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COMPACT COVERS AND FUNCTION SPACES

J. KA̧KOL, M. LOPEZ-PELLICER, O. OKUNEV

Abstract. For a Tychonoff space X, we denote by Cp(X) and Cc(X) the space of con-

tinuous real-valued functions on X equipped with the topology of pointwise convergence

and the compact-open topology respectively.

Providing a characterization of the Lindelöf Σ-property of X in terms of Cp(X), we ex-

tend Okunev’s results by showing that if there exists a surjection from Cp(X) onto Cp(Y )

(resp. from Lp(X) onto Lp(Y )) that takes bounded sequences to bounded sequences,

then υY is a Lindelöf Σ-space (respectively K-analytic) if υX has this property. In the

second part, applying Christensen’s theorem, we extend Pelant’s result by proving that

if X is a separable completely metrizable space and Y is first countable, and there is a

quotient linear map from Cc(X) onto Cc(Y ), then Y is a separable completely metrizable

space. We study also the non-separable case, and consider a different approach to the

result of J. Baars, J. de Groot, J. Pelant and V. Valov, which is based on the combi-

nation of two facts: Complete metrizability is preserved by `p-equivalence in the class

of metric spaces (J. Baars, J. de Groot, J. Pelant). If X is completely metrizable and

`p-equivalent to a first countable Y , then Y is metrizable (V. Valov). Some additional

results are presented.

1. Introduction

All spaces considered in this article are assumed to be completely regular and Hausdorff.

We use terminology and notation as in [14]. We say that a setA in a spaceX is functionally

bounded in X if every continuous real-valued function on X is bounded on A. A space

X is a µ-space if every closed functionally bounded subspace of X is compact. A Polish

space is a separable completely metrizable space. The symbol ω denotes the smallest

infinite ordinal (so ω is the set of all non-negative integers).

We denote by Cp(X) and Cc(X) the spaces of continuous real-valued functions on X

endowed with the topology of pointwise convergence and the compact open topology

respectively. Lp(X) is the topological dual of Cp(X) endowed with the weak ∗-topology.

We assume that X is a subspace of Lp(X) by virtue of the standard embedding x 7→ x̂

where x̂(f) = f(x) for each f ∈ Cp(X).

The research was supported for the first named author by National Center of Science, Poland, grant

no. N N201 605340, and for the first and second named authors by Generalitat Valenciana, Conselleria

d’Educació i Esport, Spain, Grant PROMETEO/2013/058.
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Recall that Nagata’s theorem states that if the topological rings Cp(X) and Cp(Y ) are

topologically isomorphic, then X and Y are homeomorphic, see [6]. This suggests the

following problem, see [2].

Two spaces X and Y are said to be t-equivalent (`p-equivalent) if the spaces Cp(X) and

Cp(Y ) are homeomorphic (linearly homeomorphic). We say that a topological property

P is preserved by t-equivalence (`p-equivalence) if whenever two spaces X and Y are

t-equivalent (`p-equivalent) and X has the property P , Y has the property P too.

What topological properties are preserved by the relations of t-equivalence and `p-

equivalence?

Clearly, a property P is preserved by the relation of t-equivalence (`P -equivalence) if

and only if there is a dual topological (linear topological) property Q such that X has P
if and only if Cp(X) has Q; in different words, if P “admits a description in terms of the

(linear) topological structure of Cp(X)”.

We will say that two spaces X and Y are `c-equivalent if the spaces Cc(X) and Cc(Y )

are linearly homeomorphic. Note that if X and Y are `p-equivalent and X is a µ-space,

then the spaces X and Y are also `c-equivalent, see [5]. It is well known (by a combination

of Milyutin’s and Pestov’s results, see [5, Theorem 3]), that [0, 1] and [0, 1] × [0, 1] are

`c-equivalent but not `p-equivalent. On the other hand, if X and Y are `p-equivalent and

X is Dieudonné complete (in particular, if X is paracompact or realcompact), then X

and Y are `c-equivalent, see [5, Theorem 1].

We say that a space X `c-covers a space Y if there is a continuous open linear mapping

from Cc(X) onto Cc(Y ). Clearly, if X and Y are `c-equivalent, then each of the two

`c-covers the other.

There are many known results about preservation and non-preservation of various topo-

logical properties by t-equivalence and `p-equivalence; see, e.g., [5], [6], [8], [24], [32]. For

example, metrizability, local compactness, the countability of weight, normality and para-

compactness are not `p-invariant. On the other hand, hemicompactness, the property of

being an ℵ0-space, the Lindelöf Σ-property, K-analyticity and analyticity are preserved

by `p-equivalence.

We denote by P the space ωω endowed with the Tychonoff product topology (with all

the factors discrete). We equip the space P with the natural partial order: p ≤ q if and

only if p(n) ≤ q(n) for all n ∈ ω. For an element p of P and a natural number k we denote

by p|k the finite sequence (p(1), . . . , p(k)). Given a finite sequence σ = (σ1, . . . , σn) of

natural numbers, we denote by W (σ) the set {p ∈ P : p|n = σ}. Clearly, for every p ∈ P,

the family of sets {W (p|n) : n ∈ ω} is a base of open neighborhoods of p in P.

