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Abstract—This paper proposes the use of APM (Argument Principle Method) method to find all complex resonant 

frequencies in a three layer cylindrical cavity. APM guarantees that no root is lost and frequencies can be associated with 

the resonant mode. The roots can be used to find permittivity of a material inside a cavity. 

 

Index Terms—Electromagnetic modeling, resonant cavities, complex resonant frequency, high loss permittivity 

measurements. 

I. INTRODUCTION 

hen numerical methods are used to find the complex resonant frequency of structures, it is easy to find 

wrong solutions, in the meaning that the found solution is the solution of another higher or lower mode than 

the mode that we were interested in. This problem arises especially when using gradient methods to find the 

roots and several solutions are possible. This implies that initial information must be known, and this is used as the 

starting point (seed) for the gradient method to find the root. 

When the function to find the resonant frequency does not have an analytic expression, the use of the gradient 

method is preferred to find the roots. This usually happens when applying the resonant condition [1] to a set of 

equations obtained after using Mode Matching or Circuit Method [2], and a good seed value is required.. The seed 

can be provided by either (i) the perturbation technique [3], or (ii) by other alternatives methods that provides less 

accuracy but good enough seed (like Dielectric Dielectric-Loaded Airline [4] or Open Open-Ended Coaxial Probe 

W
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[5], depending on the sample mechanical capabilities or expected losses) or (iii) by the solution of a simpler cavity 

model, that is close to the real set-up but with analytical solution. 

It is this last case the one that is proposed in this letter for a cylindrical cavity with three dielectric layers. This 

cavity, shown in figure 1, is a simplification of a cavity including a dielectric in the center (r1), a tube that surrounds 

the material (r2) and all introduced through an insertion hole from the top of the cavity [6,7]. For the typical cavity 

dimensions used for dielectric characterization, the first TM0np modes (ordered in increasing frequencies) are TM010, 

TM011 and TM020. The first resonant mode is usually the most interesting but, for some applications, especially for 

the measurement of high-loss dielectrics, the TM020 mode may be preferred from the point of view of measurements 

because it presents a higher Q-factor. However, this mode is problematic from a numerical point of view, since its 

associated root is, sometimes, wrongly found and then the solution for TM011 mode is achieved instead. It is in this 

frame where the method proposed in this paper gives the solution. 

II. THEORY 

Figure 1 shows the geometry of a cylindrical cavity to be analyzed in order to obtain the resonant frequencies. The 

cavity has three dielectric materials, with relative permittivities r1, r2 and r3, and external radii a, b and R, 

respectively. 

The full-wave analysis of the TM0np resonant modes and resonant frequencies is a well-known problem [8,9] and 

is based on the expression of the electromagnetic fields in each region (region 1, with 0≤r≤a, region 2, with a≤r≤b 

and region 3, with b≤r≤R): 
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where i=1,2,3 represents each region, Jn(x) and Yn(x) are the Bessel functions of the first and second kind and 

order n, kci, are the cut-off wavenumbers in each region,  is the propagation constant, which is common for all the 

regions, i are the coefficients for the Bessel functions of the second kind to accomplish the boundary conditions, as 

well as coefficients Bi. 

The propagation constant  is known because equation (1) is the result of applying boundary condition at z=0 and 

z=h to the TM0n modes in the cylindrical waveguide. So: 

 ,...2,1,0    ;     phpj   (2) 

where coefficient p represents the z variations of the field. Additionally, the relationship between the kci and  is: 

 2
00

2222   riici kk  (3) 

By applying the boundary conditions between the dielectric materials, we find that the resonant frequencies are 

those that solve the following equation (in terms of kc2): 

 

Fig. 1. Cylindrical cavity coaxially-filled with three dielectrics and PEC walls. 
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where: 
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and: 
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 Using (4) with APM Method Circuit method [2] 

 fr [GHz] Q fr [GHz] Q 

TM010 3.22129 1887.66 3.22129 1887.66 

TM011 6.65684 5060.96 6.65680 5062.31 

TM020 7.14823 3054.51 7.14823 3054.51 

Table I.-Resonant frequencies for r1=5·(1-j·10-3) 

