
A Self-organized Wireless Sensor Network
(WSN) for a Home-event Managed System

Design of a cost efficient 6LoWPAN-USB Gateway with RFID
security

Sergio A. Floriano Sanchez
sergiofloriano@gmail.com

June 29, 2015

Supervisor: Mark Smith.

School of Information and Communication Technology
Royal Institute of Technology

Stockholm, Sweden

Abstract

Wireless Sensor Networks (WSN) have existed for many years in industry applications
for different purposes but their use has not been fully extended to the global consumers.
Sensor networks have lately resulted to be greatly helpful to people in everyday life, specially
in home automation applications for monitoring events, security, and control of devices and
different elements in the house by using actuators.

One of the main barriers to overcome in order to increase their popularity and achieve
an worldwide deployment are costs and integration within other networks.

This Thesis investigates the most appropriate choices to avoid those impediments from
a hardware and software design perspective, trying to find a cost-efficient solution for the
implementation of a simple and scalable wireless sensor network. The present work studies
the elements that form part of a constrained network and focuses on the design by analysing
several network protocol alternatives, radio transmission mechanisms, different hardware
devices and software implementations. Once an optimal solution is found, the construction
of a gateway board that starts and coordinates a sensor network will be the main target of
this document including the development of an application that manages the sensors.

The network is designed to be compliant with the TCP/IP stack by means of 6LoWPAN,
an adaptation layer protocol used for comprising IPv6 headers over IEEE 802.15.4 radio
links in constrained networks. In addition, a small implementation of CoAP (Constrained
Application Protocol) is developed that allows interoperability with the sensor nodes on the
application layer, similarly as HTTP does in IP networks. The controller device (gateway)
acts as a client for the remote sensor devices (nodes) that behave as servers in the CoAP
application. The gateway exchange data and is managed from outside the WSN through a
USB interface that can be connected to a computer.

Security mechanisms are also considered by providing packet encryption and a method
for identification of nodes. The authorization of new nodes entering the network is per-
formed by an RFID reader connected to the gateway. An RFID tag is attached to the
sensor nodes with authentication information stored in it. The gateway reads that infor-
mation through the RFID modules and handle it internally to give access to that node.

As a result of this, it is proven from the conclusions of the study the implementation of
the gateway that inexpensive, self-managed, scalable WSNs provided with a robust security
mechanism can be achieved and easily deployed .

The work presented in this document is part of a larger project that also includes the

i

ii ABSTRACT

design of sensor boards and the acquisition and analysis of sensor data. These works are
mentioned and referenced in the related parts in this text.

Sammanfattning

Trådlösa sensornätverk har funnits i många år inom industrin för olika ändamål, men
dess användning har inte helt och hållet nått ut till de globala konsumenterna. Sensornätverk
har på senare tid visat sig vara mycket hjälpsamma för människor i deras vardagsliv, särskilt
inom automatiseringsapplikationer för säkerhet, övervakning och kontroll av apparater och
olika delar i huset, genom användning av manöverdon. Ett av de huvudsakliga hindren att
ta sig förbi för att kunna öka dess popularitet och skapa en världsomfattande spridning är
kostnader, integration inom andra nätverk och en enkel hantering.

I den här avhandlingen undersöks vilka som är de lämpligaste alternativen för att und-
vika hinder ur ett hårdvaru- och mjukvarudesigns-perspektiv, genom att försöka hitta kost-
nadseffektiva lösningar för implementering av ett trådlöst sensornätverk. Arbetet undersöker
de beståndsdelar ett begränsat nätverk består av, samt fokuserar på designen genom att
analysera flera olika nätverksprotokollsalternativ, radiosändningsmekanismer, olika hård-
varor och implementering av mjukvara. När väl den optimala lösningen hittats, kommer
huvudmålet för detta dokument att vara en gateways konstruktion, vilken sätter igång och
koordinerar ett sensornätverk, samt utvecklingen av en applikation som sköter sensorerna.

Nätverket är designat för att vara medgörligt med TCP/IP-stacken med hjälp via 6LoW-
PAN, ett anpassat lagerprotokoll vilket används för att komprimera IPv6-headern i begrän-
sade nätverk över IEEE 802.15.4 radionätverk. Dessutom har en liten implementering av
CoAP (Constrained Application Protocol) utvecklats vilket tillåter interoperabilitet med
sensornoderna i applikationslagret, liknande HTTP i IP-nätverk. Gatewayen fungerar som
en klient för sensornoderna, vilka beter sig som servrar i CoAP-applikationen. Gatewayen
utbyter data och styrs utifrån det trådlösa sensornätverket genom ett USB-interface som
kan kopplas till datorn. Säkerhetskonstruktioner tas också i akt genom att tillhandahålla
kryptering och en metod för att identifiera noder. Behörighet för nya noder i nätverket utförs
av en RFID-läsare som är kopplad till gatewayen. En RFID-bricka bifogar sensornoderna
med lagrad verifieringsinformation. Porten läser den informationen genom RFID-moduler
och hanterar den internt för att ge behörighet till noden. I och med detta är det bevisat,
med den implementerade gatewayen och slutsatser från studien, att mycket effektiva, billi-
ga och hanterbara trådlösa sensornätverk med kraftiga säkerhetskonstruktioner kan uppnås
och enkelt distribueras.

Arbetet som presenteras i det här dokumentet är en del av ett större projekt som också
inkluderar uppbyggnaden av sensornoderna samt anskaffning och analys av sensordata.

iii

iv SAMMANFATTNING

Dessa arbeten nämns och refereras till i de berörda delarna av texten.

Contents

Abstract I

Sammanfattning III

Contents V

List of Figures VII

List of Tables IX

List of Acronyms and Abbreviations XI

1 Introduction 1
1.1. Structure of this thesis . 1
1.2. Motivation . 2
1.3. Problem statement . 3
1.4. Wireless Networks . 4

2 System definition and goals 9
2.1. First approach . 9
2.2. Main goal . 9
2.3. Procedure . 10
2.4. Deployment of the Network . 10
2.5. Application . 13
2.6. Devices . 14

3 Background 19
3.1. Wireless Sensor Networks . 19
3.2. Radio Frequency Identification (RFID) . 27

4 Wireless system design 35
4.1. Protocol features . 35
4.2. WSN protocol selection . 36

v

4.3. Gateway . 41
4.4. Sensor boards . 42
4.5. Security . 43
4.6. RFID system . 44
4.7. Constrained Application Protocol (CoAP) 47

5 Electronic design of platform 55
5.1. Gateway main board . 55
5.2. Other components . 66
5.3. Sensor devices . 67
5.4. Design and construction . 67

6 Implementation of the platform 81
6.1. Contiki . 81
6.2. Overview of the platform . 91
6.3. Development tools . 95
6.4. Contiki configuration . 96
6.5. Drivers . 97
6.6. Network . 103
6.7. Application . 105

7 Results and Conclusions 115
7.1. Results . 115
7.2. Conclusion . 119

8 Future work 121

Bibliography 125

Appendix A: Schematics and printed circuit boards 133

vi

List of Figures vii

Appendix B: Source code 139

List of Figures

1.1. Different network topologies. In red those nodes with more with extra func-
tionality acting as controllers or gateway. In green simple nodes reading sensor
data . 5

2.1. Wireless Sensor Network overview. It shows the different elements that form
part of the WSN and their connectivity. The solid arrow means wired connection
while dashed arrows define wireless link. 14

3.1. IEEE 802.15.4 data frame . 21

4.1. Functional diagram of the gateway showing the connectivity options. It is de-
picted the different communication interfaces, protocols choices and frequency
bands in the case of radio communication. It also shows some components such
as LEDs and Buttons that can be used for human interaction and testing of the
board. 41

4.2. CoAP Message Format . 48
4.3. CoAP Options Format . 50

5.1. Electronic design of the gateway. It depicts the bus connections of the selected
communication components (USB, RFID and Radio) towards the microprocessor
(in blue), it also shows how the board is powered from the USB line (in red)
and also other required elements, such as a JTAG connector used to flash the
micro-controller, a external crystal, LEDs and buttons for human interaction and
testing. The RFID and Radio modules include the corresponding chip model and
a circuit representing the antenna adaptation that is needed. 65

5.2. Gateway schematics . 68
5.3. MSP430 circuit board . 69
5.4. TRF7960 module placed in the RFID system 71
5.5. TRF7960 schematic implementing parallel and SPI modes 72
5.6. TRF7960 circuit board . 73
5.7. First prototype of the TRF7960 board . 74
5.8. Antenna placed in the RFID system . 74
5.9. Matching circuit schematic . 75

5.10. Matching circuit board . 76
5.11. Final antenna with matching circuit attached 76
5.12. Pair of inductors at 90◦ orientations with respect to each other 78
5.13. MSP430 board attached to the TRF7960 board and the RFID antenna 79

6.1. Code Composer IDE. 82
6.2. Code Composer Torrija project view. 83
6.3. Example of protothreads . 85
6.4. Example of processes . 86
6.5. Platform architecture. The parts marked in blue have to be developed. At the

bottom, the drivers needed for Contiki that communicates with the hardware
modules at the low level (in green). On top, also in blue, the main applications,
some of them requiring a process to poll for events and some just handling data
to be stored or to be sent out to the user for instance. Some interactions such
as direct communication from the applications towards driver output ports are
not shown here. 94

6.6. Protocol stacks. This figure shows the abstraction layers that allow the commu-
nication between the different modules. 103

6.7. Radio process to handle input packets . 107
6.8. USB process that receives input data . 108
6.9. RFID process that schedules the tag reading 109
6.10. RFID process that detects and read data from the tag. 110
6.11. CoAP client process waiting and handling incoming messages from the USB

interface and the TCP/IP stack. 111
6.12. Default discovery resource. 113
6.13. Example of a simple resource accepting PUT and POST methods and toggling

a LED upon request. 113
6.14. CoAP server application activating a group of simple resources and periodic

resources. 114

1. Gateway schematics . 134
2. Gateway PCB . 135
3. RFID schematic . 136
4. RFID board . 137
5. Antenna impedance adaptation circuit . 138
6. Antenna impedance adaptation board . 138

viii

List of Tables ix

List of Tables

3.1. Wireless Sensor Network protocols . 25

4.1. RFID frequency bands features . 45
4.2. CoAP Options . 51

5.1. micro-controllers . 57
5.2. Radio transceivers . 59
5.3. Radio modules . 61
5.4. USB modules . 61
5.5. RFID modules . 63
5.6. HW configurations . 64

List of Acronyms and
Abbreviations

6LoWPAN IPv6 over low-power wireless area networks

ACG Automatic gain control

API Application Programming Interface

ASK Amplitude Shift Keying

BPSK Binary Phase Shift Keying

DSSS Direct-sequence Spread Spectrum

EMC Electromagnetic Compatibility

EPC Electronic Product Code

ESD Electrostatic Discharge

FHSS Frequency-hopping Spread Spectrum

FSK Frequency Shift Keying

FSK Frequency-shift Keying

GSM Global System for Mobile Communication

HTTP Hypertext Transfer Protocol

I2C Inter-Integrated Circuit

IANA Internet Assigned Numbers Authority

IEEE Institute of Electrical and Electronic Engineers

IETF Internet Engineering Task Force

ISM Industrial, Scientific and Medical

xi

xii LIST OF ACRONYMS AND ABBREVIATIONS

ISO International Organization for Standardization

NFC Near Field Communication

NRZ Non Return to Zero

OOK On-Off keying

O-QPSK Offset Quadrature Phase-shift Keying

PIE Pulse-Interval Encoding

PSK Phase Shift Keying

PSSS Parallel-sequence Spread Spectrum

RFID Radio Frequency Identification

SPI Serial Port Interface

TI Texas Instruments

UART Universal Asynchronous Receiver/Transmitter

USB Universal Serial Bus

WSN Wireless Sensor Network

Chapter 1

Introduction

In the last few decades humanity has experimented an incredible change. The way people
communicate with their environment has been completely transformed. The direction that
this change is taking leads to a world where people not only interact with each other but
also with devices and machines. We are all integrated, taking part of networks. Devices are
continuously getting connected as well to networks. New needs are emerging and Wireless
Sensor Networks (WSN) are located in a very remarkable place [21].

Sensors are in contact to the real world, they are embedded, sensing and detecting a
huge range of events and variables. Physical phenomena are measured and translated into
digital information. Sensors also collaborate with actuators that provide actions depending
in many cases on the values coming from those sensors. Information does not have to be sent
as raw data, devices could also perform some kind of processing and interpretation of data
and send notifications when interesting events occur. In a home-event managed system this
data is collected from sensors located in different rooms, delivered by some self-managed
mechanisms to a central unit and eventually processed and interpreted. This information
is presented to the user as a set of events occurring at a certain time with very interaction
and maintenance needed from the user.

1.1. Structure of this thesis

The contents of this section should serve as a guide through the rest of the document.
It states the aim of each chapter so the reader can directly access to the most interesting
ones for him.

Chapter 1 Is an introduction to the main topic discussed in this thesis. It briefly describes
the purposes and benefits of Wireless Sensor Networks and the need of it.

Chapter 2 Defines the goal and proposes a detailed solution describing the requirements in
the end. It gives an insight on how to proceed in the design and selection of materials

1

2 CHAPTER 1. INTRODUCTION

Chapter 3 Describes different RFID technologies and alternatives. It also shows the char-
acteristics of several network protocols and discussed about the applicability on con-
strained sensor networks.

Chapter 4 goes through different topologies, network protocols and implementation al-
ternatives in order to find the most adequate solution for the proposed requirements.
Additionally it discusses and arguments about the integration of security in the plat-
form through RFID technology.

Chapter 5 is dedicated to the physical construction of the gateway. It shows the results
of a research carried through different processors and radio, USB and RFID modules
in order to find the most cost-efficient and feasible solution fulfilling the requirements.

Chapter 6 describes the software implementation of the systems based on Contiki OS.
The reader will find a description of the internal functionality of Contiki and its re-
quirements, a short description of the firmware for the different hardware modules,
the implementation of the network functionality and a wider description of the ap-
plication and the way the different modules interact with each other through Contiki
processes.

Chapter 7 discusses about the results obtained with our design to verify if the main goal
and the requirements has been achieved. It states a conclusion in the end.

Chapter 8 proposes different ideas and ways to continue the work started in this thesis.

1.2. Motivation

The seed of the present Thesis was originally provided by Ericsson Research. A depart-
ment within Ericsson interested in a Wireless Sensor Networks capable of obtaining data
(sensors, state of devices, presences...) from different sources that should be interpreted and
inform the users. Wireless Sensor Networks are continuously becoming widely popular since
the last few years. People security needs have been increasing in parallel as well. Residents
want to have homes under control, specially during absence for long periods. Furthermore,
simple data values from sensors might be useless without a proper interpretation and users
are not usually willing to do that type of task. They typically prefer instant and valuable
information, an answer to a question rather than a numeric value or a change of state of a
certain device.

The interest is not that a user knows the exact temperature inside a room or the power
consumption of a certain device. Moreover, it was required that, depending on the captured
data, the system would be able to answer questions such as: Is there someone at home?
Everything is going all right in the kitchen? Or, additionally, been able to capture event
triggered by different situations (your daughter has arrived home, the fridge has unexpect-
edly switched down...) Therefore, different applications were thought to provide ’assurance’

1.3. PROBLEM STATEMENT 3

related to energy consumption control, safety against fire or theft, presence control. Appli-
cations might be varied and the system might provide flexibility to increase the number of
possible new applications.

From a technical point of view, the system was conceived originally to have multiple and
different kinds of sensors connected to a self-managed wireless network, meaning that the
network does not need to be controlled by the user. The network configures itself, connect
the devices and recover from possible faults. No need for user to interact and manage the
network.

Specifically three types of streams were considered from the beginning: temperature,
power consumption of devices in the house and door lock event detection. Finally some
more sensors were added to measure humidity and light, and an accelerometer. The data
generated is delivered to a base station (gateway) connected to the WASA board (a proto-
typing board developed by Prof. Mark Smith [2]) or any other board. An external system
must be responsible of collecting the necessary information from the gateway. The external
system or client have to deal with data parsing and processing in order to feed the different
applications offered to the end user.

The global project, as a whole, was too big for just one Master Thesis; it was therefore
divided into four smaller projects responsible each for a specific role:

1. Sensors [3]

2. Self-organized Wireless Sensor Network (WSN) [In this document]

3. Applications <-> Events, associated actions

4. Statistical analysis (normalizing)

The team was originally composed by a group of four people collaborating respectively
with a Master Thesis each. The present Thesis will be in charge of the design and imple-
mentation of the Self-organizing Wireless Sensor Network (WSN). Compared to the OSI
model, the work will be made on several of the layers, taking part from the data link layer
to the application layer that should stablish a way of communication from a client to a
server and vice versa.

The official common name of the project was agreed to be "Home-event Management
System" particularizing each Thesis with a description: "Design and Implementation of a
Wireless Sensor Network for a Home-event Management System".

1.3. Problem statement

From the first moment when the idea of the project arose, the trajectory has moved
through different stages until finding out the final objective and real applicability of it. Not
only globally as a whole body, but also as individual Theses. It needs now to be made clear
enough the purpose of the present work.

4 CHAPTER 1. INTRODUCTION

The target to achieve consists of designing a self-managed Wireless Sensor Network.
Other required network features include low-power, low data transfer, low-cost and easy
maintenance. The WSN will be implemented starting with the design and building of
devices and later focusing on the networking protocol and the application that send data
from the sensors. The network should find a way to establish a bidirectional communication
from outside to the sensor network and vice versa. It should allow requests to be sent to
sensors and replies to the origin of the request, performing some kind of security and quality
of service (e.g. retransmission mechanisms). Sensors could also decide if they should inform
when events occur by sending messages. The information exchanged from the WSN will be
received in a transparent manner to a database or to an external client through a gateway.
Data will be interpreted and treated by the receiver.

Additionally a method for identification of new nodes appearing in the network should
be added by means of different technologies such as RFID or NFC.

1.4. Wireless Networks

WSNs commonly consists of several sensor devices usually called sensor boards, nodes,
motes or hosts [23]. Sensor devices are connected to other nodes by a radio link at a certain
frequency and using a protocol according to the requirements of the application. Nodes
perform simple actions like sending raw data, or might provide more complex features such
as routing to allow multi hop between nodes out of the range. Gateways, border routers or
similar are also commonly found when interacting with sensor networks.

Transmissions from nodes are generally done hop-by-hop through other nodes following
a defined route (using routing mechanisms) or not defined route (flooding, retransmissions)
until finding the destination, often a gateway to external networks. There are many differ-
ent mechanisms to achieve a successful and optimal communication, all dependent of the
implemented protocol.

There is a huge large number of protocols out in the market that provide connectivity
and management capability to WSNs. They usually offer in addition security and reliability
functionalities such as ciphering, encryption keys management, acknowledge messaging and
retransmission. Some protocols are also built over other well known standards at low layers
such as the IEEE 802.15.4 [32] for radio links that implements very useful mechanisms to
effectively adapt to the restrictions found in WSNs.

Network protocols allow different network topologies that could match into a WSN.
Among them there are three popular network schemes [23]:

Start network: there is a central device (gateway, base station) where all nodes are
connected through. It is responsible of coordinating and managing the network. Nodes
communicate exclusively with the coordinator device. This kind of network offers
simplicity and fast data exchange but it is totally dependant of one device and poorly
flexible.

1.4. WIRELESS NETWORKS 5

Figure 1.1: Different network topologies. In red those nodes with more with extra function-
ality acting as controllers or gateway. In green simple nodes reading sensor data

Mesh network: All nodes are connected together and are able to transmit to others
within the radio coverage range. It is offers great redundancy and scalability but
management could become very complex affecting device processing what increases
latency of messages and power consumption.

Hybrid network: This a combination of the topologies above. There are more than
one node with managing and multi hoping capabilities. Other nodes are simple and
limited to transmission of messages saving power consumption. Hybrid networks share
advantages and disadvantages making it more flexible offering a trade-off of features.

A detailed specification of the application is required in order to optimize the network for
its future use. That will also help in the selection of the most appropriate communication
protocol, hardware needs. There are many different choices for protocols and platforms
offering very good features, but an the optimal will be the one that fixes perfectly with the
requirements.

1.4.1. Common features

Some features are commonly required in sensors networks but they imply some con-
straints that need to be overcome to get the desired properties. Those are low cost, low
power consumption and minimum maintenance.

In a WSN it is likely to have tens or even hundreds of devices. It is therefore crucial
that cost is reduced to the lowest possible otherwise networks would be unaffordable for
the regular customers. Batteries should last periods of years to reduce the cost and also to

6 CHAPTER 1. INTRODUCTION

avoid the necessity of changing the batteries of the devices too often. This is a matter of
maintenance and also sustainability since consumed batteries create disposal and toxic waste
problems. Sensor networks should be also easy to be deployed and easy to be maintained to
avoid the consumer to concern about technical issues making WSNs accessible to anyone.
Robust protocols, adaptability and smartness are intended.

Due to the restrictive nature of sensor networks they typically have in common a series
of characteristics [24] that lead to achieve these three requirements.

Slow processing capability: no big data needs to be processed so usually micropro-
cessors with 8-bits or 16-bits addressing are built in the devices with clock frequency
around 10 MHz. Slow processors should also allow for a better power consumption
efficiency since they consume less. Normally prices are economic and affordable but
it is not necessarily a rule.

Reduced bandwidth: since small data information packets are to be transmitted there
is no need of high data rates. Typically 10 Kbps - 60 Kbps throughput in Contiki[42].
So the energy consumption is usually quite efficient but this of course depends on the
protocol in use. For instance Bluetooth is low bandwidth and not very low power.

Efficient energy management: radio transceiver and microprocessor may be put on
sleep mode at some intervals of time depending on the application needs. That simple
action increases batteries life enormously.

Small data storage capacity: rarely more than 70 Kb of flash and 16 Kb of RAM
[42] [23]. An efficient and small code will get better consumption behaviour but small
memories can be quite expensive if there is not big demand for them.

Routing protocol: the implemented protocol should let the network to be self-
configured and self-managed, to get long distances by using routing paths and to
be easily scalable.

Security and Reliability: typically the protocol implementation cares but it. Some
mechanisms are usually required to set the packet loss to acceptable ratios and avoid
eavesdropping from third part listeners or hacking.

1.4.2. Advantages and disadvantages

The benefits of deploying a wireless network instead of a wired network are mainly
based on low installation costs, minimum maintenance and easier scalability and location
flexibility [21].

The nowadays increase of use of microprocessors, wireless devices and mass-production
of electronic devices have helped also to optimize cost. The trend is to keep lowering prices
in the future. That will boost scalability of networks providing extensive deployments.

Sensor networks are not just targeted to provide numerical data and raw info to users.
The goal is to perform some kind of useful high level information from raw data already

1.4. WIRELESS NETWORKS 7

interpreted. Users are therefore aware the interpretations of what is going on rather than
values or measurements.

Sensor networks are very useful when registering local events or obtain physical mea-
surements such as weather conditions. Usually the measured values are limited to a reduced
range, what improves the SNR (signal-to-noise ratio). Moreover, WSNs generally consist
of a large collection of devices so a better resolution and description of local areas can be
achieved.

It is also important to notice that due to the short distance range that is achieved with
sensor networks (10 meters), typically a great amount of sensors has to be deployed in
order to extend the range (this is valid for mesh and hibrid networks) [21]. Unfortunately, it
complicates the networking protocols. Self-configuration capability on networks is essential,
specially to avoid the necessity of manual maintenance.

Many sensor networks work at high frequencies inside the 800 MHz - 900 Mhz bands or
at 2.4 GHz. High frequency links are more affected to disturbances than low frequencies.
Considering that they are part of a low power network, the communication channel could
become very sensitive and unreliable [21]. Objects, people, antenna orientation or weather
could easily affect to connectivity causing momentary loss of link and routing easier. In
those cases networks should adapt to the new conditions by self-organizing itself and looking
for new routes, adapting dynamically.

A great amount of extra advantages and disadvantages can be found apart from those
explained above. There is no need to enumerate all of them but this is just a guide of those
considered the most remarkable ones.

1.4.3. Uses

WSNs take part in many diverse fields and applications. The fact that they have been
present for years, nowadays its uses are increasing exponentially due mainly to cost decreases
and appearance of new protocols specially designed for this kind of networks.

A generic list of applications where WSNs can be helpful would include: home au-
tomation, environmental monitoring, disasters detection, security applications (surveillance,
alarms, presence detection), healthcare, emergencies, products tracking. As it can be seen,
not only home environments are targeted by sensor networks. Uses are only limited by
distance ranges, data rates and imagination since it is an extremely versatile type of com-
munication network.

1.4.4. Devices

Sensor networks usually comprise a central node that may be a gateway or border router,
several sensor devices or nodes and nodes with routing capabilities to permit scalability by
performing multi hoping [23]. All those devices are designed using embedded electronics and
embedded software development with specific constraints an limitations. Power consump-
tion must be optimize avoiding leakage of current from components or tracks. Code should

8 CHAPTER 1. INTRODUCTION

be concise and efficient for optimization of resources with special attention to interrupts
handling and communication ports.

Devices in a WSN digital electronics share a great deal of components and features due
to their embedded and restrictive nature. Control, intelligence and resources managing
is provided by 8-bit microprocessors or 16-bit when more complex processing is required
(gateways, routers). Radio link communication is carried out using low power radio chips
and cheap antennas (monopoles, dipoles, micro-strip). Other communication interfaces
might be UART, SPI, I2C or USB depending on the type of communication protocol between
other subsystems or modules and according to specifications. Sensor boards are commonly
built with low cost sensors, both digital or analogue technology. Analogue data capturing
is performed from external or integrated ADC converters into the microprocessor. Some
digital sensors may require communication to be established through SPI, UART or I2C
ports, usually available in micro-controllers. Another essential components are batteries
that might be of different types: standard alkaline, litium-ion, rechargeable. The choice
depends on the desired use and cost.

1.4.5. RFID security

WSN and RFID are two wireless technologies with a huge potential for developing appli-
cation. They are being deployed almost in parallel but the integration of both in the same
network is not attracting much attention from the research community [62]. The advantages
of putting both technologies together are numerous and the number of applications that
can be developed is unlimited [22].

A possible application of the RFID technology in a WSN is to provided a mechanism
to securely spread sensitive information such as secret keys or identification numbers (e.g.
unique MAC addresses) belonging to nodes. In this case, a tag with id information can
be attached to a node that wants to get access to a network. RFID readers can read tags
from nodes from a few centimetres to meters. In a secure environment the nodes should not
spread their information far from them. It is only required to be read once by approaching
the tag close to the RFID reader.

It is specially important in the case of Home-Event WSNs to provide certain type of
security [22]. It is necessary to separate the user network from other networks in the vicinity
and avoid a malicious user to send fake data to the gateway and provoke fake events and
avoid eavesdropping from third part listeners or hacking. Those actions can lead to breaking
the home security.

There is a lack of devices in the market integrating both technologies and getting the
benefit of security on WSNs. One of the target of this Thesis is to prove that RFID and
WSN technologies can coexist together in the same application getting advantages of each
other by means of an affordable device.

Chapter 2

System definition and goals

2.1. First approach

This chapter describes the functionality of the sensor network and what is expected
from the application. It also tries to identify some of the requirements for the network and
the devices that are part of it.

This Thesis is a part of a bigger project originally conceived by Ericsson as mentioned
in the previous introduction. The main target is the design and deployment of a wireless
network for a home-event management system. The essential elements to carry this out are
common to most wireless sensor networks: a gateway, sensor boards (nodes), an appropriate
networking protocol ruling the communication and an application managing the data.

When the project was suggested by Ericsson, the wireless network was intended to
communicate with nodes externally through an Ericsson proprietary gateway. Hence, the
network would consist of several sensor nodes and a gateway in charge of starting and
commissioning the network (the network topology was not decided yet). This gateway
would act as a intermediary link to an Ericsson external gateway in charge of delivering
messages to outside networks under a common understandable format or protocol. The
requirements where not explicitly specified more than an overall concept so we got a great
degree of freedom in the design.

2.2. Main goal

The main purpose of this Master Thesis is the design of a platform that allows the
deployment of a low-cost Self-Managed Wireless Sensor Network provided with RFID-based
security. The goal is to prove that such design is feasible, useful and affordable for the final
consumer. In order to achieve this objective, this report goes through different stages
accomplishing the tasks shown in section 2.3 below.

9

10 CHAPTER 2. SYSTEM DEFINITION AND GOALS

2.3. Procedure
It is important to define a strategy in order to get a better understanding and solve the

proposed problem. Following a scheduled plan optimizes the work by dividing it in tasks
and steps that can be solved orderly and in parallel when possible.

1. Definition of the objectives of the Thesis and requirements.

2. Research on existing networking protocols and documentation.

3. Exploring Wireless Sensor Network designs.

4. Selection and study the protocol: specification, API, code examples, evaluation
boards.

5. Study of the hardware platforms: components, costs, energy consumption.

6. Selection of developing tools.

7. Hardware:

a) Circuit, PCB and antenna design.
b) Milling and soldering of parts.
c) Testing modules, ports and peripherals.

8. Software:

a) Driver development for communication ports and HW peripherals.
b) Research on available stack implementations.
c) Study of available Operating Systems for embedded devices.
d) Porting and integration of code to own platform.
e) Application design and development.

9. Testing of the system, results and conclusion.

2.4. Deployment of the Network
One of the most important concerns consists of how to start managing the network.

This is done typically by a central authority or coordinator device, in this case the gateway.
Some of the procedures for bootstrapping the network are usually specified by protocols,
but in some cases they are not [21]. Therefore, those mechanisms should be designed,
implemented or configured to comply for the specific tasks independently of the standard.

When a coordinator starts for the first time the network, there is a list of common tasks
to deal with: scan the radio environment to detect busy channels and other networks, choose

2.4. DEPLOYMENT OF THE NETWORK 11

appropriate channel, select a network identifier and an own identifier or node address, start
the encryption mechanisms, key sharing, communicate with nodes...

Different mechanisms may occur when nodes want to join the network. The aim is to find
a way to first identify and register the node as a member of the network (neighbour). Then,
according to the specific protocol, find a way to bind the node to the coordinator (or router),
similarly to neighbour discovery from IP or binding mechanism from ZigBee. In some cases,
nodes are aware of the existence of a network by scanning the environment expecting a
beacon message. Beacons are periodic frames sent by coordinators to advertise about their
presence and are used for synchronization purposes. In other occasions, coordinators and
nodes need to be manually set up to a "joining mode" state by, for instance, pressing a
button. Running in parallel, there should be a system for secure exchange of encryption
keys if a high level of security is desired.

A discussion about different mechanisms is held in chapter 3 and 4. In the proposed
design, sensor nodes join the network by means of RFID technology. A tag is attached
to the nodes with some identification information about them or security information. An
RFID reader installed in the gateway reads that information when the user get the new
node closer to it. A security application should handle this data and authorize that node
for future use in the network.

Protocol

Protocols stablish the rules that control the behaviour of a network from the initial
state. In order to find the best match for the present design, a set of requirements should
be carefully defined. In Chapter 4 there is a discussion aiming at finding the optimal choice.

Many different descriptions of networking protocols can be found in Chapter 3. It gives
the reader an idea of which features and constrains WSN protocols have associated and is
a good help for the later discussion.

The protocol should be able to provide a way of communication between the nodes not
only internally but also externally with other networks. In the specific case of WSNs it is
required that the protocol complies with a set of constraints as exposed in Chapter 1. The
designer has to decide also the minimum requirements that the network should be able to
offer and choose the most suitable protocol in accordance.

The type of network topology, data rate, number of nodes, complexity, stack code size,
available existing implementations are typical features that should be considered.

Other attractive features to have in mind are, for instance, the possibility of designing
hardware or developing code using free tools, consulting communities of developers, avail-
ability of open protocol stack implementations, adaptability of code to different hardware
platforms (porting). Those things can greatly facilitate the work.

Characteristics and requirements

Self-organized: The network should start working, authorise nodes and handle com-
munication without interaction from the user other than the RFID detection. It

12 CHAPTER 2. SYSTEM DEFINITION AND GOALS

should also be able to heal itself and restart after shut-down.

Topology: Only a simpler star topology is considered to start with. It should be
enough to prove the main goal and it will allow a simple and faster design of the
gateway prototype compared to more complex networks.

Scalability: The network protocol should allow for scalability and be able to upgrade
to hybrid and mesh topologies in future implementations.

Coverage range: The main scope of the WSN is indoors environment. No large dis-
tances are considered in this version, just typically indoor distances no longer that 10
m. By providing scalability it is expected that larger ranges can be achieved in the
future.

Size: In an average home environment the number of rooms rarely exceed 10 rooms,
counting a living room, kitchen, 4 bedrooms, 2 bathrooms, basement or garage. Typ-
ically on sensor node will be needed per room, depending on the use of that space.
But in other to be safe, we can set an average number of 20 nodes per network as a
requirement. At least in the first version of the prototype.

Data rates: Since it is an event-driven network, high constant data rates are not
expected, but the network should be able to handle punctual burst of information if
several events occurs a the same time or continuous requests are send to the nodes.
We cannot provide accurate quantitative requirement at this point because it is highly
dependant on the radio technology and protocol, but based on studies of typical WSNs
today, data rates are found for different radios between maximum values from 20 to
250 kbps, depending on the radio frequency and the protocol. These are theoretical
values that are reduced due to hardware constraints, packet header or interferences,
the valuable throughput is usually the half of this values [25]. Typical WSNs cannot
reach more than 120 Kbps of throughput (250 Kpbs data rate). It is more interesting
then to calculate the throughput that the devices should be able to handle (see gateway
requirements below).

Wireless communication: The communication will be held by radio-frequency at a
frequency that allows achieving the data rates and throughput mentioned in this
chapter. A discussion about different radio technologies, frequencies and protocols
can be found in chapters 3 and 4.