A family of subspaces R = {Ap : p ∈ P} of a space X is called a resolution of X

if it covers X and Ap ⊂ Aq whenever p ≤ q. We say that a resolution R is compact
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if each element Ap of R is compact. If X is a topological vector space, we say that a

resolution R of X is bounded if each element of R is bounded in X (that is, absorbed

by any neighbourhood of zero). A resolution R swallows compact sets if every compact

subspace of X is contained in some element of R.

As usual, a set-valued mapping T : X → Y is called compact valued if the set T (x) is

compact for every x ∈ X, and is upper-semicontinuous if for every open set V in Y , the

set {x ∈ X : T (x) ⊂ V } is open. We abbreviate “compact-valued upper semicontinuous”

as “usco”. For a set A ⊂ X we denote T (A) =
⋃
{T (x) : x ∈ A}, and we say that T is

onto Y if T (X) = Y . We denote the family of all compact subspaces of a space X by

K(X) (so compact-valued mappings to X are the same as functions to K(X)).

In Section 2 we find a characterization of Lindelöf Σ-property of υX in terms of the

linear topological structure of Cp(X) and use it to show that if υX is a Lindelöf Σ-space

or a K-analytic space and there exists a surjection from Lp(X) onto Lp(Y ) that takes

bounded sequences to bounded sequences, then υY is a Lindelöf Σ-space (respectively, K-

analytic); we prove a similar statement for the Lindelöf Σ-property of υX and mappings

between Cp(X) and Cp(Y ). This supplements some earlier results of Okunev [22].

A. Arhangel’skii asks in [4, Problem 20] if a first countable space Y which is `p-equivalent

to a metrizable space X must also be metrizable. In [8, Theorem 3.3] J. Baars, J. de Groot

and J. Pelant proved that complete metrizability is preserved by `p-equivalence in the class

of metrizable spaces. They also gave an alternative proof for separable metrizable spaces

by using Christensen’s Theorem (1 below), [8, Theorem 5.1, Theorem 5.3]. Later on,

Valov proved, using the results in [30], that the answer to the Arhangel’skii’s problem

is positive for Čech-complete spaces Y , see [32, Corollary 4.6]. The combination of the

above facts yields: The property of being a completely metrizable space is preserved by the

`p-equivalence for spaces satisfying the first axiom of countability.

In Section 3 of this article we discuss the preservation of complete metrizability by

`c-equivalence. We give a different proof of the preservation of complete metrizability

in the case of `c-equivalent spaces X and Y where X is Polish and Y is first-countable,

and discuss the non-separable case. Note however that from Valov’s quite technical [32,

Corollary 4.6] it follows that if X is completely metrizable, Y is paracompact first count-

able, and there is a continuous surjection from Cc(X) onto Cc(Y ), then Y is completely

metrizable. Our approach is different and uses a property of Cc(X) which is preserved

by linear open maps and characterizes spaces X with a compact resolution swallowing

compact sets (Theorem 14, Corollary 15). The importance of this concept stems from the

following deep result of J. P. R. Christensen [12, Theorem 3.3].
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Theorem 1. A metrizable space X is Polish if and only if X admits a compact resolution

swallowing compact sets.

We partially extend Theorem 1 to the non-separable case, see Proposition 16 below, and

we apply this extension to show that if a space Y is `c-covered by a completely metrizable

space of weight κ, then Y admits a compact cover swallowing compact sets similar to a

resolution. In particular, if Y is of pointwise countable type and X is Polish, then Y is

separable and completely metrizable (Corollary 24). The separable case will be deduced

from Theorem 21 showing that if X is an ℵ0-space and there is an open continuous linear

mapping from Cc(X) onto Cc(Y ), then Y is an ℵ0-space. Indeed, the latter fact and

Theorem 1 apply to prove that if for a separable completely metrizable space X there

exists a quotient linear map from Cc(X) onto Cc(Y ) and Y is first-countable, then Y is

separable and completely metrizable.

Motivated by the argument providing Corollary 23, we present another proof (quite

different from the one in [32, Proposition 4.8]) showing that if Y is a wq-space `c-covered

by a locally compact µ-space X, then Y is a locally compact µ-space. Our approach uses

the concept of Baire-likeness of topological vector spaces. This extends a result of [4]

or [5, Theorem 12] with the same conclusion for `p-equivalent spaces X and Y . McCoy

and Ntantu [19] proved a similar result for `p-equivalent spaces X and Y where X is

separable, metrizable and locally compact, and Y is first-countable. The same conclusion

was obtained in [16] for locally compact paracompact spaces X.

Some interesting part of the paper deals with compact P(κ) resolutions swallowing

compact sets (Theorem 14) to provide a nice characterization for a large class of locally

convex spaces Cc(X) to have a Gκ-basis. This leads to Proposition 16 stating that if X is

a completely metrizable space of weight κ, then Cc(X) has a Gκ-basis. The concept of a

Gκ-basis seems to be a good tool to study a non-separable version (still an open question)

of a remarkable Christensen theorem several times mentioned in the paper, see Theorem

17.

Recall that a space Y is of pointwise countable type [6] if for every y ∈ Y there exists

a compact set K that contains y and has a countable base of neighbourhoods in Y . The

class of spaces of pointwise countable type contains, in particular, all first countable spaces

and all Čech-complete spaces.

