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Abstract

An OCR process is often followed by the application of a language model
to find the best transformation of an OCR hypothesis into a string compatible
with the constraints of the document, field or item under consideration. The
cost of this transformation can be taken as a confidence value and compared
to a threshold to decide if a string is accepted as correct or rejected in order
to satisfy the need for bounding the error rate of the system. Widespread
tools like ROC, precision-recall, or error-reject curves, are commonly used
along with fixed thresholding in order to achieve that goal. However, those
methodologies fail when a test sample has a confidence distribution that
differs from the one of the sample used to train the system, which is a very
frequent case in post-processed OCR strings (e.g., string batches showing
particularly careful handwriting styles in contrast to free styles).

In this paper, we propose an adaptive method for the automatic estima-
tion of the rejection threshold that overcomes this drawback, allowing the
operator to define an expected error rate within the set of accepted (non-
rejected) strings of a complete batch of documents (as opposed to trying to
establish or control the probability of error of a single string), regardless of its
confidence distribution. The operator (expert) is assumed to know the error
rate that can be acceptable to the user of the resulting data. The proposed
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Politécnica de Valencia), Tel.: +34 963877242; Fax.: +34 963877239

Email addresses: jonacer@iti.upv.es (J. Ramon Navarro-Cerdan),
arlandis@iti.upv.es (Joaquim Arlandis), rllobet@iti.upv.es (Rafael Llobet),
jcperez@iti.upv.es (Juan-Carlos Perez-Cortes)

Preprint submitted to Expert Systems with Applications October 13, 2015



system transforms that knowledge into a suitable rejection threshold.
The approach is based on the estimation of an expected error vs. transfor-

mation cost distribution. First, a model predicting the probability of a cost
to arise from an erroneously transcribed string is computed from a sample of
supervised OCR hypotheses. Then, given a test sample, a cumulative error
vs. cost curve is computed and used to automatically set the appropriate
threshold that meets the user-defined error rate on the overall sample. The
results of experiments on batches coming from different writing styles show
very accurate error rate estimations where fixed thresholding clearly fails.
An original procedure to generate distorted strings from a given language is
also proposed and tested, which allows the use of the presented method in
tasks where no real supervised OCR hypotheses are available to train the
system.

Keywords:
Rejection threshold, OCR post-processing, Language models, Weighted
finite-state transducers, Error vs. cost curve, Cumulative error vs. cost
curve, OCR error-generation model

1. Introduction

In many OCR and text recognition systems, a post-process addressed to
the verification or correction of the errors yielded by the classifier is per-
formed, due to its beneficial impact on the system accuracy. In many cases,
a language-model-based correcting technique can be applied to find the best
transformation of an OCR hypothesis into a string compatible with a given
set of linguistic constraints.

Very different techniques have been employed to implement the post-
processing of the OCR hypotheses (usually, strings of characters). Some
examples can be found in Hull & Srihari (1982); Tong & Evans (1996); Perez-
Cortes et al. (2000); Kolak & Resnik (2005); Llobet et al. (2010). Most
of them provide or can be easily modified to provide an estimation of the
effort needed to make the output from the OCR classifier comply with the
language constraints. This estimation is often called transformation cost.
Sometimes this cost is substituted by an inversely related measure called
correction confidence or reliability index, reflecting the likelihood that
the OCR hypothesis agrees with the model.
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Figure 1: Transformation-cost distributions of strings belonging to: (left) samples from
different language models (described in Table 1), and (right) two different samples of the
same language, from carefully written (Easy Test) and carelessly written (Hard Test)
Spanish Municipalities (sample composition described in Section 6.1).

Using a threshold on the transformation cost to reject the less reliable
hypotheses, a variable level of (expected) accuracy can be imposed on the
output of the fully automatic recognition process. The feature of allowing
the user to specify an acceptable level of the expected error instead of having
to deal with a threshold in an unfamiliar task-dependent scale is a clear
advantage for the operator. This capability has important implications in
many practical cases: the complete process is often requested to meet a
maximum acceptable amount of erroneous transcriptions within the set of
non-rejected strings in a batch of documents (known as false acceptance rate
or simply error rate) to ensure a quality of service; and the rejected strings
are usually sent to a high cost manual data-entry process that should be kept
as limited as possible All these considerations suggest that a trade-off, where
the threshold selection plays an important role, exists and has a significant
impact on the practical and economic performance of the system.

To decide on the acceptance or rejection of a single string, a simple thresh-
old is relatively straightforward to estimate, but to maintain a control of the
error rate of a batch of documents, some strings that would be rejected might
be accepted and vice-versa depending on the remaining strings of the batch.
If the measurements suggest that the quality of the set is good (or bad), the
threshold can be higher (or lower), accordingly.

The optimization of this process is not straightforward. In an OCR sys-
tem, the number of rejections is not predictable because it depends on the
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particular task at hand, being highly sensitive to factors such as the hand-
writing style, scanning process, image quality, field registration, etc, as well
as the characteristics of the language model used (e.g., its perplexity). For
example, for a given threshold, the amount of rejected strings in two sets of
documents can be very different if the first one is composed of carefully writ-
ten strings and the second set is poorly written. Thus, if we take a sample
of OCR strings (observations) and compute its transformation costs using a
given post-processing method, like the one described in Section 3, the dis-
tribution obtained can vary for different language models, as can be seen in
Figure 1 (left), as well as for different samples of a single language, as shown
in Figure 1 (right). This means that choosing a consistent rejection threshold
on the transformation cost is difficult, since the number of accepted/rejected
strings for a given threshold value will vary depending on the characteristics
of both the language model and the sample processed. In fact, a slight varia-
tion of the threshold value can lead to unpredictable changes on the ratios of
accepted/rejected strings, as well as on the error rate, as shown in Figure 2.
Therefore, in most cases, different thresholds should be applied to different
samples to obtain the same error rate within the set of accepted strings.
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Figure 2: If the cost distribution varies among different samples, e.g., a carefully written
sample (left) and a carelessly written sample (right), a given threshold can lead to different
error rates for the accepted instances (ratio between red and blue-filled areas for a fixed
threshold equal to 4). Therefore, different thresholds should be applied to obtain the same
error rate.