Installation and maintenance: The installation of the network should be automati-
cally done when the user connects the gateway to the computer. Additionally, more
functionality can be provided for the user to interact with the gateway and nodes
through the computer. However, the communication within the network should be
self-managed by the protocol.

2.5. APPLICATION 13

2.5. Application
The problem of developing a functional and useful application is bound to the applica-

tion layer or API that is provided over the network protocol. The implementation of an
application layer is also part of the work of the present document and it has to be agreed
with the design of the sensor nodes [3].

From a functional point of view, in a typical scenario the user should be able to add
new sensors to the network by approaching the node to the RFID reader installed in the
network that will read specific information of that node. The security application should
handle the authorization and secure the node link from that information obtained from the
RFID (It can be an ID, MAC address or security KEY depending on the protocol). No
more installation should be required from the user, the network protocol should manage
the identification and communication with the node automatically.

From the USB interface it is expected some information printed on the computer side
any time a node with a tag is detected. This will inform the user of the id and type of
node that has appear on the network. Additionally, the user could use the USB interface
to authorise the node by himself.

The user should have control of the nodes from the USB interface in order to determine
what type of data is required, in what format, with what periodicity or give control to the
node so the node itself determines when to send some information (event-driven after value
passing a threshold). It should also be possible for the user to request status reports from
the sensors at any time. All this information should be delivered to the computer through
the USB interface.

Characteristics and requirements

Data handling: Single requests and periodic requests should be possible to do by the
user from the USB interface. Nodes should be able to independently send data to the
gateway every time events occur. The user should have the possibility to configure
such kind of behaviour on the node from the USB command line.

Information data should be also reported from different sensors every a certain interval
preferably minimum 1 second. The periodicity can be changed and sensors can send
data independently when events occur.

The application should be able to control and keep track of temperature, light intensity
and humidity in the rooms. It should be possible to perform actions on the nodes as
well by, for example, turning on/off a switch.

The format of messages and data should be plain text or xml so it can be easily
interpreted and represented. The average payload size should fit in the packet payload
field to avoid more complex treatment such as fragmentation. A size of 50 bytes is
considered enough to represent sensor data, periodic reports or events information
and it shouldn’t be exceeded. Depending on the selection of the protocol it might

14 CHAPTER 2. SYSTEM DEFINITION AND GOALS

Figure 2.1: Wireless Sensor Network overview. It shows the different elements that form
part of the WSN and their connectivity. The solid arrow means wired connection while
dashed arrows define wireless link.

actually need to be reduced (e.g. in the 2.4GHz radio standard IEEE 802.15.4 the
packet size is 128 bytes and the payload variable depending on the header)

Security: should be provided by the application by means of authentication of nodes
through the RFID application and encryption of packets using secure private keys.

2.6. Devices
It is fundamental to have a good description of the devices and how they interact

together. Once the devices have been clearly described it will be possible to start selecting
the components and designing the board and the software implementation. That makes
possible to separate the work into different tasks and stages.

2.6.1. Gateway

The target of this Master Thesis is to prove that the proposed self-managed system is
achievable at a low-cost with security provided by RFID technology. The main element
that makes the WSN possible is the gateway. The aim is the design of a gateway prototype
with no commercial purposes or strict performance requirements at first.

The gateway is the central point of contact between the WSN and the exterior envi-
ronment. It concentrates the information obtained from different nodes via radio and then
delivers the information outside to the user via a wired interface. The platform is equipped
with two interfaces providing connectivity. On one side a radio transceiver is required to
allow nodes and gateway to communicate wirelessly. But neither the frequency of operation

2.6. DEVICES 15

nor the specific hardware for this task will be defined at this point. This and other hard-
ware matters are studied in Chapter 5. On the other side, a wired communication link will
connect the gateway externally to a computer by means of a USB port as required from the
original project proposed by Ericsson.

The gateway should be built with different modules in order to fulfil the requirements of
the application and the network: a low power radio, a USB interface and an RFID reader.

Other functions performed by the gateway involve: starting and commissioning the
WSN, management of identifiers and/or addresses, delivery of encryption keys and regis-
tration of new nodes into the network.

Characteristics and requirements

Power requirements: since the gateway is connected to a USB standard port on a
computer, it can be directly powered from it in order to simplify the design. A
USB port on a computer is typically limited to provided 500 mA at 5 V so the
gateway should not consume more than that, this is a power limitation more than a
requirement, but it certainly fulfils the need of power for the modules.

Speed: It depends on the clock source. For typical low power micro-controllers it
could be 8, 12, 16, 24 or 32 MHz, rarely more. All these clock frequencies might be
enough to run the system. However, in order to avoid future problems, it is preferably
to give some flexibility to the board by providing it with a faster clock source. Then
it will be possible to test other frequencies by means of the internal divisors of the
micro-controller in order to find the most optimal. The requirement at this point is a
frequency between 16-32 MHz.

Memory size: It depends on the running OS, the drivers implementation, the network
stack and the complexity of the application. Commonly an OS targeting anWSN has a
small code footprint in the order of tens of kB (for example Contiki requires 60 kBytes
for the OS [42], extra size is incremented by the application and the implementation
of drivers in approximately 30 kB). We can set a requirement of 100 kB for the flash
memory size.

Wireless communication: Apart from the maximum data rates mentioned for the
radio link, we can estimate the throughput of the application giving some average
general values. Considering that each node is transmitting 4 packets per second, one
for each type of sensor another for other requests, if the requested payload with sensor
information is estimated to occupy 50 bytes in text/xml format. The throughput can
be calculated from the formula below:

Throughput = 20 nodes× 4 packets
second

× 50 Bytes payload
packet

+ 8 bits
Byte

= 32 kbps

In this situation, the gateway should handle a throughput of 32 kbps in this network.
This is coherent with studies stating that typical throughput is in the range of 35 to
40 kbps for such networks [25].

16 CHAPTER 2. SYSTEM DEFINITION AND GOALS

USB connectivity: A standard USB connector should be available in the gateway to
connect to the computer. There is no requirement for the operating system to use as
long as its drivers are compliant with the USB specifications, but in order to prove
this, testing is required either on Windows or Linux systems. The gateway will act
as a slave (or client) of the USB interface, the computer should recognise the device
and act as a host.

USB commands: A set of commands or message in a specific format should be defined
and should be available on the USB port so the user can configure the nodes or send
requests.

USB requirements: High data transfers are not required in average, but the inter-
face in the gateway should be able to handle burst of information at a certain time.
Considering 20 nodes with maximum throughput of approximately 1.5 Kbps it should
handle at least 30 Kbps. The USB standard specifies different speeds (from 1.5 Mbps
to 480 Mbps) on different versions but it should be considered that the maximum
achievable rates are usually much lower due to physical constraints and overhead.

RFID tags: should be small to fit the size of a sensor board and cheap. Tags should
be able to store an amount of data similar to a encryption key (e.g. 128 bits) or MAC
address (e.g. 64 bits) or both. These values might vary depending on the protocol,
it is better to have a high requirement than the sum of them, at least 256 bits (32
bytes).

RFID reader: should be able to read at short distances near 10 cm. No need for much
larger distances. There is no need for high data transfers since the reader is only used
when new nodes are installed in the network (if one per second 256 bps). A simple
protocol might be enough.

2.6.2. Sensor nodes

The study of the sensor boards is not within the scope of this work [3], neither the capture
and interpretation of their data [4] [5]. This report focuses on providing the mechanism to
access to the sensor data and to give them the possibility of sending useful information.

The communication protocol will be common for all the participants of the network
but their role will vary. Physical and link layer parameters related to the wireless com-
munication will be similar for all devices: band frequency, radio channel, modulation and
protocol. However, hardware modules and circuitry might be different to find the best trade-
off between cost and functionality. The boards should be as cheap, durable and simple as
possible.

The application has to control the sensor boards and the data over the networking
protocol. There are different stack implementations and embedded Operating Systems that
offer specific, proprietary APIs or application layer protocols that can be very useful for the
task.

2.6. DEVICES 17

Characteristics and requirements

Power requirements: There is no need to specify in detail hardware requirements, but
functional selection such as radio duty cycle length and sleeping modes might affect
the throughput.

Battery duration: No less than 1 year, optimal 2 years similar to other products in
the market.

Throughput: (see network requirements above) Considering only one radio link for a
single node transmitting 3 packets/second on average (temperature, luminosity and
humidity) on a 50 bytes payload, the minimum required throughput can be calculated
from the formula:

Throughput = 1 node× 3 packets
second

× 50 Bytes payload
packet

+ 8 bits
Byte

= 1, 2 kbps

Application: An application should be capable of retrieving data from a temperature,
a light intensity and a humidity sensor. There should be also able to modify a switch, a
LED or similar component as a replace for an actuator. The application should be also
able to respond to single data requests, send periodic reports, or send event-triggered
responses.

The sensor boards should be provided with and RFID tag and a MAC address or
Secure key stored in it and in the flash memory of the micro-controller so it can be
used to

The design of the sensor boards from hardware, firmware development and low level
communication layer is the topic of another Master Thesis on progress at the time of writing
[3].

Chapter 3

Background

3.1. Wireless Sensor Networks

Wireless Sensor Networks are typically designed to handle low data rates and being
low-power consuming [24]. The devices are therefore resource constrained and limited in
capabilities such as processing speed, memory space or data rate. They have to be very well
designed to accomplish with the constrains, specially regarding the low power consumption
since batteries are aimed to last for years. This kind of networks are thought to be working
locally in small spaces usually transmitting low rates of data. Theses limitations must
be taken into account when designing applications and deploying the network. An ideal
WSN should be scalable, have very little power consumption, be smart and programmable,
reliable, cheap and easy to install with just a little of maintenance needed [21].

Choosing the right hardware parts is fundamental to achieve the features above when
designing a network. Once the cost of components has been reduced to the optimal, there
is still left the concern about how resources and communication will be managed. Here is
where communication protocols take part. The aim is to make nodes to communicate in the
most efficient manner. Energy efficiency is the most important issue at this level, followed
closely by network auto-configuration possibility, scalability, reliability and security.

3.1.1. Protocols

There are a large number of protocols in the market specifically destined for WSNs
deployment. There are also numerous variables to considered in order to find out the most
suitable protocol for a particular application. So to enumerate some features affecting not
only the behaviour of the network, but also the hardware requirements:

Band frequency

Stack code size

Data rate

19

20 CHAPTER 3. BACKGROUND

Network architecture

Number of nodes

Multi-hop or routing

Node-to-node range

All the needs and purposes of a sensor network application should be studied carefully
before selecting the protocol that will manage the network. That would help to find out
the most optimal protocol that fits the requirements.

Some of the WSN protocols that are going to be exposed here rely on the IEEE 802.15.4
[32] radio standard that specifies the Physical and MAC layers for low-range wireless per-
sonal area networks (WPAN) being a good candidate for building WSNs. IEEE 802.15.4
offers different mechanism that make networks very robust. It can operate at 868 MHz,
915 MHz and 2.45 GHz ISM bands specifying different data rates that can be also chosen
according to them (20 kbps, 40 kbps, optionally 100 kbps and a maximum of 250 kbps).
More bands are contemplated in the standard later revisions (years 2007 and 2009). As it
is stated in the last specification from 2006, the last standard is backward-compatible to
the 2003 edition.

At the PHY level IEEE 802.15.4 different techniques and modulations are specified:
direct/parallel sequence spread spectrum (DSSS or PSSS respectively) techniques and dif-
ferent modulations (BPSK, O-QPSK or BPSK+ASK) in several combinations (refer to the
specification for more info [32]). New transmission techniques and modulations has been
added to the latest specifications in 2007 and 2009 revisions.

Different numbers of radio channels are available in the frequency bands: 3 channel in
the 868 MHz band, 30 channels in the 915 MHz band and 16 in the 2.45 GHz band. This
is an excellent feature to avoid interference in highly saturated channels. Networks might
dynamically be able to change communication to a less busy or interference-free channel.
Network radios can do the task by scanning the spectrum and registering those channels
where lowest activity is detected.

Many of the transceivers found today in the market today offer hardware pre-built
functionalities compliant with the IEEE 802.15.4 specification. A transceiver will modu-
late/demodulate the signal performing additional amplification, filtering and some kind of
processing. A good IEEE 802.15.4 compliant transceiver can also service the MAC layer or
upper layers with some extra functionality according to the specification requirements.

To achieve a higher degree of reliability, IEEE 802.15.4 includes frame checksums (FCS)
that use a 16-bits Cyclic Redundancy Check (CRC) and are appended at the end of packets.

At the MAC level the standard uses Carrier Sense Multiple Access Collision Avoidance
(CSMA-CA) another mechanism to avoid interference increasing reliability. When the most
optimal channel with less interference is found, the protocol looks starts the transmission
when the channel appears to be clean.

MAC layer can provide beaconless or beacon-enable mode. Beacons are framed used by
the network to advertise its presence to other networks and devices or for synchronisation

3.1. WIRELESS SENSOR NETWORKS 21

(see specification [32]). Any mode can be chosen but complexity grows in beacon-enabled
network where superframe structures and beacon frames are used and time slots needs to
be managed carefully. Beaconless networks use simple CSMA channel access.

There are four frame structures defined in the standard each of them with an specific
purpose and different header fields and sizes. If the network is beacon-enabled, beacon
frames are transmitted periodically acting as beacons from the coordinator of the network;
data frames transmit usable data payloads; acknowledgement frames confirm reception of
packets to the sender and finally, MAC command frames handle MAC peer entity control
transfer.

Most used frames are typically the data and the acknowledgement frames when beacons
are disabled. That is normally the common situation due to the complexity that beacon-
enabled networks introduce. There is no need to detail all frame types but it can be
interesting and helpful to understand the network upper layers to show the structure of a
data frame.

octets: 2 1 4 to 20 n 2

MAC
layer

FCF Sequence
Number Addressing fields Data Payload FCS

octets: 4 1 1 ... 9 to 127 ...
PHY

layer
Preamble
Sequence SFD Frame

Length MPDU

Figure 3.1: IEEE 802.15.4 data frame

Figure 3.1.1 represents the physical (PHY) and media access control (MAC) headers of
a regular packet. The PHY layer is used for detection of the frame and synchronization and
it is typically detected, parsed and processed by hardware.

The MAC layer header is a sub layer of the OSI link layer and is allocated after the
PHY header. According to the IEEE 802.25.4 specification it consists of three different
fields: FCF stands for Frame Control Field and it is a 2 bytes long field. Bit values here
give MAC control information related to compression, acknowledgement requests, security,
frame type, addressing mode or standard version. The following Sequence Number in
needed to differentiate consecutive packets. In the Addressing field it is possible to find the
PAN identifier of the network and/or the Source and Destination MAC addresses. Those
addresses can be 16-bit or 64-bit long and may appear or not depending on the compression
mode.

According to the IEEE 802.15.4 specification, we can classify the devices as FFD (Full
Function Device) or RFD (Reduced Function Device) depending on the amount of tasks
that they can carry out. Gateways and routers are usually FFDs, while sensor boards are
RFDs.

IEEE 802.15.4 standard is able to manage addresses, routes and build star or mesh
networks (see Chapter 1) by its own, providing multi-hoping capability and use of acknowl-
edgements. Many other functionalities are exposed in the specification document [32].

22 CHAPTER 3. BACKGROUND

Zigbee [7] [27] is probably the most known and extended protocol for Wireless Sensor
Networks. It is an open standard created by the ZigBee Alliance, formed by a group
of companies in the electronic field (Philips, Analog Devices, Texas Instruments, Mo-
torola, Freescale and many more). It is one of the reasons why ZigBee has showed
that spectacular growth in the last years. ZigBee is built over the IEEE 802.15.4
specification taking advantage of the features that it offers as those explained above.
It is important to remark that some features from different standard editions might
not be compatible with other revisions.

There are several properties that characterize ZigBee. It is low cost: since many com-
panies are involved in its standardization they produce cheap products off-the-shelf
for easy development. ZigBee is very reliable: it is built over IEEE 802.15.4 stan-
dard the offers many capabilities to improve reliability. In addition, ZigBee provides
mesh networking, multi-hop, automatic routing and moreover encryption and authen-
tication mechanisms for security. ZigBee is also a low power consuming protocol: It
manages energy consumption by making nodes to go to sleep mode during some time
or avoiding unnecessary transmissions of non relevant data.

The ZigBee specification describes a networking protocol (NWK), however it also pro-
vides a powerful and multipurpose application layer by means of application profiles
that define and describe devices of a network. Then the devices decide on a com-
mon profile to interact with each other. Those profiles define the functionalities and
actions between ZigBee Device Objects (ZDO). Applications Profiles are described
in additional specifications to extend the standard. That lets devices from different
manufacturers to be able to communicate using the common profile. Manufactur-
ers usually provide their own ZigBee stack and proprietary APIs to manage easily
the functionalities that ZigBee offer. In a ZigBee network three kind of devices may
coexist: A Coordinator, Routers and End Devices.

SimpliciTI [10] is a very simple and proprietary network protocol from Texas Instruments
aimed at low power and low cost wireless networks. It does not rely on IEEE 802.15.4
but a simpler and minimal RF interface (MRFI). More information and the code is
available at the website of Texas Instruments [10]. They claim that it uses < 8Kb of
flash memory and 1Kb of RAM. The simple provided API let users to create star, peer-
to-peer and start-extended networks (see [10]) and applications with only 5 commands.
Devices may be of three types: Access Points, Range Extenders or End Devices. This
type of protocol builds networks focus on home automation applications, alarm and
security, detectors, sensors, meters or remote control. This is a very basic protocol
for small networks and little reliability.

MiWi [11] is another simple WSN Protocol developed by Microchip. It is based on IEEE
802.15.4 standard. Features are not as advanced as other more complex protocol such
as ZigBee, but it can work with a very small code size having a favourable impact
on energy consumption and cost. Application Note from Microchip [11] claims that

3.1. WIRELESS SENSOR NETWORKS 23

MiWi protocol can tolerate up to 1024 nodes in the network. MiWi is able to create
star, mesh and cluster-tree networks.
The star network has a unique coordinator that configures and manages the network.
End devices can communicate to each other through the coordinator. A cluster-tree
network is similar to a hybrid networks having more than one coordinator/router in
the network. Devices are linked to only one coordinator them and only one of the
coordinators can configure the network. In a mesh network devices and coordinators
can communicate directly with each other with no restriction. One coordinator is
limited to a maximum number of 127 children, and there must be a maximum of 8
coordinators at the same time operating in network. Packets can travel up to 4 hops
within the network or 2 hops from the main coordinator. MiWi offers the possibility
of using beacons and acknowledgements.

6LoWPAN [31] [34] is a set of standards still under development by the IETF 6LoWPAN
working group. It has been created to enable IPv6 packets to run efficiently on low
power wireless networks and embedded devices. It was originally conceived to be
built over IEEE 802.15.4 standard but later generalized for any other similar link
layer standard for constrained networks.
6LoWPAN can be seen as an intermediary adapting layer between the link and IPv6
layers. It is mainly designed to compress huge IPv6 headers (40 octets) and addresses
(128 bites) into smaller and more efficient ones for low power wireless networks (best
case down to 4 bytes). In addition, the 6LoWPAN working group is making good
efforts to make specific 6LoWPAN mechanisms such as Neighbour Discovery where
IPv6 ND results to be too inefficient and consumes too much power.
Best advantage of 6LoWPAN is that it actually makes use of an international standard
protocol IP instead of being another networking protocol with different mechanism
and addressing. It helps gateways to be much more straightforward avoiding difficult
translations of protocols from the Internet to the WSN. The applications might be
built on any other protocol from the IP suite such as UDP, TCP or management with
ICMP or SNMP. The fact that 6LoWPAN is being developed by the IETF will lead it
to become an open international standard making integration of low data rate wireless
networks to be seamless with existing Internet network.
Despite 6LoWPAN development and standardization is not finished by the time this
Thesis is being written, there are several open implementations and IPv6 stacks avail-
able such as those integrated into Contiki OS for embedded devices by the SICS
(Swedish Instute of Computer Science) [39] or in Tiny OS [12] supported by an open
community.

OneNet [8] is an standard protocol designed for low power and low cost WSNs and de-
veloped by an Open-source community. At the physical layer side, One-Net works at
868 MHz and 915 MHz bands mainly with 25 channel available, but other frequency
bands may be optional too. It uses FSK modulation instead of FHSS or DSSS. Base

24 CHAPTER 3. BACKGROUND

data rate may vary from 38.4 Kbps up to 230 Kbps per node dynamic data rate con-
figuration as they state. One-Net is able to build Star, Peer-to-Peer and Mesh in a
range over 500 m outdoors and from 60 to 100 m indoors, extendible to kilometres
when using mesh networking. It provides advanced security functions adding XTEA2
as the default encryption scheme. API is claimed to be helpful and easy to use. Port-
ing for different platforms, schematics, reference designs and code is available at the
official website [8]. Moreover, One-Net is supported by several companies including
Texas Instruments Analog Devices, Freescale, Renesas or Micrel.
The fact that One-Net is an open and free alternative is very interesting since no
proprietary tools are need for development. It drives the cost of developing to a
minimum.

Dash7 [13] is another low-power networking protocol that differs from the protocols above
for being based on ISO 18000-7, an open standard for low power RF that operates in
the 433 MHz band. This band is an ISM available for free use at Region 1 (Europe,
Africa, Middle East and part of Asia) and restricted to low ranges, dedicated to
amateur radio and requires permission from the FCC amateur regulations [82] in the
USA. It is much less saturated than the 2.4 GHz band. There are numerous advantages
when working at 433 MHz band, less power is needed, wider ranges can be covered and
it offers deeper penetration into materials. However,the bandwidth is more limited.
Therefore, DASH7 is attractive for those applications where high-medium data rates
are not required.
DASH7 is developed by an Alliance and it is also supported by several companies of-
fering evaluation boards or compliant hardware products such as ST Microelectronics
or Analog Devices.

In order to not to extend unnecessarily this section it has been preferred to mention
other protocols instead of describing them with detail. The most popular ones have been
already showed, but a few more interesting protocols can be found such as: Z-wave [15],
Synkro-RF [16], Insteon [17], WirelessHART [18], PopNet [19], ULP Bluetooth [20], and so
on.

In Table 3.1 1 there is a comparison of several features between various protocols. All the
information showed will be very useful at the time of deciding the most adequate protocol
considering the requirements of the network. The reader must be aware that some of the
data presented could be dependent of the hardware and stack implementation itself, but
that variation should not be very noticeable. Code size and covering range are the most
sensitive parameters to that dependency

3.1.2. Bootstrapping and Security

A wireless sensors network is very likely to be sharing radio space with other different
networks in a building. There is a need of isolation between those networks. The nodes

1Source: several different resources [7] [27] [31] [34] [10] [11] [8] [13]

3.1. WIRELESS SENSOR NETWORKS 25

Zigbee SimpliciTI MiWI 6LoWPAN OneNet Dash7

Standard based Yes (802.15.4) No Yes (802.15.4) Yes (802.15.4) No Yes (ISO
18000-7)

Frequency band 868-915, 2400
MHz

868-915, 2400
MHz 2.4 GHz 868-915, 2400

MHz 868-915 MHz 433 MHz

Channels 16 - 16 16 25 (USA) up to 5

Data Rate 20 to 250
Kbps 100 Kbps 250 Kbps 20 to 250

Kbps
38.4 - 230
Kbps

28kbps to
200kbps

Max range 75 m - - 75 m 60 - 100 m 250 m
Nodes 2 to 100s 2 to 30 Max 1024 Up to 264 Max 4096 -

Network types Star, P2P,
Mesh

Star, Ex-
tended, P2P Star, P2P Star, P2P,

Mesh
Star, P2P,
Mesh -

Code Size 32 Kb to 100
Kb < 8Kb 3K-17K 22 Kb 16 Kb -

RAM 8 Kb 1 Kb - 4 Kb - -

Table 3.1: Wireless Sensor Network protocols

must be aware to which network they belong to in a similar way as coordinators need to
know what sensors are associated to it.

Before starting communication within the network, the nodes need to know some infor-
mation to successfully join to it. The collection of mechanisms that allow that integration
of the new node is known as Bootstrapping.

In the bootstrapping stage there are a few common procedures usually performed. As an
example, scanning of the radio space by the coordinator or by nodes to locate coordinators,
association mechanisms, sharing of secure keys for encryption and assignment of network
addresses are some of those procedures.

Some of the mechanisms are defined by the protocol specifications over the network
layers, but for a first recognition and identification of nodes there is not a fixed or standard
method. Some guiding and advice are generally given by authors but finally the mechanism
employed will depend on the designer of the network, the implementation or the needs of
the network. Also, key exchanging is a delicate matter that requires a good engineering
implementation to keep security under the necessary margins when new nodes access to the
network.

Users interfaces might be very useful for recognition and authorization of new nodes.
Sensitive information such as key material or identification numbers can be easily exchanged
using keyboards, pads and displays. Unfortunately, this is not the case typically useful
for low cost embedded devices. The way that users interact with constrained devices is
typically be means of buttons and LEDs. So, it is preferred an automatic, self-managed
and straightforward process to perform bootstrapping tasks.

In the last few years a new term has been coined known as Auto-ID that refers to any
automatic identification method for items, products, animals or people. There are different
mechanisms that can be suitable for the purposes of the network that this thesis is focused
on.

Some procedures have appeared in the market today as shown below [29]:

26 CHAPTER 3. BACKGROUND

Barcodes

Smart cards

Magnetic cards

RFID

All the mechanisms above might be adequate for identifying new nodes appearing in
the network, hence it would be interesting to briefly describe them in order to find a proper
choice for this project. Later it will be possible to investigate more in deep, finding new
features, properties and ways of implementation in the system.

Barcodes are composed by painted black bars and white spaces in parallel codifying
a symbol. It is commonly read by capturing the reflection from a laser beam (or from a
camera e.g.), then processed and interpreted as a number or alphanumeric character. As
a disadvantage, a barcode cannot keep more information than a codified value, hence it
is very limited. In addition, this technology needs specific advanced hardware to read the
barcode, making the design more complex and expensive.

Smart cards can be considered like memory cards or microprocessor cards. These
cards increase hugely the capacity to store information or security, and their applications
go usually one step beyond than just allowing identification of an item. Reader system is
also much more complex than the needs of a wireless sensor network. Smart cards can be
found in GSM systems, photographic cameras or music players [29].

Magnetic cards, as those used as bank cards, could be also a valid option. However,
despite cards are reasonably cheap, the reader is big in size and it would add an extra
complexity and costs to the gateway compared to other technologies. Moreover, adding a
magnetic stripe to each node would be an inconvenient to the aesthetic design of sensor
boards.

RFID stands for Radio Frequency Identification. Each item to be identified has a tag
or label attached where information is stored in a chip and powered by induced or radiated
energy obtained from a reader in the environment. Tags are becoming cheaper every day as
this technology is gaining in importance as an expanding business. Readers are also simple
enough and cheap. They consist of an antenna or coil, a matching circuit and a chip that
acts as a data frame reader. RFID tags are able to store between 16 to 64k typically [29] and
they can be rewritable. This feature extends enormously the possibilities of the systems,
since rewriting allows tracking of items by having a report of the conditions suffered during
a supply chain. It is even possible to attach sensors directly to tags. Communication is
usually set wirelessly in the 13.56 MHz band (not exclusively, but most common band for
RFID), what is seen as an advantage since it provides more versatility to the design of
nodes, not carrying about alignment of objects.

There is another very similar Auto-ID technology called NFC (Near Field Communi-
cation) [30] that can be seen as an extension of RFID. Actually, it is based on the RFID
ISO/IEC14443 standard [30] but improving its features by increasing data rate, security,
using more effective codification schemes, and adding the possibility of letting two devices

3.2. RADIO FREQUENCY IDENTIFICATION (RFID) 27

to communicate to each other transmitting and receiving data indistinctly of reader or tag
concepts.

Auto ID choice

Because of the properties that has been extracted from each auto identification proce-
dure, and considering that the WSN under development in this project needs to be simple,
cheap and standardized the best option seems to be RFID.

Barcodes are simple and there is barely any cost associated when attaching a code to
devices but the complexity and price of the scanner makes it a very bad choice as it does
not accomplish with the requirements of simplicity and low cost that the gateway needs.

Cards suffer from the same inconvenience of complexity and high cost of the reader
despite of cards themselves increase information storage and allow manipulation of data.

On the contrary, building an RFID system would be relatively easy since RFID modules
and transceivers are easy to find and they are usually well documented also with code
examples available. Most tags types allow rewriting of their internal user memory space,
what increases functionality and additionally, tags are also getting low-priced and RFID is
becoming widespread at everyday life.

NFC is still not broadly extended and the extra capabilities would provide unnecessary
complexity to the implementation. RFID features fix perfectly to the requisites of the
system under study.

3.2. Radio Frequency Identification (RFID)

3.2.1. Introduction

There is no intention of explaining in detail the mechanisms that makes RFID technology
possible. It is important, however, to approach the reader to the principles underneath this
technology before describing the implementation for the system.

RFID is a RF technology that is aimed at identification and tracking of things as the
main purpose. In order to operate, there are two essential elements: an interrogator, more
extensively known as reader and on the other side, a transponder, typically called tag or
label.

Tag It includes a microchip, a simple electronic circuit and an antenna or coil that acts as
an antenna. Sometimes it is also possible to find a battery taking part of a tag. It is
usually used as label and is stuck to the products to track.

Reader It is an electronic device consisting of a micro-controller and a transceiver that
takes the action of sending and reading information by means of electromagnetic
waves, and an analog front-end that comprises an antenna and an RF matching circuit.

The reader initializes the communication by sending electromagnetic pulses via radio at
a certain frequency at some time intervals. This can be seen as an act of interrogation to

28 CHAPTER 3. BACKGROUND

the proximity field. By the time a tag is crossing the near environment it immediately gets
powered and replies with some data. This is possible by means of electromagnetic inductive
coupling on low-medium frequencies below UHF or radiative coupling at UHF. The data
is captured by the reader in the form of a frame of bits carrying an identification number.
The tag takes his energy from the field radiated by the reader. The physical mechanism
that generally lies behind is called energy coupling.

Concerning tags, a classification can be established depending on the sort of powering
mechanism used by the chip.

Passive tag: It uses the energy radiated by the reader using inductive coupling to
power up itself and transmit data back to the reader.

Semipassive tag: The internal chip is powered by a backup battery usually working
at UHF band with radiative coupling.

Active tag: Are battery powered but additionally they include their own transmitter
and do not take advantage of energy coupling to use energy from the reader. Usually
also working at UHF band.

In a typical scenario where long detection distances of meters are not crucial, passive
tags are much more common. Avoiding the use of batteries gives the advantage of notably
reducing costs.

3.2.2. RFID Uses

Tags hold information in an internal memory that will be scanned by the reader after-
wards. The internal memory usually contains an identification number that should ideally
be unique for that tag. This accomplishes the first main objective of RFID providing iden-
tification capability.

Moreover, a tag could also store other useful information such as the place and time of
production, other places where it has been passed through, expiry dates, etcetera. This is
made possible due to the potential of tags for being rewritable several times. This property
allows RFID systems to keep track of as many items as wanted.

RFID has been under development for some decades and it is widely present in many
places and different industries but it is not broadly deployed for home automation purposes.

The number of future applications of this technology is immeasurable, as huge as one’s
imagination can reach. However, cost and security issues might still slow down the growth
rate and introduction into the society.

In order to increase the presence of RFID technology worldwide there are a few points
that need to be reinforced. Higher investments are crucial to achieve that:

Reduce number of RFID standards and anti-collision protocols avoiding proprietary
solutions and incompatibilities among devices.

3.2. RADIO FREQUENCY IDENTIFICATION (RFID) 29

Reducing tag cost to a minimum to make them affordable and profitable.

Optimal integration of RFID systems into present and future data networks (heading
to the Internet of Things).

RFID is used for common applications such as: Items tracking, identification, inventories
of products, information management (weather conditions, positioning control), security
(users authentication, access control, validation of devices information obtained from tags).

3.2.3. Energy coupling fundamentals

There are different ways for a tag to be supplied of energy [29]:

Inductive coupling

Radiative coupling

Close coupling

Electrical coupling

From those above, inductive coupling and radiative coupling are the most extensively
used, at bands from LF to HF and up to UHF respectively.

Whether the frequency used is high or low, the type of energy coupling can be inductive
or radiative. It is actually more appropriate to talk about wavelengths related to antenna
sizes instead of absolute frequencies as it is explained below.

Inductive coupling

When an antenna is radiating or receiving a signal with a wavelength much larger
than the size of the antenna, there are barely detectable differences of voltage along the
antenna. The signal is transmitted by the variation of the magnetic field in the surrounding
area. The magnetic variation can be detected with another antenna by means of a physical
phenomenon known as inductive coupling. It is more appropriate then to work with coils
as antennas instead of electrical antennas.

Coils are the most suitable component to store and couple magnetic energy. The size,
number of cable turns or shape of the coil will determine the inductance and limits of
detection of the generated magnetic field. The magnetic energy is concentrated around the
proximity of the coil to decay drastically as we move away and proportionally to the cube
of the distance. It makes the range of detection to be shorter at LF band but gives the
possibility of building smaller tags by increasing the number of turns.

It also should be pointed out that the lines of the magnetic field are distributed in a
determined way around a coil. Coupling will be optimal when lines from one coil cross the
inner area of another coil. It can be inferred that a good inductive coupling is associated
with the orientation of coils respect to each other.