A space Y is a wq-space [32] if for each y ∈ Y there is a sequence {Un : n ∈ ω} of

open neighbourhoods of y such that if yn ∈ Un for each n ∈ ω then {yn : n ∈ ω} is

functionally bounded in Y . It is well known (and is easy to verify) that every space of

pointwise countable type is a wq-space; moreover, every wq- and µ-space is of pointwise

countable type.
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2. `p-equivalence and the Lindelöf Σ-property of υX

A space X is a Lindelöf Σ-space if there is a compact-valued upper semi-continuous

mapping from a separable metrizable space onto X; since every separable metrizable space

is a continuous image of a subspace of P, we can characterize Lindelöf Σ-spaces as images

under usco mappings of subspaces of P.

If there is a compact-valued upper semicontinuous mapping from P onto X, then X is

called K-analytic, see [26]. A space X is called quasi-Souslin if there exists a set-valued

mapping T from P onto X such that if a sequence pn converges to a point p in P and

for each n ∈ ω, xn ∈ T (pn), then the sequence (xn : n ∈ ω) has a limit point in T (p),

see [31, I.4.2]. It is easy to verify that a space X is quasi-Souslin if and only if there is a

countably compact-valued upper semicontinuous mapping from P onto X.

A topological vector space E is called web-bounded if there exist an S ⊂ P and a set-

valued mapping A from S onto E such that whenever p ∈ S and xk ∈ A(W (p|k)), the

sequence {xk : k ∈ ω} is bounded in E (that is, is absorbed by any neighbourhood of zero

in E). Clearly, every topological vector space with a bounded resolution, in particular,

every vector quasi-Souslin and every vector Lindelöf Σ-space, is web-bounded. Note that

every linear subspace of a web-bounded space is web-bounded, and every image of a

web-bounded space under a continuous linear mapping is web-bounded.

The next statement is Theorem 3.5 in [23].

Proposition 2. The space υX is a Lindelöf Σ-space if and only if there exists a Lindelöf

Σ-space Z such that Cp(X) ⊂ Z ⊂ RX .

As usual, we denote by E ′ the weak dual space of E. Clearly, E ′ is a subspace of RE.

Theorem 3. Let E be a locally convex space. If E is web-bounded, then there is a linear

Lindelöf Σ-space Z such that E ′ ⊂ Z ⊂ RE. In particular, E ′ is web-bounded.

Proof. Let S ⊂ P and A : S → E be a set-valued mapping as in the definition of a

web-bounded space. Put

Z = {φ ∈ RE : for each p ∈ S there is an n ∈ ω such that φ is bounded on A(W (p|n))}.

Let us verify that E ′ ⊂ Z. Let φ ∈ E ′, and suppose φ /∈ Z. Then for some p ∈ S and

every n ∈ ω there is a point xn ∈ A(W (p|n)) such that |φ(xn)| > n. Then the sequence

{xn : n ∈ ω} is unbounded in E, in contradiction with the definition of a web-bounded

space.

Let R̄ = R ∪ {−∞,+∞} be the natural two-point compactification of R. For every

finite sequence σ of naturals of length n put

Zσ = {φ ∈ R̄E : φ(A(W (σ))) ⊂ [−n, n]}.
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The set Zσ is closed in the compact space R̄E, hence is compact. Furthermore, the family

{Zσ : σ is a finite sequence of naturals} is countable, and Z =
⋂
p∈S

⋃
n∈ω Zp|n. It follows

that for every φ ∈ Z and ψ ∈ R̄E \ Z there are p ∈ S and n ∈ ω such that φ ∈ Zp|n and

ψ /∈ Zp|n. By Proposition IV.9.2 in [6], Z is a Lindelöf Σ-space.

Obviously, Z is a linear subspace of RE, so Z is web-bounded. Since E ′ is a linear

subspace of Z, E ′ is web-bounded. �

We say that a locally convex space E is weak if its topology coincides with the ∗-weak

topology. It is well-known that if a space E is weak, then (E ′)′ is linearly homeomorphic

to E (see, e.g., IV.1.2 in [27]).

Corollary 4. Let E be a weak space. Then E is web-bounded if and only if E ′ is web-

bounded.

In particular, Cp(X) is a weak space.

Corollary 5. The space Cp(X) is web-bounded if and only if Lp(X) is web-bounded.

The following lemma is a part of [18, Theorem 9.15]; for the sake of completeness we

give the proof here.

Lemma 6. The space Cp(X) is web-bounded if and only if υX is a Lindelöf Σ-space.

Proof. If υX is a Lindelöf Σ-space, then Lp(υX) is a Lindelöf Σ-space (because υX is a

Hamel base for Lp(υX), so Lp(υX) is a countable union of continuous images of products

of finite powers of υX with compact spaces; see [6, Proposition 0.5.13]), hence Lp(υX)

is web-bounded. It follows by Corollary 5 that the space Cp(υX) is web-bounded. The

restriction mapping rX : Cp(υX) → Cp(X) (defined by the rule rX(f) = f |X for all

f ∈ Cp(υX)) is linear, continuous and onto, so the space Cp(X) is web-bounded.

