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Camino de Vera s/n, 46022 Valencia, Spain
E-mail: sromague@mat.upv.es

Abstract. We introduce a new type of Caristi’s mapping on partial metric spaces and show that

a partial metric space is complete if and only if every Caristi mapping has a fixed point. From this

result we deduce a characterization of bicomplete weightable quasi-metric spaces. Several illustrative
examples are given.
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1. Introduction and preliminaries

The notion of a partial metric space was introduced by Matthews [13] as a part of
the study of denotational semantics of data flow networks. In particular, he obtained,
among other results, a partial metric version of the Banach fixed point theorem ([13,
Theorem 5.3]). Later on, Valero [19], Oltra and Valero [15], Altun et al [2], [3], and
Ilic et al [10], gave some generalizations of the result of Matthews.

Let us recall that a partial metric on a set X is a function p : X × X → [0,∞)
such that for all x, y, z ∈ X :

(p1) x = y ⇐⇒ p(x, x) = p(x, y) = p(y, y) (T0-separation axiom),
(p2) p(x, x) ≤ p(x, y) (small self-distance axiom),
(p3) p(x, y) = p(y, x) (symmetry),
(p4) p(x, y) ≤ p(x, z) + p(z, y)− p(z, z) (modified triangular inequality).
A partial metric space (for short PMS) is a pair (X, p) such that X is a nonempty

set and p is a partial metric on X.
It is clear that, if p(x, y) = 0, then, from (p1) and (p2), x = y. But if x = y, p(x, y)

may not be 0.
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At this point it seems interesting to remark the fact that partial metric spaces
play an important role in constructing models in the theory of computation (see for
instance [1], [8], [17], [18], [20], etc).

A basic example of a PMS is the pair ([0,∞), p), where p(x, y) = max{x, y} for all
x, y ∈ [0,∞).

For another example, let I denote the set of all intervals [a, b] for any real numbers
a ≤ b. Let p : I × I → [0,∞) be the function such that p([a, b], [c, d]) = max{b, d} −
min{a, c}. Then (I, p) is a PMS.

Other examples of partial metric spaces which are interesting from a computational
point of view may be found in [7], [13], etc.

Each partial metric p on X generates a T0 topology τp on X which has as a base
the family open p-balls

{Bp(x, ε) : x ∈ X, ε > 0},
where

Bp(x, ε) = {y ∈ X : p(x, y) < p(x, x) + ε},
for all x ∈ X and ε > 0.

Observe that a sequence {xn}n∈ω (by ω we denote the set of all non-negative
integer numbers) in a PMS (X, p) converges to a point x ∈ X, with respect to τp, if
and only if p(x, x) = limn→∞ p(x, xn).

If p is a partial metric on X, then the function ps : X ×X → [0,∞) given by

ps(x, y) = 2p(x, y)− p(x, x)− p(y, y), (1.1)

is a metric on X.
Definition 1.1. Let (X, p) be a PMS.

(i) A sequence {xn}n∈ω in (X, p) is called a Cauchy sequence if there exists (and
is finite) limn,m→∞ p(xn, xm).

(ii) (X, p) is called complete if every Cauchy sequence {xn}n∈ω in X converges,
with respect to τp, to a point x ∈ X such that p(x, x) = limn,m→∞ p(xn, xm).

The following lemma plays an important role in obtaining fixed point results on a
PMS.
Lemma 1.2. (Matthews [13], Oltra and Valero [15]). Let (X, p) be a PMS. Then:

(a) {xn}n∈ω is a Cauchy sequence in (X, p) if and only if it is a Cauchy sequence
in the metric space (X, ps).

(b) (X, p) is complete if and only if (X, ps) is complete.
The following fact will be also useful.

Lemma 1.3. (Romaguera [16]). Let (X, p) be a PMS. Then, for each x ∈ X, the
function px : X → [0,∞) given by px(y) = p(x, y) is lower semicontinuous for (X, ps).