30 CHAPTER 3. BACKGROUND

Inductive tags are made with a coil, a resonance circuit connecting the coil and a ca-
pacitor, a signal rectifier circuit and chip that will provide modulated data. On the other
side, the reader constantly transmits a signal at a certain frequency through another coil
acting as an antenna. When a tag gets close to a reader, if the resonance circuit is tuned
to the same frequency of the signal, it will generate a maximum voltage due to resonance
at the ends of the circuit. This signal can be then rectified by a diode or diode bridge
and a capacitor. An approximate constant voltage is achieved that supplies energy to the
integrated circuit. It will generate a low frequency clock signal internally or dividing the
signal captured from the resonance circuit. This signal will be used as a subcarrier, it will
be controlled by a data output from the chip and it will feed a switch at the output of
the transponder. The reader and tag coils are coupled magnetically when they are close
together in the near field (no more than 0.16λ [29]) because energy is mostly concentrated
in a form of magnetic field there. They form an inductively coupled system that works as
a transformer with a primary and secondary coil. When coupling occurs, the modulated
data going out from the switch in the tag makes the impedance of the virtual transformer
to change accordingly.

This has been called load modulation and it is another way to transmit data e.g. by
changes in the impedance. The reader detects the variation and filters the modulation
product created by the load modulation at fc+fs or fc-fs. It subsequently amplifies the
signal to proceed to demodulation.

Radiative coupling

Backscattering can be understood in RFID as a reflection of electromagnetic waves.
Passive tags are fed with the electromagnetic energy obtained from the transmission per-
formed by a reader. The energy is provided by a radiative coupling between the reader and
the tag.

Radiative coupling gains importance when the wavelength of a signal is similar to the
size of an antenna. It is possible to achieve longer tag detection distances since power
decreases inversely to the squared distance instead of the cube. The method applied for the
antenna design is based now on electromagnetic antenna theory for antennas with similar
size as the wavelength is use. The size of the antenna will be dependent on the frequency
of operation, since the higher it is, the smaller the tag can be. It happens at the microwave
frequencies range.

In brief, both, reader and tags antennas must be tuned to the same transmission fre-
quency in order to achieve an effective coupling. Because of the principle of reciprocity, an
antenna has identical propagation properties in transmission as in reception of waves. If
an antenna is efficient transmitting at a certain frequency, it will keep being effective when
receiving at the same frequency. When a voltage feeds an antenna, it radiates energy in a
way of electromagnetic waves. Receiving a wave with similar properties will generate the
same voltage at the output. This voltage can be used to power up the integrated circuit in
the tag. At long distances of several meters, a backup battery is normally used to supply
energy.

3.2. RADIO FREQUENCY IDENTIFICATION (RFID) 31

The reader is not instantly coupled to the tag, there is a delay in the exchange of
information, so load modulation is not possible. In this case, systems using radiative cou-
pling commonly have both, a transmitting and a receiving antenna, or one antenna and a
directional coupler in order to separate RX from TX signal when processing them.

It is possible to get longer distances than in the previous case since radiative energy
in the far field decays much slower than in the near field where inductive coupling takes
part. Whether longer distances are desired, a common solution consists of adding batteries
to tags, since beyond meters, energy obtained from backscattering becomes not enough to
power tags up. Nevertheless, despite of being able to achieve larger detection areas using
radiative coupling, there is a disadvantage associated. Due to reflections, irregular propaga-
tion patterns may appear since constructive and destructive wave interference occurs. This
means that the signal may disappear and appear again as we move away from the reader.

3.2.4. Frequencies

RFID operates within three primary frequency bands from low-frequency (LF) to ultra-
high frequency (UHF). More precisely, at LF it is the 125/134 kHz band, at high-frequency
(HF), the 13.56 MHz band as the most used band or the 5-7 MHz band. Meanwhile, UHF
RFID systems usually operate at 860-960 MHz band or the microwave region at 2.4 GHz.
However, it is also possible to find RFID systems working at 433 MHz or from 5.2-5.8 GHz
frequencies [28].

In consonance with the frequency band, here is an optimal energy coupling mechanism
associated as mentioned before. Specifically, at low and high-frequency bands, inductive
coupling is normally used in RFID systems. In case we consider a simple dipole as an
antenna, effective electromagnetic coupling at these bands would occur whether the length
of the dipole is equal to λ/2. Being that the frequency of the system is 13.56 MHz, it means
that if λ = c/f , wavelength is 22 meters, so the length should be around 11 meters. That
would make tags to be absurdly and disproportionately huge. Instead, coils inductively
coupled are used. To achieve a better coupling at a certain frequency, a resonant circuit is
normally used. A proper coil design tries to find its inductance and capacitance associated
to bring the circuit to resonance at the same frequency for reader and tag.

Up in the radio spectrum, the wavelength starts to be small compared to the dimension
of a reasonable antenna for a tag (in a scale of centimetres). For the example of the dipole
and frequency of 900 MHz we need a length of 16 cm, in case of the 2.4 GHz band it would
be of 6.25 cm. Thus, it is assumed that at UHF band, electromagnetic coupling can be
achieved in a more effective manner since smaller tags can be produced.

It is also worth to mention that transmission will be less or more robust regarding
the frequency of the system. Electromagnetic waves are able to go through many different
conducting materials up to certain distances dependant on the frequency band of operation.
It all has to do with a physical parameter known as skin depth. According to it, the depth
that an electromagnetic wave is able to penetrate into a material is inversely proportional
to the conductivity of the material and to the frequency of the wave. So, the higher the

32 CHAPTER 3. BACKGROUND

frequency, the smaller the depth waves go into a material. That makes materials to behave
like shields blocking the signal.

Government frequency bands regulations

When designing RFID systems we must be aware that radio signals might be present in
many different frequency bands so interference might occur over other regulated bands and
must be avoided. RF power emissions must not exceed certain values and should be limited
within the boundaries of the ISM (Industrial, Scientific and Medical) frequency ranges.
ISM ranges are open for any radio service but only under certain regulated limits of the
signal strength. For example, it is 60dBµA/m at 10 m from the reader in the 13.56 MHz
band ±7kHz bandwidth. Despite there is a close worldwide agreement, at some frequencies
regulations can be different depending on the region (America, Europe and Africa, and Asia)
or even between countries. For instance, at the 900 MHz ISM band Europe and the US
have different regulations. In Europe, the 868MHz band has more transmission limitations
than in the US. Exactly the opposite situation occurs at the 915MHz band that is more
restricted in the US than in Europe. The 2.4GHz ISM band is worldwide regulated under
the same conditions and it might mean a problem due to the saturation at this band due
to the different services .

Another critical point to be contemplated is that the frequency band that has been
chosen for an RFID system will also determine the coding and data modulation and the
communication protocol of the system.

3.2.5. Modulation and Coding

In every digital communication system, information has to be transported according
to certain rules. Modulation is a process of encapsulating some kind of information into
an analog periodic signal (subcarrier) by means of changing a physical parameter. That
could be a variation in its amplitude, frequency or phase in relation to a modulated signal.
In digital modulation there are three main mechanisms derived from those parameters.
They are known as ASK (Amplitude Shift Keying), FSK (Frequency Shift Keying), and
PSK (Phase Shift Keying). All those modulation schemes can be used in RFID systems
and are typical at high and ultra-high frequencies. More specifically, when working with
inductive coupled RFID systems, the load modulation behaves the same way as the ASK
modulation. The simplest ASK application, very extended in RFID systems, is called On-
Off keying (OOK), meaning that the subcarrier appears or disappears representing 1’s or
0’s respectively.

Coding is related to how information units (bits) are represented and should not be
confused with modulation. The purpose of coding is to get a proper signal adapted to the
transmission channel, error correction, data compression or cryptography.

In RFID systems several codes can be used such as NRZ, Manchester or Miller. A classic
one is Pulse-Interval Encoding (PIE). The mechanism bases on representing logic 0’s and

3.2. RADIO FREQUENCY IDENTIFICATION (RFID) 33

1’s by a transition from signal off to signal on where the pulse active is longer when coding
1’s. That avoids that long chains of 0’s leave the tag unpowered.

3.2.6. Protocols

Protocols are used to provide certain rules for communication when exchanging infor-
mation, like a language, that both parts know. A protocol in RFID has to be simple, since
tags do not carry too much intelligence and it helps to power save. There are different stan-
dard protocols depending on the frequency range or type of tag. Most of them have been
created by several standardization organisms such as EPC global (exclusive for RFID), ISO,
IETF or IEEE. In addition, there are other proprietary standards developed by companies
to make their products to communicate. All of them cover different modulations, coding or
are designed for different detection ranges and purposes.

Standard protocols specified by ISO 14443A and 14443B work in the 13.56MHz fre-
quency, and both are incompatible between each other. The ISO 15693 protocol is very
popular but older than the others. Texas Instruments and Philips are two of the most
interested companies developing RFID technology. As an example, Texas created Tag-it,
a proprietary but simple and easy to deploy protocol based in ISO 15693 [58]. From NXP
Semiconductors (Philip’s spin-off) we can find MIFARE.

Other protocols that can be found are: ISO 11784/6, ISO 18000-2 at 125/134 kHz band;
ISO 14443A,B, ISO 15693, ISO 18000-3 at 13.56MHz and ISO 18000-6A,B,C, EPC class 0
and class 1 at 800-900 MHz band or ISO18000-4 at 2.45 GHz band.

These protocols also support anti-collision mechanisms that help to differentiate from
various tags detected at the same time in the same vicinity region. This and other issues
concerning protocols will be detailed more extensively in Chapter 4.

Chapter 4

Wireless system design

As it has been stated previously, to build a WSN and fulfil with the requirements exposed
in Chapter 2, it is fundamental to find an suitable protocol, an optimal hardware platform
and finally develop the application that exchange data within and outside the network. This
Chapter goes in more depth to solve those questions.

4.1. Protocol features

A great deal of protocols for constrained networks have been studied in previous sections
(see Chapter 3). In order to find an optimal decision it must be clearly defined the purpose
and functionality of the network and what constraints the system can afford concerning
data rate, memory of devices, battery life, processing capability and cost.

It is an advantage to have a widely extended standard protocol. This will make things
easier when finding possible hardware solutions such as radios and micro-controllers specif-
ically designed for compatibility with that protocol. Additionally, it can be helpful for the
software development since in most occasions an open source implementation of the stack
is available. In addition, it is likely to get support from a software community and have
access to free developing tool.

Frequencies of operation within the ISM bands can be freely used all over the world.
That would make the product to be worldwide useful. No modification would be needed
depending on countries or continents. Regarding frequencies, the higher it is, the more data
rate is possible even though coverage distance and energy consumption is worse compared to
low frequencies. In the WSN under study distances are usually short so those disadvantages
does not affect so much to the design. In any case, if a larger coverage is required in the
future, the use of hybrid and mesh topologies will help to extend the network and reach
further areas (by adding of course some extra complexity to the system).

In order to be as much energy efficient as possible protocols can put devices into sleep
mode, waking up at certain moments, sending information only when relevant events occurs
and so on.

35

36 CHAPTER 4. WIRELESS SYSTEM DESIGN

Complexity is a feature that usually affects the power consumption of devices since more
processing is required. It will be therefore optimal to find a simple and straightforward
protocol solution rather than a complex one. Also development time will be affected by
complexity unless a proper API is available.

Recalling Table 3.1 from Chapter 3 there is an illustrative comparison of several features
between some of the most popular wireless networking protocols.

The WSN that is under development in this Thesis is targeting a home-event manage-
ment system. The applications will run in a house environment. As a result, the network
should be flexible to adapt to many different distributions. Houses can have a large number
of rooms, far or close one to another. One, two or more floors are possible, a basement, a
cellar or a garden. Star topology might not be sufficient in that cases so mesh networks are
preferred despite the increment in complexity and code size.

The number of nodes that the network is able to load might be a valuable feature.
Big houses might be filled with tens or even hundreds of sensors all over it. Some nodes
(extension routers) will have to deal with higher data rates that the protocol has to support.

Finally, the user should be kept away from network management and maintenance tasks.
The protocol should be as simple as possible for the end user, even when adding or extracting
nodes to/from the network. Theses mechanisms should be transparent to the user and the
network should automatically adapt to new circumstances. This is a task not only by the
protocol but also the designer.

To sum up, the desired features of the protocol that match the needs of the present
WSN will include:

Open and standard protocol

Modifiable coverage by means of mesh network topology

Low complexity, simple API and possibility of support

Adaptability to environment

Easy maintenance

Security

4.2. WSN protocol selection
The discussion brings a first selection of three candidates fitting the requirements: Zig-

bee, 6LoWPAN and OneNet.

4.2.1. OneNet

In the beginning of the present Thesis, OneNet was strongly considered since it has
an open source implementation available incorporating an API. OneNet’s specification for
design was distributed royalty-free.

4.2. WSN PROTOCOL SELECTION 37

There are two important points regarding what has just been stated. First of all, having
porting capability to different chips is crucial since the study of hardware will be done after
the selection. By the time OneNet was being considered, March 2010, the implementation
of the stack had only been built for an evaluation board using a Renesas R8C/23 micro-
controller and an ADF7025 transceiver from Analog Devices working at 915MHz. However,
they offered a short guide for porting to other transceivers and micro-controllers.

Besides, the frequency of operation for the evaluation board was 915 MHz that is and
ISM frequency in the United Stated but it has more restrictions of use in Europe where
the closer ISM frequency is found at 868 MHz. That would make this system to be useful
in EEUU but not in other countries. Fortunately, OneNet was designed to operate at 868
MHz band as well but there are no existing designs with transceivers at that band.

A major problem that can be attributed to OneNet is the lack of standardization. That
is, this protocol is not worldwide deployed, actually it is under constant development due
to bug’s fixing. It is not openly supported by vendors so it can affect to the degree of
compatibility between different implementations. The community of developers is not big
either and it can affect to the fact of getting immediate support when it is required.

By April 2010 a company located in France named Sen.se got in contact with the team
in charge of the project that this Thesis is part of. They offered a collaboration to the
KTH team since they were enrolled in a similar project, working in the deployment of a
Wireless Network of Devices, not uniquely sensors, but with the same features of low-power
consumption, low-cost, limited data rate and easy deployment.

Sen.se was very interested in having the team participating in the implementation of
their network. It was a strong requirement the use of one of the most known and used
protocol standard. First protocol on scene was Zigbee, a widely extended one elaborated by
an alliance of the biggest companies in the electronics sector. On the other side a candidate
known as 6LoWPAN, a new and promising real standard protocol aimed at constrained
networks under development by the IEFT and based on IPv6.

The situation comprised at that moment the performance of two different networks, one
for this Thesis under OneNet and a second one with Sen.se using Zigbee or 6LoWPAN.
It was agreed that it was useless and unproductive realizing two WSN in two different
processes in parallel. Mainly because of a matter of time. Implementing a network protocol
can turn into a quite hard and difficult task of unnecessary time consuming. After some
discussion it was preferred to continue collaborating mutually with Sen.se getting feedback
and important experience in the real market. Since for them it was decisive to use a widely
extended protocol, finally, OneNet was dismissed.

4.2.2. Zigbee

Within the first weeks after the collaboration with Sen.se started, around the second
quarter of 2010, it was almost decided that Zigbee was going to be the protocol that the
devices in the network would understand. The advantages were many apart from the quite
obvious concerning low-power, low-cost and easy use. To enumerate just a few:

38 CHAPTER 4. WIRELESS SYSTEM DESIGN

1. Zigbee is constructed over IEEE 802.15.4 link layer standard for radios. This provides
Zigbee with extra features increasing reliability and robustness, getting advantage
of mechanisms such as Offset-Quadrature Phase-Shift Keying (O-QPSK) and Direct
Sequence Spread Spectrum (DSSS), Carrier Sense Multiple Access Collision Avoidance
(CSMA-CA), AES-128 encryption, checksums or retransmission.

2. Zigbee is supported by a huge number of important companies (Freescale, Texas
Instruments, Renesas, Philips, Analog Devices...) that also offer off-the-shelf hardware
such as system-on-chip solutions that integrate the Zigbee stack and other helpful
Zigbee-compliant platforms.

3. ZigBee offers a high degree of versatility allowing deployments of mesh networks, a
huge number of nodes or large extensions using routers.

4. The application layer is commonly known as it forms part of the standard and it is
distributed in profiles and clusters. Devices from different vendors utilizing the same
profile can interact mutually, offering advantages of interoperability between systems.

However, some of those advantages might also be seen as disadvantages. Despite most
companies state their Zigbee stack is open for developers, it is usually hardware dependant
so the software implementation works exclusively with certain SoC devices. Moreover,
projects should be designed using proprietary programming environment software with the
impossibility of developing with an open IDE, or forcing developers to buy a license.

As an example, the Zigbee stack offered by Texas Instruments is excellent for developers
especially the API since they provide additional functions and event management mecha-
nisms to build quickly and easily a network. However, a critical part of the stack is provided
in a binary code format only understood by specific compilers such IAR Embedded Work-
bench. That constrain makes the Zigbee implementation to be hard to use in a different
platform that it has been designed for.

Texas Instruments provides developers with different versions of a Zigbee stack for dif-
ferent SoCs such as CC2530 with an 802.15.4 compliant radio and a micro-controller (5081)
or separately a radio (e.g. CC2520) and a micro-controller (e.g MSP430). It was almost cer-
tain after long discussions that a MSP430 micro-controller in conjunction with an CC2520
2.4 GHz radio would be used, as it will be analysed in Chapter 5. The Zigbee stack for that
system was available at TI website but only compatible with IAR Embedded Workbench.
That software is available for free download as a fully functional 30-days evaluation version
or a code size limited version without power debug functionality or runtime libraries. For
this Thesis and for the project at Sen.se those free editions were not enough for the require-
ments of development time or code size, so paying for a license turned necessary. That will
be considered a determining disadvantage of using Zigbee.

4.2. WSN PROTOCOL SELECTION 39

4.2.3. 6LoWPAN

6LoWPAN emerged from the IEFT forum in 2007. Two RFC proposals were published
that year [33]: RFC 4944 deals with mechanisms for transmission of IPv6 packets over
IEEE 802.15.4 networks and RFC 4919 focuses basically on the benefits and problems to
face when integrating IPv6 over Low-Power Wireless Personal Area Networks (6LoWPAN).

6LoWPAN is considered nowadays one of the most remarkable Zigbee competitors. The
fact that it is developed by the IETF makes 6LoWPAN to be an open and long term
standard for constrained data networks.

Many advantages are helping to continuously increase its popularity (see [31]):

1. 6LoWPAN is based on 802.15.4 MAC layer making use of some of its advantages.
Nevertheless, it can also run mounted over other link layers.

2. It is based on the Internet Protocol. It offers better and easier integration with other
IP systems and many IP native mechanisms can be used such as routing or security
(not defined yet). Transport and application protocols from the TCPIP stack such as
UDP can be used over 6LoWPAN.

3. It provides a high degree of scalability. Devices will be part of the Internet and they
will have a unique IPv6 address that can be reached from different routes.

4. Great interoperability capabilities. 6LoWPAN devices can interoperate with other
6LoWPAN devices, 802.15.4 devices or other IP-based links (IPv4 and IPv6) such as
Ethernet.

4.2.4. Decision

Zigbee is not fully a standard since it has been created by an alliance of companies, it
does not offer large scalability since it was designed to operate in a local environment. Zigbee
devices from different networks can only interoperate if the use the same API profile. On
the other hand, an open standard application layer protocol aimed to run over 6LoWPAN
is been defined. It is called CoAP (Constrained Application Protocol) [71] that will be in
part implemented in this Thesis and will be described later.

The lack of free development tools and the dependency to the vendors hardware are also
major disadvantages found to Zigbee. These facts exposed here make the team to decide on
6LoWPAN as the best protocol alternative to run in the network. There are also very good
advantages that would have helped Zigbee to be the selection but 6LoWPAN’s advantages
are very promising specially when facing the future.

4.2.5. 6LoWPAN implementation: Contiki

Since 6LoWPAN is in continuous development (Jun 2010) by the IETF working group,
it is more difficult to find a stack implementation compatible with the latest version of the
draft. There is no standalone stack available either yet. Currently there are two popular

40 CHAPTER 4. WIRELESS SYSTEM DESIGN

operating systems specially designed for embedded devices with a built-in IPv6-6LoWPAN
stack. One is called TinyOS [12], and open source SO developed by an international alliance
formed by the University of California and Intel among others. Contiki [40] is another open
source embedded SO but developed by the Swedish Institute of Computer Science (SICS)
in Kista, Stockholm.

TinyOS and Contiki are specially designed for devices with constrained resources to
work efficiently. Both implement some parts of the 6LoWPAN proposed specification and
the TCP/IP stack (with both IPv4 and IPv6 protocols), but the development method is
slightly different.

TinyOS uses a dialect of the C language called nesC specially meant for memory con-
strained devices. TinyOS is built over an event-driven architecture and it uses software
components that represent hardware abstractions communicating via interfaces. There are
a few platform where TinyOS has been ported to, e.g. Mica2 or Telosb

Contiki is built with an event-based kernel on top of which applications can be loaded
dynamically. It also offers a programming abstraction layer to write applications based
on a threads model called protothreads. In other words, Contiki combines event-driven
programming with multi-threading used in an efficient way, allowing low memory usage,
simple applications programming and easy porting between platforms, also avoiding difficult
event-driven state machines.

Contiki supports several micro-controller architectures such as MSP430, 8051 or AVR
and provides drivers for several radios such as CC2420 from TI. It is written in C and it
uses a Makefile to easily port it to different hardware platforms (e.g. Raven).Those factors
make Contiki to be lightweight, well supported, portable and a very suitable choice for the
project.

Contiki also provides different low level MAC layer implementations. It comes with dif-
ferent communication stacks such as a lightweight stack for low-power sensor networks called
Rime, the uIP stack (supporting IPv4 and IPv6 protocols) and the mechanisms of header
compression and fragmentation included in the 6LoWPAN drafts [REF]. Additionally also a
implementation of the IETF standard RPL protocol for routing IPv6 in low power networks
known as ContikiRPL [REF], and a provisional implementation of the IETF CoRE CoAP
protocol, an application layer designed for constrained devices that is described later in this
chapter.

The uIP stack was initially developed by Adam Dunkels at SICS in Sweden, originally
under a BSD style license. In the first release it did not support IP version 6, but only
version 4. After continued work by other groups of developers and companies, in October
2008, Cisco, Atmel, and SICS released an IPv6 extension for uIP, called uIPv6 [45].

Underlying protocols such as ARP can be implemented by hardware or firmware, or
higher level protocols such as HTTP or SMTP by the application on top of uIP [43].

Considering the benefits that Contiki provides and the fact that it is developed in the
SICS in Stockholm, making easier to get support, makes it the preferred Operating System.

4.3. GATEWAY 41

Figure 4.1: Functional diagram of the gateway showing the connectivity options. It is
depicted the different communication interfaces, protocols choices and frequency bands in
the case of radio communication. It also shows some components such as LEDs and Buttons
that can be used for human interaction and testing of the board.

4.3. Gateway
The main objective of the present Thesis is build a gateway that coordinates a wireless

sensors network and provide external communication and security based on RFID.

4.3.1. Communication

Communication is achieved in two ways for the gateway. On one side by means of a
radio module that establishes links with the sensor boards providing internal communication
within the network. On the other side, a USB wired interface that links the gateway to
external devices such as a PC, a router or another gateway. Two different wired interfaces
were considered for the outer communication: USB and Ethernet. However, the design with
the USB interface was chosen, as it was also proposed in first place by Ericsson (see 2) and
it is described here.

USB connectivity can be provided by an external adapter chip connected to the mi-
croprocessor ports or as an embedded module internally available in some microprocessor
models as it will be shown in Chapter 5.

The radio part will be similar for both boards. The most adequate technology for this
type of low powered networks is commonly based on the MAC standard IEEE 802.15.4 that
6LoWPAN is based on. Although different frequency ranges can be used by the protocol,
the band at 2.4GHz is the most standardized one. The next step would be the selection of

42 CHAPTER 4. WIRELESS SYSTEM DESIGN

radio modules able to work with such protocol at that frequency band, as it is described in
5.

4.3.2. Bootstrapping

At bootstrapping of the network, after all the hardware modules have started, the
coordinator will analyse the data traffic in the radio environment to discover other networks.
The purpose of this is to find an interference-free channel when possible and extract network
identifiers (PAN ids) from packets over-the-air in order to choose a unique one. This is not
mandatory in the prototype and those parameters can be previously hard-coded, but it
would be required in an automated product that is aimed to be released to the market.

Depending on the application and the needs, the use and handling of encryption might
be desired or not. Usually radio chips provide encryption at low layers and that can be
taken as an advantage, but other security or authentication methods can be implemented
at different layers. More information related to security is provided in section 4.5.

While the coordinating platform is booting up, all the hardware is configured with pre-
defined values, setting memory spaces, clocks frequencies, ports and interruptions, USB
module and radio module configurations etc. Once the frequency scanning is performed,
the radio parameters are selected. Following, the coordinator will start different processes
in specific order starting with the TCP/IP network process in the first place. It will im-
plement mechanisms such as neighbour discovery or forwarding right after the nodes are
authenticated. The next process that will run is the RFID process that will continuously
read the near field until a valid tag (attached to a node) is detected, authorizing it in the
network afterwards. Finally, the CoAP process at the application layer will start. It will
rule how the information is requested and delivery for those nodes that are part of the
network. This behaviour will be more thoroughly described in 6.

4.4. Sensor boards

The sensor boards design is part of another Master Thesis [3] but part of their de-
sign has to be coordinated together with this Thesis and partly done for the application
implementation.

The nodes will support the same operating systems and communication protocols. From
the hardware point of view, special attention must be put on memory consumption since
nodes will be powered with batteries. A good control and management of the radio and
processor sleeping cycles is crucial to save energy.

Different types of sensors and actuators will be placed on the prototype board. The
collection of sensor data and start of communication between devices is performed by the
CoAP application process and then delivered remotely by means of the TCP/IP and 6LoW-
PAN protocols over the air. The radios have the same characteristics as in the gateway,
working at 2.4 GHz and being IEEE 802.15.4 compliant.

4.5. SECURITY 43

Regarding bootstrapping and security, the nodes should use a common key for encryp-
tion at link layer if security is desired for the prototype. Other more advanced methods of
key sharing can be provided in real world applications. For authentication in the network,
the solution using RFID provides the nodes with a tag containing an unique identifier that
could be their MAC addresses. A common neighbor discovery mechanism from the uIP
stack will follow to include the nodes in the network and give them an IP address.

The sensor boards work independently and cannot communicate with other sensor nodes
in the first version or the prototype since only star topology is required. Alternatively, some
nodes could act as routers to increase the radio range to a more extensive area, but this is
a future improvement.

4.5. Security

Security may be integrated in several forms and levels in the system. The mechanisms
that provide security must be defined, as well as the requirements. Dealing with wireless
sensor networks there are some basic aspects to cover.

Data traffic should be encrypted for privacy and confidentiality, particularly when sen-
sitive data is to be sent.

Access control is another sensitive feature in wireless networks. The devices (sensor
boards) must be aware whether the network they belong to is the right one. It may hap-
pen that nodes form other networks in the vicinity associate by mistake to our network.
Hence, the network might provide some isolation mechanisms from other networks and not
authorized nodes to avoid messaging from untrusted participants.

Other security issues involve data integrity, normally performed by CRCs, robustness by
the physical radio layer or availability to ensure that the network and nodes are activated
and working properly.

Security mechanisms are typically applied at the bootstrapping phase, when the nodes
are being detected. It is also common to implement security at different layers. Encryption
and redundancy checks can be done at physical layer, e.g. IEEE 802.15.4 protocol also
includes AEC/CCM encryption and authorization procedures in the specification. IETF
6LoWPAN working group is trying to integrate security in the specification. There are some
discussions about IPsec claiming that it is not suitable to operate with constrained devices
[35]. Other mechanisms are being considered such as Secure Neighbor Discovery (SeND). At
the application layer IETF core CoAP working group consider IPsec Encapsulating Security
Payload (ESP) [77] or Datagram Transport Layer Security (DTLS) [76] over UDP. This is
only a proof of the great diversity that can be found.

The network under development will have some optional security mechanisms imple-
mented. Encryption and a particular authorization method for nodes using RFID will be
proposed. CRC will be also calculated and added to frames but radio chips today can do
this automatically in the hardware. Regarding encryption, AES/CCM as specified by IEEE
802.15.4 can be optionally provided at the link layer by using specific functionality of the
radio module. More discussion on this topic can be found in chapters 5 and 6.

44 CHAPTER 4. WIRELESS SYSTEM DESIGN

The mentioned encryption is based on security keys that are shared between devices.
There are a few ways to manage keys. In this case, the network will start up with a common
hard-coded key in all devices. This key is shared and known by all nodes and might be
assigned during manufacturing and there is no need to transmit it. In order to increase the
security, keys can be changed dynamically. Transmission is needed in that case to inform
all devices about the new key. To avoid risks of security this information should be sent
encrypted to new nodes using the default key that is known by all nodes.

The authorization of new devices in the network will be handled by means of an RFID
system. A typical scenario will consist of nodes with tags attached including an id number.
Each time the user wants to add a new node he would simply have to pass the sensor over the
reader. The reader will capture the identifier number recorded in the tag (e.g. the device’s
MAC address). That address will be included in a table in the (flash or RAM) memory
of the coordinator. The regular traffic in the network uses 6LowPAN with IPv6 addresses
that are formed from MAC addresses. Only transmissions to or from the addresses stored
in the table will be allowed. This is an optional method but others may apply as well.

4.6. RFID system
There are several parameters that determine the characteristics of an RFID system.

A major one is the frequency band that it uses to detect tags. Other parameters such
as maximum distance of detection, data rate or transmission power are dependant on the
frequency, the type of tag and the specifications of the reader. But there are other issues
to consider and select such as the protocol to implement.

All these issues are discussed in this section. The hardware design can be started after
their optimal selection.

4.6.1. Frequency band selection

Since the range of frequencies have different implications on a RFID system. The objec-
tive here consists of deciding the most appropriate frequency, and therefore the data rate,
maximum distance, and other related features.

In order to avoid unnecessary repeated text, it has been preferred to summarize here
the details from section 3.2 into table 4.1 for a fast and easy access. This would be helpful
when comparing the consequences that different frequency bands have on the development
of an RFID system.

As it was stated previously, the mechanisms for energy coupling are different at different
bands. In the UHF band, radiative coupling is exploited instead of inductive coupling. The
advantages are higher data rates, cheap antennas (e.g. dipoles) large detection distances
(increased by adding powered transponders in the tags), and less influence of the antenna
orientation at far field. On the contrary, as disadvantages, irregular propagation patterns

4.6. RFID SYSTEM 45

Frequency bands
LF HF UHF

Coupling Inductive Inductive Radiative
Powering magnetic field magnetic field EM radiation + batteries
Range of detection cm cm meters
Tag capacity 1b-2Kb 16b-8Kb 256b-64Kb
Water penetration meters cm - 2m mm
Antenna type coil coil RF antenna
Antenna size mm to cm > 3cm > 3 cm
Orientation influence medium important medium
Propagation pattern fixed fixed irregular

Table 4.1: RFID frequency bands features

due to reflections might appear, making the detection range to be unpredictable. Moreover
frequency band regulations are different at the 900 MHz band in different continents [29].
In addition, the 2.4 GHz ISM band is very saturated by other different services what can
be a source of interference.

In this project long detection distances are not needed at all. The first aim of using
RFID in the system is for authentication in the network. Sensor boards will have a tag
attached that need to be read so it can be identified. In this situation, long distances are
even an inconvenient since security gets poor if someone is able to detect sensor data from
outside the building. Radiative coupling can be discarded as the powering mechanism of
tags.

The RFID system under design is focused on security. The requirements ask for short
interrogation area and a medium data rate. It is fundamental to have the capacity of
sending an identification number of the node that could be its MAC address. That means
that at least 64 bits need to be sent, since it is the maximum size for Extended Unique
Addresses (EUI-64) and it can perfectly act as a unique global identifier. It would be also
convenient to leave freedom for extra memory capacity to use in future applications. We
could also want to exchange encryption keys or similar information. In conclusion, although
some amount of data exchange is required, high data rates are not really needed for our
purposes. That can be easily achieved working in the HF band.

Regarding the internal memory of the tags, HF systems and inductive coupling are
usually provided with EEPROM memories from 16 bytes to 8 Kbytes as it can be inferred
from table 4.1.

Antenna size should be suitable for tags to be attached to sensor boards of some centime-
tres side. Systems working in the LF or HF ranges with inductive coupling allow smaller
coils since inductance can be varied by just increasing or decreasing the number of wire
turns. Micro-tags could be expensive due to the mechanical process of production since
hundred of turns are required to produce enough voltage to power the IC [28].

So far, it seems that the HF band is the most suitable to the RFID system it is being
designed. Typical frequency ranges are the ISM bands: 6.78 MHz, 13.56 MHz, 27.125 MHz,
40.680 MHz or 433.920 MHz.

The band centered at 13.56 MHz is one of the most used in RFID systems from vendors

46 CHAPTER 4. WIRELESS SYSTEM DESIGN

all over the world. A great deal of different RFID chips and solutions can be found working
at this band. Most of its features fulfil the requirements except having a detection range
dependant on the coil orientation. But in conclusion, all the presented advantages make
this band the best option for the system.

4.6.2. Protocol selection

There are several standard and proprietary physical layer protocols for RFID systems
(see subsection 3.2.6). In the RF band at 13.56 MHz there are some popular standards such
as: ISO 14443A/B, ISO 15693, ISO 18000-3 at 13.56MHz. Considering also proprietary
protocols Texas Instruments created Tag-it (simple protocol based on the ISO 15693 [58])
and MIFARE prtocol from NXP Semiconductors (Philip).

Avoiding the physical differences of the protocols such as modulation, ASK, FSK, etc.
From the functional point of view, we can set a classification based on:

Detection distance: proximity (10 cm) or vicinity (50 cm)

Power consumption

Data rate

Typically ISO 15693 protocol is considered to reach a vicinity range and perform on low
power, ISO 14443 protocols are more complex but can achieve higher transaction speeds
within a shorter range in the proximity, but the power consumption required is higher. Un-
fortunately we can not provide quantitative data to support this discussion more accurately,
but these differences are well known within the RFID community.