Conversely, assume that Cp(X) is web-bounded. By Theorem 3, there is a Lindelöf

Σ-space Z such that Lp(X) ⊂ Z ⊂ RC(X).

From the fact that X is C-embedded in RC(X) it follows that υX is homeomorphic to the

closure of of X in RC(X). Since X ⊂ Z ⊂ RC(X), and Z is Lindelöf, υX is homeomorphic

to a closed subspace of Z, and therefore is a Lindelöf Σ-space. �

Corollary 7. The space Lp(X) is web-bounded if and only if υX is a Lindelöf Σ-space.

Indeed, it is clear from the definition that web-boundedness is preserved under mappings

that take bounded sequences to bounded sequences.

A set B in a topological vector space is bounded if and only if every sequence in B is

bounded. It follows that the image of a space with a bounded resolution under a mapping
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that takes bounded sequences to bounded sequences has a bounded resolution. Now from

Lemma 6 we arrive at the following.

Theorem 8. Let X and Y be spaces, and assume that there exists a surjective mapping

h : Cp(X) → Cp(Y ) that takes bounded sequences to bounded sequences. If υX is a

Lindelöf Σ-space, then υY is a Lindelöf Σ-space.

Theorem 9. Let X and Y be spaces, and assume that there exists a surjective map-

ping h : Lp(X) → Lp(Y ) that takes bounded sequences to bounded sequences. If υX is a

Lindelöf Σ-space, then υY is a Lindelöf Σ-space.

Theorem 10. Lp(X) has a bounded resolution if and only if υX is a K-analytic space.

In particular, if X is quasi-Souslin, then Lp(X) has a bounded resolution

Proof. Let {Ap : p ∈ P} be a bounded resolution in Lp(X). The family {Ap ∩X : p ∈ P}
is a resolution in X consisting of functionally bounded sets. For each p ∈ P let Bp be

the closure of Ap ∩X in the space υX. Then the subspace Y =
⋃
{Bp : p ∈ P} is quasi-

Souslin. It follows that υY is K-analytic. Indeed, let T be a set-valued mapping that

witnesses Y being quasi-Souslin. Each T (p) is countably compact, so its closure T (p) in

υY is compact. The mapping T̄ : p 7→ T (p) is upper semicontinuous, so Z =
⋃
p∈P T (p) is

K-analytic.

Since Y ⊂ Z ⊂ υY , we have Z = υZ = υY , so υY is K-analytic. Since X ⊂ Y ⊂ υX,

we conclude that υX = υY is K-analytic.

Conversely, assume that υX is K-analytic. Then by [6, Proposition 0.5.13], the space

Lp(υX) is K-analytic; therefore, it has a compact resolution {Ap : p ∈ P}. As Lp(X)

is embedded in Lp(υX), the family {Ap ∩ Lp(X) : α ∈ P} is a bounded resolution of

Lp(X). �

Theorem 11. If there exists a mapping from Lp(X) onto Lp(Y ) that takes bounded se-

quences to bounded sequences, and υX is K-analytic, then υY is K-analytic.

Problem 12. Suppose the space υX is K-analytic and there is a mapping from Cp(X)

onto Cp(Y ) that takes bounded sequences to bounded sequences. Must the space υY be

K-analytic?

3. Resolutions and completeness

Let κ be an infinite cardinal. We denote P(κ) = ([κ]<ω)ω where [κ]<ω is the familiy

of all finite subsets of κ; thus, for every p ∈ P(κ) and n ∈ ω, p(n) is a finite subset of

κ. We endow the set P(κ) with the partial order by putting p ≤ q if for every n ∈ ω,

p(n) ⊂ q(n). We denote by c(p) the cardinality of the set p(0).
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We say that a compact-valued mapping φ : P(κ)→ X is a compact P(κ)-resolution for

X if X = φ(P(κ)) and φ(p) ⊂ φ(q) whenever p ≤ q. If, moreover, every compact subset of

X is contained in φ(p) for some p ∈ P(κ), then we say that φ is a compact P(κ)-resolution

swallowing compact sets.

Let i : P → P(ω) be the function such that i(p)(n) = {k ∈ ω : k ≤ p(n)} for all p ∈ P
and n ∈ ω; put P0 = i(P). Obviously, P0 is a cofinal subset of P(ω) order-isomorphic

to P; furthermore, for every s ∈ P(ω) there is a unique minimal element s0 in the set

{t ∈ P0 : s ≤ t}.

Proposition 13. A space X has a compact resolution if and only if X has a compact

P(ω)-resolution. Moreover, X has a compact resolution swallowing compact sets if and

only if X has a compact P(ω)-resolution swallowing compact sets.

Proof. This proposition follows from [11, Proposition 3.3(a)]. For the sake of completeness

we give the following direct proof. Suppose X has a compact resolution K : P → K(X).

Define φ : P(ω)→ K(X) by the rule: φ(p) = K(i−1(p0)) where p0 is the minimum element

of P0 greater or equal to p. Then φ is a compact P(ω)-resolution for X. Clearly, φ(P(ω)) =

K(P), so if K is compact swallowing, then so is φ.

