x)|, (4.1)

and consequently, since F is a countable set, we can write F as a sequence
(wj)j. Moreover, (wj)j → ∂U and since vf vanishes at infinity on U it follows
(v(wj)f(wj))j → 0. We define

T : hv0(U)→ c0

f 7→ (v(wj)f(wj))j.

Now supx∈F v(x)|f(x)| = ‖T (f)‖c0 , and by (4.1)

‖T (f)‖c0 ≤ ‖f‖v ≤ ε+ ‖T (f)‖c0 .
If 0 6= ‖f‖v then,∥∥∥∥T (

f

‖f‖v
)

∥∥∥∥
c0

≤
∥∥∥∥ f

‖f‖v

∥∥∥∥
v

≤ ε+

∥∥∥∥T (
f

‖f‖v
)

∥∥∥∥
c0

.

We get from this

‖f‖v ≤ ε ‖f‖v + ‖T (f)‖c0 .
Hence,

(1− ε) ‖f‖v ≤ ‖T (f)‖c0 ≤ ‖f‖v
for each f ∈ hv0(U). Thus T is continuous, injective and the range of T is a closed
subspace of c0.

We proceed to show the claim. For each j ∈ N we define

Mj : = sup
x∈Kj

v(x),

aj : = min

(
1

2
d
(
Kj,Rd \K◦j+1

)
, 1

)
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and we select x(j) ∈ Kj such that v
(
x(j)
)

= minx∈Kj v (x). For each f ∈ hv0(U)
with ‖f‖v = 1 and each j ∈ N we have

sup
x∈Kj
|f(x)| ≤ 1

v (x(j))
.

If x ∈ Kj and ζ ∈ D(x, aj) (here D(x, aj) denotes the closed ball with center x
and radius aj) then, from the definition of aj we deduce that ζ ∈ Kj+1, and hence,
together with the previous inequality, we get

|f (ζ)| ≤ 1

v (x(j+1))
.

By Cauchy’s inequalities for harmonic functions given in [3, 2.4], there exists a
positive number C (independent on x) such that, for each ζ ∈ D(x, aj)

|Dif(ζ)| ≤ C

ajv (x(j+1))
, i = 1, 2, . . . , d. (4.2)

where Di denotes la i-th derivative of f . Let δj such that
δj < aj and (

1

v (x(j))
+

Mj+1dC

ajv (x(j+1))

)
δj < ε.

The compactness of Aj permits to get Fj ⊂ Aj finite such that

Aj ⊂
⋃
x∈Fj

{x′ ∈ U : ‖x′ − x‖ < δj, |v(x′)− v(x)| < δj} ,

Consequently, for each x ∈ Aj, there exists w ∈ Fj with ‖w − x‖ < δj and
|v(w)− v(x)| < δj. On the other hand, D(x, δj) ⊂ D(x, aj) ⊂ Kj+1 for each
x = (x1, x2, . . . , xd) ∈ Aj. We write w = (w1, w2, . . . , wd) to get

|f(x)| = |f(x1, . . . , xd)| ≤ |f(x1, . . . , xd)− f(w1, x2, . . . , xd)|

+ |f(w1, x2, . . . , xd)− f(w1, w2, x3 . . . , xd)|+ · · ·+ |f(w1, w2, . . . , wd)| .

We apply the mean value theorem to each difference and (4.2) to get

|f(x)| ≤ C

ajv (x(j+1))
d ‖x− w‖+ |f(w)| ≤ dδjC

ajv (x(j+1))
+ |f(w)| .

Now, since w ∈ Kj+1:

v(x) |f(x)| ≤ |v(x)− v(w)| |f(x)|+ v(w) |f(x)| ≤
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δj
1

v (x(j))
+ v(w)

(
dδjC

ajv (x(j+1))
+ |f(w)|

)
≤

δj
v (x(j))

+Mj+1
dδjC

ajv (x(j+1))
+ v(w) |f(w)|

≤ ε+ v(w) |f(w)| ≤ ε+ max
w∈Fj

v(w) |f(w)| .

Therefore,

sup
x∈Aj

v(x) |f(x)| ≤ ε+ max
w∈Fj

v(w) |f(w)| .