Traditional analytic tools like Error-Reject Trade-off Chow (1970), Re-
ceiver Operating Characteristic (ROC) Fawcett (2006), and Precision-Recall
Rijsbergen (1979) (and their different variations), have provided useful infor-
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mation for analyzing and comparing classifier performances, based on mea-
surements obtained from a training sample. Particularly, predictions on the
relationship between the rejection threshold and several indexes like error
rate, precision, accuracy, number of rejections, false positive and false neg-
ative rates, can be established from such tools. Nevertheless, the accuracy
of those predictions is strongly conditioned by the distribution of the confi-
dence values found in the training sample used. In other words, predicting
the error rate of a new sample entails the assumption that a similar confi-
dence distribution is expected in it. However, in the task described here, this
assumption can be unacceptable, as explained above: the amount of symbol
errors of an OCR classifier can widely vary for different samples depending
on many factors, and consequently, the distribution of the post-processing
transformation costs, can vary too. Therefore, in this case, applying a fixed
threshold to different samples will not guarantee meeting a pre-specified error
rate.

In this work, we consider the hypothesis that a probability distribution
of erroneous transcriptions can be estimated from the transformation costs
produced by the application of a language model, and that it can be used to
predict the error rate of a set of strings of the language, regardless of its cost
distribution. Thus, in Section 4, given a set of transformation costs corre-
sponding to a supervised sample of OCR hypotheses, the error probabilities
associated to each cost (Error vs. Cost distribution) are obtained. In Sec-
tion 5, we propose an approach for adaptive rejection thresholding, where the
Error vs. Cost distribution of a language model is used to find the rejection
threshold to be applied on a whole batch of strings in order to meet a given
target error rate. We tested this approach in two scenarios:

• The transformation costs are obtained from a real sample of OCR hy-
potheses, and used to compute the Error vs. Cost distribution. Perfor-
mance evaluation in this scenario is presented in Section 6.

• The Error vs. Cost distribution of a new language is automatically
estimated, with a method based on the generation of synthetic OCR
errors from the positive sample used to build the language model. No
supervision is needed in this case, avoiding the time-consuming process
of optical recognition and manual labeling of a significant amount of
strings of the language. This is particularly important in practice when
new language models are needed frequently for short batches of docu-
ments (even if they are subsets or special variants of previous language
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models), or in case of tasks where the labeling process is not possible
or convenient. It is described and evaluated in Section 7.

2. Background and related work

2.1. Quality control

Industrial Quality Control is commonly approached from two points of
view. The first one takes into account the quality acceptable by the recipient
of the product or service and the quality level bearable by the producer.
These qualities correspond to what is known in the literature as the risks
of the producer and the consumer. The inspection plans for sample-based
statistical quality control are designed from the Characteristic Operation
Curve and these risks. In Paladini (2000), an expert system is presented to
help in decision-making for tasks such as the determination of the need for
such inspection and the type of inspection to be performed.

A second view is based on the design of data-mining models to account
for the confidence on the produced elements taking as input explanatory
variables measured during the production process itself. These models aim
to predict the confidence on the final products. In Köksal et al. (2011), an
analysis of data management practices and data mining applications related
to manufacturing quality is presented.

Our proposal combines both paradigms by establishing a relationship
between the expected error according to the explanatory variable “trans-
formation cost”, from which a dynamic threshold is found to generate an
acceptable final error (risk of the producer and the consumer). The expected
error can be seen as the knowledge that an expert operator (producer) has
determined along time with the contact or negotiation with the consumer
and can therefore express explicitly. The proposed system applies a model
of this knowledge to convert it into a numerical threshold with no obvious or
explicit meaning.

2.2. Large-scale OCR systems and post-processing

The different OCR and text recognition systems available can be catego-
rized depending on the specific type of task they address and on their func-
tionalities. A typical architecture for industrial-scale batch OCR systems in-
cludes an image acquisition and pre-processing phase; feature extraction and
character or word classification; and, finally, an additional post-processing
phase where the strings proposed by the classifier (potentially, having errors)
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are constrained to be compatible with the rules inherent to the document,
field or task under consideration.

Post-processing OCR hypotheses, typically, has a significant positive im-
pact on the global system performance. For instance, in a handwritten form
recognition system, if a Spanish name is expected to be found in a field, and
the output of the classifier for that field is the string “HARIA” (where the
character “H” should be “M”), a post-process technique could take “HARIA”
as input and produce “MARIA” as output. A correction confidence is often
provided along with the output string.