 Using (4) with APM Method Circuit method [2] 

 fr [GHz] Q fr [GHz] Q 

TM010 3.21902 20.19 3.21902 20.19 

TM011 6.65535 54.60 6.65510 54.62 

TM020 7.13949 31.22 7.13949 31.22 

Table II.-Resonant frequencies for r1=5·(1-j·10-1) 

 TM010 TM011 TM020 

r1 fr [GHz] Q fr [GHz] Q fr [GHz] Q 

5·(1-j·10-3) 3.2815 2000 6.7111 5179 7.2127 2949 

5·(1-j·10-1) 3.2794 21.8 6.7101 57.1 7.2043 30.5 

Table III.-Resonant frequencies with insertion hole using Circuit Method 
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Then the solutions of equation (4) will yield to the complex resonant frequencies for modes TM0np.This equation 

is usually solved by methods based on the gradient procedure which have two important drawbacks: they need a 

good starting point (seed) to achieve the desired solution, and there is no guarantee that the obtained solution is the 

proper one. 

Since the explicit equation is known, the APM method, based on the Cauchy Integral, is used to overcome this 

problem. This method has been proposed previously, originally in [10], and then successfully used for 

electromagnetic purposes in [11, 12, 13]. 

In order to apply the APM method successfully to (4), some precautions must be taken to: (i) ensuring that the 

function is even for the variables kc1 and kc3 (to facilitate the integration process in the complex plane avoiding 

branch lines) and (ii) preventing poles in the area to find the roots. These conditions/requirements are accomplished 

in (4). Then it is possible to apply APM method to (4) to find the resonant frequency, using as variable to be solved 

the cut-off number kc2 in the center material (region 2), because is the one that satisfies precaution (i) stated above. It 

is clear that once kc2 is obtained, the resonant frequency is easily obtained from (6). 

The poles that appear in (4) can be avoided by applying the integration strategy showed in [11] and [13]. 

III. METHOD VALIDATION 

As an example of the use of the proposed method, and the problems previously stated, let’s assume the cylindrical 

cavity shown in Fig. 1 with a=5 mm, b=6 mm, R=28 mm, h=25 mm, and materials with permittivities r3=1, r2=2-

j·10-3 and r1 (material in the center). 

Table I shows the resonance frequencies and Q-factors obtained analytically from (4) with APM method and 

values numerically computed using the circuit analysis in [2] for the first three TM0np modes when r1=5·(1-j·10-3). 

Both methods offer the same results, as expected, and it also validates the circuit method. The remarkable difference 

is that the values obtained by the analytical method with APM are direct and no roots are lost, while the numerical 

procedure does not always provide the appropriate root, as shown in the next paragraphs, where figures 2 and 3 are 

explained to obtain a seed for the circuit method. 
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Figure 2 shows a 2D image of the problem to be solved by circuit analysis [2] (applying the resonant condition 

described in [1]) with the location of the zeros that are the complex resonant frequencies for the high loss dielectric 

case, i.e. r1=5·(1-j·10-1). It is clear that the zeros are the complex resonant frequencies, defined as 

  Qjf r  21 , where the real part is the resonant frequency and the imaginary part is related with the Q-

factor as shown in [14]. These 3 zeros are those shown in table II. A similar surface can be plotted for the 3 zeros of 

table I. 

Figure 3 shows in green and dash a cut of figure 2 when Q=1000 (as a starting seed), where is quite clear that the 

resonant modes are not easily located. In blue and continuous line is the same but for low loss dielectric (r1=5·(1-

j·10-3)) where for the same seed (Q=1000) the resonant frequencies are clearly present in the three peaks. These 

 

Fig. 2. 2-D figure with the location of  the first 3 TM resonant modes for the analyzed cavity shown in 

figure 1 and permittivity r1=5·(1-j·10-1) 

Fig. 3. Magnitude of the resonant condition for the analyzed cavity shown in figure 1 for two dielectrics 

with different losses 
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curves are very useful to find a good seed (by inspection) when gradient methods are used, as it happens when 

circuit method [2] is used. 