The application T in general is not a surjection. In [31] the sliding-hump
technique is used to construct rapidly decreasing continuous and radial weights v
on C such that Hv0(C) contains the polynomials and is not isomorphic to c0.

Corollary 4.1.2. There are not infinite dimensional subspaces of hv0(U) which
are reflexive.

Proof. The conclusion follows from the isomorphism of hv0(U) to a subspace of c0

and by [54, Proposition 2a.2] each infinite dimensional subspace of c0 contains a
complemented subspace which is isomorphic to c0, and then it is not reflexive.

In order to get examples where the isomorphism above cannot be an isometry,
we consider a v-boundary condition which is inspired by Boyd and Rueda in [18,
Theorem 16, Corollary 17] for weighted spaces defined on bounded open sets of Cd.
First, we observe that for any weight v for which hv0(U) contains the polynomials
then

{δz : z ∈ U} ⊂ hv0(U)∗

is linearly independent.
If U is bounded and v tends to 0 at the boundary then hv0 contains the poly-

nomials and if v(x) = g (|x|), with | · ‖ being a norm in Rd and g : [0,∞[→]0,∞[
being a continuous function rapidly decreasing, (i.e with limt→∞ t

ng(t) = 0 for any
n ∈ N), we have that hv0(/R

d) contains the polynomials.
Next, we extend [18, Lemma 10] to unbounded domains.

Lemma 4.1.3. Let U ⊂ Rd be a non-empty open set and let v be a continuous
strictly positive weight which vanishes at infinity on U. If hv0(U) contains the
polynomials then the map µ : U → (hv0(U)∗, σ(hv0(U)∗, hv0(U))), z → v(z)δz is a
homeomorphism onto its image.
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Proof. Since the polynomials belong to hv0(U), we get that {δz : z ∈ U} ⊂
hv0(U)∗ are linearly independent functionals. We consider the map µ̂ : Û →
(hv0(U)∗, σ(hv0(U)∗, hv0(U))), z → v(z)δz if z ∈ U and µ̂(∞) = 0.

(Û , τ ′) is the Alexandroff Compactification of U . Let z0 be in Û . A neighbour-
hood basis of µ̂(z0) is given by finite intersections of sets of the form

V (µ̂(z0), f, ε) := {u ∈ hv0(U)∗ : |u(f)− µ̂(z0)(f)| < ε} ,
where f ∈ hv0(U) and ε > 0.
From the very definition of hv0(U) it follows that for each f ∈ hv0(U), the map

v · f : (Û , τ ′) → C ,(v · f) (z) = v(z)f(z) if z ∈ U , (v · f) (∞) = 0 is continuous.

Therefore, if we fix ε > 0, f ∈ hv0(U) and z0 ∈ Û , then there exists Uz0 ∈ τ ′ such
that |(v · f) (z)− (v · f) (z0)| < ε for each z ∈ Uz0 . Hence,

µ̂(Uz0) ⊂ V (µ̂(z0), f, ε),

and consequently µ̂ is continuous. By the linear independence of the evaluations we
have that µ̂ is injective. The compactness of Û implies that µ̂ is a homeomorphism
onto its image, and hence also its restriction µ to U which is a topological subspace
of Û .

The harmonic v-boundary is defined as follows

bv(U) := {z ∈ U : v(z)δz is extreme in the unit sphere of hv0(U)∗}.

The set of harmonic v-peak points is defined as

pv(U) := {z0 ∈ U : there is f in the unit sphere of hv0(U)

such that v(z0)f(z0) = 1 and v(z)|f(z)| < 1 for all z 6= z0}.
According to Chapter 3 the extreme points in the unit sphere of hv0(U)∗ can

be written as λv(z)δz, for some λ ∈ ∂D and z ∈ U . From Corollary 3.4.4 it follows

pv(U) := {z ∈ U : v(z)δz is weak* exposed in the unit sphere of hv0(U)∗}.