Very different techniques have been employed to post-process OCR hy-
potheses, which are usually strings, although they can be sequences of vectors
of a posteriori probabilities or other more complex structures. Word and sen-
tence level models typically apply dictionary search methods, Hidden Markov
Models, Edit Distance-based techniques, and other character or word cate-
gory transition models. In Hall & Dowling (1980), an excellent survey of
approximate string search methods is presented. Traditionally, simple meth-
ods lookup on a lexicon to validate input strings. More complex methods
are based on n-grams or finite-state machines Berghel (1987); Breuel (1994);
Farooq et al. (2009), where an input string is parsed and the set of transitions
with the lowest cost (highest probability) determine the output string. Some
classical approaches parse the string provided by the symbol-input system,
using a language model, and an Error Model and apply the classical Viterbi
Algorithm Neuhoff (1975); Amengual & Vidal (1998) to find the maximum
likelihood path on a finite-state machine representing a regular grammar.

In the context of language modeling, many works have been carried out
for Continuous Speech Recognition tasks Jelinek (1993). Although the re-
quirements are very different, most basic techniques used in that field can
be applied to OCR tasks with little modification. Thus, several works use
language modeling techniques for error-correcting applied to OCR and text
recognition tasks, either on constrained or unconstrained environments Hull
& Srihari (1982); Tong & Evans (1996); Perez-Cortes et al. (2000); Kolak
& Resnik (2005); Llobet et al. (2010). Confidence measures reflecting the
likelihood that a given OCR hypothesis belongs to the model are provided
by many of them. In fact, some works on typical Natural Language Process-
ing applications, including OCR and text recognition, propose improvements
on confidence measures targeted to yield reliable procedures Bertolami et al.
(2006); Pitrelli et al. (2006); Schlapbach et al. (2008); He et al. (2009). How-
ever, they are not addressed to solve the specific goal of rejecting output
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strings based on a pre-defined error rate for a whole test-set (or batch of
documents), as is intended in the present work.

2.3. Rejection thresholding

Rejection threshold optimization has been broadly studied in Machine
Learning and Statistics. Generic and task-dependent approaches have been
developed to minimize (or at least allow some control of) the number of Type
I and Type II errors produced after the application of a rejection threshold
to the observations of a sample. A Type I error is defined as the rejection
of a potentially true null hypothesis, while a Type II error is the failure to
reject a false null hypothesis.

In the context of OCR post-processing based on language models, we
considered as null hypothesis: “The output string provided by the post-
processing is the string that the user meant to write”. Where, for supervised
samples, the string that the user meant to write is represented by a ground
truth label (belonging to a given language). Under these assumptions, a Type
I error corresponds to a False Negative and a Type II error corresponds to
a False Positive (FP). The rate of “erroneously transcribed” strings among
the accepted (non-rejected) instances, i.e., FP/(FP + TP ), where TP is the
number of accepted strings that satisfy the null hypothesis, is commonly
known as error rate in a system having a reject option, where (1−error rate)
is called precision. Thus, in our case, controlling the error rate entails limiting
the amount of FP by optimizing the rejection threshold.

The problem of threshold optimization arose originally in Signal Detec-
tion Theory and now is found in multiple applications of Machine Learning,
and Pattern Recognition in particular, as well as in a variety of scientific ap-
plications from social sciences (e.g., Financial and Economics or Psychology,
among others), Bioinformatics and Diagnostic Systems. Also, from Expert
and Intelligent Systems, applications involved with quality control deal with
controlling FP and FN, which could entail particular types of threshold op-
timization, Wu et al. (2011). In many of such applications, error risks are a
serious concern and, consequently, the rejection threshold plays a significant
role and has been extensively studied.

In the scope of Pattern Recognition, the early work of Chow (1970) es-
tablished the basis of the error-rejection trade-off that arises in classification
problems. Chow described an optimum rejection rule based on the condi-
tional a posteriori probabilities provided by a classifier, and presented a gen-
eral relation between error and reject probabilities. Many subsequent works
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have been based on the Chow’s rule to propose contributions on the use
of rejection in recognition systems, like class-selective rejection with perfor-
mance constraints Grall-Maës & Beauseroy (2009) or class-related thresholds
Fumera et al. (2000). Other works dealing with error risk and rejection op-
timization are based on improving the use of ROC curves from which many
analysis and interpretations can be found in the literature Fawcett (2006).

Nevertheless, as detailed in Section 1, the estimations obtained using
those approaches are strongly conditioned by the distribution of the confi-
dence values in the sample used to train the system, which prevent them to
be used for estimating the error rate on OCR batches having different writing
styles. Avoiding this dependence is one of the targets of our work. In this
regard, we can mention the work of Landgrebe et al. (2006) where a factor
to tune the number of expected false positives is introduced in ROC curves
(P-ROC) to deal with imprecise environments. This can be seen as an effort
to compensate differences between training and test distributions.

So far, we are aware of very few works in the literature of Machine Learn-
ing and Intelligent Systems that propose solutions applicable to this partic-
ular problem. In their work, Li & Sethi (2006b) proposed an approach to
design classifiers under controlled error rate requirements for the case of a
two-class problem. While their method solves related goals and could be ex-
trapolated to our task to a certain degree, its implementation requires using
two thresholds and different functions to compute the set of rejected observa-
tions. Hanczar & Dougherty (2008) applied the Li proposal to classification
in gene expression data, and Li & Sethi (2006a) extended their work to Active
Learning. None of these studies is focused on OCR post-processing or suggest
the option to generate synthetic samples to be used for error estimation.

Another similar approach to the one presented in this paper is proposed
by Serrano et al. (2014). Here, the problem of error prediction is addressed
in the context of interactive-predictive handwriting recognition. The pur-
pose was to assist the user in locating possible transcription errors: the user
decides on a maximum tolerance threshold for the recognition error and the
system adjusts, interactively, the required supervision effort on the basis of
an estimate for this error. For a given token being supervised, the error
estimation is based on the previous user-supervised tokens using a similar
strategy to the one proposed in the present work, but no directly applica-
ble to a complete sample, particularly when no supervised information is
available.