From this discussion it seems that simpler ISO 15693 protocol is a good candidate since
the application does not require much data to be transfer (only max 64 bytes every time
a node is added to the network). However, it might be interesting to support different
protocols in the prototype. It would be helpful to choose a protocol that is well known,
well supported, easy to implement and cost effective. This selection depends closely on the
hardware (refer to section 5 where the RFID chip features and implementation details are
studied in details). The ideal hardware should support most of them so the reader can
detect different tags.

One of the requirements for the selection is imposed by the type of tags available in the
lab, those are Tag-it and ISO 14443A/B in this case. In the case of Tag-it type of tags
[60] it provides up to 256 bits of configurable user data and a unique id number of 64 bits.
According to the requirements 256 usable bits it is exactly what is needed.

But for a real product another study need to be done to find the most cost effective tag
type and hence the protocol.

4.7. CONSTRAINED APPLICATION PROTOCOL (COAP) 47

4.7. Constrained Application Protocol (CoAP)

According to the OSI model, the application layer provides the interaction interface
on top of a communication system. Networking protocols such as IPv6 or 6LoWPAN for
embedded devices build local networks easily adaptable to connect to the Internet. After
nodes establish their connections to other nodes or networks a common application protocol
is needed so that both sides understand and interact with each other (e.g. HTTP protocol).

HTTP is worldwide protocol for web communication but not suitable for LoWPANs.
Constrained networks are usually found in home automation, energy management or other
machine-to-machine (M2M) applications as extensions of the Internet of the Things concept.
The designers of such networks have to be aware of the high probability of packet losses,
small throughput, power limitations, and memory restrictions. A small code size is crucial
for embedded devices using 8-bits micro-controllers with limited memory. An HTTP imple-
mentation would be too heavy, not only considering code size but also the length of packet
headers, and the unnecessary options that it provides, leading to undesired complexity.

Since the mid of 2010, the Constrained RESTful Environments (CoRE) working group
from the IETF [70] has been focusing on the realization of a REST (Representational State
Transfer)1 architecture of the web adapted for constrained nodes and networks. The goal
is to achieve a subset of HTTP features to apply to M2M applications. It does not mean
to simply compress the HTTP header but rather to map straightforwardly features from
both protocols. It takes advantage of some of the HTTP functionalities and ignores others
in such a way that optimization for constrained M2M networks is achieved.

Specifically, the CoRE group is aimed at defining a framework to develop applications
that control constrained devices and resources such as sensors or actuators. To do that,
a new protocol is being written known as Constrained Application Protocol (CoAP) [71],
targetting 6LoWPAN networks but also traditional IPv4-IPv6 networks.

CoAP is implemented on constrained devices based on a client-server model. It allows
manipulation of resources (create, read, update and delete) on a device with sensors or
actuators.

There are some features that are listed below:

Short packet header and simple parsing.

Asynchronous messaging.

Operation over UDP with unicast and multi-cast support.

Optional resource discovery method.

Optional proxy and packet fragmentation.
1REST is a software architecture style for systems such as the World Wide Web that uses client-server

models and describes the elements that interact in the communication.

48 CHAPTER 4. WIRELESS SYSTEM DESIGN

It is convenient to inform that CoAP is subject to vary over time. The specification is
currently under development, therefore, the text is found in form of an IETF draft [71].
Different drafts related to CoAP definition have been being studied for the present Thesis.
It is very important to mention that the present work is based on version 05 of the CoAP
draft. It can be found at [71] as it was mentioned before. The implementation is also based
on this document.

4.7.1. CoAP Packet Format

The link layer radio specification IEEE 802.15.4 specifies a maximum size of 127 bytes
for a single frame. After subtracting the bytes consumed by the link layer header, the
network layer (6LoWPAN/IPv6 in this case) and transport UDP header, there is not much
space available for data, not even after 6LoWPAN header compression is applied. As it will
be studied in chapter 6 there is a maximum number of 56 bytes available for the application
with the configuration we are working with in the present project. CoAP tries to be a high
efficient HTTP version that overcomes this constrained situation. The header it adds is as
simple as it can be. Messages are codified into binary format, varying sizes from 4 bytes
to the maximum frame size, depending on the number of options requested by the protocol
and the payload size carried by the message.

0 2 4 8 16 32

VER T OC Code Message ID
Options (if any) . . .
Payload (if any) . . .

Figure 4.2: CoAP Message Format

As it is shown by Figure 4.2, a CoAP packet contains several fields that are described
below:

VER This is a 2-bits field that shows the version of the CoAP protocol. For implemen-
tations of draft [71] this value must be 1. Other values might appears with future
versions.

Type (T) A 2-bits integer that designates the type of the message. Four values can be
possible: Confirmable (0), Non-confirmable (1), Acknowledge (2) or Reset (3), differ-
ent types of messages with different purposes in the client/server model of the CoAP
application. More information in Section 4.7.2.

4.7. CONSTRAINED APPLICATION PROTOCOL (COAP) 49

Option Count (OC) CoAP provides a set of well-defined options that can be used in
requests as well as responses. The OC 4-bits number indicates the number of options
included in the packet after the Message ID field.

Code A 8-bits field that can be empty or filled with a number announcing a request or
with a response code from a reply. See Section 4.7.2 for extended details.

Message ID A 16-bits field used in the interchange of messages between clients and servers
to identify unique links and to avoid duplicates.

4.7.2. CoAP Message Types and Codes

The 2-bit header field in the CoAP packet labelled as Type accepts four values that refer
to different possible message types. Those types define a certain purpose for that packet
that implies likewise a particular reply or behaviour from the other part (client or server).
Both, requests and replies can be of any type.

As it has been stated previously, CoAP is constructed over UDP, therefore, the reliability
that TCP offers is not found. Fortunately, CoAP present a mechanism to provide that
reliability using Confirmation and Acknowledgement message types in the same manner as
HTTP. Thus, when a message is labelled as Confirmable (CON), the sender will expect an
Acknowledgement (ACK) packet carrying a response or being empty. If no confirmation is
desired, the message is sent marked as Non-confirmable (NON) meaning that there will be
no awareness whether that packet has been received or not. This is a useful way to avoid
congestion of the network especially when multicast messages or when sending periodic data
from a resource. The fourth message type is the Reset (RST) that appears when a CON
message is received but the context needed to deal with it and process it is missing (e.g.
because the device has been restarted). In this case, instead of and ACK in response to
that CON message, an RST marked and empty packet is sent back to the original source.
Furthermore, CoAP helps to reliability by additionally performing CON retransmissions if
the first packet was not replied. It also can be done using other control mechanisms at
other layers.

Whether a message is a request or response is defined by the number inside the Code
field of the header. The represented code is a 8-bit unsigned integer with reserved values
for requests (1-31), responses (64-191) or empty (0). Other values are reserved for future
uses.

Defined codes for requests are GET (1), POST (2), PUT (3) and DELETE (4). Having
similar meanings as their HTTP correspondences. Those codes individually imply different
actions in the server and their descriptions are well detailed in Draft [71]. In brief, GET ask
for a representation value of a resource. POST can modify a resource, its behaviour or even
create a new resource. PUT specifically create or update resources with some particular
data. DELETE requests a certain resource to be deleted from the server.

Response codes have a different meaning depending on the action that a request produces
on a server. These codes that can be mapped to those with similar meaning from HTTP,

50 CHAPTER 4. WIRELESS SYSTEM DESIGN

representing the results of requests on a server. The set of codes has changed from the
first CoAP draft. This must be considered if compatibility with older implementations is
desired, adapting codes where necessary.

Response codes can be classified in three different categories or classes. They are codified
in a way that the first 3 bits represents the class of the response and the other 5 bits give
precise information about the result. According to this, classes can get the value: 2 for
succeeded requests (received, understood and accepted); 4 for client errors due to bad
syntax or impossible actions; and 5 for server error when it cannot complete valid requests.

Some examples of codes that will be used in the implementation of the system are: 2.01
(Created), 2.02 (Deleted), 2.04 (Changed), 2.05 (Content), 4.00 (Bad Request), 4.02 (Bad
Option), 4.04 (Not Found), 4.05 (Method Not Allowed) or 5.00 (Internal Server Error).

4.7.3. CoAP Options

CoAP defines up to 15 different options. They are represented by a unsigned integer
from 0 to 15. When adding options to a message header it must be done in ascending option
number order.

(if length < 15 bytes)

0 4 8

Delta Length
Option value . . .

(if length 15..270 bytes)
0 4 8 16

Delta 1 1 1 1 Length
Option value . . .

Figure 4.3: CoAP Options Format

Options are carried in a sub-header of variable size that depends on the length of its
value. An option value which length is in between 0 - 14 bytes needs only a 4 bits size
header field. An option value of 15 bytes long or larger requires a 16 bits header with the
first 4 bits set to 1 as it can be seen in Figure 4.3.

Delta A 4-bits unsigned integer used to determine which option is next in the header if
any. It is calculated using a delta mechanism of codification between options. It is
the result of subtracting to the present Option Number the Option Number of the
precedent option in the message or zero if none. The Option Number is then calculated
in reception by summing the delta of this option and previous options before it [71].

4.7. CONSTRAINED APPLICATION PROTOCOL (COAP) 51

Length A 4 or 16 bits unsigned integer that represents the length of the value of the current
option.

Some options and features from CoAP have been modified or removed since the first
version of the draft was released, e.g. Subscription Option from a device to another device
in order to receive published value or events has been changed several times.

The OC field in the CoAP header forces a maximum of 15 options that are allowed to
be appended to a single packet.

Options can be classified as Critical or Elective. It implies a different action by the
destination endpoint when the option is recognized. In order to increase efficiency, some
default values are defined and implicitly assumed for some options in the absence of these
options.

Table 4.3 enumerates the collection of CoAP options that has been defined at version 05
of the draft. It represents their names, respective numbers, critical or elective nature and
default value. All the options except number 10 and 13 are defined in draft [71]. Option 10
is named Observe and it is described in Draft [73]. Option 13, Block, is detailed in Draft
[72].

Number Name C/E Default
1 Content-Type Critical 0 (text/plain)
2 Max-Age Elective 60 seconds
3 Proxy-Uri Critical (none)
4 ETag Elective (none)
5 Uri-Host Critical Text representing IP address
6 Location-Path Elective (none)
7 Uri-Port Critical (none)
8 Location-Query Elective UDP port
9 Uri-Path Critical (none)
10 Observe Elective (none)
11 Token Critical empty
13 Block Critical 0
15 Uri-Query Critical (none)

Table 4.2: CoAP Options

Content-Type indicates the format of the data in the payload. Typically, default text/-
plain value is applicable.

Max-Age is used when caching messages into a memory. It gives the maximum time
that a resource representation can be considered valid or fresh.

Proxy-Uri is an absolute URI (Uniform Resource Identifier) and is used when requests
are performed to a proxy instead of directly to a server.

52 CHAPTER 4. WIRELESS SYSTEM DESIGN

ETag (Entity Tag) is an option that, similarly to HTTP, informs that a resource has
changed and the information stored in the cache is not fresh. ETag represents the code of
the new version of the resource.

Uri-Host, Uri-Port and Uri-Path options identify resources in a CoAP server. These
options include the different parts of an URI, helping to parse and reconstruct the path to
the resource. URI-Host contains the IP address in literal format, URI-Port carries a port
number if the default port [IANA_TBD_PORT] is not used. The URI-path determines
the route to access a resource. Commonly numerical IP addresses and the default port are
used in the implementation for this Thesis.

The Location-Path and Location-Query options have same meaning as Uri-Path and
Uri-Query but they inform in responses about paths for new created resources.

The Observe option is a substitute to the former Subscribe Option. It provides the
client with a mechanism to observe changes in resources of remote servers during a defined
interval of time. The client has to register with a server so it can send a notification to the
client every time a resource changes.

A Token Option is originated by the client to match a request to one or more similar
responses one or more serves (e.g. multicast requests). By this, a client can differentiate
requests-responses pairs.

The Block Option is a very useful feature that can be implemented as an alternative to
IPv6 fragmentation when the size of a payload is too large to be transported on a 802.15.4
packet (max 127 bytes). The mechanism consists of dividing the payload of the CoAP
packet in several pieces that will be sent in different responses. Each response will be
identified by a number and the client will reconstruct the payload.

The URI-Query will be used with POST requests to make specific queries to a certain
resource.

Applicable options for this Project are the URI-Path and URI-Query or Token Option
when having high traffic. Observe and Block are also quite valuable options that could
be considered, but taking care of compatibility issues with older CoAP version. Options
related to proxies or caches will not be considered at this stage but tey might be interesting
for future versions.

4.7.4. CoAP URIs

How to access to resources is specified by means of the Uniform Resource Identifier
(URI). They define routes and uses of resources in a remote LoWPAN, they must be parsed
and constructed following a set of rules specified at [71] (prone to future modifications).
Parsing of URI paths usually results in a translation of some fields into options in the
CoAP message.

The syntax of the URI scheme in CoAP is generally described as:

coap-URI = "coap:" "//" host [":" port] path-abempty ["?" query]

4.7. CONSTRAINED APPLICATION PROTOCOL (COAP) 53

The host must be present indicating the IP where the server can be reached. In case a
port is not specified in the URI, a default CoAP port assigned by the IANA should be used.
Port number 5683 for CoAP service has been requested. Anyway, CoAP should also accept
compressed UDP ports ranging from 61616 to 61631 when using 6LoWPAN for compression
in the network layer [34]. The path might comprise several members that must be separated
by a slash "/". The query is usually filled with a key and value in the form "key=value".

It is possible, and it has been proved, that an external web based CoAP client can com-
municate with internal nodes of the sensor network through a gateway /citeluis. Taking
advantage of an Ethernet 6LoWPAN gateway build in other Master Thesis /citeluis, we
could temporarily install a CoAP server in a sensor node [3] access to it remotely from an
IPv6 real network. This was done in order to prove the versatility of 6LoWPAN networks
and REST applications using CoAP. The next is a practical and typical example that was
used for testing operations with an add-on for Firefox browser called Copper [79]

coap://[2002:82e5:828b:1234:0207:62ff:fe81:1108]:61616/sensors/led?red=on

The example line above shows a common POST request in CoAP format to the host
reachable at the IPv6 written between the square brackets to the UDP port 61616. The
target is the resource identified by the path "/sensors/led". The query asks for turning the
red led on in the in the host as it can be inferred from the pair key and value "red=on".

According to the example, the complete CoAP packet will have its fields filled as:

VER: 1

Type: Confirmable (0) or Not-confirmable (1). It will depend on the appli-
cation whether ACK is needed or not.

Op. Count: 2 (URI-path and URI-query)
Code: POST (2)
Message ID: 16 bits set by the application program.
Options:
URI-path: "/sensors/led"
URI-query: "red=on"
Payload: ""

In Chapter 6, the CoAP implementation that is included in Contiki will be analysed
and used as a base. All the needed features for the network will be added where they are
not implemented.

There are several more characteristics described in the draft. See [71] for extended
details.

Chapter 5

Electronic design of platform

This chapter explores a few of the available hardware platforms in the market to try
to find the most optimal hardware, in terms of price, performance and power consumption
for our purposes. It details the hardware requirements for the network and describes the
process of designing and construction of the platform.

Most of the chip solutions analysed to integrate into the devices are compliant with the
studied protocols. For instance, Texas Instruments manufactures chips specifically designed
to optimally implement IEEE 802.15.4 and Zigbee. Some of these platforms are showed and
commented below.

5.1. Gateway main board

The design of the gateway is the main target of the present Thesis. First of all, a
dissertation of what is actually needed is fundamental. The proposed gateway will be
equipped with three different modules: a transceiver to perform communication over an
IEEE 802.15.4 compliant radio link, a USB module that provides wired communication and
an RFID reader. Other desired devices include a low capacity microprocessor, a set of LEDs
and buttons for testing, sensors in the case of sensor boards, capacitors and inductors for
signal filtering and a micro-controller.

Figure 5.1 depicts the connectivity of the selected electrical components of the platform.
The gateway is provided with an USB port to interact with external devices. It is proposed
for this first version of the prototype to support connectivity towards a standard PC running
Windows or Linux SO. Radio transceivers and modules are normally connected to micro-
controllers through a SPI or UART port. The same case applies for RFID readers. The
USB can be implemented using additional chips such as FTDI that typically uses an UART
connection to the micro-controller. But also some micro-controllers are built with and
internal USB module, avoiding the extra connectivity between chips that can slower the
performance.

There are many factors that have to be considered to avoid future problems. For in-
stance, compliance with different version protocols or the interaction between chips from

55

56 CHAPTER 5. ELECTRONIC DESIGN OF PLATFORM

different vendors might be a possible source of troubles (different voltages, clock require-
ments...). Performance, power consumption and price need to be optimized. Radio design,
including the radio module, antenna design, transmission power or sensitivity should also
be looked with special attention to avoid interferences and malfunctioning.

It is very useful to classify all these devices by vendor, protocols supported, specifica-
tions, connectivity, prices and so on. Tables 5.1, 5.2, 5.3, 5.4 and 5.5 below give a better
view of the huge collections of devices (SoC) available in the market today. In general, the
values shown for data rates and power consumption are considered typical values. Prices
are obtained from vendors websites or, if not available there, on the sites www.mouser.com,
www.digikey.com, www.farnell.com and www.aliexpress.com. Usually prices are given
per unit for a minimum certain number or units. Typically 1000, 2000 or 5000 units.

5.1.1. micro-controllers

The selection of the components will be highly dependant on the central micro-controller.
But first, there are several features that are crucial for the selection of the controller:

Connectivity: to connect to an USB interface, 2.4GHz radio and an RFID module.

Performance: fast to be able to support different communication ports and manage
a WSN.

Memory: enough capacity for the Contiki SO, drivers, network and RFID protocols.

Price: as cheap as possible.

Support: from vendor or community of developers.

Consumption: specially needed in battery powered nodes.

The micro-controller is the central piece of the platform. It must provide at least one port
for each device. That is three different communication channels of a certain type. There are
different serial and parallel communication standards used in embedded systems. Commonly
known are the UART (Universal asynchronous receiver/transmitter), SPI (Serial Peripheral
Interface Bus), I2C (Inter-Integrated Circuit Bus) or Parallel GPIO Bus (General-purpose
input/output).

The micro-controller will coordinate several applications running inside requiring a great
amount processing. It is necessary then to have a fast processing unit at least in the
coordinator board. Modern microprocessors are usually designed to work from 8 MHz up
to 32 Mhz. Since we do not have a specific requirement for this, the preference is to have a
wide range so we can test the performance and different velocities. For example, selecting
a 32 MHz based micro-controller would allow us to test the performance at different speeds
(32, 24, 16, 8...) in case a lower speed is not enough for the gateway. It has to run several
processes and handle different communication interfaces what consumes many hardware
resources and processing, as it will be shown in Chapter 6. On the other side, this speed

5.1. GATEWAY MAIN BOARD 57

Company Model

Existing
protocol
implementa-
tiona

Consumptionb

(mA) Price ($)

Renesas R8C-1A/1B ONE-NET 9 1.50-2 [1ku]
Renesas R8C-26/27 ONE-NET 10 1.88-2.38 [1ku]
Freescale 68HC08 (HC08) ONE-NET 12 0.90 [10ku]

Texas Ins. MSP430F2xx
16MHz

Zigbee,
6LoWPAN N/A 2.70-5.80 [1ku]

Microchip PIC18 MiWi N/A 1.37-4.13 [5ku]
Microchip PIC24 MiWi N/A 1.16-4.83 [5ku]

aAn open source implementation of such protocols exists and it has been adapted to the specific
micro-controller.

bConsumption is given as maximum values.

Table 5.1: micro-controllers

requirement can be softened for the sensor boards since they only implement one application,
one interface and there is no need of constant transmission.

According to the documentation from different vendors and the protocols specifications,
low-cost 8-bit and 16-bit processors are well-suited for low capacity sensor networks. In
most cases, having 16K ROM and 1K RAM is usually enough for a simple application. For
the platform in this project at least 60 kBytes are needed for Contiki [42] and still the code
size for the application and drivers need to be added. Assuming this extra size in 30 kB,
considering vendors stimations, in conclusion, aproximately a minimum space of 90 kB will
be needed.

Different 8-bit processors from different vendors were considered for the project. The
list was reduced to the most popular ones in the market at the time of the design. The
hardware recommendations included in the protocols documentation were additionally taken
into account as well as the their popularity. That increases the possibility to get access to
previously tested open source code and support from software communities. Additionally,
in most cases, source code is provided with an API to develop your own application.

The classification of some popular micro-controllers can be seen in table 5.1. Prices vary
within a range due to the differences in capacity and features of the product family. Those
appearing here are typical values for the micro-controllers that could fit in the platform.

Texas Instrument’s micro-controllers are very appropriate since 6LoWPAN implementa-
tion in Contiki has already been ported and tested. Moreover, they are attractive in terms
of cost, features and open source code availability. There is also good support from TI
vendor, making easier the integration with some of their products such as radios or RFID
chips. TI’s MSP430 families have a good diversity regarding CPU speed, memory, ports,
etc. MSP430F2xx family is shown here just as example, but others will be considered. Due
to the advantages, MSP430 micro-controller architecture is was chosen to start the work of

58 CHAPTER 5. ELECTRONIC DESIGN OF PLATFORM

the platform. Texas Instrument offers a great variety of MSP430 models in their catalogue
[48].

Renesas and Freescale chips are officially supported by ONE-NET protocol community
[9]. PIC micro-controllers have been tested for the MiWi protocol. MSP430 processors
have been tested with different protocols implementations based on IEEE 802.15.4 radio
standard as well as ONE-NET, what makes it a very versatile alternative.

Porting based on hardware such as and Microchip PIC or Atmel AVR is under develop-
ment. In addition, other platforms supporting the IEEE 802.15.4 radio standard would be
well suited to carry 6LoWPAN or Zigbee on top, since both use the same radio standard.

In subsections 5.1.2 and 5.1.3 there are some SoC including a radio or USB module
already built-in. That can be a great advantage in terms of board space, communication
speed and price, since there is no need for an extra chip and a link to the controller.

5.1.2. Radio module

In wireless networks there are two possible hardware configurations: a micro-controller
connected to a external radio transceiver or an independent radio module or System-
on-Chip (SoC) integrating a micro-controller. The first case is more flexible and better
performance can be achieved. The second is usually more optimal in terms of size, power
consumption, easiness of development or price.

From the protocol perspective there are specific alternatives to implement the net-
work.6LoWPAN requires that radio modules are compliant with the IEEE 802.15.4 specifi-
cation. Most popular 6LoWPAN implementations are available in Contiki SO and Tiny OS.
Contiki has ported its code in platforms such as: cc2420dbk, cooja, esb, ethernut, netsim or
sky using radio modules such as CC1100 or a transceiver CC2420 from Texas Instruments
with an MSP430 processor.

Transceivers that have been tested as working with ONE-NET include: RF Monolithics
TRC102, Semtech XE1203F and XE1205, Analog Devices ADF7025, Integretion Associates
IA4421, Texas Instruments CC1100 and Micrel MICRF505. In case of microprocessosr,
models that have been tested are the TI MSP430, C8051, Renesas R8C and Freescale
68HC08.

Texas Instruments provides supported code for different platforms and some of its pro-
prietary networking protocols. This information can be consulted at their RF producst
catalogue [47]. For instance:

SimpliciTi is available for platforms based on: CC1101 or CC111x radio with an
MSP430, CC2500 or CC2520 radio with an MSP430, or integrated System-on-Chip such as
CC2430, CC251x, CC2530

TI-MAC and Z-Stack (Zigbee) is available with platforms: CC2420 or CC2520 radios
with an MSP430, and CC2430 or CC2530 SoC modules.

MiWi protocol, developed by Microchip, can be also easily implemented in their
MRF24J40 2.4GHz transceiver that supports IEEE 802.15.4 and ported across PIC16,
PIC18, PIC24 and PIC33 devices.

5.1. GATEWAY MAIN BOARD 59

Company Model Protocols Freq.
(GHz) Peripherals RX a (mA) TX (mA) Price($)

Texas Ins. CC2520 Zigbee,
SimpliciTi 2.4 6 GPIO,

SPI 18.5 33 1.95-2.15 [1ku]

Texas Ins. CC2420
Zigbee,
6LoWPAN,
SimpliciTi

2.4 SPI 18.8 11-17 N/A

Texas Ins. CC1101 SimpliciTi <1 SPI 14.7-16.3 12-27 1.85-2.05 [1ku]

Texas Ins. CC1100
ONE-NET,
Zigbee,
6LoWPAN

<1 SPI 16 15-30 2.30 [1ku]

Micrel MICRF505 ONE-NET <1 3-wire SPI 13 28 4.5 [1ku]
Semtech XE1205 ONE-NET <1 SPI 14 62 N/A

Microchip MRF24J40 Zigbee,
MiWi 2.4 6 GPIO,

SPI 19 23 2.36 [5ku]

Microchip MRF24J40MA Zigbee,
MiWi 2.4 SPI 19 23 4.86 [100u]

Freescale MC13202 Zigbee 2.4 7 GPIO,
SPI 30 37 3.52 [1ku]

a Power consumption in sleep (standby mode) is < 1 µA for all the chips except the
MRF24J40 and MRF24J40MA (2 µA)

Table 5.2: Radio transceivers

For Dash7, working at 433 MHz, ST Microelectronics and Analog Devices offer different
solutions and Texas Instrument recommends their CC430 sub-1 GHz RF SoC (CC1101 RF
transceiver with a MSP430).

Table 5.2 shows a list of the most popular radio transceivers in the market. Some of
them mentioned previously. Most of these transceivers are well known and used in many
embedded devices. For some of them there is a good support provided by vendors and
open source communities. Protocol stacks are provided free of charge when used with
a Microchip’s PIC® micro-controllers and the MRF24J40 transceiver. Texas Instruments
offers their own Zigbee with IEEE 802.15.4 implementation and their proprietary SimpliciTi
protocol and Microchip do the same with MiWi Protocol.

As a general characteristic, these transceivers communicate with the MCU through a
serial SPI in all cases or a parallel port. Prices are quite similar with just bigger differences
regarding the MICRF505 from Micrel or MRF24J40MA from Microchip. Among the most
economic ones the CC2420 from TI is not recommeded for new designs and the CC1100
and CC1101 don’t operate at 2.4GHz, what leaves only two candidates, the MRF24J40 and
the CC2520 transceivers. Finally the CC2520 have the advantages of being cheaper and
produced by TI like the MSP430 micro-controller chosen previously, providing support for
their interaction and avoiding compatibility issues. Moreover the CC2520 is very similar
to the CC2420 that has already been ported in Contiki, what could be helpful in the
development of drivers.

60 CHAPTER 5. ELECTRONIC DESIGN OF PLATFORM

Table 5.3 shows a list of some popular radio modules that integrate an micro-controller
that could fit the requirements of the gateway.

The main advantage of modules is the reduced space that they require and the low power
consumption. AS a disadvantage these micro-controllers usually have limited memory and
performance compared to the versatility of standalone controllers. Regarding connectivity,
one communication port is internally occupied by the radio transceiver. Table 5.3 shows
different connection ports available in the radio modules. But it has to be considered that
the physical pins are usually shared by the different communication buses and selected by
means of a multiplexor, meaning that these interfaces are not all available at the same time.
This becomes a problem when still two more connections are needed for the USB module
and the RFID reader.

Selecting exclusively the devices working at 2.4 GHz and ignoring of the most expensive
ones reduces the selection to the CC251x, CC2430, CC2530 and MC13213 modules. More
in detail, in the specific case of the CC251x TI chip, this module is very versatile and
combines a radio transceiver, a micro-controller and a USB interface. However, the flash
memory to store the code is still too small for the size of the application and Contiki. Being
32 KBytes while at least 60 kBytes are needed for Contiki [42]. The same thing happens
with the MC13213 from freescale. In this case it has some more memory up to 60 kBytes,
but still too limited if we want to give some margin for other applications. The decision has
to be made between the CC2430 and the CC2530 modules from TI, but considering that
the CC2430 is older and more expensive, that gives only place for the CC2530.

5.1.3. USB module

The aim is to provide the gateway with a standardized cable connectivity to other
devices such as computers, routers or other gateways. For this first version of the platform
only a PC is considered as en external host.

Usually low-power micro-controllers use SPI,UART or I2C ports for communication,
but those are not common for platform external connexions. Fortunately, in the embedded
world there are different alternatives to implement USB links. On one hand, a very extended
way of connection from a micro-controller is to use a chip that bridges from UART port
to USB, oftenly chips from FTDI vendor [69]. Unfortunately, the link between the micro-
controller and the FTDI chip (typically an UART port) reduces drastically the velocity of
the USB specification. Moreover, adding another chip to the board implies higher cost and
higher power consumption.

A second possibility consists of a micro-controller with a USB module built in. This
makes the bus to be much faster since no intermediate bridge between UART-USB is needed.
It also reduces cost and energy consumption but it is not necessarily cheaper, a micro-
controller might be more expensive.

5.1. GATEWAY MAIN BOARD 61

Company Model Protocols Freq.
(GHz) Peripherals RX a

(mA)
TX
(mA) Price ($)

Jennic JN5148 Zigbee 2.4
2 UARTs,
SPI, 2-wire,
4-wire

18 15 4.57 [100u]

Freescale MC13213 Zigbee 2.4 2 SCI, up to
32 GPIOs 30 37 3.70 [1ku]

Ember EM250 Zigbee 2.4 17 GPIOs,
SPI, I2C 28-30 24-34 4.57 [2ku]

Atmel 128RFA1 Zigbee 2.4 2 USARTs,
SPI , 2-wire 16.6 b 18.6 4.78 [10ku]

Texas Ins. CC2430 Zigbee,
SimpliciTI 2.4

2 UART,
2 SPI, 21
GPIOs

27 27 3.60-6.05
[1ku]

Texas Ins. CC251x Zigbee,
SimpliciTI 2.4

2 UART,
2 SPI, 21
GPIOs, USB

22 23 2.85-3.35
[1ku]

Texas Ins. CC2530 Zigbee,
SimpliciTI 2.4

2 UART,
2 SPI, 21
GPIOs

24 29-35.5 3.05-3.85
[1ku]

Texas Ins. CC111x SimpliciTi <1
2 UART,
2 SPI, 21
GPIOs

18.9 18 3.05-3.35
[1ku]

Texas Ins. CC430f5x Dash7 < 1 2 SPI,
UART, I2C 16 N/A 4.15-5.00

[1ku]

a Power consumption in sleep mode (standby mode) is 1 µA for every chip except the JN5148
(1.25-3.25 µA)

b Radio transceiver + active CPU

Table 5.3: Radio modules

Company Model USB version Speed Peripherals Architecture Price ($)
NXP PDIUSBD12 2.0 Basic Parallel Philips SIE N/A
NXP ISP1181A 2.0 Full Parallel Philips SIE N/A

FTDI Chip FT232RL 2.0 compati-
ble

Limited by
UART up to
3MBaud

USB-UART FTDIChip 2.65 [2ku]

FTDI Chip FT245RL 2.0 compati-
ble

limited to
1Mbps

USB-parallel
FIFO FTDIChip 2.65 [2ku]

Texas Instr. TUSB3210 2.0 Full GPIO 8052 3.15 [1ku]

Texas Instr. TUSB3410 2.0 Full Enhanced
UART 8052 2.25 [1ku]

Texas Instr. MSP430F5519 2.0 Full

Enhanced
UART, 2
SPI, I2C, 63
GPIO

MSP430 3.90 [1ku]

Texas Instr. CC251x 2.0 Full
2 UART,
2 SPI, 21
GPIOs

2.85-3.35
[1ku]

Table 5.4: USB modules

62 CHAPTER 5. ELECTRONIC DESIGN OF PLATFORM

Table 5.5 depicts a list of chips that can provide external USB connectivity. NXP offers
interface devices that can connect to a micro-controller through the general-purpose parallel
interface (GPPI), unfortunately NXP do not publish the prices. They have to be contacted
and approve the request. Similarly, FTDI sells broadly known USB adapters connecting
to asynchronous serial interface (UART) and parallel FIFO bidirectional interface at a
reasonable price. Texas Instruments also offers chips that adapt serial UART or parallel
GPIO to USB, but in addition Family 5 of MSP430 micro-controllers include a USB module
integrated in the SoC providing direct external USB connectivity. The CC251x devices were
already mentioned in Table 5.3 and rejected due to small memory space, but could be used
as just an interface.

Three alternatives were selected from the table. TUSB3410 is the cheapest one with
the only disadvantage that the drivers can be a bit tricky to configure. Meanwhile the
FT232RL and the FT245RL are slightly more costly but they are simple to use, just like
a plug-n-play device. The last option is the USB module integrated in the MSP430F5519
that simplifies the hardware and avoids the slower serial links.

USB 1.0 specified data rates of 1.5 Mbps (Low Speed) and 12 Mbps (Full Speed). USB
2.0 specifies maximum rates of 480 Mbps (High Speed), but due to bus constraints the
effective throughput is usually reduced [65]. We can observe that USB 1.0 at Low Speed
is enough to fulfil the requirements of the network throughput. All these devices comply
with USB specification Rev. 2.0 supporting either Low Speed or Full Speed that fulfilling
the requirements of the platform (at least 32 Kbps throughput). They can be programmed
to act as client devices in the USB communication. The computer will work as a host in
that case, recognizing the attached device and configuring the environment to establish the
link. The selection will be determined in Section 5.1.5 when the rest of components have
been exposed in order to find the best trade-off of performance and cost.