If U ⊆ Cd then the holomorphic v-boundary and the set of holomorphic v-
peak points are defined analogously and they are denoted by Bv(U) and Pv(U)
respectively. Since Hv0(U) ⊂ hv0(U) in this case we have

Pv(U) ⊆ Bv(U) ⊆ U

and also

Pv(U) ⊆ pv(U) ⊆ bv(U) ⊆ U. (4.3)
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Lemma 4.1.4 ([18, 19]). Let U ⊆ Rd (U ⊆ Cd) be a non empty open set and let
v be a weight which vanishes at infinity on U .

(a) For any λ ∈ ∂D and z ∈ U the functional λv(z)δz is extreme in the unit
sphere of hv0(U)∗ (resp. Hv0(U)∗) if and only if z ∈ bv(U) (resp. Bv(U)).

(b) If U ⊆ Cd is balanced, v is radial and λ ∈ ∂D then λz ∈ bv(U) for each
z ∈ bv(U) (resp. λz ∈ Bv(U) for each z ∈ Bv(U)).

The following result is proved by Boyd and Rueda for a bounded domain U ,
v vanishing at infinity on U and Bv(U) = U or U balanced and v radial (See [18,
Theorem 16 and Corollary 17]).

Proposition 4.1.5. Let U ⊂ Rd (U ⊂ Cd) be a non-empty open set and let v a
weight for which hv0(U) (resp. Hv0(U)) contains the polynomials. Assume that
bv(U) (resp. Bv(U)) is not discrete. Then hv0(U) (Hv0(U)) cannot be isometric to
any subspace of c0.

Proof. We only prove the harmonic case. We denote by N̂ = N∪{∞} the Alexan-
droff Compactification of N. Let T : hv0(U) → c0 be an isometry onto its image.

Let F := T (hv0(U)) ⊆ c0. Since c0 is the subspace of C(N̂) formed by the func-
tions which vanish at∞, the extreme points of the unit sphere of F ∗ are contained
in {λδn : λ ∈ ∂D, n ∈ N} ([27, Lemma V.8.6]). Let Q : F → hv0(U) be the
inverse isometry of T . The transpose linear mapping Qt : hv0(U)∗ → F ∗ is also an
isometry and it maps extreme points to extreme points. Thus for each z ∈ bv(U)
there exists λz ∈ ∂D and n(z) ∈ N such that Qt(v(z)δz) = λzδn(z). From the linear
independence of {δz : z ∈ U} in h∗v0(U) we conclude that n(z) 6= n(w) for z, w ∈ U
with z 6= w, and then bv(U) is countable and {λzδn(z) : z ∈ bv(U)} is discrete for
the weak* topology, since it is a sequence in the sphere of F ∗ which is σ(F ∗, F )
convergent to 0. But Qt is a weak*-weak* homeomorphism. Hence we conclude
from Lemma 4.1.3 that bv(U) is discrete.

Since the set of extreme points of the unit ball of a dual Banach space is never
empty by The Krein–Milman Theorem and Lemma 4.1.4, we deduce the following
result.

Corollary 4.1.6. If U ⊆ Cd is a balanced open set and v is radial weight which
vanishes at infinity on U then neither Hv0(U) nor hv0(U) is isometric to a subspace
of c0.

Despite that we do not have an example of a weight v on U such that bv(U) is a
discrete subset of U , we see below that we can reformulate the problem of finding
an example of space hv0(U) which can be isometrically embedded in c0 in terms of
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the possible existence of an open set U ⊆ Rd and a weight v such that bv(U) is not
discrete. Of course the analogous result is also true for the holomorphic case. In
view of Lemma 4.1.4 this is not possible for radial weights in balanced domains.

Proposition 4.1.7. If U ⊆ Rd is an open set and v is a weight on U such
that hv0(U) contains the polynomials and bv(U) is discrete then hv0(U) embeds
isometrically in c0.

Proof. Since the closed unit ball D of hv0(U)∗ is the weak*-closure of the absolutely
convex hull of the extreme points of the sphere, Lemma 4.1.4 implies that D is in
fact the closure of the absolutely convex hull of {v(z)δz : z ∈ U}. Thus this implies
that bv(U) cannot be finite, and since it is discrete we have that bv(U) = (xn)n
with (xn)n tending to infinity on U when n goes to infinity. We get now that D is
the weak*-closure of the absolutely convex hull of {v(xn)δxn : n ∈ N}, and hence,
we have

‖f‖v := sup
n∈N

v(xn)|f(xn)|.

for each f ∈ hv0(U). Indeed, ‖f‖v ≥ supn∈N v(xn)|f(xn)| := M is obvious. If
u ∈ acx{v(xn)δxn} then, u = Σm

i λiv(xi)δxi , being λi ∈ R, 1 ≤ i ≤ m, Σm
i |λi| ≤ 1.