In summary, none of the previous works addressing the topic of auto-
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matic control of the recognition error rate solves the problem of estimating
a threshold to be applied on a whole sample of OCR post-processed strings,
for which a maximum error rate is requested, particularly when different
samples may have different confidence distributions. As we stated before, it
is often the case in some real applications related to OCR post-processing,
where input batches with different degrees of recognition difficulty have to
be processed, and different target error rates can be demanded.

In Arlandis et al. (2010), we presented previous results involving the es-
timation of the expected error rate distribution of an unknown language
model from a training set composed of known language models using regres-
sion techniques. In the present work, a new, more flexible, approach giving
better results is proposed. Extended datasets, and more complete experi-
ments are presented using an updated algorithm for the language and error
models.

3. Post-processing algorithm and language models used

A technique based on Weighted Finite-State Transducers (WFSTs) com-
bining language, hypothesis and error models has been used to post-process
the OCR hypotheses Llobet et al. (2010). It is based on a finite-state trans-
ducer built from a formal grammar that encodes the strings in the lexicon
or language sample. In this case, a k-Testable Language in the Strict Sense
is inferred from a set of available language strings. The transducer is com-
posed with other two WFSTs, representing the error model and the candidate
OCR hypothesis, including a posteriori probabilities from the OCR classifier.
The weight in each individual transition of this final WFST is the negative
logarithm of the transition probability that results from the product of prob-
abilities obtained from the WFST composition operation (computed as a
sum of logarithms). Then, the shortest path in the final transducer shows
which is the most likely string in the model, and the average weight of the
transitions in the selected path is used as the transformation cost.

This technique has been applied to OCR hypotheses obtained from four
fields belonging to forms with handwritten contents corresponding to four
different field-level deterministic language models (languages where the com-
plete lexicon of valid strings is known Perez-Cortes et al. (2000)) fairly usual
in commercial forms. They are: Names (which include simple and compound
names) and Surnames (mostly, simple ones) from the last census of Spain
(complete), with probabilities derived from their frequencies; all the Spanish
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Table 1: Sizes (number of complete strings) of the languages and available samples, and
sample error rates at 0% rejection. The average number of characters per string of each
language is also shown. The column “Freq.” indicates if the language uses frequencies
(probability of occurrence of each string) or not (all strings considered equiprobable).

Language Lang. size Avg. length Freq. Sample size Error rate

Names 66,363 10.78 Yes 5,630 2.73%
Surnames 97,157 7.49 Yes 12,100 4.42%

Municipalities 8,201 11.67 No 8,280 19.81%
Provinces 52 7.38 No 8,400 11.64%

Municipalities ; and all the Spanish Provinces. These languages have been
chosen since they are representative of real tasks and span a wide range of
sizes and complexities, and the samples have been obtained from document
batches in a real workflow using the same OCR classifier.

The models have been built using a grammatical inference algorithm to
build a WFST that accepts the smallest k-Testable Language in the Strict
Sense (k-TS language) consistent with the strings of the language Garcia &
Vidal (1990). The set of strings accepted by this automaton is equivalent
to the language model obtained using n-grams, for n = k. The stochastic
extension of the basic k-TS language is performed through a maximum like-
lihood estimation evaluated according to the frequency of utilization of each
path by the language strings. To obtain deterministic language models, a
value of k equal to the longest string in each language has been used.

The most relevant features of the languages and sample sets used are
shown in Table 1. As expected, the WFST-based parsing algorithm attained
lower error rates when the language models were inferred with frequencies.
Figure 1 (left) shows the transformation cost distribution of the strings be-
longing to the samples described in Table 1.

4. Modeling the Error vs. Cost distribution

Given a language model and a set of transformation costs obtained using
a post-processing algorithm with a sample of supervised OCR hypotheses
(for which ground-truth transcriptions are available), a smoothed error rate
curve as a function of the cost c can be computed using the equation,

H(c, w) =
|S−

c,w|

|Sc,w|
(1)
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Figure 3: On the left, EC curves of the samples of the language models described in
Table 1 (their corresponding cost distributions are shown in Figure 1, left). It is clearly
shown that different languages gave rise to different EC curves. On the right, very similar
EC curves were obtained from two samples of the same language model having different
cost distributions (corresponding to Municipalities as shown in Figure 1, right).

where w is a smoothing (rectangular) window size parameter, |S−
c,w| is the

number of strings erroneously transcribed into incorrect strings (belonging
to the language, but different to those intended by the writer) having a cost
between c − w and c + w, and |Sc,w| is the total number of strings having
a cost also in that interval. More complex window functions could also be
used.

The proposed ratio can be interpreted as the probability of a cost c to
arise from an erroneously transcribed string. For a given language model, H ,
or the Error vs. Cost (EC) function, can be used as a source of information
to decide the appropriate cost threshold to use when we want to set the
expected error rate of a new sample, as explained in Section 5.

Figure 3 (left) plots the EC curve of each sample of the language models
described in Table 1 using w = 0.25, based on its corresponding ground-truth
transcriptions. The figure shows that the probability of an OCR hypothesis
being wrong for a given cost can become very different for different language
models. This clearly suggest that different thresholds will be needed to con-
trol the amount of false positives in each case.