5.1.4. RFID module

The RFID module comprises a dedicated chip, and an RF circuit adapted with an
antenna at 13.56 MHz standard frequency. Reader ICs available in the market commonly
work as an analog front-end towards the micro-controller. These chips usually implement
some of the characteristics specified by the protocol at physical layer level, detecting signal
level,gathering data frames, supporting different modulation schemes, calculating CRCs and
so on.

The physical layers of different RFID protocols are typically mutually incompatible.
Tags are designed to work only under certain protocol rules. When interoperability is
desired it is the reader that should support and manage those protocols. The reader should
also be able to modify its uplink and downlink transfer schemes and resolve collisions. Such
a job is relatively easy to achieve as readers IC support computational operations.

In the market there are a wide range of products with different characteristics and
supported protocols. There is a short list of some populer RFID readers in 5.5

5.1. GATEWAY MAIN BOARD 63

Company Model Protocols Frequency Comm. Port Price ($)

NXP CLRC63201T
ISO14443A,
ISO14443B,
ISO15693

13.56 MHz Parallel/SPI 10.4 [1ku]

NXP MFRC50001T ISO14443A 13.56 MHz Parallel 6.35 [1ku]

NXP MFRC53101T ISO14443A,
ISO14443B 13.56 MHz Parallel/SPI 8.5 [1ku]

Texas Instr. TRF7960

ISO14443A,
ISO14443B,
ISO15693, Tag-
It ISO18000-3

13.56 MHz Parallel/SPI 3.95-4.05 [1ku]

Texas Instr. TRF7961 ISO15693,
ISO18000-3 13.56 MHz Parallel/SPI 3.25-3.35 [1ku]

Texas Instr. TMS3705 ISO11785 134.2 kHz Serial SCI 5.25
Atmel AT88RF1354 ISO14443B 13.56 MHz TWI/SPI 1.33 [1ku]

Atmel EM4094
ISO14443A,
ISO14443B,
ISO15693

13.56 MHz SPI 4.00 (1u)

Table 5.5: RFID modules

Not all chips in table 5.5 offer the same features and support the same protocols. They
can usually be configured via register values that can be selected by the designer. However
not all of them provide the same configuration versatility. For detailed information, the
reader can refer to the data-sheet of each product.

From table 5.5 it is possible to select the most suitable devices for the platform. As stated
in 4 the more number of protocols supported the better to extend the prototype. However,
the interested is focused on the ISO15693 protocol (Tag-it is a TI proprietary protocol based
on ISO15693), more suitable for low speed and low power consumption. As a second criteria,
the price should also be very competitive. Considering these factors TRF7960 from TI can
be considered as the best candidate because it fulfils all the requirements. Additionally TI
provided a firmware implementing all shown protocol alternatives what will ease and fasten
the software implementation of the platform.

5.1.5. Platform components selection

Finally it is time to find the most optimal hardware configuration to build the gateway
platform. Several different alternatives can be extracted from the analysis of the devices
that are available in the market.

Possible configurations

More precisely, there are three different hardware configurations that can be selected to
implement the platform. Most of the devices that can be part of these configurations have
been previously selected and those devices with no price available or discarded previously
are not considered here.

64 CHAPTER 5. ELECTRONIC DESIGN OF PLATFORM

Config 1:
MICRO Price($) RADIO Price($) USB Price($) RFID Price($) TOT($)

CC2430
F128RTCR
(8051)

6.03 FT232RL
FT245RL 2.65 TRF7960 4 12.68

CC2530
F128RHAR
(8051)

3.5 FT232RL
FT245RL 2.65 TRF7960 4 10.15

CC2530
F128RHAR
(8051)

3.5 TUSB3410 2.25 TRF7960 4 9.75

Config 2:
MICRO Price($) RADIO Price($) USB Price($) RFID Price($) TOT($)
MSP430
F2416(92k) 5.3 CC2520

RHDT 2.1 FT232RL
FT245RL 2.65 TRF7960 4 14.05

MSP430
F2416(92k) 5.3 CC2520

RHDT 2.1 TUSB3410 2.25 TRF7960 4 13.65

Config 3:
MICRO Price($) RADIO Price($) USB Price($) RFID Price($) TOT($)
MSP430
F5519(128k) 3.9 CC2520

RHDT 2.1 TRF7960 4 10

Table 5.6: HW configurations

1. Radio module + USB adapter + RFID module

2. Radio transceiver + micro-controller + USB adapter + RFID module

3. Radio transceiver + micro-controller integrating USB + RFID module

To make more clear the comparison between the differences between the three platform
alternatives, all devices are shown in table 5.6 together with its respective costs. It is
important to clarify that these prices correspond to that device in the specific family that
accomplish with the minimum requirements. For instance, a minimum of 90 kB of memory
and a sufficient number of ports for connectivity in all micro-controllers. The prices also
depends on the number of parts to be ordered, deciding in this case a minimum of 500
units. Texas Instruments provides an extensive catalogue for all MSP430 families and RF
producst that can be consulted in order to get more details [48], [47].

From table 5.6, in Config 1 the CC2430 can be discarded because it is almost obsolete
and not recommended. The alternative is to use a CC2530 with a controller based on the
8051 architecture and 128 kB of flash memory. The only variation is to use a USB adapter
from FTDI (FT232RL and FT245RL) or the TUSB3410 from TI. The second is slightly
cheaper but the development of the drivers can be more difficult, as stated by developers
in the community forum.

5.1. GATEWAY MAIN BOARD 65

The Config 2 uses an MSP430 belonging to Family 2 of TI micro-controllers with a
minimum of 92kB that is required for Contiki and the application. The same differences
are only regarding the USB converter chip. In this case, this configuration can be discarded
since it is much more expensive than the alternatives in Config 1 and Config 3.

Finally Config 3 shows the most optimal selection of components for this configuration.
It uses an MSP430 of TI’s Family 5 that includes and internal USB module and 128kB of
flash memory, with enough connectivity options. The radio is a CC2520 and the RFID chip
is the versatile TRF7960.

Figure 5.1: Electronic design of the gateway. It depicts the bus connections of the selected
communication components (USB, RFID and Radio) towards the microprocessor (in blue),
it also shows how the board is powered from the USB line (in red) and also other required
elements, such as a JTAG connector used to flash the micro-controller, a external crystal,
LEDs and buttons for human interaction and testing. The RFID and Radio modules include
the corresponding chip model and a circuit representing the antenna adaptation that is
needed.

In terms of cost, the cheapest solution is the third alternative of Config 1 (9.75 $) but
in terms of performance it can be beat by the only alternative in Config 3 that is slightly
more expensive (10 $) but uses an MSP430 controller which benchmarking gives much
better results than that of the old 8051 controller as it is shown in TI proprietary MSP430

66 CHAPTER 5. ELECTRONIC DESIGN OF PLATFORM

Competitive Benchmarking [52]. This comes to the conclusion that Config 3 alternative
is the most adequate for the platform.

5.2. Other components

Other materials are needed as part of the circuitry to adapt the signals, for testing
purposes or they are just required for the chips to make then work properly. Some of these
circuits are recommended in the documentation of the chips but often some calculations are
required to select the adequate components. For a complete bill of materials, please look at
Appendix A where the schematic is available.

Gateway Resistors, capacitors, inductors and rest of parts are standard components with
small sizes and SMD packaging.

Other components such as LEDs were selected by their low power consumption (current
up to 2 mA) and SMD technology.

In order to regulate and stabilize the input power signal, a signal regulator is needed
(MCP1603 from Microchip), a Schottky diode and a high value inductor.

As a reference signal to synchronize the clock, the board uses two crystals. A mandatory
low frequency one (32.7kHz) and an optional high frequency one (32MHz)

Several connectors are used for external connection. Specifically, a mini USB type B
connector and socket connectors for the JTAG interface, the radio and RFID module and
some extra to provide direct access to the unused micro-controller pins.

Radio module In order to save time, board space and likely problems with the impedance
adaptation of the antena or soldering, it was decided to use a pre-built TI plug-in modules
[55] based on the CC2520EM Reference Design v2.1 that provides and antenna, adaptation
circuit, the CC2520 chip and the connector to attach it to another board.

RFID module The RFID module is was designed and built in the KTH Wireless lab. It
requires and external antenna (made as a coil), an adaptation circuit made out of resistors
and capacitors, a 13.56 MHZ crystal and connectors for the antenna and external pins
connections towards the microprocessor.

Antenna (coil) The antenna is basically a coil made from a rolled up cable and a adap-
tation circuit compounded by a resistor (1KΩ), a fixed capacitor (22 pF) and two variable
capacitors with different values for gross matching (range from 10 to 120 pF) and another
for accurate tunning (range from 5 to 15 pF) in order to find 50 Ω impedance to match the
impedance of the TRF7960 chip.

5.3. SENSOR DEVICES 67

5.3. Sensor devices
Sensor boards are designed as part of a different Thesis work [3]. In this case the

requirements are changed since the constraints are focused on the power consumption and
the processing of the sensors information.

Radio modules are a good alternative for sensor boards where only one radio link is
needed and not much more processing other than reading data from the sensors. The
required capacity and also connectivity required is less demanding than in the gateway. A
USB communication interface is not necessary, but on the other hand, the micro-controller
needs to have analog-to-digital converter input channels (ADC pins) to read data from
analogue sensors. In addition it also needs buses such as standard I2C that is required by
some sensors. In the case of the prototype board the controller MSP430F5634 is used since
it contains ADC and I2C communication buses. The radio transceiver is the CC2520 chip
from TI as in the gateway case.

5.4. Design and construction
Several circuits are needed to correct, adapt or stabilize the electrical signals between

the different components. This section explains what is required and how it is implemented
in the platform. The schematics and printed circuit boards are provided in Appendix A.

5.4.1. Development tools

For the design of the board layouts and schematics a free powerful graphic edi-
tor tool called EAGLE in version 6 was used. It is developed by CadSoft Computer
(www.cadsoftusa.com). The board layouts were exported on a Gerber type file format
and edited with a CAM software (CircuitCAM for Windows version 5.2). The output files
from this tool were used as input for a milling machine (LPKF Laser and Electronics AG
model "Protomat S42") available at the Wireless@KTH lab [1] for the construction of the
boards using the machine software BoardMaster, version 5.0.1100.K02. All software re-
lated to the Protomat S42 is copyright LPKF Laser and Electronics AG. The lab was also
equipped with other useful resources for the Thesis such as precise solders with micro sized
tips for soldering micro components, and impedance meter for the RFID antenna design
(Philips RCL meter. Model PM6303A), tags, cables and component parts and computers.

5.4.2. Gateway

As a personal choice of the designer, the prototype board under construction received
the name of "Torrija" board honouring an ancient Spanish dessert made of sweet bread with
a similar shape.

The board is powered from the power signal coming from a USB device or a USB charger
providing 5 volts and 500 mA of current that is enough power for what the board requires.
According to the specifications the CC2520 radio consumes 18.5 mA when receiving and

68 CHAPTER 5. ELECTRONIC DESIGN OF PLATFORM

1k5

27
27 10p

10p
GND

GND GND

220n

GND

GND

+3
V3

+3
V3

47
k

GND

2n2

100n

GND

100u

GND

10
0n

10
0n

GND

10
0n

10
0n

GND

+3
V3

33
0

GND

GND GND GND

33
0

33
0

33
0

GND

220n

10u

GND

100n

GND

GND

GND

22p

22p

GND

GND

GND GND

470n

GND

GND
33k

GND

+3
V3

GND

100

1M

GND

+3
V3

+3
V3

+3
V3

GND

GND

GNDGND

4.7uH

MCP1603

20uf

0.05

4.7uF

GND

+3
V3

80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61

60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41

40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21

2019181716151413121110987654321

L1

1
1

2
2

R1

R2
R3 C2

C3 C4
JP

2
1

2
3

4
5

6
7

8
9

10
11

12
13

14

R
4

C5

C6C7

C
8

C
9

C
10

C
11

D
1

LE
D

1

LE
D

2

LE
D

3

LE
D

4

R
5

R
6

R
7

R
8

C1

C12 C13

JP
6

1 2 3 4 5 6 7 8 9 10 11

C14

C15

C16
C17

JP
8 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P1

P4

P2

P3

C18

1
2
3
4
5

R9

JP10
12
34
56
78
910
1112
1314
1516
1718
1920

JP11
12
34
56
78
910
1112
1314
1516
1718
1920

P1 P2

P1 P2

R10P1P2

R11

P1 P2

L3
VIN

VOUT

LX

GND

SHDN

C19

R12

C20

JP13
1
2
3JP

1 1 2

JP3
1
2
3
4

JP
4 1 2

+3
V3

D-

D+

XI
N

XIN

XO
U

T

XOUT

XT2IN

XT2IN

XT2OUT

XT2OUT

CCGPIO0_BOTH

CCGPIO0_BOTH

CCGPIO1_BOTH

CCGPIO1_BOTH

CCGPIO2_BOTH

CCGPIO2_BOTH

CCVREG_EN_BOTH

CCVREG_EN_BOTH

CCCS_N_BOTH

CCCS_N_BOTH

CCSCLK_BOTH

CCSCLK_BOTH

CCSI_BOTH

CCSI_BOTH

CCSO_BOTH

CCSO_BOTH

CCGPIO4_EM

CCGPIO4_EM

CCGPIO5_EM

CCGPIO5_EM

CCGPIO3_EM

CCGPIO3_EM

VUSB

VUSB

+1V8

CCRESET_N
CCRESET_N

VGEN

VGEN

VBUS

VBUS

+

+

REGULATOR

+

+

Shield should be connected to GND through a 33k resistor

+3V3 is the output voltage from VUSB
+1V8 is the output voltage from V18

+5V USB voltage

Schottky diode SOD-80 package (LL103A)

LED footprint changed to 1208

This part is related to circuitry for hardware
invocation of the bootstrap loader
Might be ommited

32.7 kHz crystal. Don't place caps

Figure 5.2: Gateway schematics

between 33.6 mA and 25.8 mA in transmission [53]. The TRF7960 RFID reader consumes 10
mA [56] when reading actively. Finally the MSP430 varies its power consumption depending
on the system clock settings (typically 8-16 MHz, up to 25 MHz) and it can be computed
for both type of memory: flash or RAM. It typically varies between 5-10 mA [49]. In the
worst case scenario, the amount of power required will be 33.6 mA + 10 mA + 10 mA =
53.6 mA without counting the power consumed by other passive elements in the board. In
any case, it is far beyond the 500 mA provided by the USB interface.

The signal goes first then into a Schottky diode for protection against reversing power
supply. Then, since the signal from a computer can be very noise, a small circuit is needed
to filter it that includes a ferrite bead to suppress high frequencies in parallel with two
capacitors and a LED that informs that the power is on. Once the signal is clean, it needs
to be converted from 5 V to 3.3 V that is the typical voltage that is required by all the
chips in the platform. There are two options to do that, it is possible to use the MSP430
internal voltage regulator (LDO) in the USB module or the external regulator. In this this
circuit both options are available (See schematics in Appendix A).

The disadvantage of the internal LDO voltage regulator is that it can only provide up
to 12 mA [66] [67] so it would be more adequate in simpler designs with fewer requirements,

5.4. DESIGN AND CONSTRUCTION 69

Figure 5.3: MSP430 circuit board

but it might be not enough for the RFID and 2,4GHz radio modules that are also fed from
the same power line. It was decided then to use a external voltage regulator (MCP1603T
from Microchip) that can convert a variable input signal (2.7 V - 5.5 V) into a fixed voltage
signal of 3.3 V offering a maximum of 500 mA current. A jumper included on the board let
you choose the input source between both regulators. There are additionally two capacitors
of different value set close to every power supply pin of the micro-controller to eliminate
possible noise and provide a stable wideband power supply to the pins. These capacitors
give also stability to those pins that need to be permanently in a high state and are fed by
the power signal.

The design of the USB communication circuit is based on TI’s guidelines [66] and it
includes some capacitors for filtering (decoupling capacitors) and resistors to set a desired
value on certain pins (high or low state). Moreover, there is an additional circuit to invoke
the bootstrap loader (BSL) if firmware updates are desired through the USB connection.

In order to provide a clock source, the micro-controller can use an oscillator from external
crystals an a resonance circuit. Two different sources are commonly needed, a mandatory
low frequency one that oscillates at 32.768 kHz in this case (it will be used to set Timers
in Contiki. See Chapter 6), and an optional one for high frequency that can also vary

70 CHAPTER 5. ELECTRONIC DESIGN OF PLATFORM

but in this case it oscillates at 32 MHz. The maximum speed of the MSP430F5519 is 25
MHz but it can run at other speeds with the use of the internal micro-controller divisors
(normally it will be set to run at 16 MHz, but it can be configured for 8 MHz and 24 MHz
for performance testing). There is also the possibility to use the internal VCO that can
provided a clock source as well but the external high speed oscillator is required by the USB
module to work [67], in addition, it normally generates a more stable clock and clean signal
that the internal VCO improving the design.

In order to achieve the oscillation the crystals need a external load capacitance that
adds the right phase to the loop. This load capacitance must be specified in the device’s
datasheet. The frequency of the oscillation can deviate depending on the load capacitance
and the parasite capacitances appearing internally or at the soldered junctions to the board.
These extra capacitances must be compensated with additional capacitors mounted in par-
allel at both pins to adapt to the right load capacitance. The value of these additional
capacitors can be obtained from the formula:

CLoad =
(
C

′
1 · C ′

2
C

′
1 + C

′
2

)
with

C
′
1 = C1 + CP arasitic

C
′
2 = C2 + CP arasitic

Considering that both capacitors can have the same value. The equation can be simpli-
fied into:

CLoad = C1
2 + CP arasitic

or
C1 = 2 · CLoad − CP arasitic

In the case of the low frequency crystal (32.768 kHz), the MSP430 provides and internal
selectable capacitance from 2 to 12 pF to match the load capacitance required by the crystal
including parasitic bond and package capacitance(approximately 2 pF per pin) [49]. For
the specific crystal model used in the board, the datasheet specifies a load capacitance of
12 pF and that’s the value selected via software in the MSP430.

For the high frequency oscillator, the load capacitance need to be added with external
capacitors. For the specific 32 MHz crystal used in the board, the datasheet specifies a
required load capacitance of 12 pF for the particular model we selected (ref. not available).
Considering 2 pF of parasitic capacitance in each pin, according to the formula above, the
additional capacitors should provide 22 pF of capacitance.

C1 = C2 = 2 · 12pF − 2pF = 22pF

5.4. DESIGN AND CONSTRUCTION 71

The board is also provided with a circuit and connector to support the common JTAG
standard to program the micro-controller and flash its memory.

Additionally, some low power consumption LEDs and buttons are connected to different
pins for testing purposes. The rest of the pins are connected to an external connector in
order to be able to access the pins form outside.

Radio

The radio module is a pre-built evaluation board provided by TI and bought by the
company Sense.se. The reason behind was to save time in the construction and possible
troubleshooting due to impedance adaptation and antenna design.

5.4.3. RFID

The RFID module is not part of the main board and it was design and constructed
separately. But the external connexion was carefully designed to make the module to
match properly with the micro-controller connector.

Figure 5.4: TRF7960 module placed in the RFID system

There are some pins from the micro-controller routed to output pinhead connectors for
easy access to it. In the connector towards the RFID module, there are available a 4-wire
SPI port, general I/O pins in case of parallel communication is desired and a pin that
triggers interrupts.

TRF7960 reader

The TRF7960 chip[57] works as a framing filter and an analog front end. It receives
data modulated on a 13.56MHz signal and across a matching circuit in the input/output

72 CHAPTER 5. ELECTRONIC DESIGN OF PLATFORM

antenna stage. This matching circuit is fixed in order to get a (real) impedance of 50 Ω
towards the reader.

Figure 5.5: TRF7960 schematic implementing parallel and SPI modes

The board offers the possibility of having three different antennas attached [64]. Two
of them connected to the fixed matching radio-frequency module and the other with an
extra matching circuit to provide an additional degree of freedom. This simple matching
circuit consists of a fixed value capacitor in parallel with a variable capacitor from 6.5 pF
to 30 pF both connected to the antenna SMA connector. The scheme was followed by a
parallel resistor and a group of a fixed capacitor and a parallel variable capacitor connected
in series.

There is also a filter section in the circuit that split the signal into two signals with the
phase shifted 45◦, letting the TRF7960 reader to have two different inputs. That allows
the detection of AM modulation signals on one pin and FM modulation at the other input,
depending on what is received from the tag. These two signal are multiplexed in the reader
under the control of registers.

One of the inputs is considered as the main receiver signal (RX_IN1 pin) meanwhile
the secondary one (RX_IN2 pin) is mainly used as a signal power detector, measuring the
received signal strength indicator (RSSI) of the modulation signal. The signal goes then
through different stages: RF detection, gain, filtering with automatic gain control (AGC)
and digitalizing in order to send it to the digital processing unit afterwards.

The TRF7960 gives the user the option of choosing different configuration (filter, gain,
AGC...) by modifying register bits.

5.4. DESIGN AND CONSTRUCTION 73

Power configuration

The TRF7960 can be fed with an operating voltage varying from 2.7 V to 5 V in the
VIN pin. There are three integrated voltage regulators that can also provide an output
signal from 2.7 V to 3.4 V to the different sections of the RFID board (RF output stage,
analog circuits, digital I/O pins). The micro-controller could also be fed from this power
source.

The selection of the different voltages can be configured automatically or manually in
100 mV steps. In our design we use an external voltage of 3.3 V to supply the reader and no
output to the micro-controller because it is supplied independently from a regulator using
the USB cable as the external source.

Pin out settings

Some pin-out set up configurations were considered in the board design. There are seven
I/O ports that can be used in a parallel communication with the micro-controller and some
of them can be also used for a serial connection via 3 pin SPI. This can be done by attaching
VCC to I/O pin 1 and pin 2 with IO pin 0 wired to GND. Data clock, enable pin, interrupt
pin, VCC and VSS are used sharing the same pin-out. This is an advantage since it gives
the possibility of choosing two different types of communication for prototyping.

There is also the option of taking the RFID clock signal from the chip to the MSP430
but this is not needed or used in this design.

Figure 5.6: TRF7960 circuit board

74 CHAPTER 5. ELECTRONIC DESIGN OF PLATFORM

Figure 5.7: First prototype of the TRF7960 board

RFID Antenna

The antenna consists of a cable coil and a matching circuit. The problem is to find the
inductance (by varying the number of turns or section of the cable) and capacity required to
achieve resonance at 13.56 MHz frequency, usually using an external capacitor. Additionally,
concepts such as Q-factor, bandwidth or impedance must be considered.

Figure 5.8: Antenna placed in the RFID system

Once the resonance frequency is achieved. The impedance of the antenna must be real
(to avoid reflections and interference) and the same of the input device. That can be done

5.4. DESIGN AND CONSTRUCTION 75

from antenna theory[63] and using a Smith Chart.

Matching circuit

The impedance was measured using the impedance analyzer (RCL meter from Philips.
Model PM6303A) available in the lab. The matching circuit was designed using variable
capacitors. Varying the capacitance of the capacitors the impedance can be matched and
the antenna can be brought to the right resonance.

Figure 5.9: Matching circuit schematic

Three matching elements were used, and quality factor calculated for an operating band-
width of 2 MHz considered sufficient for the prototype.

Q = f0
BW

= 13, 56MHz

2MHz
= 6, 78

Q = Rp

XL
= R

2 × π × 13, 56MHz × 1, 721µH = R

146, 63

Where L = 1,721 µH as we measured using the automatic RCL meter from the labora-
tory.

Rp = Q×XL = 6, 78 × 146, 63 = 994, 2Ω ≈ 1kΩ

Using the evaluation Smith Chart software [83] to find values for the capacitors a fixed
capacitor of 22 pF needs to be placed in parallel with a variable capacitor (range from 5 to
15 pF). The resistor has a value of 1kΩ and the variable capacitor connected in series is of
a range from 10 to 120 pF.

An extra resistor of 10 Ω in parallel with the bigger-ranged capacitor was added in order
to get more resistance and less reactance. Eventually, the best antenna impedance achieved
was 61 + 10j.

76 CHAPTER 5. ELECTRONIC DESIGN OF PLATFORM

Figure 5.10: Matching circuit board

Figure 5.11: Final antenna with matching circuit attached

5.4.4. Printed Circuit Board

General considerations

There are different undesired side effects that appear in all electronic circuits between
lines and components that can cause malfunctioning or unexpected behaviours in the sys-
tems. Most commonly we can find EMC, ESD, parasitic capacitance or cross talk interfer-
ence.

In the boards under design in this Thesis there are RF signals of different high frequen-
cies, and digital and clock lines carrying low currents. That makes these lines very sensitive
to the effects mentioned before. In order to minimize the consequences of those disturbances,
there are several design rules and good practices that should be followed. For the boards in
this projects these are some of the rules followed, based mainly on recommendations from

5.4. DESIGN AND CONSTRUCTION 77

vendors [61], [66], [49].

1. Two decoupling capacitors were mounted close to the chips in every power feeding
tracks, with the high frequency decoupling cap (10 nF) closer than the low frequency
decoupling capacitor (2.2 µF). Keep all decoupling caps as close to the IC as possible

2. Added some ground vias between gorund planes to reduce possible ground loops or
avoid isolation from ground of the components.

3. Multiple ground sections forming islands should be avoided. There should be a ground
plane, possibly separating the digital and analog sections.

4. Try to place inductors affecting RF signals oriented at 90◦ to each other. To minimize
coupling between them.

5. Crossing digital data or control lines from both sides of the board might be also a
problematic. Try to avoid that.

6. Power track can be thicker than RF and digital lines. Avoid loops and 90o corners.

7. Using SMD type components to improve resistance to interference since no holes are
needed and much tinier sizes and integration can be achieved.

8. Track lengths should be as short as possible. Especially regarding RF lines, crystal
connections and digital lines from the reader to the microprocessor. Proper placement
of the reader, microprocessor, crystal and RF connection/connector will help facilitate
this.

9. Avoid the following:

a) Crossing of digital lines under analog and RF signal lines.
b) Crossing of digital lines with other digital lines whenever possible.
c) If the crossings are unavoidable, 90◦ crossings should be used to minimize cou-

pling of the lines.

10. Make distance between crystal, load capacitors and micro-controller as short as pos-
sible to minimize the loop area around the combination of the components. This will
decrease the effect of the resonant current. Moreover, the current between the oscilla-
tor and the microcontroler is very small (less than 1 µ A according to datasheets [49]),
if signal lines are long it makes the oscillator very sensitive to EMC, ESD, parasitic
capacitance and cross talk interference.

11. Keep digital signal lines, clock lines or switching signals far from the crystal

78 CHAPTER 5. ELECTRONIC DESIGN OF PLATFORM

Figure 5.12: Pair of inductors at 90◦ orientations with respect to each other

5.4.5. Printing the board

After following the layout recommendations and adding optimizations, the gateway
and the RFID boards they were finally printed using the milling machine available in the
laboratory. The electrical components were soldered afterwards using a microscope and
special soldering micro probes due to the small SMD package of most of the components.

5.4. DESIGN AND CONSTRUCTION 79

Figure 5.13: MSP430 board attached to the TRF7960 board and the RFID antenna

Chapter 6

Implementation of the platform

This chapter describes the platform from a software architecture and implementation
perspective. In section 4.2.5 Contiki SO is briefly explained together with the API. Section
6.5 depicts the driver implementation of the different modules that are part of the platform.
Finally, the application, the bootstrap process and the security issues are documented in
section 6.7.

6.1. Contiki
As mentioned in previous chapters, Contiki is an open source operating system specially

oriented for constrained devices and low power wireless networks. It was created by Adam
Dunkenls at SICS, Sweden in 2002 and it is continuously developed for different hardware
platforms by companies world-wide.

Contiki can be freely downloaded from the website [40] under a BSD-type license. The
code in this Thesis is based on Contiki 2.4 version (16 February 2010). The development IDE
tool was Code Composer Studio Core Edition Version: 4.1.3.00034 from Texas Instruments,
similar to the popular Eclipse IDE.

6.1.1. Directory tree

Contiki is delivered in a compressed file containing several directories with C code and
header files, build files and different documentation. The folders in the root directory are
classified as follows:

apps/ Several applications that can be used in this version of Contiki. It includes the
implementation files of a dhcp client and a server, a web browser, a web server, the
implementation of ping6 command, a telnet client, a shell and a small implementation
of client and server of the CoAP protocol for constrained devices.

core/ Here is where the system core files of Contiki are stored. It contains subdirec-
tories with drivers for different radio modules, serial communication ports, memory

81

82 CHAPTER 6. IMPLEMENTATION OF THE PLATFORM

Figure 6.1: Code Composer IDE.

and power management, watchdog control, binary loader, etc. Under the net sub-
directory there are code files for the uIP TCP/IP stack, the uIPv6 stack, 6LoWPan
and the Rime stack for network communication. Also the implementation of different
MAC protocols(mac, nullmac, sicslowmac, xmac, contikimac) and 802.15.4 framers.
All Contiki system files implementing the protothreads, process init, timers and so on
are stored under the sys folder.

cpu/ Includes low level implementation for porting to different microprocessor archi-
tectures. For instance, arm, avr, cc2430, msp430, native or x86.

doc/ Contains Contiki’s Doxygen documentation files.

examples/ With several subdirectories that include examples of the use of the ap-
plications in different platforms.

platform/ It contains files in sub-folders for porting to many different platforms and
computers such as Atari, Avr-Raven, Cooja, Esb, Micaz, Netsim, Redbee, Sesinode,
Sky...

tools/ Under this directory there are a few specific tools for use with the platforms
above. There are compilers, configuration files, libraries, scripts, etc.

Not all the files available in the package are needed from the original Contiki project.
For the purposes of this Thesis the most useful files are the Contiki system core files and

6.1. CONTIKI 83

some platform and hardware specific files to facilitate help on the porting to the Torrija
board. The examples and application files are interesting as a base for the rest of the
development and learning of the different parts of Contiki.

Figure 6.2: Code Composer Torrija project view.

The list of project directories of the complete platform is shown below.

apps/ (containing the RFID, USB and CoAP applications)

• application-rfid/
• application-usb/
• application-coap/
• rest-coap/
• rest-common/

core/ (containing Contiki’s system and network files)

• cfs/
• ctk/
• dev/
• lib/

84 CHAPTER 6. IMPLEMENTATION OF THE PLATFORM

• loader/
• net/
• sys/

platform/ (drivers for the GW board and the RFID and USB modules)

• rfid/
• torrija/
• usb/

6.1.2. Protothreads

Protothreads introduce a new programming abstraction that helps to implement event-
driven systems in a thread-like environment. It combines the benefits of threads in terms of
flow control and code structure with the low memory overhead of event-driven programming
implemented with state machines [46]. They were developed for Contiki by Adam Dunkels
and Oliver Schmidt [42] at SICS.

Protothreads are specially designed for memory-constrained devices providing a very
lightweight mechanism for thread handling that requires minimum memory resources (two
bytes on the MSP430 [46]). In order to achieve good memory efficiency protothreads do
not use individual stacks among threads, but only one shared stack. Context switching
is possible but it can only occur after controlled blocking operations. Global and static
variables are used to preserve information during the context switching since automatic
variables loose their content after returning from the blocking protothread so the design
must be done with care with re-entrant function.

Commonly event-driven programming style is based on state machines to build applica-
tions what could make programs difficult to implement, debug or understand. Protothreads
simplify and replace the state machine model with a sequential model based on a conditional
blocking call: PT_WAIT_UNTIL (condition). That makes the program more intuitive and
easy to interpret since it follows the natural flow of the process. It also reduces drastically
the number of lines of code needed for the implementation [46].

Protothreads are implemented through a few simple statements. They must start with
PT_BEGING() and end with PT_END() statements, but can exist prematurely by means
of PT_EXIT(). PT_WAIT_UNTIL() can block so the programmer is always aware of the
potentially blocking calls. Unconditional blocking wait is provided with the statement
PT_YIELD() that blocks until the next invocation of the process. In addition, PT_SPAWN()
starts a child of the process and blocks the parent until the child has ended. There are a
few more statements that are documented in Contiki’s API [41]. In Figure 6.3 there is an
implementation of a basic example using protothreads.

There are two important limitations when using protothreads. One has already being
mentioned referring to the fact that local variables loose their content across the block-
ing wait. This issue can be solved by using static variables. It is also inconvenient the

6.1. CONTIKI 85

PT_THREAD(struct pt *pt) {
PT_BEGIN(pt);
PT_WAIT_UNTIL(pt, condition1);
if(something) {

PT_WAIT_UNTIL(pt, condition2);
}
PT_END(pt);

}

Figure 6.3: Example of protothreads

constraints on the usage of switch statements within protothreads. Since the protothreads
implementation hides a C switch statement behind their macros, the introduction of a
switch statement inside may result in an undefined behaviour.

6.1.3. Processes

Any program running in Contiki is also a process. Processes are usually started at boot
up time or when a module is loaded in the system. Processes in Contiki are implemented and
scheduled by means of protothreads. Each process can only have one protothread associated
when executing and it should contain the code of the process. Contiki also provides a simple
API in C for creating and managing processes [41]. This API consists of a set of macros
and functions that are mentioned below in this section. Their implementation is located at
core/sys/process.c file.

A Contiki process is defined by two parts: a process control block and a process
thread. In figure 6.4 there is an example of a basic program implemented with Contiki’s
processes. The first line corresponds to the process control block. This macro, PROCESS
(name, str_name), with two arguments declares and internal structure that contains in-
formation about the process such as the state, a pointer to a thread, a pointer to the next
process in the list of processes, etc. The first argument gives name the process structure
variable. The second argument is the name of the process in string format.

The protothread is declared in the next line using the macro PROCESS_THREAD (name,
ev, data) with three arguments where name is the name of the process structure variable,
ev is the identifier event that has caused the invocation of the thread and data is a pointer
to additional date passed to the thread during the invocation.