So, u(f) = Σm
i λiv(xi)f(xi) ≤ Σm

i |λi|M ≤ M . Thus, ‖f‖v = sup{u(f) : u ∈
acx{v(xn)δxn : n ∈ N}} = sup{u(f) : u ∈ acx{v(xn)δxn : n ∈ N}} ≤M .

Since (xn)n tends to infinity on U , we have that the linear map

T : hv0(U)→ c0, f 7→ (v(xn)f(xn))n

is an isometry.

4.2 Geometry of hv0(U), Hv0(U) and their duals

In [19, Theorem 29] Boyd and Rueda showed that if U ⊆ Cd is a balanced
bounded open set and v is a radial weight vanishing at infinity on U such that
Pv(U) = Bv(U) then Hv0(U) is not rotund, and then neither hv0(U) is. This
condition is trivially satisfied when Pv(U) = U . To the best of our knowledge, so
far there are no concrete examples of open subsets U ⊂ Cd and weights v on U such
that Bv(U) \ Pv(U) 6= ∅. In the concrete examples of spaces Hv0(U) given in [19]
where Bv(U) is calculated the equality Bv(U) = Pv(U) is always satisfied. With a
similar proof to the one of [19, Theorem 29], we present below a new condition for
spaces Hv0(U) with U balanced and v radial depending only on the size of Pv(U)
which ensures that Hv0(U) is not rotund.
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Proposition 4.2.1. (a) Let U ⊆ Cd be the open unit ball for a norm |·| in Cd and
let v(x) = g(|x|) for g : [0, 1[→]0,∞[, being a non-increasing continuous functions
with g(1−) = 0. If there exists z0 ∈ ∂U such that the set {tz0 : 0 < t < 1} ⊆ Pv(U)
then Hv0(U) is not rotund, and then neither hv0(U) is.

(b) Let |·| be a norm in Cd and let v(x) = g(|x|) for g : [0,∞[→]0,∞[, being a
non-increasing continuous function with limt→∞ t

ng(t) = 0 for all n = 0, 1, 2, ... If
there exists z0 ∈ ∂U such that the set {tz0 : 0 < t} ⊆ Pv(Cd) then Hv0(Cd) is not
rotund, and then neither hv0(Cd) is.

Proof. (a) We choose a linear functional on Cd such that ‖ϕ2‖v = 1. We take a non-
null linear map ϕ. Since the polynomials are contained in Hv0(U) it follows that
any power of the functional is in Hv0(U). If ‖ϕ2‖v 6= 1 then we take ϕ = ϕ√

‖ϕ2‖v
whose norm equals one, is in Hv0(U) and is a continuous linear map.

Since vϕ2 is continuous on Û and vanishes at infinity there exists z1 ∈ U such
that

1 =
∥∥ϕ2

∥∥
v

= v(z1)
∣∣ϕ2(z1)

∣∣ = v(−z1)
∣∣ϕ2(−z1)

∣∣ .
This z1 is always different to zero since ϕ is linear.
We may assume that

1 =
∥∥ϕ2

∥∥
v

= v(z1)ϕ2(z1) = v(−z1)ϕ2(−z1),

since we can multiply by a suitable scalar.
As |z0| = 1, by applying the Theorem of Hahn–Banach we get y ∈ Cd such

that 〈y, z0〉 = 1 and |〈y, z〉| ≤ |z| for each z ∈ Cd. Let r0 := |z1|. We define

h : U → C

h(z) = ϕ2

(
|〈y, z〉|
r0

z1

)
.

We have

v(r0z0)h(r0z0) = g(r0)ϕ2

(
|〈y, r0z0〉|

r0

z1

)
= g (|z1|)ϕ2 (z1) = v(z1)ϕ2 (z1) = 1.

