

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://dx.doi.org/10.1007/s11042-013-1396-x

http://hdl.handle.net/10251/56854

Springer Verlag (Germany)

Mossi García, JM.; Albiol Colomer, AJ.; Albiol Colomer, A.; Oliver Moll, J. (2014). Ground
truth annotation of traffic video data. Multimedia Tools and Applications. 1-14.
doi:10.1007/s11042-013-1396-x.

Ground Truth Annotation of Traffic Video Data
 Jose M. Mossi
 Alberto Albiol

Antonio Albiol
Javier Oliver

jmmossi@dcom.upv.es
ITeam. Universitat Politécnica de Valencia, Spain

ABSTRACT
This paper presents a software application to generate ground-
truth data on video files from traffic surveillance cameras used for
Intelligent Transportation Systems (IT systems). The computer
vision system to be evaluated counts the number of vehicles that
cross a line per time unit –intensity-, the average speed and the
occupancy. The main goal of the visual interface presented in this
paper is to be easy to use without the requirement of any specific
hardware. It is based on a standard laptop or desktop computer
and a Jog shuttle wheel. The setup is efficient and comfortable
because one hand of the annotating person is almost all the time
on the space key of the keyboard while the other hand is on the
jog shuttle wheel. The mean time required to annotate a video file
ranges from 1 to 5 times its duration (per lane) depending on the
content. Compared to general purpose annotation tool a time
factor gain of about 7 times is achieved.

Categories and Subject Descriptors
H.5 [Information Interfaces and Presentation]: Multimedia
Information systems

General Terms
Algorithms, Security, Human Factors, Verification.

Keywords
Traffic, ground truth, vehicle, video, intelligent transportation
systems.

1. INTRODUCTION
Intelligent Transportation Systems are used to manage urban and
road traffic. In the urban context, the timing of traffic lights has
been traditionally planned according to some parameters obtained
from inductive loops installed in the street asphalt. However,
recent advances in computer vision allow to obtain them from the
video cameras commonly installed at street poles[1]. The most
common parameters that are measured are intensity, also referred
to in the literature as density (number of vehicles to cross a line
per time unit), occupancy (average fraction of time a vehicle is
over a line or loop) and mean speed (mean of the speed of the
vehicles crossing a line). These three magnitudes are periodically
obtained and sent to the traffic control center with a
predetermined cadence (usually a value between 30 seconds and 2
minutes).

To date, most computer vision traffic systems[6][23] have been
developed and evaluated using independent datasets, which makes
it difficult to objectively evaluate their performance and
robustness as in other computer vision areas[2][11][18][8][22]. In all
these areas, challenging datasets have also been catalysts for
progress in the research.

A good dataset in the context of traffic analysis must be large
enough to include a big number of vehicles and situations.
Examples of different situations include traffic conditions –

congestion, dense, fluid, etc.- weather conditions, scenario
typologies such as avenues, tunnels, narrow two way streets, wide
multilane boulevards, etc. This huge amount of data poses the
problem of a daunting annotation task to generate ground-truth
information; therefore good interfaces and frameworks are
required to accomplish this goal.

Figure 1 shows a map of the city of Valencia (Spain) along with
the city traffic camera network [17] and a sample view of some of
them. Using these cameras, we have created our video database
for evaluation of video traffic analysis algorithms (eValTraffic).

Figure 1. City map and some video from cameras

One common requirement in all the previous scenarios is to
predefine a set of measurement lines where the parameters are
going to be measured, like in Figure 2. The position of these lines
emulates the location of inductive loops where measurements are
traditionally taken.

In order to evaluate the results of computer vision traffic systems,
the ground truth of the dataset needs to be established. This task is
one of the most time-consuming in the evaluation process, so it is
convenient to use helpful tools. In this specific scenario it is
needed to determine, for each vehicle in the dataset, its pass over
the line, its speed and its occupancy. Several ground truth
annotation tools are available in the literature like [20] [5] [7][10].
They are powerful and general, but this paper proposes to take
advantage of the specific scenario of traffic systems ground truth
where, for counting a vehicle or estimating its speed, it is not
necessary to segment it with a pixel level precision or a frame by
frame tracking, such that the time required to annotate the videos
is reduced up to 7 times.