Caristi proved in [4] that if T is a self mapping of a complete metric space (X, d)
such that there is a lower semicontinuous function φ : X → [0,∞) satisfying

d(x, Tx) ≤ φ(x)− φ(Tx), (1.2)

for all x ∈ X, then T has a fixed point.
If there exists a a lower semicontinuous function φ : X → [0,∞) satisfying (1.2),

then T is called Caristi mapping for (X, d).
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There are a lot of generalizations of Caristi’s fixed point theorem in the literature.
Furthermore, Kirk proved in [12] that a metric space (X, d) is complete if and only if
every Caristi mapping for (X, d) has a fixed point.

In [16], Romaguera discussed the extension of Kirk’s theorem to a PMS. To this
end, he proposed the following two notions of a Caristi mapping in this context.

(i) A self mapping T of a PMS (X, p) is called a p-Caristi mapping on X if there
is a function φ : X → [0,∞) which is lower semicontinuous for (X, p) and satisfies

p(x, Tx) ≤ φ(x)− φ(Tx) (1.3)

for all x ∈ X.
(ii) A self mapping T of a PMS (X, p) is called a ps-Caristi mapping on X if there

is a function φ : X → [0,∞) which is lower semicontinuous for (X, ps) and satisfies
(1.3).

Clearly, every p-Caristi mapping is a ps-Caristi mapping, but the converse is not
true in general.

Also in the same paper, Romaguera defined a 0-complete PMS as (X, p) in which
every 0-Cauchy sequence, converges with respect to τp, to a point z such that p(z, z) =
0, where a sequence {xn}n∈ω in a PMS is called 0-Cauchy if limm,n→∞ p(xn, xm) = 0.

It is clear that every complete PMS is 0-complete. However, the converse is not
true in general (see [16, p. 3]).

The following result provides the extension of Kirk’s theorem to PMS obtained in
[16, Theorem 2.3].
Theorem 1.4. A PMS (X, p) is 0-complete if and only if every ps-Caristi mapping
on X has a fixed point.

Very recently, Karapinar [11] obtained the following generalization of Caristi’s fixed
point theorem.
Theorem 1.5. Let (X, p) be a complete PMS, then every p-Caristi mapping on X
has a fixed point.
Remark 1.6. Observe that Theorem 1.5 is an immediate consequence of Theorem 1.4
because every complete PMS is 0-complete and every p-Caristi mapping is a ps-Caristi
mapping.

Since the identity mapping on a PMS (X, p) is a ps-Caristi mapping only in the
case that p is a metric, we shall propose in the next section a new notion of Caristi
mapping which avoids this disadvantage. For our surprise, complete partial metric
spaces can be characterized as those partial metric spaces for which every Caristi
mapping (in this new sense) has a fixed point. From this result we shall deduce
a characterization of bicomplete weightable quasi-metric spaces. Several illustrative
examples are also given.

2. The results

Definition 2.1. A self mapping T of a PMS (X, p) is called a Caristi mapping on
X if there is a function φ : X → [0,∞) which is lower semicontinuous for (X, ps) and
satisfies

p(x, Tx) ≤ p(x, x) + φ(x)− φ(Tx)
for all x ∈ X.
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Obviously, the identity mapping on a PMS (X, p) is a Caristi mapping (in the sense
of the above definition).

Moreover, it is clear that every ps-Caristi mapping on (X, p) is a Caristi mapping.
The next example shows that the converse does not hold, in general.
Example 2.2. Let X = [1,∞) and p(x, y) = max{x, y} for all x, y ∈ X. Then (X, p)
is a complete PMS (and so it is 0-complete). Suppose that T : X → X is a ps-Caristi
mapping. Then, by Theorem 1.4, T must have a fixed point in X, say z. Since T
is ps-Caristi, there is a function ϕ : X → [0,∞) which is lower semicontinuous for
(X, ps) and such that for each x ∈ X,

p(x, Tx) ≤ ϕ(x)− ϕ(Tx).

Since z is a fixed point of T , we have

p(z, z) = p(z, Tz) ≤ ϕ(z)− ϕ(Tz) = ϕ(z)− ϕ(z) = 0.

Therefore, the definition of p implies z = 0, which is a contradiction since 0 /∈ X.
Thus there is no ps-Caristi mapping on X.