Conversely, Figure 3 (right) shows that samples from a language model
having different cost distributions give rise to very similar EC curves, which
suggests that their corresponding error rates could be controlled using a single
EC function for that language.
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5. Batch-adaptive rejection threshold estimation

The error vs. cost function represented by H allows to obtain a direct
estimation of the probability that an OCR hypothesis is wrong, based on its
transformation cost. So, for a single string, we can simply look up H , and
decide to reject it if the error estimation is higher than an error threshold.

But, if the goal is to control the error rate of a set of observations, i.e.,
a sample or batch of strings rather than a single OCR string, then different
rejection thresholds are typically needed for different samples to achieve a
given average error rate: string sets having a small number of OCR errors
will give rise to low correction costs which will imply higher thresholds, while
batches with a large number of OCR errors will require lower thresholds for
the same target error rate.

In order to meet a specified (target) error rate ǫ on a sample of a lan-
guage, a rejection threshold T can be calculated from a cumulative averaged
version of H of its corresponding language model. Thus, let C be a sequence
of transformation costs associated to a sample of OCR hypotheses sorted
increasingly,

C = {c1 . . . ci, ci+1 . . . cn}, c1 ≤ ci ≤ ci+1 ≤ cn,

an estimation of the error rate incurred by accepting the subset of observa-
tions with costs smaller than or equal to ci in C can be computed as follows:

E(ci) =

ci∑

c=c1

H(c, w)

i
, (2)

and the rejection threshold T associated to a given target error rate ǫ can be
obtained as:

T (C, ǫ) = max
E(cj)≤ǫ

(cj)

The T value sought is the highest cost where the curve E reaches ǫ. Since
the curve can have local minima, the highest cj is chosen to maximize the
number of accepted strings for a given ǫ.

Examples of error rate estimations using the function E, or Cumulative
Error vs. Cost (CEC) function, are shown in Figure 4, where estimated CEC
curves from samples of two languages, along with their corresponding cumu-
lative real error curves, are plotted. Real errors at a cost ci were computed
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Figure 4: Example of CEC curves obtained using the proposed error estimation function
E, and real error, for the sample of Municipalities (left) and Surnames (right) described
in Table 1. Half of the sample was used to compute H and the other half to compute E.

as the number of strings “erroneously transcribed” having a cost up to ci
divided by the total amount of strings having a cost in the same interval
(notice that it is equivalent to calculate E using H(c, 0) on the sample). The
small differences between both curves (error deviation) indicate that a good
estimation can be achieved along the whole error range.

In some practical cases, being able to establish a limit on the rejection
rate for a given set can be desirable, and estimating its corresponding error
rate could be also useful. In this case, if the (n− j) less reliable observations
are to be rejected, the corresponding estimated error rate will be the one
accumulated by accepting up to string cj, which can be directly obtained by
computing E(cj). As an extension of this feature, the traditional error-reject
curve can be easily computed from the CEC curve.

Batch-adaptive rejection threshold estimation is intended to have useful-
ness in some practical applications, e.g., in an industrial data-input workflow,
where a batch of forms or other documents must be processed for a customer,
and a maximum acceptable error rate for the task is often required before-
hand. The methodology proposed could be applied to any set of observations
provided with a consistent confidence index.

In addition, the CEC function, computed as in Expression 2, can also
be applied incrementally, since output strings {c1 . . . ci . . .} can be accepted
or rejected as they are produced by the system depending on whether the
cumulative averaged error rate E(ci) estimated by accepting a new string ci
exceeds the target error ǫ.
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6. Performance evaluation

The experiments have been designed to evaluate the accuracy of the adap-
tive rejection threshold estimation procedure presented. The ability of the
system to approximate a pre-specified error rate (target error) on real sam-
ples having different degrees of representativity with respect to the “training
set” has been characterized.

The supervised samples obtained from a real OCR workflow, as detailed in
Section 3, were used in the experiments. In order to assess the performance of
the proposed method on samples from the same language having different cost
distributions, three different test sets were used: Easy Test having mostly
low costs (high confident strings representing careful writing), Hard Test
having mostly high costs, and Total Test which corresponds to the whole
test sample.

The algorithm described in Llobet et al. (2010) has been applied to the
OCR hypotheses, and their transcription costs have been obtained. Then,
according to the experimental design described above, the EC and CEC
functions from each language model and test samples, respectively, were com-
puted.

For a given test sample, the results are provided in terms of error devia-
tion, i.e., the difference between the target error rate (estimated) and the real
error rate (measured). The error deviation is presented for different values
of the target error. Results of the batch-adaptive rejection threshold esti-
mation method are compared to those obtained by applying a classical fixed
threshold. Details of the experiments and discussions are presented below.

6.1. Test sample composition and experimental design

In order to present statistically consistent results using the available sam-
ples, bootstrapping has been chosen as the experimental design technique.
For each experiment, one hundred replications have been carried out. For
each bootstrapping replication, the sample of a language was randomly split
in two halves: one half used as the test set, and the other half used to com-
pute the EC function.

To build the Easy Test and the Hard Test, the set of observations selected
for testing in each replication was split: up to the 50th percentile (lowest
costs) and over this percentile (highest costs). The Easy Test was composed
by randomly taking a 75% within the lowest costs plus a 25% within the
highest ones, and vice-versa for Hard Test, while Total Test included all the
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test observations. An example of Easy Test and Hard Test cost distributions
for the language model of Municipalities is shown in Figure 1 (right).

6.2. Results on error rate estimation

To compute H(c, w), the bins were calculated using a moving average on
a centered rectangular window with a side w = 0.25. Thus, based on the
experimental design described above, one hundred different EC functions H
have been obtained for each language, one per replication, and the corre-
sponding CEC functions E from the three Easy Test, Hard Test, and Total
Test samples from each replication were obtained, too.