Another aspect is that the annotation process can be speeded up
with specific hardware and/or software to navigate the video in a
faster way. Tools can be provided to help the human focus on the
interesting frames where the action occurs and bypass the time
intervals without vehicles. This paper proposes both
improvements and presents a setup consisting in a standard
computer or laptop, a very simple visual interface, a jog shuttle
wheel, (see Figure 3), and the procedure to build, in an efficient
way, the ground truth needed in computer vision based video

traffic applications. This tool has been successfully used to
annotate the eValTraffic dataset.

The organization of the paper is as follows. Related work is
presented in section 2. Section 3 is dedicated to give an overall
description of the system, while section 4 describes the details of
the annotation process. A speed up software tool using motion
detection is presented in section 5. In section 6, it is explained
how to add a jog-shuttle wheel to be more efficient during the
navigation of the video. Finally, sections 7 and 8 provide the
results and conclusions.

Figure 2. Setting the locations where to perform the
measurements

2. RELATED WORK
The Video Performance Evaluation Resource (ViPER) [20] is a
well known tool to label video and it can be taken as one of the
baseline consolidated general tools for this kind of tasks. It is used
in many works [9][12] to annotate or for performance evaluation
and its XML output format has been adopted in many video
databases such as ViSOR [19]. The ground truth generated using
the ViPER sytem contains enough information to evaluate
algorithms like, for example, detection, tracking, background
subtraction or traffic systems at a pixel level precision, as in the
works by Faro et al [9] and by Kasturi [12]. ViPER labels
objects in each frame using rectangular bounding-boxes or
arbitrary-shaped polygons. The user can navigate through the
video with the play, backward, forward buttons or directly seek to
a particular frame. Some drawbacks of the ViPER system are that
every operation requires a mouse or keyboard action and the lack
of efficient semiautomatic tools that speed up the process.

D’Orazio [7] and Serrano [16], among others, propose to aid the
manual annotation incorporating automatic o semi-automating
tools. For instance, in [7], the ground truth interface software is
fed by the result of a detection or tracking algorithm and the user
validates it. In case of failure, the annotation is corrected with
ViPER. A different approach is presented in [12], where the user
feedback obtained during the annotation process is used by the
detection or tracking software to perform better in the following
frames.
As video annotation of large databases requires a huge amount of
work, other researchers are more focused in web cooperation

interfaces. Volkmer [21] propose a web-based system called
EVA, the IBM Efficient Video Annotation, which was used to
annotate more than 80 hours of video in TRECVID. Several
strategies for human-computer interaction and usability were
tested, such as annotating exhaustively with one concept before
proceeding to the next vs. annotating with several concepts
simultaneously; use the mouse only vs. mouse and/or keyboard
for navigation and annotation, display several images at the same
time vs. one big image and a selectable number of thumbnails, etc.
LabelMe [15] is another example of web-based tool for image
annotation but it is more focused on still image than on video
annotation.

Most papers deal with expensive annotations in terms of human
employed time but have enough information to check the systems
at pixel level precision or frame by frame object tracking.
However in the case of traffic algorithms for measuring only the
parameters indicated in the introduction, it is not necessary all that
detailed information, it suffices with the instant when the vehicle
reaches and departs from a measurement position to derive its
speed and occupancy. The present paper exploits this fact in order
to build a simpler interface to input the human annotations that
results in an important reduction of the time needed to obtain the
ground truth.

3. OVERALL DESCRIPTION
To annotate intensity, mean speed and occupancy of the vehicles
crossing each line of measurement (see Figure 2) it is enough to
annotate the following information:

• Time when a vehicle begins to cross the line.
• The speed at which each vehicle crosses it.
• Time when the vehicle finishes crossing the line to

obtain the occupancy.

As it can be necessary to annotate several lanes in the same video,
the first decision to be made is to choose between:

1. Navigate the video only once and annotate for each
frame the information related to all the vehicles that are
present at the measurement lines in that instant, or

2. Iteratively annotate the video lane by lane
independently. At the end of the process, the
information from all the lanes can be merged together in
one file.