Now assume that φ is a compact P(ω)-resolution for X. For each s ∈ P put K(s) =

φ(i(s)). Since P0 is cofinal in P(ω), the function K : P → K(X) is a compact resolution

for X. Obviously, if φ is compact-swallowing, then so is K. �

Following [15], we will say that a base {Up : p ∈ P} of neighborhoods of zero of a locally

convex space E is a G-base if Uq ⊂ Up whenever p ≤ q.

We will say that a base {Up : p ∈ P(κ)} of neighborhoods of zero of E is a Gκ-base if

Uq ⊂ Up whenever p ≤ q. By an argument similar to that in the proof of Proposition 13,

a space E has a G-base if and only if it has a Gω-base.

Theorem 14. Let κ be an infinite cardinal. A space X has a compact P(κ)-resolution

swallowing compact sets if and only if Cc(X) has a Gκ-base.

Proof. Let φ : P(κ) → K(X) be a compact P(κ)-resolution swallowing compact sets. As-

sign to each p ∈ P(κ) the set Up = {f ∈ Cc(X) : |f(x)| ≤ 1
c(p)+1

for all x ∈ φ(p)}. The

compactness of each φ(p), p ∈ P(κ) and the compact-swallowing property imply that the

family U = {Up : p ∈ P(κ)} is a base of neighborhoods of zero in Cc(X). If p ≤ q, then

φ(p) ⊂ φ(q) and p(0) ⊂ q(0), so Uq ⊂ Up, and U is a Gκ-base.

Conversely, let {Up : p ∈ P(κ)} be a Gκ-base of Cc(X). For each p ∈ P(κ) put

Kp = {x ∈ X : |f(x)| ≤ c(p) for all f ∈ Up}.
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Clearly, the sets Kp are closed in X, and Kp ⊂ Kq whenever p ≤ q. Let us verify that

these sets are compact.

Let p ∈ P(κ). Then the set {f ∈ Cc(X) : f(Kp) ⊂ (−1, 1)} contains the set 1
c(p)+1

Up,

so it is a neighnorhood of 0 in Cc(X). It follows that Kp is contained in a compact subset

of X; since Kp is closed in X, it is compact.

Let us now verify that every compact set C in X is contained in Kp for some p ∈ P(κ).

Indeed, since the family {Up : p ∈ P(κ)} is a base at 0 of Cc(X), we have Uq ⊂ { f ∈
Cc(X) : f(C) ⊂ (−1, 1)} for some q ∈ P(κ). Find a p ∈ P(κ) so that q ≤ p and p(0) 6= ∅.
Then for every x ∈ C and f ∈ Up we have |f(x)| < 1 ≤ c(p), so x ∈ Kp. We have proved

that C ⊂ Kp.

Thus, the mapping φ : P(κ) → K(X) such that φ(p) = Kp for all p ∈ P, is a compact-

swallowing compact P(κ)-resolution for X. �

Corollary 15. If a space X has a compact P(κ)-resolution swallowing compact sets, and

X `c-covers Y , then Y has a compact P(κ)-resolution swallowing compact sets.

If X and Y are `p-equivalent, the conclusion of the last theorem holds. Indeed, if

T : Cp(X)→ Cp(Y ) is a linear homeomorphismn, then T is also a linear homeomorphism

between Cc(X) and Cc(Y ) by [5, Propositions II.1.1, II.1.4].

Note also that Corollary 15 fails if we only assume t-equivalence of the spaces X and

Y (see [29, Example 3.4]): the spaces Cp(Q) and Cp(ω + 1) are homeomorphic by [13],

but the the space of rationals Q does not admit a compact resolution swallowing compact

sets, because otherwise by Theorem 1 it would have to be Čech-complete. Corollary 15

also shows that Cp(Q) and Cp(ω + 1) are not linearly homeomorphic. By [29, Corollary

2.2], the property of having a compact resolution is preserved by t-equivalence.

Proposition 16. Every Čech-complete space X of weight κ has a P(κ)-compact resolution

swallowing compact sets. Consequently, if X is a completely metrizable space of weight κ,

then Cc(X) admits a Gκ-base.

Conversely, if X is a metrizable space and Cc(X) has a G-base, then X is Polish.

Proof. Let B be a base of cardinality κ for X. Fix a countable family {Wn : n ∈ ω} of

open sets in βX so that X =
⋂
n∈ωWn. Let Bn be the family of all elements of B whose

closures in βX are contained in the set Wn. Clearly, Bn is a base of X for each n ∈ ω.

Enumerate each Bn in type κ: Bn = {Bnα : α ∈ κ}. For every finite set A ⊂ κ put

Fn(A) =
⋃
{Bnα : α ∈ A} where the closures are taken in βX. Then Fn(A) is a compact

subset of βX contained in Wn. Define φ : P(κ)→ K(X) by the rule:

φ(p) =
⋂
{Fn(p(n)) : n ∈ ω}.

The function φ is well defined, since the intersection of compact sets Fn(p(n)) is compact,

and is contained in X, because Fn(p(n)) ⊂ Wn and
⋂
n∈ωWn = X. It is obvious from
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the construction that φ(p) ⊂ φ(q) whenever p ≤ q. Let us verify that for every compact

K in X there exists p ∈ P(κ) such that K ⊂ φ(p). Indeed, for each n ∈ ω there exists a

finite An ⊂ κ such that K ⊂
⋃
{Bnα : α ∈ An}. Then the element p of P(κ) such that

p(n) = An for all n ∈ ω is as required.