First of all, we will focus on analyzing the results obtained on Total Test.
Figure 5 plots µ for the 100 values of error deviation for incremental tar-
gets obtained by means of adaptive and fixed thresholding techniques (dots
around zero in the Y axis) from each language model. Their corresponding
high and low 95%-confidence intervals –CI–, computed by means of the t-
student distribution, are also shown (error bars) along with the area bounded
by two standard deviations µ ± 2σ (lines). Notice that, while the CI corre-
sponds to the expected mean deviation, µ± 2σ corresponds to the deviation
expected when processing a single test. The figure shows that those statistics
are very similar for all the four experiments using either fixed or adaptive
thresholding. Several important conclusions arise from these results:

• Given that the average deviation is very close to zero in all cases, a
very good estimation of the error rate can be obtained using either
fixed or adaptive thresholding. Notice that, given the experimental
design detailed above, the samples used for calculating the EC curves
(“training samples”) are representative of the Total Test samples.

• The µ±2σ intervals indicate that the accuracy of the estimations when
processing a single batch is not too high. However, the CI’s are very
narrow, meaning that, in practice, the average error deviation obtained
when processing a number of batches will be very small, even for very
low target error rates.

• All the four language models tested provide very similar results despite
they have different characteristics, like the size of the language, the
sample error (at 0% rejection), or the use of frequencies on the positive
sample.
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Figure 5: Average deviation on the estimation of the error rate (points around zero)
resulting from the application of adaptive and fixed thresholding on the Total Test. The
values were obtained by bootstrapping 100 replications for each language model. 95%-
confidence intervals are marked with error bars and µ± 2σ are plotted with lines.

If we now study the error deviations obtained from the Easy Test and
Hard Test samples using adaptive and fixed thresholding, the results, pre-
sented in Figure 6, show that the average error deviations are in a narrow
range around zero for all the language models when using the adaptive thresh-
olding method on both Easy and Hard tests. This suggest that the method
would be useful in a practical application, allowing the user to specify a tar-
get error rate on different document batches very effectively for any given
target error. Conversely, the classical fixed thresholding failed in all the
cases: regarding the Easy Test, the error rates were radically overestimated
which led to an unnecessary higher amount of false negatives, far from the
efficient operational point, and; in the case of the Hard Test, the error rates
were underestimated (too much false positives were accepted) and the system
quality downgraded. In both cases, the error rate requirements were missed.
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Figure 6: Average deviation (with 95%-confidence intervals) on the estimation of the error
rate resulting from the application of adaptive and fixed thresholding on two samples
having different cost distributions, Easy Test and Hard Test. All the error deviations are
in a narrow range around zero when using adaptive thresholding while the classical fixed
thresholding fails in all the cases.

These results show, on the one hand, the lack of robustness that can be
attributed to fixed thresholding in error estimation of batches having different
cost distributions from the sample used to estimate the threshold, and on the
other hand, the validity of the presented method in those cases, giving the
system the ability to adapt to document sets having different nature, in level
of difficulty, during an operative workflow.

As an example, Table 2 shows a comparison on the number of rejected
strings for a target error rate ǫ = 1% on each test set using adaptive and
fixed thresholding estimation, as well as the rejection corresponding to the
real threshold. As a consequence of the results shown in Figure 6, the num-
ber of rejections is unnecessary higher when using fixed thresholding on the
Easy Test. Further, the strong variability on the amount of rejected obser-
vations among samples of the same language is apparent. Controlling that
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variability can be considered as an important practical issue because of its
economic impact, which is successfully addressed using adaptive threshold-
ing. Obviously, a fixed thresholding will never fulfil the system requirements
on both Easy Test and Hard Test.

Table 2: Percentages of rejected strings as a result of applying adaptive, fixed and real
thresholds for a 1% target error rate (averaged results). The strong variability on the
amount of rejections among the three samples of the same language is successfully ad-
dressed using adaptive thresholding, while fixed thresholding causes an unnecessary higher
amount of rejections on the Easy Test and an insufficient amount on the Hard Test. This
behaviour is consistent for the four languages tested.

Easy Test Total Test Hard Test

Real Adpt. Fixed Real Adpt. Fixed Real Adpt. Fixed

Names 0.80 0.80 1.93 3.99 3.96 3.91 7.88 7.48 5.89
Surnames 3.81 3.73 10.49 20.62 20.92 20.98 46.37 46.37 31.46
Municip. 14.85 14.81 17.50 35.09 35.40 35.11 59.05 58.35 52.52
Provinces 7.19 7.14 8.86 17.86 17.86 17.76 31.54 31.94 26.66

As explained in Section 5, the Error-Reject curve of a test sample can
be easily computed using the proposed adaptive rejection threshold method.
This can be useful in some practical cases, where requirements on limiting
rejection and error rate can be combined.

7. Approach for new language models

In practice, when a new language model is defined in the system, a sam-
ple of OCR hypotheses could not be available to build the EC curve of that
language. In this section, we propose to use literal strings from the positive
sample of the new language to build a synthetic sample where OCR-like er-
rors will be artificially introduced using a particular error-generation model.
This way, the EC curve of the new language can be estimated from that
synthetic sample.

An OCR error-generation model is defined as the set of probabilities of
insertions and deletions of symbols, and substitutions between pairs of sym-
bols. Using this model, a number of edit operations on the positive sample
of the language can be applied to obtain a representative set of new strings
having errors resembling the kind of mistakes produced in an OCR process.
Obviously, the edit operation probabilities must match the errors expected,
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covering all the range of errors observed in the OCR classifier being used. To
take it into account, the method proposed for the generation of a synthetic
sample will combine two error sources: the confusion matrix associated to
the OCR classifier, and a second one conceived to account for other sort of
errors, which is addressed below.