In the first case, an interface is needed to select the lane of interest
every time that a vehicle reaches a measurement line. This is the
approach used in VIPER-GT, where the mouse is used to select
the objects of interest.

 We used the second approach because psychophysiological
studies on user’s fatigue and reaction time [14] have shown that
when a person is focused in just one simple task is more effective
than with tasks that require to switch between actions. In this
second case, the user is focused only on “when” the object in the
video touches the line, instead of focusing on “when” and “where”
as in the first approach.

In our user interface, a line is superimposed on the image and the
user presses a key when a car reaches it. Then, the frame number
is recorded (i.e. the time instant), next, the video is played back
until the rear part of the vehicle reaches again the same line. At
that moment the user presses the same key finishing the

annotation for one car. This process is repeated for the following
vehicles in the sequence. Notice that as only one lane is processed
at a time, and the position of the line in each lane is predetermined
and fixed, there is no need to point any location with the mouse,
therefore no time is wasted moving the mouse or drawing a
bounding box to indicate what car or cars and what position or
positions are going to be annotated in each frame

The annotating interface has to provide the following features:

• Ability to navigate the video at both, high speed and
high precision. A jog shuttle wheel is proposed for this
task.

• Mark the time instants where things happen. A
conventional keyboard is used for this purpose.

• Possibility to correct annotation errors. In the case that
the operator makes a mistake and detects it, the system
has to be able to let him undo previous actions.

• Provide feedback of the annotation process. As it will be
explained later, the process of annotating each car
requires several keystrokes. The user must be able to
know easily at which state is the annotation of a vehicle
at any time.

Our previous experience on video annotation has shown us that
one key aspect of an efficient annotation is the ability to navigate
video files at very different speeds. For instance, when there is no
vehicle in the scene, fast forward navigation is usually required.
The playback speed must be significantly reduced when a vehicle
appears on the scene near the measurement line. Finally, precise
annotation of the frame where the vehicle crosses the line requires
a frame-by-frame advance. This objective can be easily achieved
with a jog shuttle wheel as ones used for broadcast television
edition and showed in Figures 3 and 4.

Figure 3. Setup of the ground truth annotation system

The jog shuttle wheel controls the frame-by-frame step forward o
backward using the motion of the wheel. Compared with a simple
keyboard interface, the jog wheel allows a very much faster and
precise frame location.

The shuttle ring controls the playback speed. It has a rest position
that corresponds to a pause of the video playback. The angular
position of the shuttle ring sets the forward or backward playback
speed, so it is very easy for the user to control the playback speed.
Also, since the rest position of the shuttle ring pauses the video, it
is very easy to pause the video at any instant just by releasing the
shuttle.

In order to have a quick idea of which portions of the video have
been annotated, the working window contains a bottom timeline.

The elements on the timeline can be seen in Figure 5.

A: Denotes the current position in the video.

B: Green vertical lines indicate the instants where
vehicles have reached the auxiliary line (explained
below in the paper).

C: Light orange indicates presence of a car on the main
line.

Figure 4. Jog-Shuttle Wheel used to navigate the video data

Once the annotation has finished, the ground truth data is saved in
XML format because it is a well-known and human readable
format. The XML format is also used in many other video
applications and there exist many open source libraries to manage
this kind of data [2][20]. After the last lane has been annotated, the
system merges the information of all the lanes into a single file.

Figure 5. Timeline

4. DETAILED VEHICLE ANNOTATION
PROCEDURE
4.1 Normal vehicle annotation
In order to annotate the speed for each vehicle, we propose to
measure the time that a vehicle spends to cover a fixed distance.
To do that, we set a second line on the screen. We call this line the
“auxiliary line” as opposed to the measurement line mentioned in
the introduction of the paper (the “main line”). The auxiliary line
is parallel to the main line and it is positioned on the screen at a
fixed distance D before the main line along the direction of the
movement of the vehicle (it is crossed first by the vehicles). Since
time is quantized by the frame rate, speed measurements will also
be quantized. Finer speed granularity requires D to be larger.
However, large values for D may be problematic if the vehicle’s
speed does not remain approximately constant while traversing
this gap.