If X is metrizable and Cc(X) has a G-base, then by Theorem 14, X has a compact

resolution swallowing compact sets, so X is Polish by Theorem 1. �

It is natural to ask whether every metrizable space of weight κ such that Cc(X) has a

Gκ-base must be completely metrizable. The next statement, proved by David Guerrero

Sánchez and presented here with his kind permission, shows that the answer generally is

negative.

Theorem 17. Let X be a metrizable space of weight ≤ κ. Then X has a compact-

swallowing compact P(κω)-resolution.

Proof. Let X be a metric space of weight ≤ κ. Then X has at most λ = kω compact

subsets.

Therefore, we can write K(X) = {Kα : α ∈ λ} (we do not assume that the enumeration

is injective).

Define φ(p) =
⋃
{Kα : α ∈ p(0)} for each p ∈ P(λ). Clearly, φ is a compact-swallowing

compact P(λ)-resolution for X. �

In particular, every metric space X of weight c has a compact-swallowing compact

P(c)-resolution, so by Theorem 14, Cc(X) has a Gc-base. Of course, a metrizable space

of weight c need not be completely metrizable.

4. Metrizability and local compactness

It is well known that metrizability and local compactness are not preserved by the rela-

tion of `p-equivalence: this is shown by the very first known example of non-homeomorphic

`p-equivalent spaces, the countable sum of convergent sequences and the countable Fréchet

fan (see, e.g., [6]).

On the other hand, there are several results that show that a space `p-equivalent or

`c-equivalent to a metrizable or a locally compact space must be metrizable or locally

compact if we assume that it has some additional property, such as first countability or

pointwise countable type.

In this section we obtain some extensions and versions of results of this type.

We need the following few auxiliary results. Recall that a space X is submetrizable if

there is a continuous bijection from X onto a metrizable space.
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Proposition 18. Let X be a submetrizable space. If there exists a continuous map from

Cc(X) onto Cc(Y ), then Cc(Cc(Y )) is submetrizable. In particular, if Y is of pointwise

countable type, then Y is submetrizable and first countable.

Proof. If X is submetrizable, then by [19, Theorem 5.6.2], Cc(X) has a dense σ-compact

subspace. Hence, Cc(Y ) has a dense σ-compact subspace, and by [19, Corollary 4.3.2],

Cc(Cc(Y )) is submetrizable.

Recall that every space of pointwise countable type is a k-space, see [14, Chapter

2.3], so Y is homeomorphic to a subspace of Cc(Cc(Y )). Hence, Y is submetrizable, so all

compact sets in Y are metrizable. To see that Y is first countable we apply the transitivity

of character for compact sets (the fact that if F1 ⊂ F2 are compact sets in a space Y , F1

has countable character in F2, and F2 has countable character in Y , then F1 has countable

character in Y , see [1, Proposition 3.3]); we apply this to any singleton F1 = {y0} and a

compact set F2 of countable character in Y that contains y0 to prove the countability of

character of Y at y0. Thus, Y is first countable. �

Recall that a space X is an ℵ0-space if X has a countable k-network, that is, a countable

family of sets N such that for every compact set K and every open set U in X such that

K ⊂ U , there is an N ∈ N with K ⊂ N ⊂ U , see [20]. It is well known [20] that every

image of an ℵ0-space under a perfect mapping is an ℵ0-space and every closed subspace

of an ℵ0-space is an ℵ0-space.

A function f : X → Y is called k-continuous if its restriction to every compact subspace

of X is continuous. For a space X, let ∆X : X → Cc(Cc(X)) be the map such that

∆X(x)(f) = f(x) for all x ∈ X and f ∈ Cc(X). It is well-known that the mapping ∆X is

injective, and that it is an embedding if and only if it is continuous.

Lemma 19. The mapping ∆X is k-continuous.

Proof. Let K be a compact subset of X and F = Cc(Cc(X))\ [C, V ] where C is a compact

subset of Cc(X) and V is an open subset of R. Clearly, ∆−1X (F ) = {x ∈ X : f(x) /∈ V for

some f ∈ C}.
Let x be the limit of a convergent net (xi : i ∈ I), with each xi ∈ K ∩ (∆X)−1(F ). To

prove the lemma it is enough to show that x ∈ ∆−1X (F ).

For each i ∈ I fix an fi ∈ C with fi(xi) /∈ V . The compactness of C implies that the

net (fi : i ∈ I) has a subnet that converges uniformly on K to some f ∈ C. Then from

fi(xi) /∈ V , for each i ∈ I, follows that f(x) /∈ V , implying that x ∈ ∆−1X (F ). �

Denote by X̃ the image of X under the mapping ∆X : X → Cc(Cc(X)) and by X̂ the

image of X under the mapping ∆X : X → Cp(Cc(X)). It is well known (see e.g [19]) that

∆X is a homeomorphism from X to X̂, and X̂ is closed in Cp(Cc(X)); it follows that X̃
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is a closed subspace of Cc(Cc(X)) and that the restriction to X̃ of the identity mapping

Cc(Cc(X))→ Cp(Cc(X)) is a continuous bijection onto X̂ whose inverse is k-continuous.