Since ϕ is linear we also get

v(−r0z0)h(−r0z0) = g(r0)ϕ2 (−z1) = v(−z1)ϕ2 (−z1) = 1.

For z ∈ U arbitrary, since g is non increasing and
∣∣∣ z1r0 ∣∣∣ = 1, it follows,
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v(z) |h(z)| = v(z) |h(z)| = g (|z|) |h(z)| ≤

g (|〈y, z〉|)
∣∣∣∣ϕ2

(
|〈y, z〉|
r0

z1

)∣∣∣∣ = v

(
|〈y, z〉|
r0

z1

) ∣∣∣∣ϕ2

(
|〈y, z〉|
r0

z1

)∣∣∣∣ .
From 1 = ‖ϕ2‖v and |〈y,z〉|

r0
z1 ∈ U we get

v

(
|〈y, z〉|
r0

z1

) ∣∣∣∣ϕ2

(
|〈y, z〉|
r0

z1

)∣∣∣∣ ≤ 1.

Therefore,
v(z) |h(z)| ≤ 1.

Thus, h ∈ Hv0(U). However,

v(r0z0)δr0z0(h) = 1 = v(−r0z0)δ−r0z0(h).

Now, as r0z0 is assumed to be a peak point we can find f in the unit ball of
Hv0(U) different from h such that v(r0z0)f(r0z0) = 1 and v(z)Re(f(z)) < 1 for
each z ∈ U \ {r0z0}. Hence we conclude from

‖(f + h)/2‖v = v(r0z0)(f(r0z0) + h(r0z0))/2 = 1

that Hv0(U) is not rotund.
(b) The condition limt→∞ t

ng(t) = 0 for all n = 0, 1, 2, .. implies that Hv0(Cd)
contains the polynomials. So, any power of a linear functional is in Hv0(Cd). Now,
we proceed as in a).

Let g : [0, 1] → [0,∞[ be a function such that g(1) = 0, g is decreasing, g is
twice differentiable in ]0, 1[ and log(1/g(t)) is convex. In [19, Corollary 12] the
authors showed that for a weight v defined in the Euclidean unit ball U of Cd by
v(x) = g(‖x‖) the equality Pv(U) = U holds, and then Hv0(U) cannot be rotund by
[19, Theorem 29]. Also if U1 ⊆ Cd and U2 ⊆ Ck are the Euclidean unit balls, and
v1 and v2 satisfy this last condition for certain g1 and g2, then v : U1×U2 →]0,∞[,
v(x, y) = v1(x)v2(y) also satisfies Pv(U) = U (cf. [19, Proposition 26]). We present
below new examples of spaces Hv0(U) which cannot be rotund. In the required
assumptions, besides considering a wider class of open sets, we remove from the
weight the condition of differentiability given by Boyd and Rueda as we did in
Theorem 1.2.24 of Chapter 1, to give conditions under which v = ṽ, ṽ being the
associated weight introduced by Bierstedt, Bonet and Taskinen in [7]. The same
technique permits us to get concrete radial weights v(x) = g(‖x‖) defined in the
Euclidean ball U of Rd with d odd such that the spaces hv0(U) are not isometric
to any subspace of c0. If d = 2k then the assertion is a consequence of Corollary
4.1.6 since U is the Euclidean unit ball of Ck and Hv0(U) ⊂ hv0(U).
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Proposition 4.2.2. Let g : [0, 1] → [0,∞[ be a continuous decreasing function
such that g(1) = 0 and log(1/g) is strictly convex in [0, 1[. Let U ⊆ Cd be the unit
ball for a norm | · | and let v : U →]0,∞[, x 7→ g(|x|). Then Hv0(U) is not rotund
(and then neither hv0(U) is).