The separation D between the main and auxiliary lines can be
easily obtained in real magnitude (meters) directly from the image
if the scenario is properly calibrated and a homography that maps
ground points to world coordinates is available.

The whole process of a vehicle annotation is illustrated in Figure
6. The first step is to navigate with the jog-shuttle until the frame
in which the front edge of a vehicle reaches the auxiliary line.
Then the annotation process of the car starts and involves the
following actions:

• Press a key to mark the frame number corresponding to
the vehicle reaching the auxiliary line. Once the key is
pressed, a green rectangle touching the auxiliary line is
displayed to acknowledge the action and to indicate the
next action required by the user.

• Advance the video frame by frame until the front of the
vehicle reaches the main line. Then, press a key to
mark the frame number corresponding to the vehicle on
the main line. After the keystroke, the green rectangle
on the aux. line is changed by an orange one on the
main line.

• Advance the video frame by frame until the tail of the
vehicle leaves the main line. Then, press a key to mark
the vehicle leaving the main line.

We have chosen the SPACE key because it is the largest on the
keyboard. Since all annotations involve the same key, the human
does not need to change the position of the finger and to waste
time or concentration.

Notice each car annotation requires only 3 keystrokes. The user
receives feedback about the current state of the annotation by a
color code. Before the car annotation begins, the main and
auxiliary lines are displayed in red (Figure 6a). After the first
keystroke, that indicates that the front of the car has reached the
auxiliary line, the color of the line changes from red to green (see
Figure 6b). After the second keystroke, indicating that the
vehicle’s front has reached the main line, the auxiliary line is
hidden and the main line becomes orange (see Figure 6c). Finally,
after the third keystroke that triggers that the rear part of the
vehicle is leaving the main line, both lines are returned to their
original red color (Figure 6d).

If errors are made during the annotation of one vehicle, they can
be easily discarded by pressing the BACKSPACE key.

4.2 Double vehicle annotation
Sometimes the distance between two vehicles is very small. In
this situation the second vehicle may reach the auxiliary line
before the preceding one has completed to cross the main line.

 So it is necessary to handle this situation where in some frames
two vehicles are in the area of interest simultaneously. Two
solutions are proposed. The first one is:

• To annotate completely the first vehicle as if the second
vehicle didn’t exist at all.

• Then, rewind the necessary frames until the second
vehicle reaches the auxiliary line and proceed normally
annotating the second one.

a) Vehicle approximating to the lines.
Both lines shown in red.

b) User presses key for the first time
to indicate that the vehicle has
reached the aux line.

c) User presses key a second time to
indicate that the vehicle has reached
the main line.

d) User presses key the third time to
indicate that the vehicle has exceeded
the main line and the annotation of the
vehicle concludes, returning to the
initial state.

Figure 6. Sequence to annotate one vehicle.
In order to have a visual feedback that two vehicles are being
simultaneously annotated, the area between the two lines is split
into two halves; the left side will show the state of the first vehicle
and the right side the second one. Additionally, a red line is drawn
between both sides to recognize this situation more easily. Figure
7 shows an example of the process.

The second approach deals with double vehicle annotation
without going backwards. When two vehicles are simultaneously
in the area of interest, two different keys, one for each vehicle, are
needed instead of the single key SPACE. We chose the numbers 1
and 2. The key 1 is used to indicate each event of the first vehicle
as it was the key SPACE but each hit applies only for the first
vehicle and the key 2 for each event of the second vehicle,
similarly, as it was the key SPACE, but each hit applies only for

the second one. When a third vehicle reaches the auxiliary line
after the last event of the second vehicle, the normal procedure
with the key SPACE is used again. If the second vehicle has not
finished crossing, the key 1 is reused for the third one and
continue working with the double vehicle annotation mode, i.e.,
using key 2 for the second one, and key 1 for the third one.

a) Vehicle approximating the lines.

b) User presses space key for the
first time to indicate that the (first)
vehicle has reached the aux line.

c) User presses space key a second
time to indicate that the vehicle has
reached the main line.

d) User presses space key the third
time to indicate that the vehicle’s tail
has exceeded the main line and the
annotation of the (first) vehicle has
just finished. (frame 10568).

e) User rewinds from frame 10568 to
10560 to place the second vehicle at
the aux line to prepare the annotation
of the second car. The orange area
corresponds to the first car.

f) User presses space key for the first
time of the second vehicle. As two
cars are marked in this frame the area
is divided into two zones separated
by a red line.

g) User goes forward until the
(second) vehicle reaches the main line
and then presses space key.