Lemma 20. Let X be a space and f : X → Y a continuous bijection whose inverse is

k-continuous. If X is an ℵ0-space, then so is Y .

Proof. Note that a set K in Y is compact if and only if f−1(K) is compact. Now it is

immediate that if N is a countable k-network in X, then {f(N) : N ∈ N} is a countable

k-network in Y . �

The following theorem extends Arhangel’skii’s result from [4] with the same conclusion

as below but for `p-equivalent spaces X and Y , see also [5, Theorem 12]. Note that in

general the ℵ0-space property in not preserved by open maps.

Theorem 21. If X is an ℵ0-space and there is an open continuous linear mapping from

Cc(X) onto Cc(Y ), then Y is an ℵ0-space.

Proof. Let h : Cc(X)→ Cc(Y ) be an open continuous linear mapping. Let h∗c : Cc(Cc(Y ))→
Cc(Cc(X)) and h∗p : Cp(Cc(Y )) → Cp(Cc(X)) be the dual mappings; the mapping h∗c is

continuous, and the mapping h∗p is an embedding, see e.g. [19, Corollary 2.2.8].

The mapping h∗p is a closed embedding, because h is quotient. Denote

Zp = h∗p(Ŷ ) and Zc = h∗c(Ỹ ).

It follows that Zp is closed in Cp(Cc(X)), and hence Zc is closed in Cc(Cc(X)). Moreover,

h∗p maps homeomorphically Ŷ onto Zp, because h∗p is an embedding.

Let j : Zc → Zp be the restriction to Zc of the identity mapping Cc(Cc(X))→ Cp(Cc(X)),

and let i : Ỹ → Ŷ be the restriction to Ỹ of the identity mapping Cc(Cc(Y ))→ Cp(Cc(Y )).

Clearly, i and j are continuous bijections, and i−1 is k-continuous by Lemma 19.

We have j ◦ (h∗c |Ỹ ) = (h∗p|Ŷ ) ◦ i, so j−1 = (h∗c |Ỹ ) ◦ i−1 ◦ (h∗p|Ŷ )−1, whence j−1 is

k-continuous.

By [20] the space Cc(Cc(X)) is an ℵ0-space, so its closed subspace Zc is an ℵ0-space.

From Lemma 20 now follows that Zp is an ℵ0-space. Since Zp is homeomorphic to Y , Y

is an ℵ0 space. �

Since every first countable ℵ0-space is second-countable, see [20], [21], Theorem 21

applies to prove the following extension of Arhangel’skii’s [4, Theorem 16] (see also [5]).

Corollary 22. Let X be a second-countable space and Y be first-countable. If there is an

open continuous linear mapping from Cc(X) onto Cc(Y ), then Y is second-countable.

The next corollary extends Pelant’s result [5, Theorem 3.27].
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Corollary 23. Let X be a separable completely metrizable space and Y a first-countable

space. If there is an open continuous linear mapping from Cc(X) onto Cc(Y ), then Y is

a separable completely metrizable space.

Proof. By Theorem 21, Y is second-countable. Since X is Polish, it has a compact

swallowing compact resolution, so Cc(X) has a G-base. It follows that Cc(Y ) has a G-base,

so Y has a compact-swallowing compact resolution, and hence is completely metrizable

by Christensen’s theorem. �

Proposition 18 and Corollary 23 give a relatively simple proof for the next statement,

which can also be obtained from a combination of results of V. Valov, J. de Groot and J.

Pelant.

Corollary 24. If X is a Polish space, Y is a space of pointwise countable type, and X

`c-covers Y , then Y is Polish.

It is well-known that Cc(X) is metrizable if and only if X is hemicompact, i.e. has a

compact-swallowing sequence of compact sets, see [19], Theorem 4.4.2.

Proposition 25. Let X be a locally compact space. Then X is hemicompact if and only

if X is a µ-space with a compact resolution swallowing compact sets.

Proof. Clearly, every hemicompact space is a µ-space with a compact resolution swallow-

ing compact sets.

For the converse assume that X is a µ-space admitting a compact resolution swallowing

compact sets. The µ-property of X implies that Cc(X) is barrelled (see Theorem 10.1.20

in [25]). Since X is locally compact, the space Cc(X) it is Baire-like, that is, for every

increasing countable cover {An : n ∈ ω} of Cc(X) by symmetric convex closed sets there

exists an m ∈ ω such that Am is a neighbourhood of zero, see [17, Lemma 2.1] or the

proof of Theorem 27 below. Next, by Theorem 14 (with κ = ω), the space Cc(X) has a

G-base, say, {Up : p ∈ P}. We may assume without loss of generality that all sets Up are

convex, symmetric and closed in Cc(X). For each finite sequence of naturals σ of length

n, put Cσ =
⋂
{Up : p|n = σ}. Then Cp|n ⊂ Up. Moreover, the sequence {Cp|n : n ∈ ω}

is increasing, and for each bounded set B ⊂ Cc(X), B ⊂ kCp|k for some k ∈ ω. Indeed,

assume that there is a bounded set B in Cc(X) such that B 6⊂ kCp|k for all k ∈ ω. For

each k ∈ ω choose xk ∈ B \ kCp|k. Choose pk ∈ P so that pk|k = p|k and xk /∈ kUpk .