Proof. Let h(r) := log(1/g(r)), 0 ≤ r < 1. Since h is increasing and strictly
convex, for each 0 ≤ r0 < 1 the map

[0, 1[\{r0} →]0,∞[, r 7→ (h(r)− h(r0))/(r − r0)

is increasing. Hence for each 0 ≤ r0 < 1 there exists α0 ≥ 0 which depends on r0

such that
h(r)− h(r0) > α0(r − r0)

for all r ∈ [0, 1[\{r0}. Now we compute

sup
0≤r<1,r 6=r0

g(r) exp(α0r) = exp

(
sup

0<r<1,r 6=r0
(−h(r) + α0r)

)
<

< exp

(
sup

0≤r<1,r 6=r0
(−α0(r − r0)− h(r0) + α0r)

)
= g(r0) exp(α0r0). (4.4)

Straszewicz’s Theorem [1, Theorem 7.89] together with the Krein–Milman The-
orem implies that there exists z0 ∈ ∂U which is exposed. Let y ∈ Cd such that
〈z0, y〉 = 1 and Re(〈z, y〉) < |z| if z ∈ U \ {rz0 : 0 ≤ r < 1}. Let 0 ≤ r0 < 1
be arbitrary, and let α0 be as above. The function f0 : U → C defined by
f0(z) := exp(α0〈z,y〉)

g(r0) exp(α0r0)
is holomorphic and v(r0z0)f0(r0z0) = 1. It follows imme-

diately from (4.4) that if 0 ≤ r < 1, r 6= r0

v(rz0)|f0(rz0)| = g(r) exp(α0r)

g(r0) exp(α0r0)
< 1.

If z ∈ U \ {rz0 : 0 ≤ r < 1} then we use (4.4) and Re(< z, y >) < |z| to get

v(z)|f0(z)| = g(|z|)exp(α0Re(< z, y >))

g(r0) exp(α0r0)
< g(|z|) exp(α0|z|)

g(r0) exp(α0r0)
≤ 1.

f0 ∈ Hv0(U), since f0 is bounded in U and v vanishes at infinity on U . Hence
f0 peaks v(r0z0)δr0z0 . We conclude that {rz0 : 0 ≤ r < 1} ⊆ Pv(U) since r0 is
arbitrary. We apply Proposition 4.2.1 to get that Hv0(U) is not rotund.

Proposition 4.2.3. Let U ⊂ Rd be the Euclidean unit ball and g : [0, 1[→]0,∞[ be
a non-increasing continuous function such that g(1−) = 0 and log(1

g
)|]0,1[ is strictly

convex. Let d ≥ 2. Let us consider the unitary weight v : U →]0,∞[ defined by
v(x) := g(‖x‖). Then pv(U) = U.
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Proof. We fix r0 ∈]0, 1[ and we define Ψ := log( 1
v
|]0,1[). As Ψ is increasing and

strictly convex we can find α0 ≥ 0 dependent on r0 such that Ψ(r) > α0(r− r0) +
Ψ(r0), for all r ∈ [0, 1[, r 6= r0. We proceed again as in Proposition 4.2.2

sup
0<r<1

v(r) exp(α0r) = exp

{
sup

0<r<1
{log v(r) + α0r}

}
<

exp

{
sup

0<r<1
{−α0(r − r0)−Ψ(r0) + α0r}

}
= v(r0) exp(α0r0).

Let x0 ∈ BRd such that ‖x0‖ = r0. Let us suppose without loss of generality
that the first component of x0 is not zero. Let T be the linear map T : Rd → Rd

with ‖T (x)‖ = ‖x‖ for all x, such that T (x0) = (r0, 0, · · · , 0), T = (T1, T2, · · · , Td)
and we take

f0(x1, ..., xd) :=
1

v(r0) exp(α0r0)
(exp(α0x1)) cos(α0x2)

for x ∈ BRd , which is harmonic. Also f0 ◦ T is harmonic by [3, Chapter 1]. Since
f ◦ T is bounded in U and g(1−) = 0 it follows that f0 ◦ T ∈ hvR0 . Moreover, we
have v(r0)f0(T (x0)) = 1.

Let x ∈ BRd , x 6= x0, ‖x‖ = r.
If r 6= r0 then

v(x) |f0(T (x))| =
v(r) |Re(exp(α0(T1(x) + iT2(x)))|

v(r0) exp(α0r0)
≤

≤ v(r) exp(α0 |T1(x) + iT2(x)|)
v(r0) exp(α0r0)

≤ v(r) exp(α0 ‖T (x)‖)
v(r0) exp(α0r0)

≤

≤ v(r) exp(α0r)

v(r0) exp(α0r0)
< 1.