The OCR confusion matrix provides valuable information, including the
expected OCR error rate (at the symbol level) and the probabilities of confu-
sion between symbols, as well as the likelihood of insertions and deletions. In
a practical setting, the OCR confusion matrix is usually available, obtained
from previous tasks performed with the same OCR engine.

However, there are errors that can appear in a practical task and cannot
be strictly attributed to the character recognition stage, but to variability
sources of different nature, essentially unpredictable and difficult to include
in the data sets used to estimate the confusion matrices, causing parts of the
OCR strings to be severely affected. Some of them are due to defective image
acquisition or pre-processing, e.g., distortions or translations in registration,
bad character segmentation, incomplete cell removal, etc. Others are intro-
duced by the writer, like crossing outs, mistakes, overwritten or abnormal
characters, very careless or unusual writing style, as well as alternative or
bad spellings (e.g., in some geographical areas, abbreviations or expansions
of some words).

Strings with these type of errors usually cause high transformation costs
not found in the standard OCR confusion matrices. To generate strings that
reflect this variability, we propose to use an additional confusion matrix.
Since the errors that we intend to model do not follow a known pattern,
we used a uniform matrix built by assigning the same probability P to all
the diagonal elements (substitutions of a symbol by itself), and the rest of
the mass of probability, 1 − P , uniformly distributed among the rest of the
elements of the row (or column), corresponding to confusions between pairs
of different symbols, including insertions and deletions, which account for
some of the errors mentioned.

Figure 7 plots two examples of cost distributions from string samples ob-
tained from each matrix, a mixture of both (synthetic), and the real sample.
The curves show that, the strings generated by the uniform matrix cover a
range of high transformation costs where the OCR matrix only generates a
small proportion of strings, potentially contributing to a better estimation
of the right tail of the EC curve.
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Figure 7: Transformation-cost distributions of the real and synthetic simulation samples
for theMunicipalities (left) and Surnames (right) language models. The “Synthetic” curve
includes the strings generated from the OCR and uniform confusion matrices.

7.1. Results on error rate estimation for new language models

To validate the proposed approach, a synthetic sample size of 50,000
strings per language model was considered, and an OCR confusion matrix
obtained from the OCR classifier was taken. The search for the best genera-
tion parameters of the synthetic sample was performed through optimization
a) of the rate R between the amount of strings produced using the OCR
confusion matrix and those produced using the uniform matrix, and b) of
the mass of probability P assigned to the diagonal of the uniform matrix.

The estimation of parameters, R and P was performed by means of an
orthogonal experimental design with 16 treatments for each language, consid-
ering R and P as the factors (4 levels each factor). The dependent variable
was computed as the absolute error between the synthetic and real CEC
curves, as shown in Expression 3.

J(R,P ) =
n∑

i=1

∣∣∣Ê(ci)− E(ci)
∣∣∣ (3)

where Ê and E were calculated using the EC curves (with w = 0.25) from
the synthetic and the Total Test samples, respectively, and cn is the maximal
cost between both samples (bootstrapping was applied).

By estimating a model that relates the objective function shown in Ex-
pression 3, with the independent parameters R and P , it is possible to com-
pute the values R and P by minimizing the absolute error rate as shown
in Expression 4.
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R,P : min J(R,P ) = min
n∑

i=1

∣∣∣Ê(ci)− E(ci)
∣∣∣ (4)

The experiments were designed to allow a possible quadratic answer of
factors like that of the regression model in Expression 5, that will be esti-
mated by means of a minimum squared error algorithm.

J = β0 + β1P + β2R + β3PR + β4P
2 + β5R

2 + ε (5)

where ε is related with the homoscedastic residuals, that are distributed as
a N(0, σ). This σ allows us to estimate the final residual error, related with
the variability explained by the rest of factors that have not been considered
in the model.

As a result of the optimization process a single pair of values R = 0.8
(80% of strings produced by the OCR confusion matrix and 20% produced by
the uniform matrix), along with a mass probability P = 0.3, were estimated
for the whole set of languages. Finally, to assess the accuracy of the error rate
estimation for new languages, those values of R and P were used to generate
synthetic samples consisting of 50,000 strings per language, and their EC
curves (with w = 0.25) were obtained. The corresponding CEC curves of
the three Easy, Hard, and Total Test sets were computed (bootstrapping
was applied), and the average error deviations obtained were those plotted
in Figure 8. The standard deviation was found to be very similar to the one
obtained in the experiments of Section 6.2.

Considering that no supervision information of any sample was used,
the estimations obtained on Easy Test and Total Test can be considered
useful in a wide range of cases. In practice, in tasks having low error rate
requirements (like some form processing systems), typically acceptable field-
level error rates could be between 0.5% and 3%. In that useful range, the
error deviations were small enough to be usable, or at least, a good starting
point in a process of stepwise refinement. Regarding the Hard Test, the error
deviations obtained were higher and, depending on the task, they can be
considered not suitable for some target ranges in some languages. In the
case of less strict error rate requirements, like an OCR for a data-mining
task, the system performed well with any test sample because the relative
error deviation was low or very low for medium and high error rates.
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Figure 8: Difference between target and real error rates (average error deviation) computed
by means of adaptive thresholding on the three samples having different cost distributions,
Easy Test, Hard Test, and Total Test sets using synthetic samples to obtain Ĥ.

