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Abstract. Ultrasonic imaging of composites was investigated. Glass and carbon fiber 

reinforced plastic produced by resin transfer molding and prepreg forming were analyzed. In 

some of the samples air bubbles were trapped during RTM (resin transfer molding) process and 

interlayer gaps were present in prepreg technology samples. One of the most expected 

techniques to apply in such case is the Split Spectrum processing. On the other hand such 

signals require specific processing to reliably reconstruct the temporal position of the defect 

reflection. Correlation processing can be used for signal compression or Wiener filtering can be 

applied for spectral content equalisation. Pulse signals are simple to generate, but lack the 

possibility to alter the signal’s spectrum shape. Spread spectrum signals offer a powerful tool 

for signal energy over frequency band increase and resolution enhancement. CW (continuous 

wave) burst has high energy but lacks the bandwidth needed for SSP (spread spectrum 

processing). The aim of the investigation was to compare the performance of the above signals 

in case of composite imaging, when various Split Spectrum Processing techniques are used 

with preceding Wiener processing for spectral content compensation. Resulting composite 

signals and images obtained are presented. Structural noise removal performance was 

evaluated as Receiver Operating Characteristics (ROC). 

1.  Introduction 

Ultrasonic imaging of composite materials can not use conventional techniques since signals scattered 

by composite structure are masking the useful signal [1]. Due to the presence of the structural noise, 

resolving the defect or even the backwall of the material is complicated.  

Techniques used for composite imaging can be divided into two categories: i) using the frequency 

range least affected by the structure (usually low frequencies); ii) techniques exploring the diversity of 

the structure signals so averaging can be applied. Using low frequencies is not always acceptable since 

resolution of imaging depends on envelope bandwidth which usually is a direct function of operation 

frequency. Techniques exploring the diversity can be further divided into spatial (synthetic aperture 

focusing technique, SAFT [1]) and frequency domain (Split Spectrum Processing, SSP [2]).  
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We have concentrated on SSP technique. Assumption was made that SSP processing calls for 

smooth and as wide as possible signal bandwidth. Then, we aimed our investigation on Spread 

Spectrum (SS) signals performance comparison with conventional excitation signals when applied in 

SSP technique. 

2.  Split Spectrum Processing 
SSP algorithm has been around for decades [2] and is considered as sub-optimal to the problem of 

detection of the ultrasonic pulse in a structural noise [3-8]. Technique is based on the assumption that 

the echoes coming from the scattering centers of the material poses diversity in frequency domain, i.e., 

the structure noise response is expected to vary significantly at different frequency channels. The echo 

from a large discontinuity, on the contrary, will act the same way in different channels. Hence, most of 

the SSP techniques implement a filter bank followed by a combination of the filter outputs (figure 1).  
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Figure 1. Standard data flow diagram for Split Spectrum Processing. 

 

Main combination techniques used in our investigation were: [4] polarity thresholding (PT), [6] 

scaled polarity thresholding (SPT), [8] frequency multiplication (FM) and [3] minimization (MIN). 

Minimisation was chosen as a classical reference, its output is a minimum value of the filter banks. In 

PT, if polarity of the bank signals is the same, useful signal is assumed and average of the banks 

output is used, if at least one bank polarity does not match, zero mask is used. SPT is essentially the 

same as PT, only it uses linear mask, produced by ratio of same (N+) and opposite polarity (N-) banks 

to total banks number N. FM is a kind of geometric mean, where product of banks output is used. 

2.1.  Performance measures 

Signals performance measurement was done using the Receiver Operating Characteristics (ROC). 

We have assumed that the goal of the SSP is the lowest probability of the false alarm (PFA) while 

maintaining maximum of the probability of detection (PD). PFA and PD were obtained as false alarm 

counts NFA and detection counts ND at variable threshold level Vth normalized to possible events N: 
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Obtained PFA and PD were plotted against each other to produce ROC [9].  

3.  System setup 

System (figure 2) is composed from control part, excitation pulser and the signals acquisition units. 

Industrial standard PC104 modular construction was used as form factors and bus. The excitation 

pulser driver has 100 MHz sampling rate and is driving the totem pole topology pulser [10]. Code 

upload and control is accomplished by host PC via PC104 bus. The receiving part is preceded by high 

impedance preamplifier [11] with high voltage protection input limiter. Conditioned signal is supplied 

to the dual high speed ADC, consisting of two high speed 10-bit monolithic sampling ADC operating 

at programmable sampling frequency up to 100 MS/s. All the control tasks and PC104 bridge 

functions are implemented by Complex Programmable Logic Device (CPLD) chip. 
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Figure 2. System setup (left) and spectral content of excitation signals used (right). 

 

Five signals were uploaded into pulser memory for subsequent excitation: CW burst of 1 MHz 

frequency, CW burst of 2.7 MHz frequency (transducer center frequency), 0.5 MHz to 4.5 MHz 

spread spectrum signal implemented as linear chirp, rectangular pulse with duration 270 ns 

(corresponds to 2.7 MHz transducer center frequency), 3 ns steep step corresponding to frequency 

range up to 106 MHz. We deliberately avoided techniques exploring the phase correlation [7] since 

these techniques should be less sensitive to the amplitude variation among the banks. Since spread 

spectrum signals were used, SSP algorithm was modified, adding the Wiener processing [4] before 

SSP to compensate the spectral content and concentrate all components into one temporal position.  

4.  Experimental results 

Three materials were used in investigation: thin (2.2 mm) sample of kayak wall, sputtered GFRP 

(glass fiber reinforced plastic) composite; thick (4.9 mm) multilayer sample of kayak wall: GFRP plus 

random carbon filament plus glass fiber net; and high porosity GFRP, 9 mm thick: randomly oriented 

chipped glass fibers. Spherically focused ultrasonic transducer, TS 12PB2-7P30, diameter 12 mm, 

1.5 mm focal spot was chosen for its narrow beam. Transducer was operated with focal spot 

positioned on material under investigation. In such case spatial averaging is minimal and effect of the 

structural noise is maximised. Resulting B-scan images for multilayer kayak are presented in figure 3. 

 

 

Figure 3. B-scan image obtained at various signal and combination techniques: multilayer kayak. 
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Figure 4. Signals’ performance comparison: ROC for high porosity composite. 

 

ROCs for the excitation signals used for high porosity composite imaging are presented in figure 4. 

Investigation indicates that best performance is obtained for spread spectrum (chirp) signal. Signal 

performs best in polarity thresholding SSP processing. 

5.  Conclusions 

Use of spread spectrum excitation gives best performance for majority of materials and techniques. 

Best performance was achieved in conjunction with rectangular mask techniques in combination with 

minimization. Pulse and step excitation signals performance was comparable, though at narrower 

choice of techniques. CW burst signals sometimes are falsely assumed as good performers if duration 

after correlation compression is not taken into account. In some cases, when reflection contained not 

all frequency components, signals with larger low frequency content were in favor.  
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