There are still two more macros that define when the process starts and when it exits
as it can be seen in 6.4. Both macros are mandatory in every process, PROCESS_BEGIN()
should go right after the declaration of the thread (any code placed in between will always
be executed when re-executing the process) and PROCESS_END() at the exit point of the
process. The application code is implemented in between them.

In this example, the process prints out a message and after that it enters into an infinite

86 CHAPTER 6. IMPLEMENTATION OF THE PLATFORM

loop. Inside the loop it calls the macro PROCESS_WAIT_EVENT() that will block the process
until an event is received. The kernel gets back the control and gives service to other
processes. If an event occurs, the kernel delivers it to the process (with and event id and
possibly some data) so it can continue the execution from the point where it stopped the
last time.

PROCESS(hello_process , "Hello␣process");

PROCESS_THREAD(hello_process , ev , data) {
PROCESS_BEGIN ();
printf("Hello␣Gateway !\n");
while (1) {

PROCESS_WAIT_EVENT ();
}
PROCESS_END ();

}

Figure 6.4: Example of processes

There are several more macros that are available in Contiki’s API that helps managing
processes and events. A full list can be obtained from the official Contiki documentation of
the API [41]:

PROCESS_WAIT_EVENT():
Wait until an event is received.

PROCESS_WAIT_EVENT_UNTIL(c):
Wait until an event is received and a condition.

PROCESS_YIELD():
Yields the current process.

PROCESS_YIELD_UNTIL(c):
Yield the current process until a condition occurs.

PROCESS_WAIT_UNTIL(c):
Wait for a condition to occur.

PROCESS_PAUSE():
Pauses (yields) the process for a short time.

PROCESS_POLLHANDLER(handler):
Specify an action when a process is polled.

6.1. CONTIKI 87

PROCESS_EXITHANDLER(handler):
Specify an action when a process exits.

Aditionally, a set of functions are provided to help with the development of the appli-
cation [41]:

void process_start(struct process p, const char arg)
Start a process.

void process_exit(struct process p)
Make a process to exit.

int process_post(struct process p, process_event_t ev, void data)
Post an asynchronous event to a process.

void process_post_synch(struct process p, process_event_t ev, void data) Post
a synchronous event to a process.

void process_poll(struct process p)
Request a process to be polled. A PROCESS_EVENT_POLL event will be sent to the
process.

Events

Events in Contiki determine the interactions and behaviour of the applications and the
kernel. They give life to the system. Processes are started, paused, restarted or stopped by
means of events. They can either be sent by another process, the kernel or the special case
of drivers that use a polling method.

Events can be classified as asynchronous or synchronous depending on how the event is
delivered in time. Asynchronous events are kept in the system’s event queue and delivered
whenever the scheduler finds the right time slot for it. Events are dispatched in the same
order as in an FIFO queue. Asynchronous events can be posted to single processes or broad-
casted using the function int process_post(struct process p, process_event_t ev,
void data). Since they are scheduled for a later delivery, this type of events require specific
parameters to identify the type of event and the receiving process. It is also possible to
pass data between processes by means of a data pointer in the arguments, since processes
share the same memory space.

Contrarily, synchronous event are delivered immediately. The receiving process is then
directly scheduled and the sending process pauses until the receiving process has fin-
ished. Synchronous event can only be sent to specific processes with the function void
process_post_synch(struct process p, process_event_t ev, void data). It must
not be called from an interrupt context.

88 CHAPTER 6. IMPLEMENTATION OF THE PLATFORM

Polling

It is a special case of communication with events associated principally with interrupts
handlers. In order to avoid interrupt routines locking and race conditions Contiki does
not send events form the interrupt space. Instead, processes must be polled from the
interrupt context by means of void process_poll(struct process p). This function
sets a polling flag in the process structure when called within the interrupt handler when
a hardware event occurs. Polled processes have the highest priority. When the scheduler
is executing, it first goes through the list of polled processes. The kernel then sends them
a special PROCESS_EVENT_POLL event type, so the processes know that they can operate on
received data. When there are no more polled processes to be processes, the scheduler runs
normally processing the events in the FIFO event queue.

6.1.4. Timers

Another essential feature in Contiki is the implementation of timers. They are be used
by applications and by the system. Timers help to control tasks periodically as, for instance,
collecting data from sensor, reading I/O buffers, waking up the CPU from sleeping mode,
etc. Their implementation is located under core/sys/ directory.

Contiki provides a lightweight timer library as a base on which timers are built. There
is a range of functions that help to set, reset and restart a timer or to evaluate if the timer
is expired for instance. There is a set of timers available in Contiki for different purposes
provided by the clock module:

timer : Simple timer that only keeps track of its expiration time. It is mostly used for
short periods, as it counts clock ticks.

stimer : This timer only keeps track of its expiration time but it is used for long
periods since it counts seconds.

etimer : The event timer sends an event to a process when it expires. Used to schedule
events in Contiki.

ctimer : The callback timer schedules calls to functions when it expires. Typically
used by protocols such as Rime.

rtimer : Real-time timer, calls a function at an exact time pre-empting processes if
necessary in order to execute the task on time. It is used when time is critical.

Applications commonly use tick-based timers, second-based timers and event timers for
scheduling processes. Basic timers and etimers can be safely used from interrupt contexts.
Event timers are useful to let the CPU sleep for a certain time or by a process to yield the
execution time to other processes and tasks. A system event timer process (etimer process),
based on the event timer library, periodically evaluates every timer that has been set and
posts an event (PROCESS_EVENT_TIMER) to the process that set the timer if it has expired.

6.1. CONTIKI 89

As an example, below is a small part of typical code using events. The event structure
must be declared first, before the execution block in this case. After the PROCESS_BEGIN()
macro the process enters into an infinite loop, in each iteration it sets the duration
of the event timer using the library function &etimer_set(et, CLOCK_SECOND) where
CLOCK_SECOND variable is the time in seconds and it is defined somewhere else. After
the timer is set the macro PROCESS_WAIT_EVENT_UNTIL(etimer_expired(&et)) is called.
This macro will tell the process to pause until an event is received, so the control is
given to the system and other processes. When the event timer expires it sends an event
(PROCESS_EVENT_TIMER) to the process so it can continue the execution the next time it is
scheduled.
PROCESS_THREAD(hello_world_process , ev , data) {

static struct etimer et;
PROCESS_BEGIN ();
while (1) {

etimer_set (&et, CLOCK_SECOND);
PROCESS_WAIT_EVENT_UNTIL(etimer_expired (&et));

}
PROCESS_END ();

}

6.1.5. Networking

Contiki provides two network stacks implementations: the uIP TCP/IP stack provid-
ing IPv4 and IPv6 certified connectivity and the more lightweight Rime stack, specifically
designed for constrained low-power networks [40].

Rime stack

Rime implementation contains lightweight protocols suitable for low-power sensor net-
works where the uIP stack becomes too heavy. Rime provides a set of basic communication
primitives useful for the design of low-power networks. These default primitives provide
different features varying from best-effort local broadcast to reliable network flooding and
address-free data collection [44].

Rime stack is arranged in a way that communication primitives can be combined to
create more complex protocols. Rime stack is distributed in layers thinner than traditional
architectures such as the TCP/IP stack [41] in order to simplify the implementation.

The code size of Rime is around two kilobytes and RAM requirements are on the order
of tens of bytes [44].

uIP stack

The uIP stack provided by Contiki is a small TCP/IP compliant stack intended for
embedded systems using 8-bit or 16-bit micro-controllers. It does not include the full set

90 CHAPTER 6. IMPLEMENTATION OF THE PLATFORM

of protocols and features of a fully compliant TCP/IP stack, but it includes a set of basic
communication features such as RFC compliant versions of the TCP, UDP and IP protocols,
as well as the mandatory maintenance protocol ICMP, the RPL routing protocol for low-
power IPv6 networks, the 6LoWPAN header compression mechanism and adaptation layers
for the standard IEEE 802.15.4 compliant radios [43].

Th uIP stack optimizes code size by eliminating some uncommon mechanisms. For
instance, mechanisms in the interface between the application and the stack that very few
applications use. However, it is important to mention that all host-to-host communication
mechanisms are indeed implemented [41].

Among other optimizations, uIP also economizes memory by not using explicit dynamic
memory allocation, using only one packet buffer and having a fixed array working as a table
where connections are held [41] [43].

All the communication capabilites provided by Contiki can be accessed by means of
specific processes or as library functions part of the different modules of the architecture.

MAC: Contiki includes implementations of different MAC layers for low level com-
munication such as nullmac, xmac, lpp or sicslowmac to sent and receive packets over
IEEE 802.15.4 radio based networks.

6LoWPAN: Contiki’s 6LoWPAN implementation used in this Thesis supports dif-
ferent encapsulation and header compression mechanisms to carry IPv6 datagrams
over the constrained radio links. It supports basically stateless header compression
LOWPAN HC1 and LOWPAN HC2 defined in RFC 4944 [37] and later by RFC 6282
[38] but also a more advanced LOWPAN IPHC based on sharing state within contexts
[34]

IPv4: Contiki provides a reduced but standard-compliant IPv4 stack with UDP, TCP
and ICMP support running on a protothread. Additionally also DHCP and ARP
protocols are implemented on separated modules with DHCP running on a dedicated
protothread and ARP defined as a set of functions, both easily accessible.

IPv6: The IPv6 stack is also running on a protothread and supports UDP, TCP and
ICMPv6 protocols. It provides Neighbor Discovery for IPv6 [36] that will be used to
discover nodes in the proximity of the network (with the same purpose as ARP does
for IPv4).

Socket interface: A light weight socket API is provided in order to manage UDP
and TCP connections, requiring specific information such as source address and local
port in case of UDP or destination address and remote port in case of TCP. We are
basically only using UDP sockets in our application.

CoAP: Event though CoAP does not really belong to the network modules since it is
part of the application layer, but it is important to mention that the communication
towards lower layers is based on UDP sockets. CoAP uses a client-server model for

6.2. OVERVIEW OF THE PLATFORM 91

the remote communication. Contiki 2.5 implements a basic version of the CoAP
protocol (draft-ietf-core-coap-04) including the client-server mechanisms and a basic
application to use as a base to our implementation.

6.2. Overview of the platform
Contiki is a hardware independent software platform that can provide functionality to

different platform but it does not intrinsically support specific hardware. In the current
distribution of Contiki there are some ports available from different projects. In this sense,
porting code to a hardware platform means that a set of basic functions have been provided
to Contiki so it can make use of the specific hardware functionality. Those are the drivers
that are developed in this Thesis for the specific platform requirements.

The development of the WSN application consists of a CoAP client that needs to be
installed in the gateway and send requests to the sensor boards. Reciprocally these nodes
nodes will act as CoAP servers sending responses upon those requests. Even though the
sensor boards are specifically designed in close collaboration for another Thesis [3] work,
it will be useful to also describe the application requirements for the nodes, since their
implementation will affect to the overall design.

Gateway

Contiki is the OS managing the hardware resources of the board and holding the ap-
plications that make use of them. In order to do that the designer needs to provide the
functionally for the control of that specific hardware. In the case of the gateway some
elements can be easily identified:

One of the key components when porting a new hardware to Contiki is the clock
module that timers are based on. This module requires the selection of a clock source
and a defined constant (CLOCK_CONF_SECOND) specifying the duration of a second in
system ticks. This value can be inferred from the value of the selected clock signal
and the CPU system clock, both depending on the value of external oscillators and
the settings of the microprocessor. Additionally, a set of functions has to be provided
to initialize the module and handle the counter of system ticks.

To make use of the network stack and establish communication between nodes some
functions need to be provided to Contiki on different network layers. These set of
functions are grouped by layers into C structs (one struct of functions per layer) that
get the name of drivers. The "NETSTACK" module (Contiki’s network stack) is in-
formed of which driver is associated to each layer by means of a set of C macros.
This is how the stack is configured. Each layer can be configured with different inter-
changeable drivers, depending on the desired selection. For instance, the MAC layer
can be configured with the csma or nullmac drivers, the RDC layer with the xmac, lpp
or sicslowmac drivers or the FRAMER with the framer_802154 or framer_nullmac,

92 CHAPTER 6. IMPLEMENTATION OF THE PLATFORM

all of them implemented and documented in Contiki [40]. Below is an real example
of how the different layer of the network stack are assigned their respective drivers
(defined somewhere else).

#define NETSTACK_CONF_NETWORK sicslowpan_driver
#define NETSTACK_CONF_MAC nullmac_driver
#define NETSTACK_CONF_RDC sicslowmac_driver
#define NETSTACK_CONF_FRAMER framer_802154
#define NETSTACK_CONF_RADIO cc2520_driver

All the drivers for the netstack are implemented in Contiki except the radio driver since
it is dependant of the hardware. We provide a set to functions for the radio_driver
structure defined in Contiki (called cc2520_driver for the TI CC2520 radio). A
Contiki process is then polled periodically by the interrupt routine when an incoming
packet has been received and need to be read, it will then be delivered to the stack for
processing. On the other hand, in case a frame needs to be sent out, the specific IP
stack process will handle it by directly calling the sending function from the library,
without the need of waking up the radio process.
Other hardware-specific concerns such as low-power modes, duty cycles, transmission
power, system clock or communication interface towards the microprocessor (e.g par-
allel or serial) for the CC2520 chip are described in section 6.5 or the documentation
[53] [54].

The different modules (clock, network stack, applications...) in Contiki OS are config-
ured through a set of macros and headers in the file contiki-conf.h under /platform
directory. Here the designer should include those compiler and hardware specific
header files, select the CPU frequency, define data types, select the applications,
drivers, and many other options for the configuration of the network, optimizations,
etc.

Specific REST CoAP messages and commands can be sent to the gateway via the USB
port to communicate with nodes and configure the gateway. This is not a Contiki
requirement but an application specific issue. The user must be able to interact with
the network in order to authorise new nodes, send requests to the nodes via the CoAP
client, or get the sensor data in a specific format.
The microprocessor selected for the gateway is an MSP430F5519 from Texas Instru-
ments that integrates a USB module so it makes somehow easier and more efficient
the development of the driver since no extra hardware is required. The USB stack
is developed and freely provided by Texas Instruments, but it needs to be ported to
the specific microprocessor model and integrated into the Contiki system. The data
received by the USB interface should be processed by a Contiki protothread whenever
the buffer is filled and available. The data must be parsed as command-line argu-
ments (see section 6.7), generating error messages for incorrect inputs and showing
the available options. When sensor information needs to be sent out, the application

6.2. OVERVIEW OF THE PLATFORM 93

should make use of the USB available functions to deliver the data externally. All this
functionality needs to be developed.

The TRF7960 from TI is an RFID data-framer reader that will read tags from the
nodes in order to authorise and include them in the network as part of the security
application. This is not a requirement from the Contiki SO perspective but again it
is part of the overall gateway functionality. It supports different protocols as men-
tioned in Section 5.1.4 but only Tag-it protocol by Texas Instruments is enabled and
implemented since it is the only tag available in the Wireless@KTH lab [1] for testing
purposes.

The data received by the RFID can be handled in different ways. The preliminary
proposal for the security application is that the recived data should coincide with
the MAC address of the sensor node device. The gateway should then store all the
MAC addresses in a internal secure table. Neighbor Discovery protocol should only
accept those learned addresses that have an entry in that table. It can be stored
in a dedicated sector of the flash memory of the MSP430 so it can be permanently
accessible even after restart of the gateway device.

Another use of the RFID data can be the use of it as a secret used for the data
encryption. This can be easily performed in a link layer level using the AES 128bit
encryption for confidentiality option provided by the CC2520 radio hardware.

Other useful drivers that need some implementation comprise a set of LED for test-
ing, debugging and information purposes, two buttons also for debugging and testing
purposes that are not used in the current version of the implementation but can be
useful for future more advanced purposes.

Sensors

Regarding the development of the nodes, since it belongs to a different work [3] it is
only interesting to mention the parts that are needed for the CoAP server application that
interacts with the client installed in the gateway or the security implementation. We have no
concern of unrelated issues such as system specific settings, radio modes or similar assuming
that the radios and the stacks agree on the same protocols and the communication can be
established.

First of all a number of sensors should be available on each board. It is not part of this
Thesis to describe how the drivers are implemented but only to inform that they are
available for the CoAP application. On the first version of the boards developed by
[3] they are equipped with a temperature sensor, a light detector, a humidity sensor,
a battery load meter, an accelerometer and a LED.

94 CHAPTER 6. IMPLEMENTATION OF THE PLATFORM

Figure 6.5: Platform architecture. The parts marked in blue have to be developed. At the
bottom, the drivers needed for Contiki that communicates with the hardware modules at
the low level (in green). On top, also in blue, the main applications, some of them requiring
a process to poll for events and some just handling data to be stored or to be sent out to the
user for instance. Some interactions such as direct communication from the applications
towards driver output ports are not shown here.

The CoAP server defines resources for each sensor or actuator. These resources can
be simple resources accessed by request or periodic resources that continuously deliver
data for a requested period. Resources are defined by a macro with three parameters:
resource name, the http methods it handles and the url where it will be "located"
within the node (RESOURCE(hello, METHOD_GET, "hello"))
Each resource that has been defined, needs a handler method that should be defined
as [resource name]_handler. This function must handle the requests and read data
from sensors or perform an specific action. PUT or POST methods are normally used in
create a resource or request an action while GET requests usually read data from the

6.3. DEVELOPMENT TOOLS 95

sensors. The handler function should finally build-up the CoAP response packet that
will be sent out.

In case of periodic resources the PERIODIC_RESOURCEmacro should be used. This time
with four parameters: resource name, the http methods, the url and the period in sec-
onds (e.g. PERIODIC_RESOURCE(temperature, METHOD_GET, "temperature",1)).
Two functions should be provided:

• A periodic handler declared as <resource name>_periodic_handler.

• A request generator function that generates the payload every time the timer
expires defined as <resource name>_periodic_request_generator.

Observable resources can also be defined using the OBSERVABLE_RESOURCE macro.
Requests to this resource allows a number of client observers to "subscribe" to it.
Every time a change occurs (switch toggled, sensor value goes beyond a limit...) in
the resource a notification is sent to the registered observers. However this type of
resource is not used in the current version of the nodes.

There is additionally a default resource known as the ".well-known/core" resource
that is defined by the CoAP protocol and is used to discover the available resources
of the node. It should send the reply in a specific text format defined by the protocol
[71] [73].

6.3. Development tools

Code Composer Studio v4 (based on Eclipse GUI) from Texas Instruments available at
www.ti.com/msp430 was used to develop the code. There is a code limited version that
was used for writing the code and a full version provided with a time limited licensed that
we could extend during the debugging phase with the boards.

Regarding the third-party code in this prototype we are using SO Contiki v2.5 and the
firmware provided by TI for the different modules available at www.ti.com. For the radio
it is cc2520 example code (swrc090a), the RFID module uses a TRF7960 Firmware Source
Code for CCS (sloc203) and the USB CDCv1.19 stack for Code Composer v4.

For debugging the application on the MSP430 we used a JTAG debug interface from
Texas Instruments (MSP430-FET430UIF) and Code Composer Studio v4. As mentioned in
Chapter 5 EAGLE in version 6 was used for the design of the board layouts and schematics
developed by CadSoft Computer (www.cadsoftusa.com).

Windows XP SP3 was used as the OS even though Linux was preferred. However, at the
time of the design there was no free open source available toolchain for the MSP430F5519
microprocessor. The openmsp-gcc compiler and debugger tool for MSP430 micro-controllers
did not support family 5 at that time. For other purposes, e.g. testing the USB interface,
we used the Ubuntu 12.04 Linux distribution.

96 CHAPTER 6. IMPLEMENTATION OF THE PLATFORM

6.4. Contiki configuration
Contiki can be configured via a set of directives selecting the hardware, enabling and

disabling different modules and different features related to the network or system specific.
This set is grouped inside contiki-conf.h that is located under /platform directory and it
is needed by the compiler to generate the application. The basic functionality is configured
in Contiki as shown below. For a complete version of contiki-conf.h see Apendix B.

Specific compiler data types and hardware specific header files must be specified
#include <msp430f5519.h>
#include <inttypes.h>

Other CPU related and compiler options are selected by means of macros.

Specify Contiki specific options and data types.

Select the application
#define WITH_COAP 1

Select IP version 6
#define WITH_UIP6 1

Use rime addresses to take advantage of the address handling functions provided by
Rime.

#define RIMEADDR_CONF_SIZE 8

Select link layer as IEEE 802.15.4
#define UIP_CONF_LL_802154 1

NetStack definitions as it was specified in the overview of the platform

IPv6 options are set by default.

Transport layer enabling only UDP support (for CoAP)
#define UIP_CONF_UDP 1

Select context-aware type of 6LoWPAN compression (IPHC):

No fragmentation

Select buffer size: 110 longest IEEE802154 payload + 40 IPv6 header + 8 UDP header
#define UIP_CONF_BUFFER_SIZE 110 + 40 + 8

6.5. DRIVERS 97

Node’s MAC address
#define NODE_BASE_ADDR0 0x00
#define NODE_BASE_ADDR1 0x07
#define NODE_BASE_ADDR2 0x62
#define NODE_BASE_ADDR3 0xff
#define NODE_BASE_ADDR4 0xfe

There might be other configuration options residing in other configuration files such as
contiki-net.h or coap-conf.h that could be interesting for the developer. However the
default configurations are good enough for this application so we do not see the need for
modifications.

6.5. Drivers

It is not the the purpose of this section to explain in detail the low level firmware of the
different modules in the platform. It is aimed to be used a guide for the interested reader
to start exploring the code.

6.5.1. Micro-controller driver

The MSP430F5519 micro-controller provides a large amount of interesting features.
Some of them must be understood because they are needed in the platform and some code
firmware must be implemented. Normally the modules firmware provides sufficient libraries
of functions for the control of the devices. However normally the code need to be ported to
a particular platform, adapted to the hardware requirements or the desired configuration
in terms of clock frequency or power mode for example. Or one could just use some extra
features of the micro-controller such as writing to flash memory, selecting different clock
sources or enabling an interrupt on a specific port. Here below is a list of some of the basic
features:

System reset and initialization.

Low power operation modes (LPM0 to LPM4).

Interrupt handling.

Configuration of I/O pins and internal registers.

Unified Clock System (UCS) that provide various clocks for the micro-controller.

Operation of the flash memory controller to be able to write on permanent memory.

Configure timers with multiple capture/compare for interval timing and with interrupt
capabilities.

98 CHAPTER 6. IMPLEMENTATION OF THE PLATFORM

Control of Serial Communication Interfaces: UART, SPI or I2C.

Configure ports for parallel communication (towards RFID module).

Control operation and transfers for the USB module.

If the reader wants to get deeper information the MPS430 datasheet [49] and User’s
Guide [50] are available at TI website (www.ti.com/msp430). He can also refer to the code
implementation for examples (partly in Appendix B).

6.5.2. Radio driver

In this Thesis we are using a CC2520 radio from Texas Instruments and a set of functions
specified by the structure of a generic radio driver have to be provided. The specific driver
(C struct) for the specific radio chip has been named cc2520_driver and it provides the
functions required by the radio_driver struct prototype defined in Contiki.

struct radio_driver {
int (* init)(void);
/** Prepare the radio with a packet to be sent. */
int (* prepare)(const void *payload , unsigned short payload_len);
/** Send the packet that has previously been prepared . */
int (* transmit)(unsigned short transmit_len);
/** Prepare & transmit a packet . */
int (* send)(const void *payload , unsigned short payload_len);
/** Read a received packet into a buffer . */
int (* read)(void *buf , unsigned short buf_len);
/** Perform a Clear - Channel Assessment (CCA) to find out if there is
a packet in the air or not. */
int (* channel_clear)(void);
/** Check if the radio driver is currently receiving a packet */
int (* receiving_packet)(void);
/** Check if the radio driver has just received a packet */
int (* pending_packet)(void);
/** Turn the radio on. */
int (* on)(void);
/** Turn the radio off. */
int (* off)(void);

};

Communication towards the CC2520 radio is done via an SPI interface. Either initial-
ization, configuration of the radio or data transfers are done through the SPI port. Some
modifications are needed to the vendor’s firmware (cc2520 Example Code - swrc090a) since
the pin configuration is variable among different MSP430 models and normally various SPI
buses are available. Additionally, interrupt handlers have to be enabled on the specific ports
of the microntroller. Moreover, the size of the firmware is big for the 128 Kb flash memory
and many of the library functions are not needed in our implementation, as a consecuence
the vendor’s implementation had to be reduced.

6.5. DRIVERS 99

The hardware abstraction interface is reduced to the file hal_cc2520.c. On the upper
layer, the functions library for initialization of the radio, handling packets and other link-
local related functions can be found at cc2520ll.c. Both under /platform/torrija/dev
directory.

More information about basic CC2520 radio features such as low-power modes, serial
communication, the instruction set or the transmit and receive modes are available in the
data sheet [53]. Some extra features have been also used in the implementation of the driver.
For debugging purposes it is possible to configure the radio on promiscuous mode so we can
inspect the packets travelling in the air even if they are malformed. The random number
generation engine from environmental noise is used as a seed for generation of random num-
bers in Contiki. Finally, the CC2520 has extensive support for security operations that are
used for encryption of messages as defined in IEEE 802.15.4 [32]. More information about
the software implementation can be found at the vendor’s firmware example code [54] avail-
able at www.ti.com/product/CC2520/toolssoftware or in the platform implementation
(Appendix B).

6.5.3. USB driver

The USB protocol is quite complex so there is no point to describe its features in this
section, but the user can refer to the USB specification, Texas Instruments documentation
[65] [67] [50] and firmware API description [68] or many sources available in the Internet for
simpler description (http://www.beyondlogic.org/usbnutshell/usb1.shtml). Texas Instru-
ments provides a firmware for the integrated USB module in an also complex architecture
that should not be described here. Instead we will give a basic description of what is
provided and what we need from the driver implementation.

The USB protocol is not trivial to implement and it requires strict compliance even in
the simplest applications. TI provides an intuitive API stack (USB CDCv1.19 for Code
Composer v4) that eliminates most of the underlying complexity of implementing USB. For
documentation TI also provided a very useful Programmer’s as a reference for the API. It
also clearly describes the basic concepts.

Descriptors: A USB Descriptor Tool for the MSP430 USB [68] is provided for quick con-
figuration. It automatically creates descriptors that must be reported to the host
saving great amount of time to the developer. Descriptors inform the USB host about
several details of the device of different kind. There are a device descriptor, configu-
ration descriptors, interface descriptors and endpoints descriptors. These descriptors
are sent to the USB host upon its request when a device is connected.
Any USB device contains a certain number of what are called endpoints. Support
for multiple endpoints allows for composite USB devices which can have more flexible
communication with hosts. An USB Composite Device is a peripheral device that
supports more than one device class.

Class stacks: The MSP430 USB API provides the most common device classes [67]:

www.ti.com/product/CC2520/toolssoftware

100 CHAPTER 6. IMPLEMENTATION OF THE PLATFORM

Communications Device Class (CDC): It is used mainly for telecommunication
devices (primarily for modems, fax machines, telephony applications, digital
phones, or in computer networking devices as an interface for transmitting Eth-
ernet or ATM frames, as well as COM-port devices). When connected to a SO
like Windows XP it appears on the host as a virtual COM port (considered a
flexible, fast and simple interface]. The CDC provides high bandwidth by using
bulk transfers. The main disadvantage is that a simple info file (.inf) should be
available in Windows so it can associate driver built-in with the CDC.

Human Interface Device (HID): It is mostly targeting peripheral device (mice,
keyboards or game controllers) but it is flexible and suitable for a wide variety
of applications. As a disadvantage, it has limited bandwidth (64 KBps) [68].
As a benefit it does not require any info file to be available at Windows. The
installation is silently done in the OS if the driver is available. Another benefit is
the great amount of device drivers available in most operating systems nowadays.
Generic drivers allows for faster deployment and easier installation. The basic
HID functions are defined in USB-IF documentation (www.usb.org) and [65].

Mass Storage Class (MSC): It enables high data transfers between host and
device (primarly used for digital cameras, flash card readers, etc.). It provides
similar bandwidth to that of CDC and it also loads silently in Windows like the
HID. However, it it is a bit more complex (e.g. developers need to implement a
file system to make it work)

Host connectivity: In Windows when a new USB device is connected to a host machine,
the operating system then queries the bus driver for the hardware IDs associated with
the device. The device USB bus driver sends the VID (vendor) and PID (product)
ID numbers. They are taken directly from the device descriptor that we should be
installed in the device. Other fields in the device descriptor are the device class,
subclass, or protocol. After retrieving the corresponding ids, the operating system
searches for .inf files in the system (assuming Windows). If one of these files contains
a match for the device ID, Windows loads the driver that is indicated by that .inf
file. In Linux (Ubuntu 12.04) the connection does not need any specific information
file and it is done automatically. The device appears as a usb0 directory that can be
read and written.

API: The TI USB API [68] support three data transfer types, but the developer does
not need to worry about the details associated with each type since their usage is
determined by the device class:

Control for status data.

Interrupt for low bandwidth.

Bulk for high bandwidth.

6.5. DRIVERS 101

By default, the API provides a single CDC interface resulting in a single COM port on
the host (Windows). The provided implementation requires one interrupt IN endpoint
for notifications to the USB Host, one bulk IN and one bulk OUT endpoint for data
transfers plus the default IN/OUT for status control.
The provided code is supporting HID and CDC devices, a separate project is provided
for MSC devices implementation. In our application we decided to only implement
CDC support for communication devices for being considered the most versatile and
suitable for our purposes. In order to save memory, the code had to be reduced to
only support CDC.
The full USB provided implementation allows the developer to focus only on the
data handling. There are two differentiated layers, the API space (usbcdc.c,
usb.c and usbisr.c) and the application space that the developer can focus on
(usbcdc_constructs.c, usb_eventHandling.c and descriptors.c/h)
For handling data in and out the interface we are interested in two recommended
application level functions [68]:
- sendData_inBackground(BYTE* dataBuf, WORD size, BYTE intfNum, ULONG ulTimeout)

- receiveDataInBuffer(BYTE* dataBuf, WORD size, BYTE intfNum)

Interrupt handling resides within the API layer but interrupts can be handled at
the application layer through events that can be thought of as the same as an inter-
rupt. Handler functions for each event are defined by the API in application space.
When some new data is available the corresponding event handler calls textttpro-
cess_sync(..) to inform the USB process about it.
Regarding the clock System MSP430 devices supporting USB include a PLL that
sources from an external high-frequency crystal. The API function call needs to be
informed of the frequency the crystal oscillator is operating in order to configure the
internal PLL.
Among other changes the pins distribution in the hardware layer had to be associated
to that of the MSP430F5519 pin map.

6.5.4. RFID driver

The TRF7960 is a flexible and highly configurable RFID front-end chip and data
framer at 13.56 MHz. It provides selectable protocols, auto-configuration modes, user pro-
grammable registers, selectable output power, adjustable band-pass filter, variable input
voltage from 2.7 V to 5.5 V, parallel (8-bit) and serial (4-bit SPI) communication inter-
faces, etc. A set of built-in programming options make this chip very versatile.

Many features can be selectable by the developer (clock frequency, power modes, voltage
of operation range, communication interface, modulation or protocol) by setting the control
register available in the chip. The TRF7960 needs to be operated through the MSP430
micro-controller via an SPI serial bus or in parallel, the platform hardware has been designed

102 CHAPTER 6. IMPLEMENTATION OF THE PLATFORM

to support both options but on the current version of the software only parallel support is
implemented.

A driver handling the data for the different supported protocols is freely provided by
Texas Instruments (TRF7960 Firmware Source Code for CCS - sloc203), but it has to be
adapted and optimized to the specific desired options and integrated into Contiki. The
firmware provides a hardware abstraction library (HAL), implementations of the supported
protocols (see Chapter 5) and an loop application.

The hardware functions located at hardware.c are adapted for the platform hardware
by configuring the parallel ports, enabling the interrupt port and associating the interrupt
handler, selecting the clock source and configuring a timer. It has been previously decided in
Section 4.6 that Tag-It protocol will be the only one implemented on the current prototype.
It is implemented at tiris.c by a function that read on the 16 possible slots on the
protocols. There is a 20 ms waiting time on each slot with and additional 20 ms time for
initializations. More about the implementation can be read at the firmware description of
the TI TRF796x [58], the implementation description of Tag-It protocol [59] or looking at
the actual code implementation.

When data is available it should be handled by a protothread, delivered to the security
application and sent out via USB interface so that the user is aware of it and can be
authorised. Therefore, the main function of the provided Tag-It implementation need to be
adapted to the processes framework in Contiki.

6.5.5. Other drivers

As it was mentioned in the overview of the platform the clock module is a basic part in
Contiki that timers are based on. We should provide the value for a defined constant
(CLOCK_CONF_SECOND) with the duration of a second in system ticks.
The MSP430F5519 has three clock signal (MCLK, SMCLK and ACLK) that can be
sourced from external crystals or the internal micro-controller’s oscillator VCO, but
external crystals are considered more stable [51]. In the platform design MCLK and
SMCLK are sourced from a external 32 MHz high-frequency crystal and ACLK from
a 32,768 Hz external crystal. The MCU is running referenced to the MCLK external
source and the Timer modules are using the ACLK as source. ACLK frequency is
divided by 8 for Timer A (32768/8 = 4096 HZ) Hzand it is configured to execute the
interrupt routine every 256 cycles (not too high, not too low) so the timer expires
once every (1/4096) * 256 = 62.5 ms (1/16) that is the time of a tick. Therefore
CLOCK_CONF_SECOND should be 16 since that is the number of times that the timer
should execute the routine to fulfil one second.
Additionally, a variable holding the number of ticks is also needed (clock_time_t), a
initializing function for the clock module (clock_init()) that initializes the ACLK,
set the divisor and the timer interrupt. Two more functions returns the number of
system ticks and the number of seconds since the boot up of the system (clock_time()
and clock_seconds() respectively). See msp430_arch.c

6.6. NETWORK 103

There are two buttons in the platform that are useful for testing or for future designs.
Each button has two functions returning zero when the button is not pressed and
other than zero otherwise. A function permits Contiki processes to be attached and
listen on the buttons status. When a button is pressed, the registered processes gets
notified. This allows for external interaction on running processes. See buttons.c.