7.2. Additional considerations

Some considerations about the samples and their derived EC curves are
presented and analyzed here. In Figure 9, EC curves H and Ĥ computed
from the real and synthetic samples, respectively, of all the languages studied
can be compared. It is important to take into account that the estimation of
Ĥ does not require a previous character recognition process or a final manual
supervision of a real sample of OCR hypotheses (necessary steps to obtain
H), which is is an important advantage for some tasks, e.g. data mining. Also
notice that an adaptive estimation like the one proposed becomes mandatory
in this scenario, since building an arbitrary synthetic sample involves the
assumption of an intrinsic error rate which can be very different from that
of a (real) representative sample, rendering a fixed thresholding technique
completely unusable for error rate estimation.

The estimation seems to be more accurate for the languages with real
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Figure 9: H and estimated Ĥ EC curves obtained from the real and synthetic samples,
respectively. The 50th and 99th percentiles of the cost distributions of the real sample are
shown (in the Provinces model, the 99th percentile is at Transformation Cost = 9.2).

and synthetic samples larger with respect to its language size: the ratio of
sample size to language size is around 0.09 for Names, 0.12 for Surnames, 1
for Municipalities, and 161 for Provinces in the real samples (see table 1),
while the amount of synthetic strings generated was fixed to 50,000 for all the
language models. We think that the differences between some of the curves
may not reflect a bad model estimation but a lack of representativity of the
samples used, as the experimental results suggest.

The 50th and 99th percentiles of the cost distributions of the real samples
are also indicated in the graphs. The 50th percentile indicates that, in all
languages, the probability of most of the OCR strings to be erroneously
transcribed is very low and, therefore, any estimation considered on them
will be made using a short run of the left tail of the curves. At the same
time, the 99th percentile indicates that estimations based on the right tail
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of the curves will only apply to a very few strings in the case of Names
and Surnames, which were inferred with frequencies and produced lower
transformation costs and lower overall error rate than Municipalities and
Provinces.

8. Conclusions

A method and experimental results for the automatic estimation of a
rejection threshold on the confidence index (or transformation cost) of a
sample of OCR hypotheses (batch) post-processed using a language model
have been presented. The goal is that an operator should be able to set a
target error rate for a whole sample instead of having to specify a threshold
in an arbitrary scale.

The expert knowledge in this task comes naturally in the form of a target
error rate which is negotiated between the producer and the consumer of the
process (e.g. the company performing the OCR and the one that needs the
resulting data for its business). This knowledge is converted into a rejection
threshold that can be used in a flexible and realistic way.

A relationship between rejection threshold and error rate can be estab-
lished using traditional analytic tools like Error-Reject Trade-off, Receiver
Operating Characteristic (ROC), or Precision-Recall, and their different vari-
ations, wich are widely used in a diversity of Intelligent Systems. Using those
tools, the error rate control of a new sample entails the assumption that a
similar confidence distribution is expected with respect to the training sample
used. However, in the task described here, this assumption can be unaccept-
able: the amount of symbol errors of an OCR classifier can widely vary for
different samples depending on many factors, and consequently, the distri-
bution of the post-processing transformation costs, can vary too. Therefore,
in this case, applying a unique threshold (fixed thresholding), as the one
provided by such tools, to different samples does not guarantee meeting a
pre-specified error rate.

In this work, we consider the hypothesis that a probability distribution
of erroneous transcriptions can be estimated from the transformation costs
produced by the application of a language model (Error vs. Cost curve or EC
curve), and that it can be used to predict the error rate of any set of strings
of the language, regardless of its cost distribution. Thus, an approach for
adaptive thresholding is proposed, where the EC curve of a language model
is used to compute the Cumulative Error vs. Cost curve (or CEC curve),
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which is directly used to automatically set the appropriate rejection threshold
that meets the user-defined error rate on the overall sample.

We tested this approach in two practical scenarios, depending on whether
a real supervised sample of OCR hypotheses of a given language is available
to compute the EC curve, or not. In both cases, test sets having three
different qualities of handwriting styles (easy, medium and hard) from four
language models having different characteristics were tested. In the first
scenario, the results show a very high accuracy in error rate estimation,
with average deviations below 0.1% with respect to the real error for all the
languages tested, even for high target error rates, while fixed thresholding
clearly failed on the easy and hard styles from all the languages. These
results are presented for all the range of possible error rates, and validate our
approach against fixed threshold schemes.

In the second scenario, a synthetic sample with artificially introduced
OCR-like errors is created by applying a new procedure, and used to esti-
mate the EC curve. The advantage of this second scenario is that a labeled
dataset is not needed, which is particularly beneficial for tasks where it is not
available. In this case, building an arbitrary synthetic sample involves the
assumption of an intrinsic error rate which can be very different from that
of a (real) representative sample, rendering a fixed thresholding technique
completely unusable for error rate estimation. The results of the application
of the proposed adaptive rejection threshold in this scenario showed a poten-
tially useful behavior in tasks having low error rate requirements (e.g., form
processing), and good performances in terms of relative error deviation in
case of less strict error rate requirements tasks (e.g., OCR for data mining).

Batch-adaptive rejection threshold estimation is intended for practical
applications such as an industrial data-input workflow, where a batch of
forms or other type of documents must be processed for a customer, and
a maximum acceptable error rate for the task is often required beforehand
(quality control), while keeping the amount of rejections as low as possible
(production cost optimization). The methodology proposed could be applied
to any set of observations provided with a consistent confidence index.
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