Now let T : X → X defined by Tx = (x + 1)/2 and φ : X → [0,∞) defined by
φ(x) = 1 for all x ∈ X. Clearly, φ is lower semicontinuous for (X, ps). Moreover, we
have

p(x, Tx) = max{x, x+ 1
2
} = x = p(x, x) + φ(x)− φ(Tx),

for all x ∈ X, and thus, T is a Caristi mapping on X.
Note that T has fixed point (indeed, z = 1 is its unique fixed point). This fact is

not casual as Theorem 2.3 below, shows.
Theorem 2.3. A PMS (X, p) is complete if and only if every Caristi mapping on
X has a fixed point.
Proof. Suppose that (X, p) is complete and let T be a Caristi mapping on X. Then
there exists a function φ : X → [0,∞) which is a lower semicontinuous for (X, ps)
and satisfies

p(x, Tx) ≤ p(x, x) + φ(x)− φ(Tx),

for all x ∈ X. Hence

2p(x, Tx)− p(Tx, Tx) ≤ 2p(x, x) + 2φ(x)− 2φ(Tx)− p(Tx, Tx). (2.1)

Now let β : X → [0,∞) given by β(x) = p(x, x) for all x ∈ X. Then β is lower
semicontinuous for (X, ps), so the function ψ := β + 2φ is also lower semicontinuous
for (X, ps). So the inequality (2.1) can be written as

2p(x, Tx)− p(x, x)− p(Tx, Tx) ≤ ψ(x)− ψ(Tx),

i.e.,
ps(x, Tx) ≤ ψ(x)− ψ(Tx),

for all x ∈ X. Since, by Lemma 1.2, (X, ps) is a complete metric space, and ψ is lower
semicontinuous for (X, ps), we can apply Caristi’s fixed point theorem, and thus T
has a fixed point.

The converse follows from a slight modification of the proof of the ‘if’ part of
Theorem 1.4 above (Theorem 2.3 in [16]). Indeed, suppose that there is a Cauchy



CARISTI’S TYPE MAPPINGS 7

sequence {xn}n∈ω of distinct points in (X, p) which is not convergent in (X, ps).
Construct a subsequence {yn}n∈ω of {xn}n∈ω such that

p(yn, yn+1)− p(yn, yn) < 2−(n+1),

for all n ∈ ω.
Put A = {yn : n ∈ ω} . Clearly A is closed in (X, ps).
Now define T : X → X by Tx = y0, if x ∈ X\A and Tyn = yn+1 for all n ∈ ω,

and define φ : X → [0,∞) by φ(x) = p(y0, x) + 1 if x ∈ X\A and φ(yn) = 2−n for
all n ∈ ω. Note that φ(yn+1) < φ(yn) for all n ∈ ω and that φ(y0) ≤ φ(x) for all
x ∈ X\A. By using Lemma 1.3 we deduce that φ is lower semicontinuous on (X, ps).

Moreover, for each x ∈ X\A we have

p(x, Tx) = p(x, y0)
= φ(x)− φ(y0)
= φ(x)− φ(Tx)
≤ p(x, x) + φ(x)− φ(Tx),

and for each yn ∈ A we have

p(yn, T yn) = p(yn, yn+1)

≤ p(yn, yn) + 2−(n+1)

= p(yn, yn) + φ(yn)− φ(Tyn).

Therefore T is a Caristi mapping on X without fixed point, a contradiction. This
concludes the proof.

The following example illustrates Theorem 2.3.
Example 2.4. Let X = [0, 1] and p(x, y) = max{x, y} for all x, y ∈ X. Then (X, p)
is a complete PMS (and so it is 0-complete). Define T : X → X by Tx =

√
x and

define φ : X → [0,∞) by φ(x) = 1 − x. Then φ is continuous and so it is lower
semicontinuous function for (X, ps). Also we have

p(x, Tx) =
√
x ≤ p(x, x) + φ(x)− φ(Tx)

for all x ∈ X. Therefore, T is a Caristi mapping on X, so by Theorem 2.3, T has a
fixed point. Note that, nevertheless, Theorem 1.4 can not be applied to this example,
because

p(1, T1) = 1 � 0 = φ(1)− φ(T1),
for any function φ : X → [0,∞).