Several function are provided to turn on/off or toggle thres LEDs (red, yellow and
green) at leds_torrija.c

Some other functions for writing or erasing directly on specific flash memory addresses
is also provided under mem_arch.c.

Figure 6.6: Protocol stacks. This figure shows the abstraction layers that allow the com-
munication between the different modules.

6.6. Network
The implementation of the platform uses the IPv6 Contiki stack to establish IP commu-

nication between nodes. On a lower level the IEEE 802.15.4 MAC layer is implemented by
Contiki’s "sicslowmac" and partly TI radio firmware. It sets link-layer addresses on outgoing
packets and parses headers from incoming packets to send them to upper 6LoWPAN layer.

Regarding the 6LoWPAN implementation, Contiki handles traffic in this way:

104 CHAPTER 6. IMPLEMENTATION OF THE PLATFORM

For incoming traffic, packets are decompressed by the 6LoWPAN layer and handled
in to the TCP/IP process.

For outgoing traffic, the 6LoWPAN layer compresses the IPv6 packet header and it
is forwarded to the MAC layer.

6LoWPAN: is an adaptation layer that allows IPv6 communication over IEEE 802.15.4
links in an efficient way. It is meanly performing header compression in our imple-
mentation, fragmentation for example is not enabled. The IPv6 header fields are
compressed from 40Bytes of into 2 Bytes of 6LowPAN header. These fields can then
be inferred from a packet when the adaptation layer obtains them from link-level in-
formation carried in the 802.15.4 frame. But it can also be elided based on shared
context assumptions.
Regarding the 6LoWPAN implementation, Contiki handles traffic in this way:

For incoming traffic, packets are decompressed by the 6LoWPAN layer and han-
dled in to the TCP/IP process.
For outgoing traffic, the 6LoWPAN layer compresses the IPv6 packet header and
it is forwarded to the MAC layer.

Addresses configuration: In order to establish network links between nodes, the first
problem is to resolve network addresses. Typically in the case of IPv4 traffic, ARP
protocol is used to perform link-layer address resolution. It determines link-layer
addresses based on the destination IPv4 address of packets. Nodes build an ARP
cache then with the learned address for next received messages. IPv6 on the contrary
does not need address resolution on the link-layer, a Neighbor Discovery protocol [36]
is defined and implemented in Contiki. It performs auto-configuration of addresses,
duplicate address detection or determine neighbors link-layer addresses.
When a node wish communicate within a network it first sends a multicast neighbor
solicitation message with a tentative link-layer address (pre-defined on each node and
on the RFID corresponding tag). If no advertisement message is received then it
considers the link-layer address as unique and builds the IPv6 address from it. Then
other nodes can infer link-layer addresses from IPv6 addresses.
It is important to mention that we are assuming that all nodes will have a unique
link-layer address (also readable from the RFID tag) so there will be no conflict of
addresses.

Star topology: For the first version of the WSN it was decided to configure a star topology
that could be scalable to more complex topologies in the future (see Chapter 4).
Nodes are therefore only implementing basic IPv6-6LoWPAN links controlled by the
gateway. The network could easily be extended to a mesh network by enabling some
of the nodes to act as IPv6 routers, this could be done by enabling the RPL routing
protocol implemented in the Contiki stack.

6.7. APPLICATION 105

UDP: CoAP requires UDP protocol to work and both implementations are also available
in Contiki. The reason for using UDP instead of TCP protocol is that TCP is not
suitable for short-lived request/response models. The first handshake to establish
communication can take some time on low duty cycle radios. It introduces a long
overhead compared to UDP header, and that is important in such short IEEE 802.15.4
radio frames (128 bytes).

Coap: The CoAP protocol is based on a REST architectural style similar to HTTP but
lightweight and adequate to constraints networks. The CoAP application layer is
implemented by means of a Contiki processes (either in the client and the servers) that
handles the incomming IP packets and the UDP sockets connections. It is explained
in detail in section 6.7

6.7. Application
The application layer conform the logic that handles all the incoming and outgoing data

within the gateway. It makes possible to accomplish the goals that have been proposed for
this Thesis.

The application layer can seen as a group of applications with their own purpose, acting
in different phases and interacting independently with different modules in the architecture.
In this sense we can have an application in charge of booting up the system and setting
all the modules up, providing the necessary configuration for them. Another application in
charge of the security, encryption and recognition of new nodes via the RFID reader. A
CoAP client application receiving external orders from the USB in order to perform requests
to a CoAP server and a similar application that sends responses outside the gateway through
the USB interface.

6.7.1. Bootstrapping

At bootstrap time all the modules composing the gateway need to be initialized in a spe-
cific order, starting with the microprocessor internal elements, peripherals, communication
ports and radio modules. Once the hardware is ready the Operating System can initialize
the processes module, the netstack and finally the application processes reading from the
USB port, reading RFID tags and the CoAP client. The complete sequence is implemented
in the main function that can be found in the contiki-torrija-host-main.c file. It has
additionally been attached in Apendix B at the end of this document.

1. Initialize micro-controller: stop the watchdog, select clock sources, wait until clocks
are stable, reset pins...

2. Initializes the clock library and the ticks counter (needed for timers)

3. Clear buffers, initialize uIP variables, create a MAC address based on a unique id
(it is obtained from the manufactured wafle writen in the chip). The sicslowmac

106 CHAPTER 6. IMPLEMENTATION OF THE PLATFORM

layer and the radio require this mac address that will be placed in the global variable
rimeaddr_node_addr (declared in rimeaddr.h).

4. Sets the link layer address (Should be done before the tcpip_process is started since
the default IPv6 address will be set by combining the link local prefix (fe80::/64)and
the link layer address inside uip_init() function.

5. Initialize other peripherals: buttons, leds (they inform about the current state. Only
green will be on if the initialization squence is successful)

6. Initialize USB and check state (the user can get useful information about the state of
the gateway in real time)

7. Initialize the process module

8. Start radio and radio input process

9. Initialize stack protocols

10. Initialize tcpip process

11. Initialize applications: rfid to find tags, usb input process and coap client.

12. Enter main loop: a while loop where the function process_run() continuously poll
every process that requested to be polled.

Within the general boot-up sequence there are specific and important boot-up operations
that are performed inside some modules. For the radio, the RFID chip and partly the USB
interface the sequence is very similar:

1. Initialize interface pins

2. Initialize communication port (SPI, parallel)

3. Check hardware: voltage regulators, oscillator is stable...

4. Write non-default register values

5. Register interrupt handler

6. Enable reception

Considering the radio, before the gateway starts building up the network, the radio must
take care of some task at the physical level: scan the radio environment to find occupied
channels and other networks, choose appropriate channel, select a network identifier (PAN
id) and select a node address. The last two are mandatory and they are selected previously
by the developer: the network identifier is a 2 bytes number that must be common for all
nodes and the node address is obtained from the previously set rimeaddr_node_addr. The
functionality regarding the channel selection is optional and the implementation is available
in our code.

6.7. APPLICATION 107

6.7.2. Input data

Data is going in and out the gateway in three different ways, through a radio, through
an RFID reader and through a USB interface. Each of them need a process to handle the
data that is being received. In case some data needs to be sent out, the corresponding
application directly sends the data using the driver library functions. The TCP/IP process
is in charge of sends network packets to the radio driver. The CoAP client process sends
out messages to the USB interface in case some requested sensor data has been received or
if the RFID a tag has been found by the RFID process.

The radio process (cc2520_process) handles the input packet received on the radio
interface by using a polling mechanism. It expects to be polled when packets are
received to perform an action. All processes that have been requested to be polled
are scheduled by the Contiki kernel. In case a packet is received on the radio driver
the interrupt handler causes the radio cc2520_process to be polled by means of the
process _poll(&cc2520_process) function.
The process declares a poll handler function radio_pollhandler() (by means of
the macro PROCESS_POLLHANDLER()) that is called when the process is polled by the
scheduler. There is an option to declare a function as an exit handler not used in this
case. When the process begins it requests to be polled to make sure it happens at
least once, then it waits until it receives an event to exit.
The function radio_pollhandler() check if there is a some data pending to
be read on the input buffer , it reads and stores the data in a packet buffer
cc2520_read(packetbuf_dataptr(), PACKETBUF_SIZE) and passes the packet to
the upper level in the Contiki stack NETSTACK_RDC.input() where it will be han-
dled by the TCP/IP process.

PROCESS(cc2520_process , "cc2520␣process");
PROCESS_THREAD(cc2520_process , ev , data)
{
PROCESS_POLLHANDLER(radio_pollhandler ());
PROCESS_EXITHANDLER(_nop ());

PROCESS_BEGIN ();

process_poll (& cc2520_process);
PROCESS_WAIT_EVENT_UNTIL(ev == PROCESS_EVENT_EXIT);

PROCESS_END ();
}

Figure 6.7: Radio process to handle input packets

The USB process works in a similar way than the radio process. It declares a process
handler (usb_pollhandler()) but there is no need for an exit handler. Once the

108 CHAPTER 6. IMPLEMENTATION OF THE PLATFORM

process starts it sends a poll request for itself to make sure it is executed at least once
and then it just waits until it receives a termination request. Every time a character
is received by the USB driver the routine software sends a request for the USB process
to be polled.

When the process gets polled the function usb_pollhandler() checks that some
data is in the usb buffer by checking the flag bDataReceived_event. The data is
read receiveDataInBuffer((pieceOfString,MAX_STR_LENGTH,1) and stored (con-
catenated) into a global string buffer and echoed back to the interface (it will be
shown to the user on the screen). This is continuously done until the Return char-
acter is pressed (0x0D), if a New line is found (0x0A) or until the buffer has reached
the size limit MAX_STR_LENGTH. If this happens, an even is sent to the CoAP client
process where the input message will be processed as a CoAP packet by calling
process_sync(..). Finally the flag is set to false, the buffers are cleared and the pro-
cess is polled again in case some new data is available during the previous execution
with process_poll(..).

PROCESS_THREAD(usb_input_process , ev , data)
{
PROCESS_POLLHANDLER(usb_pollhandler ());
PROCESS_EXITHANDLER(_nop ());

PROCESS_BEGIN ();

process_poll (& usb_input_process);
PROCESS_WAIT_EVENT_UNTIL(ev == PROCESS_EVENT_EXIT);

PROCESS_END ();
}

Figure 6.8: USB process that receives input data

For the RFID reader, the procedure to detect tags in the near field it is quite complex
especially if the anti-collision algorithm is required [58] [59]. It also depends on the
external conditions. Reading a tag implies that the user get the tag close enough
to the reader and during a certain time so the reader can read all the data from it.
Moreover, if other tags are present at the same time in the proximities an anti-collision
control needs to filter the data from each tag. To sum up, reading a tag needs a big
amount of time compared to the other functions of the gateway. In order to avoid
the RFID to consume most of the CPU time and constantly block other processes,
the RFID process is scheduled once every 500 ms. They way to do that is by means
of two processes yielding each other. One process being in charge of establishing the
timer rfid_find_tags and another executing the actual sequence and algorithms to
read the tags.

6.7. APPLICATION 109

PROCESS_THREAD(rfid_find_tags , ev , data)
{

static struct etimer find;
PROCESS_BEGIN ();
proc_register (& rfid_find_tags);
initial_settings (); // Set Port Functions for Parallel Mode
process_start (& tagit_inventory_request , NULL);

while (1){
etimer_set (&find , CLOCK_SECOND /4);
PROCESS_WAIT_EVENT_UNTIL(etimer_expired (&find));
red_led_off(LED_RED);
etimer_set (&find , CLOCK_SECOND /4);
PROCESS_WAIT_EVENT_UNTIL(etimer_expired (&find));

start_find_tagit ();
process_post (& tagit_inventory_request , PROCESS_EVENT_CONTINUE , data);
PROCESS_WAIT_EVENT_UNTIL(ev == PROCESS_EVENT_CONTINUE);
end_find_tagit ();

}
PROCESS_END ();

}

Figure 6.9: RFID process that schedules the tag reading

Since the code of both processes is quite large, we are shortening them just showing
the most important parts of the functionality and commenting other parts. In brief
rfid_find_tags process initialises the communication between the reader and the
micro-controller, starts the tagit_request process that implements the protocol to
read the tags and enters an infinite loop. Inside the loop the process waits half a second
before starting the reading, then it yields control to the tagit_request process and
waits until it returns control. Eventually rfid_find_tags closes disables the reading
on the RFID chip and restarts the loop again.
The reading sequence implemented by the tagit_request process is a bit more com-
plex. Basically it starts by waiting for the rfid_find_tags process to yield control.
Once it gets scheduled the initial functions prepare the buffer, set reader options for
the Tag-it protocol and once it is ready it check the different slots defined by the
protocol where the tag might be transmitting the data. If data is received it is pro-
cessed, the led is turned on, a message is sent to the USB interface and the security
application stores the data as a node MAC address to be filtered in the network com-
munication. If a collision occurred the antin-collision algorithm tries to recover the
data or there is a timeout on the slot, it jumps to the next slot. At the end the control
is yielded to the rfid_find_tags process.
At the beginning of both processes the function proc_register(..) registers each
process each time they are scheduled. This is useful for the interrupt routine, whenever

110 CHAPTER 6. IMPLEMENTATION OF THE PLATFORM

PROCESS_THREAD(tagit_request , ev , data)
{
/* Declaration of static variables */
PROCESS_BEGIN ();
proc_register (& tagit_request);

while (1){
// Wait until rfid_find_tags process let it continue :
PROCESS_WAIT_EVENT_UNTIL(ev == PROCESS_EVENT_CONTINUE);
// Get the reader prepared : Prepare buffer , set options ,
// send command "RESET", Continous Mode ...
// Wait for end of TX interrupt
// The Tag -it protocol defines 16 slots to be read
for(i = 1; i < 17; i++){

// Wait for RX complete :
while((i_reg == 0x01)){

etimer_set (&i_r , CLOCK_SECOND /16);
PROCESS_WAIT_EVENT_UNTIL ((ev == PROCESS_EVENT_TIMER)||

(ev == PROCESS_EVENT_CONTINUE));
}
if(i_reg == 0xFF){...} /* received SID in buffer */
else if(i_reg == 0x02){...} /* collision occurred */
else if(i_reg == 0x00){...} /* slot timeout */

}
// If a tag is found turn red LED on , send message to USB interface
// and perform other actions .
// Post continue event to the rfid_find_tags process when finishing

}
PROCESS_END ();
}

Figure 6.10: RFID process that detects and read data from the tag.

is detects a tag it will post a continue event and the IRQ status to the process that is
registered at that moment so the data can be processed:
process_post(registered_proc, PROCESS_EVENT_CONTINUE, &Register[0])

6.7.3. CoAP

The application handling the sensor data is based on client-server model provided by
CoAP that is at the same time based on a REST model where servers define resources
under a URL that are publicly available. These resources are accessible by clients using
well-known methods such as GET, PUT, POST or DELETE.

A preliminary version of CoAP based on the Internet draft core-coap-04[71] by the
IETF is available in Contiki 2.5. It implements a client and a server each of them running
on a Contiki process.

The gateway is hosting a client process that requires four functions:

6.7. APPLICATION 111

void handle_incoming_ip_data() checks that there is new data waiting to be read
(uip_newdata()), initializes and allocates a buffer of a defined CoAP packet size
and stores it. Then it parses the message and fills it into a CoAP packet struc-
ture (coap_packet_t*). If the packet is a valid CoAP packet it is passed to the
response_handler. The buffer is eventually deleted.

void response_handler(coap_packet_t* response) gets the payload from the re-
sponse message, stores it and sends useful information to the USB interface.

void handle_incoming_usb_data() checks that new data is available at the USB
buffer and allocates a buffer to store the string data of MAX_STR_LENGTH size. Then
it allocates memory for the CoAP packet the message and parses the message. The
CoAP packet structure is filled with the parsed data obtained from the string mes-
sage and it is passed to the send_data(coap_packet_t*) function. The buffers are
eventually deleted.

void send_data(coap_packet_t* request) check that the CoAP packet is valid
and fills missing fields such as the etag option, sequence number or other op-
tions for internal use if possible. A new UDP connection is established with
udp_new(&server_ipaddr, UIP_HTONS(REMOTE_PORT), NULL) and udp_bind(client_conn,
UIP_HTONS(LOCAL_PORT)) with the server with the parsed address. The packet is
moved into a MAX_PAYLOAD_LEN buffer and it is sent to the remote server through
the client UDP socket connection using uip_udp_packet_send(client_conn, buf,
data_size).

PROCESS_THREAD(coap_client_app , ev , data)
{

PROCESS_BEGIN ();
while (1) {

PROCESS_YIELD ();
if (ev == usb_event) {

handle_incomming_usb_data ();
} else if (ev == tcpip_event) {

handle_incoming_ip_data ();
}

}
PROCESS_END ();

}

Figure 6.11: CoAP client process waiting and handling incoming messages from the USB
interface and the TCP/IP stack.

The client process shown above is simply an infinite loop that waits until two kind of
events are received. In case some data is received from the USB interface a usb_event is
received by the coap_client process. Then the function handle_incomming_usb_data()

112 CHAPTER 6. IMPLEMENTATION OF THE PLATFORM

process the data and send a message to a CoAP server if necessary. If a packet has been
received from the network then the coap_client process should received a tcpip_event
and call handle_incoming_ip_data() to handle the packet.

Typical CoAP REST messages are described in section 4.7. Below is the prototype of
a typical message that could be receive by the USB interface. It is similar to the scheme
followed by web browser:
coap://<server_address>:<port>/<resource_name>?<action>

The sensor nodes act as servers for the application. As it has been mentioned in previous
sections, the design and development of the sensor boards is not part of this Thesis, but
the design of the application is. In that sense this Thesis has to provide the framework and
mechanisms over which the application is built. In the case of the sensor boards that is to
install a CoAP server on each node providing a set of resources that should be accessible
within the network.

The server application is also built on a Contiki process. This process requires resources
that are be activated within the process. These resources are representations of the data
obtained by the sensors or actuators that performs an action in the system (e.g. a switch
turning on/off a LED).

Resources can be of three different types:

Basic resources that return a value or perform a task at a certain moment.

Periodic resources that periodically return data within a defined interval.

Observable resources that the clients can subscribe to so they can receive an status
every time there has been a change in the resource.

At least for this prototype and for easier testability and design we are only defining
basic resources and periodic resources. The sensor boards integrate different sensors in it:
light, temperature, humidity, a battery meter and an accelerometer, all of them represented
as resource on the board that can be accessed via a URL. As additional resources there is a
LED that can be toggled, a discover resource that is the default resource located at generic
/.well-know/core URL providing a list of available resources.

Each basic resource requires a [resource name]_handler function to read the sensor
data or perform an action, build the payload and send out the CoAP message. There
are different formats that can be used to represent the data. In this Thesis we are using
plain text format for the sensor data representation and application link format for
the discovery resource whose main function is to provide a list of the available resources
URI:s hosted by the server.

Periodic resources are declared by means of the macro:
PERIODIC_RESOURCE(<resource>, <REST_METHOD>, "<resource>", seconds)

It requires a <resource name>_periodic_handler function to perform an action and
also a <resource name>_periodic_request function that generates the response CoAP

6.7. APPLICATION 113

RESOURCE(discover , METHOD_GET , ".well -known/core");
void discover_handler(REQUEST* request , RESPONSE* response)
{

char payload[MAX_PAYLOAD];
uint8_t index = 0;

index += sprintf(payload + index , "%s,", " </lit >;n=\"L\"");
index += sprintf(payload + index , "%s,", " </tmp >;n=\"T\"");
index += sprintf(payload + index , "%s,", " </hum >;n=\"H\"");
index += sprintf(payload + index , "%s", " </bat >;n=\"B\"");

rest_set_response_payload(response , (uint8_t *)payload , strlen(payload));
rest_set_header_content_type(response , APPLICATION_LINK_FORMAT);

}

Figure 6.12: Default discovery resource.

RESOURCE(toggle , METHOD_PUT | METHOD_POST , "toggle");
void toggle_handler(REQUEST* request , RESPONSE* response)
{

led_toggle(LED_RED);
}

Figure 6.13: Example of a simple resource accepting PUT and POST methods and toggling
a LED upon request.

packet and sends it to the client that requested the periodic resource. This is done every
time the timer declared internally by the period resource macro expires.

Periodic resources are not recommended for future development, only used for proto-
typing reasons. They are replaced by the observable resources that are currently under
discussions for standardization by the IETF and not fully implemented and tested by the
current version of Contiki. The CoAP server process initializes the REST framework and
starts the COAP process. Those basic or periodic resources wanted to be accessible should
be activated with the rest_activate_resource functions as shown in 6.14

When building response packets it is important to consider the available payload size
in CoaP. The size of a single IEEE 802.15.4 frame must be 127 octets. The link layer
header size depends on several variable factors such as compressed/uncompressed PAN id,
short or long of addresses are used, addressing modes, or if security is enabled. Typically
802.15.4 MAC header can be up to 25 octets (no security) or 25+21=46 octets (with AES-
128 encryption). Additionally 40 octets are consumed by the IPv6 header, but with fully
HC2 6LoWAN compression it can be reduced up to 2 octets. Another 8 bytes correspond
to the UDP header. Finally the CoAP header consumes a variable length depending on the
requested options with a mininum of 6 bytes. We can estimate a maximum payload size of
127-46-2-8-6 = 65 bytes very likely to be inferior.

114 CHAPTER 6. IMPLEMENTATION OF THE PLATFORM

PROCESS(coap_server_app , "CoAP␣Server ␣Appl i ca t ion ") ;
AUTOSTART_PROCESSES(&coap_server_app) ;
PROCESS_THREAD(coap_server_app , ev , data)
{

PROCESS_BEGIN() ;
r e s t_ i n i t () ;
r e s t_act iva t e_re source (&resource_togg l e) ;
r e s t_act iva t e_re source (&re source_d i s cove r) ;
r e s t_act iva t e_re source (& re sou r c e_ l i gh t) ;
r e s t_act iva t e_re source (&resource_temperature) ;
r e s t_act iva t e_re source (&resource_humidity) ;
r e s t_act iva t e_re source (&resource_acce l e romete r) ;
r e s t_ac t iva t e_per i od i c_re source (&pe r i od i c_re sou r c e_ l i gh t) ;
r e s t_ac t iva t e_per i od i c_re source (&per iod ic_resource_temperature) ;
r e s t_ac t iva t e_per i od i c_re source (&per iod i c_resource_batte ry) ;
PROCESS_END() ;

}

Figure 6.14: CoAP server application activating a group of simple resources and periodic
resources.

6.7.4. Security

The security application is providing a very basic functionality in the first version of
the prototype. Every time a reader detects a tag the read data is identified as a node
link address and it is stored in a specific area of the permanent (flash) memory using the
MSP430 functionality. Every time a packet is received, it is filtered according if the link
address is not present in the table.

A second version associates this table to the table of addresses generated from the IPv6
neighbour discovery mechanism, allowing only the addresses in the permanent table.

Another proposal is to associate the information in the tag with a security key that can
be exchanged for encryption purposed but it is not implemented in this prototype.

Finally, also optional but available in the code, every time a packet is sent/received
it can be encrypted/decrypted by the radio module built-in encryption mechanism with a
default key that is the same in all the devices. It increases the header size of the link layer
frame but we secure the data exchanged by the nodes. The fact that the key is common for
all manufactured devices generates a security risk in case the key is discovered. A solution
to this would be to store individual keys on the RFID tag of the nodes so the gateway can
read them and perform individual encryption to the corresponding nodes.

Chapter 7

Results and Conclusions

7.1. Results

This section briefly describes and give some comments about the results obtained after
the design and implementation of the platform and the deployment of the Wireless Sensor
Network. It analyses what have been achieved and if the objectives and requirements
proposed in Chapter 2 have been fulfilled.

7.1.1. Hardware

Once the hardware boards were finished all parts and modules and were tested prior to
the integration of Contiki into the micro-controller. Starting with small programs to test
simple parts such as clock frequencies, LEDs, buttons, voltages or power consumption. The
next step was developing the firmware of the radio, USB and RFID modules individually
based on the vendor firmware and test them separately.

As a result of all tests performed on the hardware we concluded that it is stable and
suitable for the platform development. Moreover, it is also very versatile since it is provided
with extra elements for future use such as three LEDs (red, yellow, green), two buttons
connected to interrupt capable ports, switchable connectivity port serial(SPI)-parallel be-
tween the microprocessor and the RFID module, a BSL circuit for programming the device
directly from the USB, different types of power resets (full or only modules) provided by pin
connectors, selectable power source for the micro-controller and connectivity for selecting
different RFID and 2,4GHz antennas.

Low cost has been achieved concerning the gateway with a price that is approximately
10 USD for the prototype considering only the main chips. It can increases up to 15 USD
adding the prices of passive components. A price that can be easily reduced if manufacturing
on a large scale. The price of sensor boards is even cheaper since the features of the micro-
processor can be simplified and they do not integrate an RFID reader or USB module,
however they are not part of our study [3].

Slow processing capability: was one of the constraints to overcome but it has been

115

116 CHAPTER 7. RESULTS AND CONCLUSIONS

showed that a 8-bit micro-processors running at 16 MHz is capable of handling the network
and the client application and the external connectivity in the gateway. We detected wrong
behaviours and bad performance running at 8 MHz.

Small data storage capacity: the chosen MSP430F5519 micro-controller has 128 Kb
of flash and 16 Kb of RAM. The code footprint with basic compiler (-O3) optimizations
consumes approximately 62 Kb but it can be improved as well as the memory consumed at
execution time.

Efficient energy management: the radio transceiver and microprocessor may be put
on sleep mode at some intervals of time depending on the application needs either in the
gateway or in nodes.

7.1.2. Network communication

The network connectivity is mainly provided by Contiki. Only IPv6 is used with 6LoW-
PAN compressed headers. Neighbor Discovery implementation is used to detect other nodes
and the link layer is partly provided by the MAC implementation in Contiki, the firmware
provided by Texas Instruments for the CC2520 radio and our adaptation.

The functionality within a local network scope has been tested: the filtering of radio
channels, selection of a network id, startup to IPv6 stack, discovery of nodes, set of network
addresses and direct communication between the sensor boards and the gateway has been
successfully achieved (ICMPv6 protocol is also enabled).

It is convenient to remind that the current implementation only considers a star network
topology. A hybrid and mesh topology is a future target and can be achieved by enabling
routing protocols (like RPL) on the nodes. The star topology is in place and nodes can
communicate directly with the gateway. The Neighbor Discovery protocol implemented in
Contiki was tested on wireshark using one of the boards as a network sniffer and it works
well.

Address autoconfiguration (stateless configuration of network interfaces addresses) and
address resolution (to map link-layer addresses and local IPv6 addresses) are successfully
performed [36]. There was also a test performed using IPv6 global public addresses but not
in this platform that was also successful.

It has not been possible to test maximum data rate and throughput due to dependencies
with the sensor nodes. Typically WSNs data rate values are a few tens of kilobits per
second and the behaviour is usually irregular depending on the environment interaction
with frequent periods of bursty traffic. The IEEE 802.15.4 radio link supports a maximum
theoretical rates of 250 Kbps of raw data. It has not been possible to determine data rates or
throughputs due to dependencies with the sensor nodes but we can refer to other platforms
also using Contiki, the same protocol stacks and CoAP based application. If eliminating
protocol over-heads, and considering the constraint of the hardware, limited processing
capabilities, etc. the typical throughputs achieved in networks with a similar configuration
varies from 20 kbps to 100 kbps depending on packet size and number of nodes [26] [25].
Contiki based networks obtains similar results than typical WSN values from 10 Kbps - 60
Kbps [42]. The requirement for the WSN is to support a maximum of 32 kbps throughput.

7.1. RESULTS 117

The network can be considered self-organized since it uses standard TCP/IP stack and
supports IPv6 mechanisms for neighbour discovery and auto-configuration of addresses. It
can also support routing. Only the action of the user is required to physically authenticate
sensor boards and request the desired information to node.

Since it uses IPv6 stack, the network can be scaled to a worldwide network if it can
be accessed externally. This feature is not implemented but it is possible using Ethernet
connectivity [6].

The network has been designed primarily with a star topology useful in indoor environ-
ment where links do not require long distances. The protocols does not limit the number of
nodes but it has a physical limit due to the memory restrictions since nodes keep a cache
table with network addresses and a context.

7.1.3. USB interface

The USB module is integrated in the MSP430F5519 micro-controller and therefore no
extra hardware is required except of course the one concerning physical connection. The
firmware is provided by Texas instruments with support for different USB Device Classes
[65] [68]. In order to reduce the code footprint it was modified to only give support to the
Communication Device Class (CDC) and later integrated into the Contiki process frame-
work to handle input messages.

The interface has been tested isolated from the complete system using either HyperTer-
minal Version 5.1 onWindows XP SP3 or directly reading and writing to the /proc/bus/usb
interface in Linux Ubuntu 12.04 LTS (Linux kernel 2.3.15) with successful results.

The integration with Contiki and the rest of the applications is more complex. The USB
input process is polled every time there is data to be read, then it has to compose the full
message and send it to the application process for parsing and delivering to the network.
There is also a waiting time since the interface needs to be ready when sending messages
outside.

The gateway USB interface can act as a client for the bus. The USB connection can
deal with high data rates (over 64 kbps at least) and it is convenient in the case that burst
of information are delivered by the nodes at a certain moment due to some events. The
requirement for the USB is the same as for the WSN to support a maximum of 32 kbps
throughput.

7.1.4. RFID and security

The RFID module is intended to be used as part of the security application, but its
functionality has not been fully exploited in the current version of the gateway.

Security for the platform can be provided by means of RFID node identification and
optional packet encryption on the radio MAC layer.

It is implemented by means of an external RFID reader TRF7960 by Texas Instrument
who also provides a firmware. Similarly to the USB firmware, it has been reduced to pro-
vided just the required functionality. In this case, the firmware provides an implementation

118 CHAPTER 7. RESULTS AND CONCLUSIONS

for different protocols [58] but only Tag-It protocol is supported. It works successfully in-
dependently from the system but the default reading functions consume a long time (in the
order of 100 milliseconds) compared to rest of the applications.

The RFID firmware library was integrated into the Contiki framework to make it avail-
able through processes. A tag-reader process is scheduled by another process (RFID sched-
uler) after a certain period (500 ms was considered enough time for the user interaction),
avoiding the reader-process to run consecutively consuming large amounts of time. The
RFID reader gets active only once every 500 ms so the problem of starvation of other
processes is fixed by this mechanism of two processes.

Tag-it TI tags that can store up to 256 bits of configurable user data and a UID Number
of 64 bits. That is considered enough for the security application.

7.1.5. Sensor application

The main application consisting on the REST client-server CoAP model was tested lo-
cally using different type of resources (sensors, LEDs and discover) on the server node and
a gateway client installed on the gateway. Application packets that needs to be sent out to
the nodes also are handled by the CoAP client process and directly delivered. Application
packets received by the TCP/IP process are delivered to the CoAP application and eventu-
ally sent out through the USB interface. These two paths of communication are successfully
working.

The gateway sends CoAP requests as an action from previously parsed messages re-
ceived on the USB interface. Direct CoAP requests sent from the gateway to the node
receive proper CoAP responses with the data requested (discover resource, get sensors data,
periodic requests) or confirmation of an action performed (toggle a LED) on the node, so
it is proven successfully.

The application works correctly on a small scale but it have not been tested with a
big number of sensors. In order to extend the test scope of the application and verify
the integration of the local network into the real Internet-of-the-Things world we used the
6LoWAN proxy platform developed in [6]. It is a gateway using Ethernet connectivity and
IPV6 on one side and 6LoWPAN based wireless that allows the nodes to get public global
IPv6 addresses (IP addresses are constructed from an link-local address of the boards and
a prefix given by the IPv6-compliant router at Wireless@KTH lab [1]) and be accessed
remotely from outside the network. This opened the possibility of testing the server nodes
from a remote client application. This was done with the help of a add-on for Mozilla
Firefox version 4.0 called Copper (version 0.8.0) [79] [80] that implements a CoAP client
[71]. Copper supports URI handling for the CoAP scheme, implementation of RESTful
methods (GET, POST, PUT, and DELETE), resource discovery, blockwise transfers and
observing resources. As a result we were able to run CoAP servers on sensor devices with
public IPv6 addresses communicating with the remote Copper CoAP client, proving that
the application can be scaled to massive networks.

7.2. CONCLUSION 119

7.2. Conclusion
It has been a long journey since the proposal of this Thesis until its finalization and many

obstacles had to be overcome along the way. The huge amount of information, hardware
devices, technologies, protocols and tools available in the market made the research of
the optimal platform a tough problem. Moreover, the design of both the hardware and
the software planes in parallel increases dramatically the complexity of the design and it
becomes a source for instability, uncertain failures and multiple types of errors. However,
it provides a great degree of freedom in the design allowing the most optimal combinations.

On the other hand the advantages gained from such complexity compensates for the
hard work. On one side the rich knowledge and experience achieved in different fields of the
embedded world (micro-controllers, low-power radios, RFID readers, PCB design, software
architecture, constrained programming or debugging), also the possibility of participating in
the complete cycle of construction of an embedded device and deployment of a network and
of course the satisfaction of seeing it alive. We have gone through a conceptual design that
gave us insights of other platforms and technologies currently available in the market, costs,
trends. So we could look for opportunities for optimizations, improvements, minimization
of cost with maximum versatility.