If r = r0 then T1(x)2 + ...+ Td(x)2 = r2
0.

If T2(x)2 + ... + Td(x)2 6= 0 then |T1(x)| < r0 = r and by applying that the
exponential function is strictly increasing,

v(x) |f0(T (x))| = v(r) |Re(exp(α0(T1(x) + iT2(x)))|
v(r0) exp(α0r0)

=
v(r)exp(α0T1(x))

v(r0)exp(α0r0)

≤ exp(α0 |T1(x)|)
exp(α0r0)

< 1.
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If T2(x)2+...+Td(x)2 = 0 then injectivity yields x 6= −x0 and T (x) = (−r0, 0, ..., 0).

v(x) |f0(T (x))| = v(r) |Re(exp(α0(T1(x) + iT2(x)))|
v(r0) exp(α0r0)

=

=
exp(α0(−r0))

exp(α0r0)
< 1.

Finally, if r0 = 0 then we take the constant function f0 ≡ 1
v(0)

.

Thus, in all cases we have v(x0)f0(x0) = 1 and v(x)f0(x) < 1 for each x ∈
U \ {x0}. Hence pv(U) = U .

Corollary 4.2.4. Let U ⊆ Rd be the Euclidean unit ball, g : [0, 1[→]0,∞[ be a
non-increasing continuous function such that g(1−) = 0 and log(1

g
)|]0,1[ is strictly

convex and let v(x) = g(‖x‖) for x ∈ U . Then hv0(U) is not isometric to any
subspace of c0.

Proof. By Proposition 4.2.3 pv(U) = U. This implies that hv0(U) is not isometri-
cally embedded in c0 by Proposition 4.1.5.

Proposition 4.2.5. Let g : [0,∞[→]0,∞[ be a continuous decreasing function
such that log(1/g) is strictly convex in [0,∞[ such that g(t) = o(e−at) for each
a > 0.

(a) Let | · | be a norm on Cd and let v : Cd →]0,∞[, x 7→ g(|x|). Then Hv0(Cd)
is not rotund (and then neither hv0(Cd) is).

(b) Let v(x) = g(‖x‖) for x ∈ Rd. Then hv0(Rd) is not isometric to any subspace
of c0.

Proof. (a) We repeat the argument of the proof of Proposition 4.2.2 which is valid
because the condition g(t) = o(e−at) for each a > 0 implies that

f0(z) =
exp(α0〈y, z〉)
g(r0)exp(α0r0)

∈ hv0(Cd).

Thus, we can apply Proposition 4.2.1.
Also (b) is obtained from this observation and an inspection of the proof of

Proposition 4.2.3 and Corollary 4.2.4.

The condition g(t) = o(e−at) for each a > 0 can be improved because according
to the proof it would be enough to take g(t) = o(e−ant) for all n ∈ N and a = α0

being α0 the right first derivative in 0 of the function log(1/g).
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For this kind of weights, if the differentiation operator D on Hv0(C) is contin-
uous then D is hypercyclic by [9, Theorem 2.3] since etv(t) → 0 where t → ∞.
Furthermore, g(t) = o(e−at) with a > 0 implies that

lim
t→∞

log(1/g)(t)

log(t)
= +∞

and by [37] there are harmonic functions h on Rd satisfying the inequality |h(x)| ≤
1

g(‖x‖) for every x ∈ Rd, which are universal concerning to translations. This means

that h is in hv(C).

Remark 4.2.6. For any increasing continuous function h : [0, 1[→ [0,∞[ which
is strictly convex and satisfies limt→1 h(t) = ∞ (or h : [0,∞[→]0,∞[ with eat =
o(eh(t)) when t goes to infinity for each a > 0), the function g(t) = e−h(t) satisfies
the hypotheses of Proposition 4.2.1 and Proposition 4.2.2 (or Proposition 4.2.5).
The examples given in [19, Example 13] of weights in the Euclidean unit ball can
be obtained using this general method.
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Šmulyan, 55

Alaoglu-Bourbaki, theorem, 11

balanced, 27

Carlenson-Newman, theorem, 18
Cauchy’s inequalities, 69
compact, 25
composition operator, 1, 44

domain, 27
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