In his paper [13], Matthews also introduced and studied the notion of a weightable
quasi-metric space; in particular, he established (see Theorem 2.5 below) the pre-
cise relationship between partial metric spaces and weightable quasi-metric spaces.
We conclude the paper by establishing the weightable quasi-metric counterpart of
Theorem 2.3. To this end, we recall the following pertinent concepts and facts.

A quasi-metric on a set X is a function d : X × X → [0,∞) such that for all
x, y, z ∈ X : (i) x = y ⇔ d(x, y) = d(y, x) = 0; (ii) d(x, z) ≤ d(x, y) + d(y, z).

A quasi-metric space is a pair (X, d) such that X is a set and d is a quasi-metric
on X.
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If d is a quasi-metric on X, then the function ds : X × X → [0,∞) defined by
ds(x, y) = max{d(x, y), d(y, x)} for all x, y ∈ X, is a metric on X.

A quasi-metric space (X, d) is said to be bicomplete if the metric space (X, ds) is
complete.

According to [13], a quasi-metric space (X, d) is weightable provided that there
exists a function w : X → [0,∞) such that for all x, y ∈ X, d(x, y) +w(x) = d(y, x) +
w(y). The function w is said to be a weight function for (X, d) and the quasi-metric
d is weightable by the function w.

The following result was proved by Matthews [13].
Theorem 2.5. (a) Let (X, p) be a partial metric space. Then, the function dp :
X×X → [0,∞) defined by dp(x, y) = p(x, y)−p(x, x) for all x, y ∈ X, is a weightable
quasi-metric on X with weight function w given by w(x) = p(x, x) for all x ∈ X.

(b) Conversely, if (X, d) is a weightable quasi-metric space with weight function w,
then the function pd : X × X → [0,∞) defined by pd(x, y) = d(x, y) + w(x) for all
x, y ∈ X, is a partial metric on X.

The following fact is well-known (see for instance [14]) and easy to verify.
Lemma 2.6. A weightable quasi-metric space (X, d) is bicomplete if and only if
(X, pd) is a complete PMS.
For quasi-metric spaces we propose the following natural notion of a Caristi mapping.
Definition 2.7. A self mapping T of a quasi-metric space (X, d) is called a Caristi
mapping on X if there is a function φ : X → [0,∞) which is lower semicontinuous for
(X, ds) and satisfies d(x, Tx) ≤ φ(x)− φ(Tx), for all x ∈ X.
Remark 2.8. Hicks [9], Ćirić [5] and Cobzaş [6], among others, have obtained quasi-
metric versions of Cariti’s fixed point theorem with different approaches to the one
given here.
Remark 2.9. It follows from Theorem 2.5 that a self mapping T of a weightable
quasi-metric space (X, d) is a Caristi mapping, in the sense of Definition 2.7, if and
only if T is a Caristi mapping, for the PMS (X, pd).

Combining Lemma 2.6, Theorem 2.3 and Remark 2.9, we obtain the following.
Theorem 2.10. A weightable quasi-metric space (X, d) is bicomplete if and only if
every Caristi mapping on X has a fixed point.

Finally, we present an example which shows that “weightable” can not be omitted
in the preceding theorem.
Example 2.11. Let X = (0,∞) and let d : X×X → [0,∞) defined by d(x, y) = x−y
if x ≥ y, and d(x, y) = 1 otherwise. Then d is a quasi-metric on X and ds(x, y) =
max{1, |x− y|} for all x 6= y. Hence (X, ds) is a complete metric space, so (X, d) is
bicomplete. Now define T : X → X by Tx = x/2, and φ : X → [0,∞) by φ(x) = x
for all x ∈ X. Note that ds generates the discrete topology on X, so φ is obviously
lower semicontinuous for (X, ds). We also have

d(x, Tx) = d(x,
x

2
) =

x

2
= φ(x)− φ(Tx),

for all x ∈ X. Consequently T is a Caristi mapping on X without fixed point.
Acknowledgments. The third author thanks the support of the Spanish Ministry
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