A cost-efficient wireless sensor network with star topology using a simple client-server
model application and basic authentication of nodes has been achieved. That concludes
that the main requirement of this report has been basically fulfilled. Of course there is
still room for improvements, additional functionality and performance optimizations but it
has been proven the great versatility and cost-efficiency of the designed gateway platform
(and indirectly the nodes), the simplicity and scalability of the network using the standard
IPv6 stack, the flexibility of the CoAP application protocol and the potential of the RFID
module.

The search for a trade-off between costs, functionality and flexibility for the platform
consumed a vast amount of time. Much more efforts could have been put on the implemen-
tation of the software functionality, testing and debugging. Even though the results are still
acceptable these are tasks that need to be performed but that are considered at this point
as a future work.

Chapter 8

Future work

Even though the basic functionality and the primary challenges have been fulfilled,
there are still many improvements and updates that can be considered as a continuous
work. Moreover, other applications

General code improvements, testing and debugging of the different modules and the
applications can be done more exhaustively. Several risks have been observed that
can be mitigated.
There is a risk that the USB implementation blocks other processes and it is a potential
source of segmentation faults and memory leaks since it shares memory with other
processes and it has to handle external string inputs and different buffers.
The problem of the process starvation occurring in the RFID module is solved with
two processes scheduling each other after a certain time. However this module is still
considered a potential source of reading errors (collisions), segmentation faults, and
memory leaks for the same reasons as the USB module.
Due to time constraints at the time of design there was no opportunity for performing
exhaustive testing. The whole system running with all its modules enabled is not
stable and need some more debugging. A crash in the system was observed when
exhausting it with many packets, reading tags and using USB at the same time, as
well as a progressive decay in the performance along time in this situation.

In this version of the gateway a USB port is used for external communication towards
the network due to former requirements. A new version with an Ethernet interface
converting it into a compliant TCP/IP gateway would suppose a great advantage for
scalability and integration of the devices in the Internet with no need of computer
or adhoc messages through the USB interface. A working solution has already been
tested on a different but very similar platform developed by another Master Thesis
work [6]. This platform is a 6LoWPAN gateway that communicates externally through
an Ethernet interface and a with the local sensor network by means of a IEEE 802.15.4
compliant radio.

121

122 CHAPTER 8. FUTURE WORK

Several aspects can be considered to improve the security. Some actions need to be
engineered to be performed by nodes in order to keep them locked to only one network,
avoiding other networks created by other 6LoWPAN gateways in the vicinity. The
current implementation only read RFID tags to get MAC addresses from new nodes
and authorise them in the network, but there is a potential of security keys being
also shared this way to implement encryption and key exchange mechanisms such as
Diffie-Hellman. Some features of the CC2520 radio can be considered such as the
built-in encryption algorithms at link layer or the MAC filter that unfortunately is
limited to 12 long IEEE 802.15.4 link addresses [53]. To conclude, a implementation of
the Datagram Transport Layer Security (DTLS) [78] protocol can be also considered
for providing security on UDP level and hence CoAP.

Due to time constraints at the time of design there was no big opportunity for per-
forming exhaustive testing, so a proper and more formal testing is needed for each
component and from a black box perspective at a higher abstraction where the system
is seen as a whole. Different suites of test cases can be written for this purposes in
different languages. It would be also beneficial to perform some static and dynamic
analysis on the code and check the code coverage. The whole system running with all
its modules enabled is not stable and need also some debugging. Some system crashes
were observed in different situations as well as a progressive decay in the performance
along the running time.

Another big change that is proposed is a code update and re-factoring to the newer
Contiki 2.7 version (15 November 2013), including among other things severe bug-
fixes in the 802.15.4 framer, the ContikiMAC, the 6lowpan fragmentation handling,
the IPv6 stack and it supports the finalized standard proposal for CoAP [75](RFC7252
June 2014) called Erbium for Contiki[81]. It also provides additional functionality on
the IPv6 stack, it includes a new testing framework and support for new platforms.

Today nodes operate as simple hosts deployed in a star topology network. Installing
routing capabilities on some nodes would be needed to create more scalable mesh
networks. In order to do that, routing protocols such as RPL are available in Contiki’s
IPv6 stack.

Since the platform is just accepting basic CoAP messages as an input and receiving
raw data from sensor. In order to provide more functionality for interoperability, it is
a good idea to design and implement a set of commands to be available for the user on
the USB interface (in a similar way to the popular AT commands or the linux prompt
and command line). This would also allow the design of more sophisticated test tools
and graphical user interfaces (GUI) to present the sensor data, show the network
configuration, activate/deactivate nodes and more in a much nicer way. That can be
developed for any host SO where the board is connected. An additional improvement
for the USB firmware could be to implement HID instead of CDC since HID does

123

not require any kind of installation and the data rates event though lower, it is still
acceptable for the application (max 64kB/s).

With little modifications on the board, by removing the USB interface, adding a
battery as a power source and optimizing the software for low-power. The gateway
can be easily converted into a wireless 6LoWPAN-based RFID reader. It would act as
a server node in this case so the CoAP and the security applications should be modified
to convert it into a CoAP server with an RFID reader as an observable resource. The
construction of a portable multi protocol RFID reader based on 6LoWPAN opens a
wide range of possible future applications in the Internet of the Things world.

Bibliography

[1] Wireless@KTH Lab. KTH-Royal Institute of Technology. Stockholm, Sweden. 2015.
[Online]. Available: wireless.kth.se. [Accessed: 03- Jun- 2015].

[2] M. Smith. "Wasa Board Project", KTH-Royal Institute of Technology. Stockholm, Swe-
den. 2015. [Online]. Available: http://people.kth.se/~msmith/wasa/wasa_board_
project.html. [Accessed: 03- Jun- 2015].

[3] Joaquin Juan Toledo. "Wireless Sensor Architecture for a Home Event Managment
System". KTH Masters Thesis. Stockholm, Sweden. Jun 2015.

[4] Sotiris Falieris. "Sensor and actuator data fusion architecture for a home-event man-
agement system". KTH Masters Thesis TRITA number TRITA-ICT-EX-2010:64. KTH
ICT Dept., Stockholm, Sweden. Jun 2010.

[5] Lagnajita De. Application Framework for a Home Event Management System. KTH
Masters Thesis TRITA number TRITA-ICT-EX-2010:63. KTH ICT Dept., Stockholm,
Sweden. Jun 2010.

[6] Luis Maqueda Ara. "Neighbor Discovery Proxy-Gateway for 6LoWPAN-based Wire-
less Sensor Network". KTH Masters Thesis TRITA number TRITA-ICT-EX-2011:221.
KTH ICT Dept., Stockholm, Sweden. Oct 2011.

[7] ZigBee Alliance. ZigBee Specification. ZigBee Document: 053474r06, Version 1.0. Dec,
2004. [Online]. Available: https://docs.zigbee.org/. [Accessed: Jun- 2012].

[8] One-Net community. One-Net overview. Technical report, March 2008. [Online].
Available: http://www.one-net.info/. [Accessed: Mar- 2011].

[9] One-Net community. "One-Net: wireless control for everyone". [Online]. Available:
http://www.one-net.info/. [Accessed: Mar- 2011].

[10] Texas Instruments. "SimpliciTI Compliant Protocol Stack - SIMPLICITI - TI Software
Folder", 2011. [Online]. Available: http://www.ti.com/tool/SimpliciTI. [Accessed:
Jun- 2011].

125

wireless.kth.se
http://people.kth.se/~msmith/wasa/wasa_board_project.html
http://people.kth.se/~msmith/wasa/wasa_board_project.html
https://docs.zigbee.org/
http://www.one-net.info/
http://www.one-net.info/
http://www.ti.com/tool/SimpliciTI

126 BIBLIOGRAPHY

[11] Y. Yang , D. Flowers. MiWi Wireless Networking Protocol Stack. Technical re-
port: AN1066. Microchip Technology Inc., 2006. [Online]. Available: http: // www.
microchip. com . [Accessed: Jun- 2011].

[12] "TinyOS Official Site", 2013. [Online]. Available: http: // www. tinyos. net/ . [Ac-
cessed: Jun- 2011].

[13] JP. Norair. Introduction to DASH7 Technologies. Technical report 1st Edition.
Dash7 Alliance. March 2009. [Online]. Available: https://dash7.memberclicks.net/
assets/PDF/dash7%20wp%20ed1.pdf. [Accessed: Jun- 2011]

[14] "Radio frequency identification for item management - Part 7: Parameters for active air
interface communications at 433 MHz". International Standard ISO/IEC 18000-7:2009.
Published 2009.

[15] Sigma Online, "Z-Wave : Home control", Z-wave.com. [Online]. Available: http:
//www.z-wave.com/. [Accessed: Jun-2011].

[16] SynkroRF Network Reference Manual Document Number: SYNKRORM Rev. 1.4,
[Online]. Available: http://www.freescale.com/. [Accessed: Jun-2011]. Freescale
Semiconductor. Denver, Colorado. 2011.

[17] Insteon: The details Whitepaper Version 2.0. http://www.cache.insteon.com/
documentation/insteon_details.pdf. Insteon. 2008-2013.

[18] H. Foundation, "WirelessHART Overview", En.hartcomm.org, 2015. [Online]. Avail-
able: http://en.hartcomm.org/hcp/tech/wihart/wireless_overview.html. [Ac-
cessed: Mar- 2011].

[19] Sanjuansw.com, "San Juan Software - PopNet: The Easy, Economical Wireless Sensor
and Control Network", 2009. [Online]. Available: http://www.sanjuansw.com/?p=15.
[Accessed: Mar- 2011].

[20] Bluetooth.com, "Bluetooth Low Energy", 2015. [Online]. Available: http://www.
bluetooth.com/Pages/Bluetooth-Smart.aspx. [Accessed: Mar- 2011].

[21] K. Holger, W. Andreas. Protocols and Architectures for Wireless Sensor Networks.
Hoboken, NJ: Wiley, 2005.

[22] Y. Zhang, L. Yang and J. Chen. RFID and Sensor Networks. Architectures, Protocols,
Security and Integrations. Boca Raton: CRC Press, 2010.

[23] John Wilson. Sensor Technology Handbook. Amsterdam: Ed. Newnes, Elsevier. 2005.

[24] M. Obaidat and S. Misra. Principles of Wireless Sensor Networks. Cambridge, Eng-
land: Cambridge University Press. 2004.

http://www.microchip.com
http://www.microchip.com
http://www.tinyos.net/
https://dash7.memberclicks.net/assets/PDF/dash7%20wp%20ed1.pdf
https://dash7.memberclicks.net/assets/PDF/dash7%20wp%20ed1.pdf
http://www.z-wave.com/
http://www.z-wave.com/
http://www.freescale.com/
http://www.cache.insteon.com/documentation/insteon_details.pdf
http://www.cache.insteon.com/documentation/insteon_details.pdf
http://en.hartcomm.org/hcp/tech/wihart/wireless_overview.html
http://www.sanjuansw.com/?p=15
http://www.bluetooth.com/Pages/Bluetooth-Smart.aspx
http://www.bluetooth.com/Pages/Bluetooth-Smart.aspx

BIBLIOGRAPHY 127

[25] M. O. Farooq and T. Kunz, "Contiki-Based IEEE 802.15.4 Channel Capacity Estima-
tion and Suitability of Its CSMA-CA MAC Layer Protocol for Real-Time Multimedia
Applications," Mobile Information Systems, vol. 2015, Article ID 398637, 9 pages, 2015.

[26] Buratti, A. Conti, D. Dardari and R. Verdone, "An Overview on Wireless Sensor
Networks Technology and Evolution", Sensors, vol. 9, no. 9, pp. 6869-6896, 2009.
[Online]. Available: www.mdpi.com/journal/sensors. [Accessed: 03- Jun- 2015].

[27] D. Gislason. Zigbee Wireless Networking. Oxford: Newnes, 2008.

[28] D. M. Dobkin. The RF in RFID, Passive UHF RFID in Practice. Amsterdam: Elsevier
/ Newnes, 2008.

[29] K. Finkenzeller. RFID Handbook. Chichester, England: John Wiley and Sons, 2003.

[30] NFC Forum, "Specs for Wi-Fi Pairing with NFC Get Boost; Wi-Fi Alliance Sees Ad-
vantages with NFC - NFC Forum", 2014. [Online]. Available: http://www.nfc-forum.
org/specs. [Accessed: Jun- 2012].

[31] Z. Shelby and C. Bormann. 6LoWPAN The Wireless Embedded Internet. Chichester,
England: John Wiley and Sons, 2009.

[32] "IEEE 802.15.4 standard Part 15.4: Wireless Medium Access Control (MAC) and
Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks
(WPANs)". IEEE Standards Association. IEEE Std 802.15.4-2006. Sep 2006.

[33] IETF 6LoWPANWorking Group. "IPv6 over Low power WPAN (6lowpan)", 2011. [On-
line]. Available: https://datatracker.ietf.org/wg/6lowpan/charter/. [Accessed:
04- Jun- 2015].

[34] Thubert P. Hui J. "Compression Format for IPv6 Datagrams in Low Power and
Lossy Networks (6LoWPAN)". IETF Internet Draft. draft-ietf-6lowpan-hc-15 (work in
progress). Feb 2011.

[35] S. Chakrabarti, J. Laganier, K. Kim, W. Haddad. "IPv6 over Low Power WPAN Se-
curity Analysis". IETF Internet Draft. draft-daniel-6lowpan-security-analysis-05 (work
in progress). Jun 2011.

[36] S. Kent. "Neighbor Discovery for IP version 6 (IPv6)" IETF Network Working Group.
Request for Comments Ref. 4861. Sep 2007

[37] G. Montenegro, N. Kushalnagar, J. Hui, D. Culler "Transmission of IPv6 Packets over
IEEE 802.15.4 Networks" IETF Network Working Group. Request for Comments Ref.
4944. Sep 2007

[38] J. Hui, P. Thubert "Compression Format for IPv6 Datagrams over IEEE 802.15.4-
Based Networks" IETF Network Working Group. Request for Comments: 6282. Sep
2011

www.mdpi.com/journal/sensors
http://www.nfc-forum.org/specs
http://www.nfc-forum.org/specs
https://datatracker.ietf.org/wg/6lowpan/charter/

128 BIBLIOGRAPHY

[39] Swedish Institute of Computer Science, 2013. [Online]. Available: http://www.sics.
se/contiki/. [Accessed: 04- Jun- 2015].

[40] Contiki-os.org, "Contiki: The Open Source Operating System for the Internet of
Things". [Online]. Available: http://www.contiki-os.org/. [Accessed: 04- Jun-
2015].

[41] Contiki.sourceforge.net, "Contiki 2.6: The Contiki Operating System", 2015. [Online].
Available: http://contiki.sourceforge.net/docs/2.6/index.html. [Accessed: 09-
Jun- 2015].

[42] A. Dunkels, B. Grönvall, T. Voigt. "Contiki - a Lightweight and Flexible Operating
System for Tiny Networked Sensor". Swedish Institute of Computer Science, May 2004.

[43] A. Dunkels. uIP - A Free Small TCP/IP Stack. Tech. Description. Stockholm, Swe-
den. November 2001. [Online]. Available: http://www.dunkels.com/adam/download/
uip-doc-0.5.pdf. [Accessed: 04- Jun- 2013].

[44] A. Dunkels. "Rime - A Lightweight Layered Communication Stack for Sensor Net-
works". Poster Abstract. Proceedings of the European Conference on Wireless Sen-
sor Networks (EWSN), Poster/Demo session Delft, The Netherlands. Jan 2007 [On-
line]. Available: http://dunkels.com/adam/dunkels07rime.pdf. [Accessed: 04- Jun-
2013].

[45] "Cisco, Atmel and the Swedish Institute of Computer Science (SICS) Collaborate to
Support a Future Where Any Device Can Be Connected to the Internet" . Cisco.
October 14, 2008. Retrieved February 2, 2015. [Online]. Available: http://newsroom.
cisco.com/dlls/2008/prod_101408e.html. [Accessed: 04- Jun- 2013].

[46] Dunkels A., Schmidt O., Voigt T., Ali M. "Protothreads: Simplifying Event-Driven
Programming of Memory-Constrained Embedded Systems". Swedish Institute of Com-
puter Science, Stockholm. May 2004.

[47] Texas Instruments. RF Connectivity with TI Microcontrollers. Technical report ref.
slab034w, Texas Instruments, 2013. [Online]. Available: http://www.ti.com/lit/sg/
spab089a/spab089a.pdf. [Accessed: 04- Jun- 2013].

[48] Texas Instruments. MSP430 Ultra-Low-Power Microcontrollers. Technical Report ref.
slab034w. Texas Instruments, 2013. [Online]. Available: http://www.ti.com/lit/sg/
slab034w/slab034w.pdf. [Accessed: 04- Jun- 2013].

[49] MSP430F5519 datasheet. Technical Report ref. slas590l. Texas Instruments, 2009.

[50] MSP430x5xx/MSP430x6xx Family user’s guide. Technical Report ref. slauu208g. Texas
Instruments. June 2008 (revised July 2010).

http://www.sics.se/contiki/
http://www.sics.se/contiki/
http://www.contiki-os.org/
http://contiki.sourceforge.net/docs/2.6/index.html
http://www.dunkels.com/adam/download/uip-doc-0.5.pdf
http://www.dunkels.com/adam/download/uip-doc-0.5.pdf
http://dunkels.com/adam/dunkels07rime.pdf
http://newsroom.cisco.com/dlls/2008/prod_101408e.html
http://newsroom.cisco.com/dlls/2008/prod_101408e.html
http://www.ti.com/lit/sg/spab089a/spab089a.pdf
http://www.ti.com/lit/sg/spab089a/spab089a.pdf
http://www.ti.com/lit/sg/slab034w/slab034w.pdf
http://www.ti.com/lit/sg/slab034w/slab034w.pdf

BIBLIOGRAPHY 129

[51] Peter Spevakand, Peter Forstner. MSP430 32-kHz Crystal Oscillators. Texas Instru-
ments. Application Report ref. slaa322b. August 2006 (revised April 2009)

[52] K. Venkat, G. Morton. "MSP430 Competitive Benchmarking (ref. slaa205b)".
Technical report, Texas Instruments, June 2005. [Online]. Available: https:
//www.eecs.berkeley.edu/~boser/courses/40/labs/docs/microcontroller%
20benchmarks.pdf. [Accessed: 04- Jun- 2013].

[53] CC2520 Radio 2.4 GHZ IEEE 802.15.4/ZIGBEE® RF TRANSCEIVER Datasheet
ref. swrs068. Texas Instruments. December 2009.

[54] CC2520 Software Examples (Rev. B) Compressed file ref. swrc090. Texas Instruments.
Nov 2009

[55] Ti.com, "CC2520 Evaluation Module Kit - CC2520EMK", 2011. [Online]. Available:
http://www.ti.com/tool/cc2520emk. [Accessed: 03- Jun- 2012].

[56] Multi-standard fully integrated 13,56 MHz RFID analog front end and data-framing
reader system. Texas Instruments. Application report, SLOU186F, August 2006 (re-
vised August 2010).

[57] TRF7960EVM user"s guide. Texas Instruments. SLOU192C, November 2006 (revised
December 2008).

[58] ShreHarsha Rao, Firmware Description of the TI TRF796x Evaluation Module (EVM).
Texas Instruments. Application report, SLOA134. March 2009.

[59] Tag-it Transponder Protocol. TIRIS Tech. by Texas Instruments. Reference Manual.
March 2000.

[60] Tag-it HF-I Pro Transponder Chip/Inlays. Texas Instruments. Reference Guide, Ref.
Number: SCBU004B April 2010.

[61] J. Varghese, TF796x HF-RFID Reader Layout Design Guide. Texas Instruments. Ap-
plication report, SLOA13, April 2009.

[62] H. Liu, M. Bolic, A. Nayak, and I. Stojmenovie, "Integration of RFID and wireless
sensor networks, in Proceedings of Sense IP 2007 Workshop at SenSy". University of
Birmingham, United Kingdom. August 14, 2008

[63] Youbok Lee, Antenna circuit design for RFID applications. Microchip Technology Inc.
DS00710C, 2003.

[64] John Schillinger, Antenna Matching for the TRF7960 RFID Reader. Texas Instru-
ments. Application report, SLOA135, May 2009.

[65] "Universal Serial Bus Specification" Revision 2.0. [Online]. Available: http://www.
usb.org/developers/docs/. [Accessed: 03- Jun- 2013].

https://www.eecs.berkeley.edu/~boser/courses/40/labs/docs/microcontroller%20benchmarks.pdf
https://www.eecs.berkeley.edu/~boser/courses/40/labs/docs/microcontroller%20benchmarks.pdf
https://www.eecs.berkeley.edu/~boser/courses/40/labs/docs/microcontroller%20benchmarks.pdf
http://www.ti.com/tool/cc2520emk
http://www.usb.org/developers/docs/
http://www.usb.org/developers/docs/

130 BIBLIOGRAPHY

[66] "Starting a USB Design Using MSP430 MCUs". Technical report, Ref. slaa457. Texas
Instruments, 2013.

[67] Bhargavi Nisarga, Keith Quiring. "The ultra-low-power USB revolution". White paper.
Ref. slay014. Texas Instruments. 2011.

[68] "MSP430 USB Communications Device Class (CDC) API Programmer"s guide". Tech.
Report. Texas Instruments. 2013.

[69] Future Technology Devices International Ltd., 2013. [Online]. Available: http://www.
ftdichip.com/. [Accessed: 03- Jun- 2013].

[70] IETF CoRE Working Group., "Constrained RESTful Environments (core)", 2011. [On-
line] Available: https://datatracker.ietf.org/wg/core/charter/. [Accessed: Jun-
2011].

[71] Z. Shelby, K. Hartke, and C. Bormann, "The Constrained Application Protocol
(CoAP)". IETF Internet Draft. draft-ietf-core-coap-04 (work in progress) [On-
line]. Available: https://tools.ietf.org/html/draft-ietf-core-coap-05. [Ac-
cessed: Mar-2011]. March 2011.

[72] Z. Shelby, C. Bormann "Blockwise transfers in CoAP", IETF. Internet Draft, draft-
ietf-core-block-02 (work in progress), March 2011.

[73] Z. Shelby, K. Hartke "Observing Resources in CoAP", IETF. draft-ietf-core-observe-02
(work in progress), March 2011.

[74] Z. Shelby "CoRE Link Format", IETF. draft-ietf-core-link-format-03 (work in
progress), March 2011.

[75] Z. Shelby, K. Hartke, C. Bormann "The Constrained Application Protocol (CoAP)"
Internet Engineering Task Force (IETF) Request for Comments: 7252. ISSN: 2070-
1721. June 2014

[76] E. Rescorla, N. Modadugu, RTFM, Inc. "Datagram Transport Layer Security (DTLS)"
Request for Comments: 4347, Network Working Group Stanford University, April 2006

[77] S. Kent. "IP Encapsulating Security Payload (ESP)" Request for Comments: 4303,
Network Working Group BBN Technologies, December 2005

[78] E. Rescorla, N. Modadugu "Datagram Transport Layer Security Version 1.2" Request
for Comments: 6347, Internet Engineering Task Force (IETF) Inc. RTFM, Inc. Google.
January 2012

http://www.ftdichip.com/
http://www.ftdichip.com/
https://datatracker.ietf.org/wg/core/charter/
https://tools.ietf.org/html/draft-ietf-core-coap-05

BIBLIOGRAPHY 131

[79] Matthias Kovatsch. "CoAP for the Web of Things: From Tiny Resource-constrained
Devices to the Web Browser" 4th International Workshop on the Web of Things. Insti-
tute for Pervasive Computing, ETH Zurich, Zurich, Switzerland. 2013 [Online]. Avail-
able: urlhttp://www.vs.inf.ethz.ch/publ/papers/mkovatsc-2013-wot-copper.pdf. [Ac-
cessed: Jun- 2013].

[80] Matthias Kovatsch. "Copper (Cu) CoAP user-agent - JavaScript CoAP Implementa-
tion", newblock Version 0.8.0. ETH Zurich, Switzerland. Oct 2011. [Online]. Available:
http://people.inf.ethz.ch/mkovatsc/copper.php. [Accessed: 09- Jun- 2015].

[81] Matthias Kovatsch."Erbium (Er) REST Engine and CoAP Implementation
for Contiki", ETH Zurich, Switzerland, 2015. [Online]. Available: url-
http://people.inf.ethz.ch/mkovatsc/erbium.php. [Accessed: 03- Jun- 2015].

[82] Federal Communications Commission. USA. [Online]. https://www.fcc.gov/. [Ac-
cessed: 09- Jun- 2015].

[83] Antennadesignassociates.com, "Smith Chart 3.0", 2015. [Online]. Available: http:
//www.antennadesignassociates.com/smith.htm. [Accessed: 03- Jun- 2015].

https://www.fcc.gov/
http://www.antennadesignassociates.com/smith.htm
http://www.antennadesignassociates.com/smith.htm

Appendix A: Schematics and
printed circuit boards

133

134 APPENDIX A: SCHEMATICS AND PRINTED CIRCUIT BOARDS

1k5

2727
10p

10p
G

N
D

G
N

D
G

N
D

220n

G
N

D

G
N

D

+3V3

+3V3

47k

G
N

D 2n2

100n

G
N

D

100u

G
N

D

100n100n

G
N

D

100n100n

G
N

D

+3V3

330

G
N

D

G
N

D
G

N
D

G
N

D
330

330

330

G
N

D 220n

10u

G
N

D

100n

G
N

D

G
N

D

G
N

D

22p

22p

G
N

D

G
N

D

G
N

D
G

N
D

470nG
N

D

G
N

D
33k

G
N

D

+3V3

G
N

D

100

1M

G
N

D +3V3

+3V3

+3V3

G
N

D

G
N

D

G
N

D
G

N
D

4.7uH

M
C

P1603

20uf

0.05

4.7uF

G
N

D

+3V3

80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61

60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41

4039383736353433323130292827262524232221

20
19
18
17
16
15
14
13
12
11
10

9
8
7
6
5
4
3
2
1

L1

11 2 2

R
1

R
2

R
3

C
2

C
3

C
4

JP2
12
34
56
78
910
1112
1314

R4

C
5

C
6

C
7

C8C9

C10C11

D1

LED1

LED2

LED3

LED4

R5

R6

R7

R8

C
1

C
12

C
13

JP6
1
2
3
4
5
6
7
8
9
10
11

C
14

C
15

C
16

C
17

JP8
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

P1P4

P2P3

C
18

12345

R
9

JP10
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20

JP11
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20

P1

P2

P1

P2

R
10

P1

P2

R
11

P1
P2

L3
VIN

VO
U

T LX

G
N

D

SH
D

N

C
19

R
12

C
20

JP13123

JP1
1
2

JP31234

JP4
1
2

+3V3

D
-

D
+

XIN

XIN

XOUT

XO
U

T

XT2IN

XT2IN

XT2O
U

T

XT2O
U

T

C
C

G
PIO

0_BO
TH

C
C

G
PIO

0_BO
TH

C
C

G
PIO

1_BO
TH

C
C

G
PIO

1_BO
TH

C
C

G
PIO

2_BO
TH

C
C

G
PIO

2_BO
TH C

C
VR

EG
_EN

_BO
TH

C
C

VR
EG

_EN
_BO

TH

C
C

C
S_N

_BO
TH

C
C

C
S_N

_BO
TH

C
C

SC
LK_BO

TH

C
C

SC
LK_BO

TH

C
C

SI_BO
TH

C
C

SI_BO
TH

C
C

SO
_BO

TH

C
C

SO
_BO

TH

C
C

G
PIO

4_EM

C
C

G
PIO

4_EM

C
C

G
PIO

5_EM

C
C

G
PIO

5_EM

C
C

G
PIO

3_EM

C
C

G
PIO

3_EM

VU
SB

VU
SB

+1V8

C
C

R
ESET_N

C
C

R
ESET_N

VG
EN

VG
EN

VBU
S

VBU
S

+

+

R
EG

U
LATO

R

+

+

Shield should be connected to G
N

D
 through a 33k resistor

+3V3 is the output voltage from
 VU

SB
+1V8 is the output voltage from

 V18

+5V U
SB voltage

Schottky diode SO
D

-80 package (LL103A)

LED
 footprint changed to 1208

This part is related to circuitry for hardw
are

invocation of the bootstrap loader
M

ight be om
m

ited

32.7 kH
z crystal. D

on't place caps

Figure 1: Gateway schematics

135

47
k

2n
2

330

330

330

220n

10
u

10
0n

100

JP2

R
4

C
5

LED1

LED2

LED3

LE
D
4

R6

R7

R8

C1

C
12

C
13

JP
10

JP
11

R10

MSP430

L1

R1

R
2

R
3

C
2

C
3

C
4

C
6

C
7

C
8

C
9

C10
C11

D1

R
5

JP
6

C
14

C
15

C16
C17

JP
8

C
18

X
1R

9

R11

L3

REGULATOR

C
19

R12

C20

JP
13

JP1

JP3

JP
4

F55xx

1k5

2727

10p

10p

220n

100n 100u

100n
100n

100n
100n

330

22p

22p

470n
M

IN
I-U

S
B

33k

1M

4.7uH

MCP1603

20uf

0.05

4.7uF

To
rr
ija
 1
.0
 S
F

Figure 2: Gateway PCB

136 APPENDIX A: SCHEMATICS AND PRINTED CIRCUIT BOARDS

13,56 MHz

1k

1k

1k

10 nF2,2 uF

1500 pF1500 pF

150 nH
1000 pF

1000 pF

680 pF
330 nH

10 pF

220 pF

680 pF

100 pF
27 pFG

N
D

G
N

D

G
N

D
G

N
D

G
N

D

G
N

D
G

N
D G

N
D

G
N

D

G
N

D

G
N

D

10 nF 2,2 uF

G
N

D

10 nF 2,2 uF

G
N

D

10 nF 2,2 uF

G
N

D

10 nF2,2 uF

G
N

D

27 pF 27 pF

G
N

D

10k

10k

10k

0,1 uF
4,7 uF

G
N

D
G

N
D

VCC

SM
A-142-0711-821/826

BU
-SM

A-V
0 0

G
N

D

G
N

D

0

D
N

P

D
N

P

DNP

1k

G
N

D

0G
N

D

VDD_X 32

OSC_IN 31

OSC_OUT 30

VSS_D 29

EN 28

SYS_CLK 27

DATA_CLK 26

EN2 25

I/O
_7

24

I/O
_6

23

I/O
_5

22

I/O
_4

21

I/O
_3

20

I/O
_2

19

VD
D

_A
1

VIN
2

VD
D

_PA
4

TX_O
U

T
5

VSS_PA
6

VD
D

_R
F

3

I/O
_1

18

I/0_0
17

BAND_GAP11

VDD_I/O16

VSS_A15

MOD14

IRQ13

ASK/OOK12

VSS_R
X

7

R
X_IN

1
8

VSS10

RX_IN29

Q1

R2

R3

R
4

C2C3

C4C5

L2

C
6

C
7

C
8

L3

C9

C
10

C
11

C
12

C
13

C14 C15 C16 C17 C18 C19

C20C21

C22 C23

R
7

R
8

R
9

C
25

C
26

X1X2
R

12

R
13

R14

R
15

C
33

C34R
16

JP4

1

JP5

1

C36

C
37

JP1

1 2 3 4 5 6 7 8 9 10 11 12 13

R17

G
N

D

XIN

R
D

R
_PO

W
ER

_EN

R
D

R
_PO

W
ER

_EN

D
VC

C

D
VC

C

IN
T

IN
T

IO
3

IO
3

IO
5

IO
5

IO
2

IO
2

IO
1

IO
1

C
LK

C
LK

IO
0

IO
0

SS_IO
4

SS_IO
4

M
O

SI_IO
7

M
O

SI_IO
7

M
ISO

_IO
6

M
ISO

_IO
6

Figure 3: RFID schematic

137

C
R
Y
S
TA
L_
R
FI
D

R
2

R
3

R
4

C
2

C
3

C4
C5

L2

C
6 C
7

C
8

L3C
9

C
10

C11
C12

C13

C14
C15 C

16
C
17 C
18
C
19

C
22

C
23

R7

>S
M
A
_S
ID
E

R12

R
13

R14

R
15

C33

C
34

R
16

C
36
C37

R17

C20
C21

R
8
R
9

C25
C26

S
M
A
_TO

P

JP
4 JP

5

JP1

Figure 4: RFID board

138 APPENDIX A: SCHEMATICS AND PRINTED CIRCUIT BOARDS

1k22pF
SMA-142-0711-821/826

GND

GNDR
1

C1 C2

C
3

X1

Figure 5: Antenna impedance adaptation circuit

SMA-142-0711-821/826

X1

R
1

C
1

C
2

C3

1k

22
pF

Figure 6: Antenna impedance adaptation board

Appendix B: Source code

The source code can be accessed from this remote repository:
https://github.com/serflosa/torrija_gateway

139

https://github.com/serflosa/torrija_gateway

	Abstract
	Sammanfattning
	Contents
	List of Figures
	List of Tables
	List of Acronyms and Abbreviations
	Introduction
	Structure of this thesis
	Motivation
	Problem statement
	Wireless Networks

	System definition and goals
	First approach
	Main goal
	Procedure
	Deployment of the Network
	Application
	Devices

	Background
	Wireless Sensor Networks
	Radio Frequency Identification (RFID)

	Wireless system design
	Protocol features
	WSN protocol selection
	Gateway
	Sensor boards
	Security
	RFID system
	Constrained Application Protocol (CoAP)

	Electronic design of platform
	Gateway main board
	Other components
	Sensor devices
	Design and construction

	Implementation of the platform
	Contiki
	Overview of the platform
	Development tools
	Contiki configuration
	Drivers
	Network
	Application

	Results and Conclusions
	Results
	Conclusion

	Future work
	Bibliography
	Appendix A: Schematics and printed circuit boards
	Appendix B: Source code