4.3 h) Finally, the space key is
pressed to mark the rear part of the
(second) vehicle on the main line.

 Figure 7. Sequence to annotate two vehicles.

5. SPEEDING UP THE ANNOTATION
PROCESS
In a traffic scenario there are two situations that happen
frequently:

1) Time intervals where no vehicles pass by the lane

2) Time intervals where the vehicles are on the line and are
stopped in front of the red light or in a traffic jam.

In both circumstances it is interesting to use an automatic fast
forward mode that plays the video quickly and stops at a frame
where motion is detected again in the zone between the lines. The
first situation is caused because a new car appears in the scene and
it reaches the auxiliary line, and the motion in the second situation
is caused because the traffic light turns to green and the stopped
vehicle restarts.

Notice that we implemented this functionality by fast-forward 16x
playing until motion is detected again. This approach has the
advantage compared to direct seeking that the user can see a
potential failure if the automatic fast forward doesn’t stop at the
appropriate frame.

In order to implement this motion detection, a small rectangle
around the auxiliary line is defined. This region is used as input to
a background subtraction-foreground detection algorithm. We
used the modules available in OpenCV [3][13] based on Mixture
of Gaussians.

The motion detection has proved to be a valuable help to speed up
the annotation process. The results section shows details of the
time saved. Moreover, the impact of the motion detection errors is
minimal:

• A false positive, that pauses the video, simply requires
the user to call the motion detector again by pressing a
key.

• A missed positive can be easily detected by the user
since the video is displayed while fast-forwarding.

6. INTERFACING THE JOG-WHEEL
The jog shuttle wheel comes with a driver that allows the
operative system of the computer to create interfaces with
applications. The driver is configured to produce a computer
response to every action on the jog shuttle. Typically, the
computer response is to map jog shuttle actions to different
keyboard keystrokes. The annotating applications must only take
care of properly processing keyboard events. Table 1 shows some
of the mappings that we have used as an example.

Table 1. Action association between jog wheel and application

Jog-Wheel Action Keystroke Application Action

Turn Jog Right Down arrow Forward one frame

Turn Jog Left Up arrow Backward one frame

Shuttle zone 0 A None

Shuttle zone 1 B Play Forward slow /5

Shutle zone 7 H Play Forward fast x20

Shuttle zone 1 I Play Backward slow /5

Shutle zone 7 O Play Backward fast x20

7. RESULTS AND DISCUSSION

For a deeper analysis of the individual contribution of the ideas
presented in the paper, the time used to annotate three video
sequences of 15K frames each (10 minutes of real time video at
25 fps) is studied and compared among 4 different interfaces.
Each sequence was recorded at a different location of the city. The
first two were captured at daytime while the third one was taken at
nighttime.

The first interface does not include any of the ideas introduced in
this paper and it is similar to ViPER-GT. It is based on the use of
the mouse to indicate with precision some points on the image.
When a vehicle reaches the area of interest it is signaled by
clicking on the edge of the front part. To compute the speed, the
same point of the vehicle is clicked again in the next frame.
Finally, a third click on the rear part of the vehicle is needed to
compute the occupancy.

The second interface (Only Keyboard) introduces the idea of
building the ground-truth using a main line and an auxiliary line.
However, it does not use either the jog-shuttle wheel neither the
motion detection facility to navigate through the video. One of the
users’ hands is used to press the SPACE key and the other is used
to press keys that allow to navigate the video backward, forward,
slow, fast and frame by frame.

The third method is the same as the second one plus the use of the
jog-shuttle wheel without motion detection. One hand is for
pressing the SPACE key and the other one controls the wheel. We
name it “Wheel”.

Finally, the fourth one includes all the elements described in this
paper: measurement lines, jog-shuttle and motion detection. This
interface is called “Motion”.