Let q(n) = max{pk(n) : k ∈ ω}; then q ∈ P (note that pk(n) = p(n) for k ≥ n, so q

is well-defined). Clearly, pk ≤ q for all k ∈ ω. Therefore, Uq ⊂ Upk for all k ∈ ω, and

xk 6∈ kUq. Thus, {xk : k ∈ ω} is an unbounded sequence in B, a contradiction with B

being bounded.
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The Baire-likeness of Cc(X) now implies that there exists a k ∈ ω such hat Cp|k is a

neighbourhood of zero in Cc(X). Put

D = {Cσ : σ is a finite sequence of naturals and Cσ is a neighborhood of zero in Cc(X)}.

Then D is a countable family of neighborhoods of zero in Cc(X). By the above argument,

for any neighborhood of zero U in Cc(X) there are a p ∈ P and k ∈ ω such that Cp|k ∈ D

and Cp|k ⊂ U . Thus, D is a countable base of neighborhoods of zero in Cc(X). It follows

that Cc(X) is metrizable. Hence, Y is hemicompact. �

Example 26. The assumption of local compactness of X in Proposition 25 cannot be

omitted: there exists a σ-compact Čech-complete not hemicompact space that has a com-

pact resolution swallowing compact sets.

Put X = [0, 1] \ { 1
n+1

: n ∈ ω}. Then X is a Gδ-set in [0, 1], so X is a Polish space;

therefore X has a compact resolution swallowing compact sets. Clearly, X is σ-compact

and not locally compact; since all hemicompact first countable spaces are locally compact,

X is not hemicompact.

In [32, Proposition 4.8] Valov proved that if X and Y are µ-spaces, X is locally compact,

Y is a wq-space, and there exists a continuous linear surjection from Cc(X) onto Cc(Y ),

then Y is locally compact. The above proof of Proposition 25 motivated us to present an

apparently simpler approach to Valov’s [32, Proposition 4.8]. We use an argument similar

to one in [17].

Theorem 27. Let X be a locally compact µ-space and let Y be a wq-space which is

`c-equivalent to X. Then Y is a locally compact µ-space.

Proof. Let us first verify that if X is a locally compact µ-space, then Cc(X) is barrelled

and Baire-like. To prove the claim it is sufficient to prove that for any decreasing sequence

{An : n ∈ ω} of closed non-compact subsets of X there is a function f ∈ C(X) that is

unbounded on each An, see [17, Proposition 1.2].

Let {An : n ∈ ω} be a sequence as above. For each n ∈ ω choose an fn ∈ C(X)

unbounded on An. If there exists a number m ∈ ω such that fm is unbounded on each

An, we are done. Therefore, assume that for each n ∈ ω there is a kn > n such that

fn is bounded on Akn . Since the sequence {An : n ∈ ω} is decreasing, we may assume

(taking a suitable subsequence if necessary) that fn is bounded on An+1 for each n ∈ ω.

If A =
⋂
nAn is non-compact, the proof is complete. So assume that A is compact. Then

there exists an open neighbourhood H0 of A whose closure W0 is compact. Since f1 is

bounded on A2 and W0 and unbounded on A1, there exists x1 ∈ A1\(A2∪W0). Then there

exists an open neighbourhood H1 of x1 with compact closure W1 and W1 ⊂ X \(A2∪W0).

This procedure yields a sequence D = {xn : n ∈ ω} in X with a pairwise disjoint sequence
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{Hn : n ∈ ω} of its open neighbourhoods whose closures are compact. It is easy to see

that the set Z = D ∪ A is closed and non-compact. Since X is a µ-space, there exists a

function f ∈ C(X) unbounded on Z. Then f is unbounded on each An. This proves that

Cc(X) is Baire-like. By the assumption, Cc(Y ) is Baire-like (because the Baire-likeness is

inherited by Hausdorff locally convex quotients).

Finally, assume that Y is a wq-space. We already know that Cc(Y ) is Baire-like.

Then Y is locally compact. Indeed, given a point y0 ∈ Y fix a decreasing sequence

{Un : n ∈ ω} of its neighborhoods as in the definition of a wq-space. Put Wn = {f ∈
C(Y ) : supy∈Un

|f(y)| 6 n} for each n ∈ ω. Then each Wn is a closed absolutely convex

subset of Cc(Y ). Note that the sequence {Wn : n ∈ ω} covers Cc(Y ). Indeed, if some

function f0 is not covered, then for each n ∈ ω there is a point zn ∈ Un such that

|f0(zn)| > n. It follows that the sequence {zn : n ∈ ω} is not functionally bounded, a

contradiction with the choice of the sets Un.

By the Baire-likeness of Cc(Y ), there exist n ∈ ω, ε > 0, and a compact subset S of

Y such that {f ∈ C(Y ) : supy∈S |f(y)| < ε} ⊂ Wn. Then Un ⊂ S, and S is a compact

neighborhood of y0 in Y . �
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[15] J. C. Ferrando, J. Ka̧kol, M. López-Pellicer, S. A. Saxon, Tightness and distinguished Fréchet spaces,
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Av. San Claudio y Rio Verde s/n, col. San Manuel, Ciudad Universitaria, CP 72570

Puebla, Puebla, Mexico