So, and coming back to the results in table I, an inaccurate seed in the gradient method may yield to an incorrect 

solution. For example, if we are interested in the TM011 mode, when a seed of f=6.80 GHz and Q=1000 is used in the 

gradient method, the solution is the mode TM020. Even the starting values f=6.80 GHz and Q=5000 (very near to the 

good solution of TM011) yield the solution of the mode TM020 in the gradient method. This happens because both 

modes are really close. Only a very good seed as f=6.65 GHz and Q=1000 provides the correct solution for mode 

TM011 (f=6.65684 GHz, Q=5060.96). 

For lossy materials things are even worst for higher modes. To illustrate this, let’s use figure 3 again, and paying 

attention to the green and dashed curve obtained for r1=5·(1-j·10-1), also assuming Q=1000 for initial seed. Now the 

curve exhibits where the modes TM010 and TM011 are, but the TM020 mode has almost disappeared. 

The correct resonant frequency and Q-factor values, using (4) with APM and the circuit method in [2] are shown 

in Table II. The resonant frequency has hardly changed from the values with low losses, but the Q-factor is low 

(from 20 to 55 depending on the mode). 

In this case an extremely good seed is necessary to find the complex resonant frequency of TM020 mode. For 

instance, even a seed of f=7.00 GHz and Q=100 provides a wrong solution and yields to the TM011 mode complex 

resonance frequency. The same happens for a seed of f=7.00 GHz and Q=10. Only a very good seed as f=7.14 GHz 

and Q=100 provides the good solution for the mode TM020 (f=7.13949 GHz, Q=31.22). This is shown in Fig. 2, with 

solid lines and “o” or “”, showing how, even with a supposed good seed for TM020, the algorithm gives the solution 

TM011. 

For the TM010 mode, it is worth mentioning that in both cases (for r1=5·(1-j·10-3) and r1=5·(1-j·10-1) the gradient 

method provides good results because it is quite far away from the other modes. 

Finally, the resonant values for all the 3 modes with insertion hole, with the seeds obtained with the theory 

showed in this paper, are shown in Table III. Of course these values are only calculated with the circuit method in 

[1], because there is no analytical expression for this problem. Although the APM method can be applied to the 

formulation of the circuit method, it implies a large computation problem. So, it was not applied here and the seeds 

previously obtained with the APM method in the ideal case (cavity without insertion hole) were used instead. 
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To finish the validation, a dielectric sample has been measured in a cylindrical cavity with an upper insertion hole, 

as shown in figure 4. The cavity dimensions are in the same figure, and the resonant frequencies measured for a 

dielectric sample are fr=2.10076 GHz and Q=149.5 (mode TM010), fr=4.29202 GHz and Q=504.1 (mode TM011) and 

fr=4.56161 GHz and Q=74 (mode TM020). 

These 3 measurements give a seed, using the procedure described in this paper, of r1=2.851 (mode TM010), 

r1=2.821 (mode TM011) and r1=2.825 (mode TM020). 

Then, and following the procedure described above, these values are used as seed for the Circuit Model, that takes 

into account the insertion hole, giving a permittivity of r1= 2.947-j·0.121 (mode TM010), r1= 2.983-j·0.125 (mode 

TM011) and r1= 2.919-j·0.125 (mode TM020). It is important to note that a bad selection of the seed gives bad results. 

For example, a bad selection of the seed in the second mode (TM011) gives the permittivity value of r1=4.176., that 

clearly is a wrong value. 

 

Fig. 4. Cylindrical cavity used to measure a ROD of dielectric material (h=40 mm; R=51.917 mm; 

b=6.325 mm; a=6.250 mm; r2=r3=1) 

 Measurements  

Mode fr [GHz] Q r (seed) r (using circuit method [2]) 

TM010 2.10076 149.5 2.851 2.947-j·0.121 

TM011 4.29202 504.1 2.821 2.983-j·0.125 

TM020 4.56161 74 2.825 2.919-j·0.125 

Table IV.-Measured values for the cavity shown in figure 4. 
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All these values are summarized in table IV. 

 

 

IV. CONCLUSION 

The problem of finding the proper complex resonant frequency when higher resonant modes are desired implies, 

when gradient methods are used to apply the resonant conditions, very good seed. This seed sometimes is not 

available, then the proposed technique based on the APM method provides good seeds as has been proved and 

ensures that the proper modes are used. 
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