Table 2 shows the times required to annotate the three video clips
using each interface. Note that the annotation time depends on the

number of vehicles and can be drastically reduced with the ideas
introduced in this paper.

Table 2. Time used in each procedure

Time (minutes:seconds)

Clip number
vehicles

ViPER Mouse
based

Only
Keyboard

Wheel Motion

1 69 80:18 65:30 21:59 13:58 11:20

2 72 89:23 75:50 2349 15:03 12:17

3 21 32:11 28:51 13:42 05:41 03:48

Total 162 201:52 170:21 59:57 35:00 27:42

In Table 2 we also compare our interfaces with ViPER-GT. The
procedure with ViPER-GT can be summarized as follows. For
each vehicle, create a bounding box in the frame when the car is
located a few pixels away before the measurement line, play
forward the video until the vehicle crosses the line and then create
a second bounding box. With this information, the ViPER-GT
system can interpolate the car coordinates after a user request.
With this information, it can be derived the average velocity and
occupancy for a vehicle.

From the results, we found that the largest reduction factor in the
annotation time (2.84 times in average, i.e., Mouse based total
time divided by Only Keyboard total time) is achieved by the idea
of drawing a line on the screen and wait until a car arrives to it.
This eliminates the need for precise mouse clicks. The use of the
wheel is the second most important reduction factor (about 1.7).
Finally, the impact of the motion detection is the smallest, and
note that there are differences among the three different scenarios.
This is because motion detection is more effective if there are
large intervals with no cars (as in the nighttime). The overall
factor achieved with motion detection is 1.26. Thus, a total
reduction time factor of 6 is achieved when the whole system is
compared to the Mouse interface. This factor is increased to 7 if
the whole system is compared to ViPER-GT. Notice that ViPER-
GT is a general annotation tool that can be used in different
contexts and has not been optimized for traffic video applications.

Apart from evaluating the annotation time, we have performed a
small poll to evaluate the user satisfaction with the well-known
standard System Usability Scale questionnaire [4]. The test
contains the next questions:

1. I think that I would like to use this system frequently.
2. I found the system unnecessarily complex.
3. I thought the system was easy to use.
4. I think that I would need the support of a technical

person to be able to use this system.
5. I found the various functions in this system were well

integrated.
6. I thought there was too much inconsistency in this

system.
7. I would imagine that most people would learn to use

this system very quickly.
8. I found the system very cumbersome to use.
9. I felt very confident using the system.
10. I needed to learn a lot of things before I could get going

with this system.

The user can rank each of the previous questions with one of five
levels of agreement that range from ‘strong disagree’ to ‘strong
agree’. The questionnaire was answered immediately after the
annotation process. The number of users inquired was 10 each one
annotated 2 different clips. A mark of 52 out of 100 was obtained
for the Mouse based interface while a 78 out of 100 was achieved
for the Motion version. This mark shows a high degree of
satisfaction.

8. CONCLUSIONS
In this paper, we proposed a setup constituted by a laptop, a jog
shuttle wheel and software to efficiently annotate the ground truth
of traffic videos.

The system annotates individual vehicle events at given locations.
The annotated data can be used for counting vehicles, measuring
their speeds, and determining lane occupancy.

We tested the setup annotating part of our database composed by
10 scenarios of real video of the cameras of the Local Traffic
Authority of the city of Valencia, Spain (about 800 traffic
cameras). The tool demonstrated to be very user friendly because
the user only needs to use one hand managing the jog shuttle
wheel and the other hand on the key SPACE of the keyboard. It is
very efficient because, operating at 25 frames per second, the
mean time required to annotate a 10 minutes (15K images) video
file ranges from 4 to 13 minutes per lane depending on the traffic
intensity.

9. ACKNOWLEDGMENTS
The authors thank Etra I+D and Ruth López and Jaime Benlloch
from Local Traffic Authority of Valencia, Spain by providing the
video files. Also thanks to the VIGTA 2012 Conference
Organizers, its participants and the anonymous reviewers of this
journal for their valuable advice.

This work was funded by the Spanish Government project
MARTA under the CENIT program and CICYT contract
TEC2009-09146.

10. REFERENCES

[1] Albiol, A. et al. 2011. Detection of Parked Vehicles
Using Spatiotemporal Maps. Intelligent Transportation Systems,
IEEE Transactions on. 12, 4 (Dec. 2011), 1277 –1291.

[2] Blunsden, S.J. and Fisher, R. The BEHAVE video
dataset: ground truthed video for multi-person behavior
classification. Annals of British Machine Vision Association.
2010, 4, 1–12.

[3] Bradski, G. and Kaehler, A. 2008. Learning OpenCV:
Computer Vision with the OpenCV Library. O’Reilly.

[4] Brooke, J. SUS: a “quick and dirty” usability scale.
Usability Evaluation in Industry. Taylor and Francis.

[5] Brostow, G.J. et al. 2009. Semantic object classes in
video: A high-definition ground truth database. Pattern
Recognition Letters. 30, 2 (2009), 88 – 97.

[6] Buch, N. et al. 2011. A Review of Computer Vision
Techniques for the Analysis of Urban Traffic. IEEE Transactions

on Intelligent Transportation Systems. 12, 3 (Sep. 2011), 920–
939.

[7] D’Orazio, T. et al. 2009. A Semi-automatic System for
Ground Truth Generation of Soccer Video Sequences. Advanced
Video and Signal Based Surveillance, 2009. AVSS ’09. Sixth
IEEE International Conference on (Sep. 2009), 559 –564.

[8] Dollar, P. et al. 2012. Pedestrian Detection: An
Evaluation of the State of the Art. Pattern Analysis and Machine
Intelligence, IEEE Transactions on. 34, 4 (Apr. 2012), 743 –761.

[9] Faro, A. et al. 2011. Adaptive Background Modeling
Integrated With Luminosity Sensors and Occlusion Processing for
Reliable Vehicle Detection. Intelligent Transportation Systems,
IEEE Transactions on. 12, 4 (Dec. 2011), 1398 –1412.

[10] Giro-i-Nieto, X. et al. 2010. GAT: a Graphical
Annotation Tool for semantic regions. Multimedia Tools and
Applications. 46, 2-3 (2010), 155–174.

[11] i-LIDS. Image Library for Intelligent Detection
Systems: www.ilids.co.uk.

[12] Kasturi, R. et al. 2009. Framework for Performance
Evaluation of Face, Text, and Vehicle Detection and Tracking in
Video: Data, Metrics, and Protocol. Pattern Analysis and Machine
Intelligence, IEEE Transactions on. 31, 2 (Feb. 2009), 319 –336.
[13] Laganière, R. 2011. OpenCV 2 Computer Vision. Packt
Publishing.

[14] Lorist, M.M. et al. 2000. Mental fatigue and task
control: Planning and preparation. Psychophysiology. 37, 5
(2000), 614–625.

[15] Russell, B. et al. 2008. LabelMe: A Database and Web-
Based Tool for Image Annotation. International Journal of
Computer Vision. 77, 1 (2008), 157–173.
[16] Serrano, M. et al. 2010. Interactive Video Annotation
Tool. A. de Leon F. de Carvalho et al., eds. Springer Berlin /
Heidelberg. 325–332.
[17] Traffic City Cameras Valencia: camaras.valencia.es.

[18] TREC Video Retrieval Evaluation: http://www-
nlpir.nist.gov/projects/trecvid/.
[19] Vezzani, R. and Cucchiara, R. 2010. Video Surveillance
Online Repository (ViSOR): an integrated framework.
Multimedia Tools and Applications. 50, 2 (2010), 359–380.

[20] ViPER: The Video Performance Evaluation Resource:
http://viper-toolkit.sourceforge.net/.
[21] Volkmer, T. et al. 2005. A web-based system for
collaborative annotation of large image and video collections: an
evaluation and user study. Proceedings of the 13th annual ACM
international conference on Multimedia (New York, NY, USA,
2005), 892–901.

[22] Zhang, H.-B. et al. 2012. Adaptive photograph retrieval
method. Multimedia Tools and Applications. (2012), 1–21.

[23] Zou, Y. et al. 2011. Traffic incident classification at
intersections based on image sequences by HMM/SVM
classifiers. Multimedia Tools and Applications. 52, 1 (2011), 133–
145.

